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ABSTRACT. In this paper we are concerned with the blow up analysis of two
classes of problems in bounded domains arising in mathematical physics: sinh-
Gordon equation and some general rank n Toda systems. The presence of a resid-
ual mass in the blowing up limit makes the analysis quite delicate: nevertheless,
by exploiting suitable Pohozaev identities and a detailed blow up analysis we ex-
clude blow up at the boundary. This is the first result in this direction in the pres-
ence of a residual mass. As a byproduct we obtain general existence results in
bounded domains.

1. INTRODUCTION

In the present paper we are concerned with the blow up analysis of two classes
of problems defined in bounded domains: sinh-Gordon equation (1.1) and a gen-
eral rank n Toda systems (1.8). Let us start by considering ∆u + ρ1

h1eu∫
Ω h1eu − ρ2

h2e−u∫
Ω h2e−u = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω and ∆ is the
Euclidean Laplace operator, ρ1, ρ2 are two positive parameters and h1, h2 are two
smooth positive functions in Ω.

Equation (1.1) arises in mathematical physics as a mean-field equation of the
equilibrium turbulence with arbitrarily signed vortices and it was first derived by
Joyce and Montgomery [29] and by Pointin and Lundgren [50]. For more discus-
sions concerning the physical background we refer for example to [11, 40, 44, 45,
47] and references therein. The case h1 = h2, ρ1 = ρ2 has a close relationship
with geometry and is related to the study of constant mean curvature surfaces, see
[59, 60].
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When ρ2 = 0 equation (1.1) reduces to the following well-known Liouville
problem:  ∆u + ρ

heu∫
Ω heu = 0 in Ω,

u = 0 on ∂Ω.
(1.2)

Equation (1.2) has been extensively studied in the literature since it is related to
the prescribed Gaussian curvature problem and Euler flows, see [1, 55] and [9,
30], respectively. We refer the interested readers to the survey [56]. There are by
now many results concerning (1.2), some of which we recall here to highlight the
difference with the general case (1.1). Suppose (uk, ρk) is a sequence of blow up
solutions to (1.2) with ρk uniformly bounded, then it is known that there is no
boundary blow up, namely that uk is uniformly bounded near a neighborhood of
∂Ω, see [42, 46]. Furthermore, we have a clear understanding of the blowing up
solution: in particular, it holds ρk → 8mπ, for some m ∈ N and, after passing to a
subsequence,

uk(x)→ 8π
m

∑
j=1

G(x, pj) in C2
loc
(
Ω \ {p1, · · · , pm}

)
, (1.3)

ρk
heuk∫
Ω heuk

→ 8π
m

∑
j=1

δpj in the sense of measures, (1.4)

for some pj ∈ Ω, where G(·, pj) is the Green function of −∆ with pole at pj and
Dirichlet boundary condition, see [8, 32, 33, 42, 46] (see also the recent results
[2, 3] concerning uniqueness and non degeneracy of blowing up solutions, respec-
tively). Roughly speaking, the latter properties denote a concentration property
of the blowing up solution: in particular, all the mass is concentrated around the
points pj and there is no residual mass in the region Ω \ {p1, · · · , pm}. In this re-
spect, the general case (1.1) (and the Toda system (1.8)) presents drastic differences
since there might be a residual mass in the blow up limit (1.4), see the discussion
later on (see in particular (3.11)-(3.12)). The latter fact makes the analysis quite
delicate and our goal is to address this aspect of the problem.

Let us now return to equation (1.1). The latter problem has attracted a lot of at-
tention in the last decades: we refer to [25, 26, 28, 47] for blow up analysis, to [17]
for uniqueness aspects and to [5, 18, 19, 20] for what concerns existence results.
In this paper we shall consider the blow up analysis of solutions to (1.1) and we
shall address the existence of possible boundary bubbles. Such study is of inde-
pendent interest: moreover, the exclusion of boundary blow up allows to exploit
the analysis developed for the internal region and hence to extend some results for
(1.1) (and (1.8)) from the compact surface case to the bounded domain setting. In
particular, we may deduce the topological degree counting computed in [26, 31]
or the existence results obtained in [5, 4], see for instance Theorems 1.3, 1.4.

In the case of equation (1.2) boundary blow up is excluded by the method of
moving planes and the use of Kelvin’s transform, see for example [42]. We point
out such argument can be suitably used to treat cooperative systems, see [58],
where we say {

∆u + f (x, u, v) = 0,
∆v + g(x, u, v) = 0,
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is cooperative if ∂ f (x,u,v)
∂v ≥ 0, ∂g(x,u,v)

∂u ≥ 0. Concerning the general equation (1.1)
let us point out that one can uniquely decompose u in u = u1 − u2, where u1 and
u2 satisfy 

∆u1 + ρ1
h1eu1−u2∫
Ω h1eu1−u2

= 0, u1 = 0 on ∂Ω,

∆u2 + ρ2
h2eu2−u1∫
Ω h2eu2−u1

= 0, u2 = 0 on ∂Ω.

(1.5)

However, the system (1.5) is not cooperative and the method of moving planes
does not apply. Instead, our strategy is to use suitably Pohozaev identities and
a detailed analysis of the behavior of the blow up solutions. Similar arguments
have been used by Robert-Wei [51] in the fourth order mean field equation and
then by Lin-Wei-Zhao [35] in the SU(3) Toda system, which corresponds to the
case K = A2 below.

Some remarks are needed here. In the works [35, 51] the concentration property
(1.4) plays an important role. In the seminal work [8], Brezis and Merle studied
the blow up behavior of the standard Liouville equation alike (1.2) and showed the
”bubbling implies mass concentration” result, i.e., if the blow up phenomena hap-
pens, then the concentration property (1.4) holds. For the fourth order equation
considered in [51] it is not difficult to deduce this property by a similar argument
as in [8]. However, as for the sinh-Gordon equation (1.1) (and the general Toda
system (1.8)) we can not expect to have the corresponding property. Indeed, in
[13] the authors exhibit bubbling solution for the Toda system (1.8) with non van-
ishing residual mass, that is with no concentration property (1.4). The latter result
seems to applied to the equation (1.1) as well: in particular, we can not exclude the
presence of bubbling solutions uk of (1.1) which blow up at some points pj ∈ Ω
and such that

h1euk∫
Ω h1euk

,
h2e−uk∫
Ω h2e−uk

6→ 0 in Ω \ {p1, · · · , pm}, (1.6)

see for instance (3.11)-(3.12). For the question whether concentration property
holds or not, we shall pursue this in a forthcoming paper. In particular, we can
not conclude the bubbling solutions uk of (1.1) converge to a sum of Green func-
tions away from the blow up points as in (1.3). This makes the study of equation
(1.1) more complicated. In order to overcome this difficulty, we have to refine the
argument from [35, 51] and carry out a delicate analysis for the bubbling solutions
around the blow up point. In particular, the first part of the argument follows the
ideas introduced in [51, 35] but the final part substantially differs from the previ-
ous strategies. To the best of our knowledge, this is the first paper in treating this
kind of problems without using the concentration property (1.6) and it applies
to very general problems as the sinh-Gordon equation (1.1) (see also the asym-
metric case (1.7)) and some general rank n Toda systems (1.8). This is the main
contribution of this work. It is worth pointing out that an analogue procedure was
already used to rule out the blow up at the boundary for Sobolev critical problems
in higher dimension, where the weak limit plays the role of the residual mass, see
for instance [14] and the references therein.
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The blow up set of |uk| is defined by

S =

{
p ∈ Ω | ∃{xk}, xk → p, |uk|(xk)→ +∞

}
.

Our first main result is the following.

Theorem 1.1. Let uk be a bubbling sequence of solutions to (1.1) with 1
C ≤ ρ1k, ρ2k ≤ C,

that is
max
x∈Ω
|uk| → +∞,

for k→ ∞. Then, the blow up set of |uk| is in the interior of Ω, that is S ∩ ∂Ω = ∅.

Remark 1. The method can be also applied to the following asymmetric sinh-
Gordon equation: ∆u + ρ1

h1eu∫
Ω h1eu − ρ2

h2e−au∫
Ω h2e−au = 0 in Ω,

u = 0 on ∂Ω,
(1.7)

with a > 0. The latter equation arises in the context of the statistical mechanics
description of 2D-turbulence under a deterministic assumption on the vortex in-
tensities, see [49, 54]. Concerning equation (1.7) we refer the interested readers to
the recent results [21, 23, 24, 52, 53].

The second class of problems we consider is the following rank n Toda system:∆ui +
n

∑
j=1

Kijρj
hje

uj∫
Ω hje

uj
= 0 in Ω,

ui = 0 on ∂Ω,

i = 1, · · · , n, (1.8)

where ρi are positive parameters, hi are positive smooth functions and K = (Kij)n×n
is one of the following rank n Cartan matrices: An, Bn or Cn, where

An =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −1
0 · · · 0 −1 2

 , Bn =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −2
0 · · · 0 −1 2

 ,

Cn =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −1
0 · · · 0 −2 2

 .

For n = 2 we have an extra Cartan type matrix G2 given by

G2 =

(
2 −1
−3 2

)
.

Therefore, from now on K will denote on of the above matrices An, Bn, Cn or G2.
The problem (1.8) has been extensively studied in the literature since it has several
applications both in mathematical physics and in geometry. For instance, it arises
in the non-abelian Chern-Simons theory [15, 57, 61], while in geometry it appears
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in the description of holomorphic curves in CPn [7, 10, 37]. For more background
of (1.8) with a general Cartan matrix K, one can see [15, 37] and the references
therein. For what concerns the analytical studies about Toda-type systems we refer
to [27, 31, 36] for blow up analysis, to [37] for classification issues and to [5, 22, 43]
for existence results.

For K = A2 the authors in [35] proved there is no boundary blow up under
some assumptions on the concentration property (1.4). We show here the bound-
ary blow up is excluded in a general situation with no extra assumptions. More-
over, we can cover general rank n Toda systems. Our second main result is the
following.

Theorem 1.2. Let K be one of the Cartan matrices An, Bn, Cn or G2, and let (uik)i, i =
1, · · · , n be a bubbling sequence of solutions to (1.8) with 1

C ≤ ρik ≤ C, i = 1, · · · , n,
that is

max
x∈Ω

max{uik, · · · , unk} → +∞,

for k→ ∞. Then, the blow up set of u1k, · · · , unk is in the interior of Ω.

Finally, once the exclusion of boundary blow up is proven we may exploit the
analysis developed for the internal region and extend some results for (1.1) and
(1.8) from the compact surface case to the bounded domain setting. Let us focus on
the existence results concerning these classes of problems. The strategy is mainly
based on the variational structure of the problems (1.1) and (1.8). More precisely,
by a Morse-theoretical approach it is possible to deduce existence of solutions by
detecting a change of topology of the sublevels of the associated energy functional.
On the other hand, to carry out the Morse theory one has to rule out the blow up
solutions for which the problem presents a lack of compactness. To this end we
have to avoid a critical set of the parameters ρi which is deeply connected with the
quantized blow up local masses (see for example Lemma 3.5).

Concerning the sinh-Gordon equation (1.1) the latter program was carried out
in [5], where the authors obtained existence of solutions on compact surfaces with
non positive Euler characteristic for ρ1, ρ2 /∈ 8πN. Once the exclusion of boundary
blow up is proven it is not difficult to adapt the latter argument for treating the
Dirichlet problem (1.1). We have the following.

Theorem 1.3. Let ρ1, ρ2 /∈ 8πN and suppose χ(Ω) ≤ 0, where χ(Ω) denotes the Euler
characteristic of Ω. Then, there exists a solution to (1.1).

Concerning the Toda system (1.8) a first general existence result is presented in
[5] for the case K = A2 on compact surfaces with non positive Euler character-
istic for ρ1, ρ2 /∈ 4πN. The argument is again based on the variational structure
of the problem and it was next adapted in [4] for treating the case B2 (= C2) and
G2. Moreover, by further assuming the non existence of blow up solutions to (1.8),
the author in [4] generalizes the argument for treating general matrices K, n ≥ 3,
provided they are symmetric, positive definite and with non-positive entries out-
side the diagonal. Very recently, C.S. Lin, X.X. Zhong and the third author of the
present paper proved in [38] that the local masses of the bubbling solutions to
(1.8) are multiple of 4π and thus that the solutions are uniformly bounded pro-
vided ρi /∈ 4πN for all i = 1, . . . , n, see also the discussion after Lemma 3.11. In
conclusion, since we can rewrite the Toda system with Bn and Cn in a symmetric
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form through the following simple transformations, respectively,
2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −2
0 · · · 0 −1 2




ρ1
ρ2
...

ρn−1
ρn

 =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −1
0 · · · 0 −1 1




ρ1
ρ2
...

ρn−1
2ρn

 ,


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −1
0 · · · 0 −2 2




ρ1
ρ2
...

ρn−1
ρn

 =


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
. . .

...
0 · · · −1 2 −2
0 · · · 0 −2 4




ρ1
ρ2
...

ρn−1
1
2 ρn

 ,

we derive the following result.

Theorem 1.4. Let K be one of the Cartan matrices An, Bn, Cn or G2. Let ρi /∈ 4πN for
any i = 1, . . . , n, and suppose χ(Ω) ≤ 0, where χ(Ω) denotes the Euler characteristic of
Ω. Then, there exists a solution to (1.8).

We point out Theorems 1.3, 1.4 are the first existence results for (1.1), (1.8) with
Dirichlet boundary conditions and they hold for a general choice of the parameters
ρi. In particular, Theorem 1.4 is new also for n = 2.

The present paper is organized as follows. In Section 2 we collect some useful
results and derive the Pohozaev-type identities, in Section 3 we prove the main
Theorems 1.1, 1.2 concerning the no boundary blow up, in Section 4 we provide
the key steps for the proof of Theorems 1.3, 1.4 concerning the existence results.

Notation

Throughout this paper, without other explanations, the constant C will denote
some generic constant which is independent of k and the value of C might change
from one line to the other. The quantity B = O(A) means that there exists C > 0
such that |B| ≤ CA. All the convergence results are stated by passing to a subse-
quence. The symbol Br(p) will denote the open ball of radius r and center p.

2. USEFUL FACTS

In this section we list some useful results which will be used in the sequel. First,
we collect some properties of the Green function in the following lemma, see for
example [12, 16].

Lemma 2.1. Let G(x, y) be the Green function of−∆ with Dirichlet boundary condition.
There exists C > 0 such that for all x, y ∈ Ω, x 6= y, we have

|G(x, y)| ≤ C log
(

2 +
1

|x− y|

)
, |∇G(x, y)| ≤ C|x− y|−1.
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Let now uk be a sequence of solutions to (1.1) relative to (ρ1k, ρ2k). We set

α1k = log

(∫
Ω h1euk

ρ1k

)
, α2k = log

(∫
Ω h2e−uk

ρ2k

)
,

and
vk = uk − α1k, wk = −uk − α2k. (2.1)

Then, we write equation (1.1) into the following form{
∆vk + h1evk − h2ewk = 0, vk = −α1k on ∂Ω,

∆wk − h1evk + h2ewk = 0, wk = −α2k on ∂Ω.
(2.2)

The blow up set for problem (2.2) is defined by

S1 =

{
p ∈ Ω | ∃{xk}, xk → p, vk(xk)→ +∞

}
,

S2 =

{
p ∈ Ω | ∃{xk}, xk → p, wk(xk)→ +∞

}
and

S = S1 ∪S2. (2.3)

Concerning the set S we have the following result.

Lemma 2.2. The set S is finite.

Proof. The finiteness of the number of blow up points is a very standard result
for the standard Liouville equation (1.2). The argument was then carried out for
similar problems by using the celebrated result of [8, Corollary 4], see [31, Lemma
2.1, Lemma 2.2]. We shall provide here a complete proof of this fact for the Sinh-
Gordon type equation (1.1) to make this paper more self-contained.

For any p ∈ S we define the local mass for uk and −uk around p by

σ1,p =
1

2π
lim
δ→0

lim
k→0

∫
Bδ(p)

ρ1kh1euk∫
Ω h1euk

and σ2,p =
1

2π
lim
δ→0

lim
k→0

∫
Bδ(p)

ρ2kh2e−uk∫
Ω h2e−uk

.

Step 1. We claim that if σ1,p, σ2,p < 1
3 , then p /∈ S.

Since σi,p < 1
3 , we can choose a small r0 > 0 such that∫

Br0 (p)
ρikhieũik < π, i = 1, 2, (2.4)

where
ũ1k = uk − log

∫
Ω

h1euk and ũ2k = −uk − log
∫

Ω
h2e−uk . (2.5)

From (2.4), by the assumptions on ρik and hi jointly with the Jensen inequality we
can easily get

∫
Br0 (p) ũ+

ik ≤ C, where we use the notation u+ = max{u, 0}. We next

use the decomposition ũ1k = ∑2
j=1 ũ1k,j, where ũ1k,j satisfy the following equations:{

−∆ũ1k,1 = ρ1kh1eũ1k − ρ2kh2eũ2k in Br0(p), ũ1k,1 = 0 on ∂Br0(p),
−∆ũ1k,2 = 0 in Br0(p), ũ1k,2 = ũ1k on ∂Br0(p).

(2.6)
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For the first equation in (2.6), since∫
Br0 (p)

∣∣∣ρ1kh1eũ1k − ρ2kh2eũ2k
∣∣∣ < 3π,

by [8, Theorem 1], we have∫
Br0 (p)

exp
(
(1 + δ)|ũ1k,1|

)
dx ≤ C, (2.7)

for some δ ∈ (0, 1
3 ). Therefore, we have∫

Br0 (p)
|ũ1k,1| ≤ C. (2.8)

For the second equation in (2.6), by the mean value theorem for harmonic func-
tions we have

‖ũ+
1k,2‖L∞(Br0/2(p)) ≤ C‖ũ+

1k,2‖L1(Br0 (p))

≤ C
[
‖ũ+

1k‖L1(Br0 (p)) + ‖ũ1k,1‖L1(Br0 (p))

]
≤ C. (2.9)

From (2.9), we conclude

ρ1kh1eũ1k,2 ≤ C in Br0/2(p). (2.10)

By (2.7), (2.10) and the Hölder inequality, we obtain

eũ1k ∈ L1+δ1(Br0(p)),

for some δ1 > 0 independent of k. Similarly, we have

eũ2k ∈ L1+δ2(Br0(p)),

for some δ2 > 0 independent of k. By using the standard elliptic estimates for
the first equation in (2.6), we get ‖ũ1k,1‖L∞(Br0/2(p)) is uniformly bounded. Com-
bined with and (2.9), we have ũ1k is uniformly bounded above in B r0

2
(p). Follow-

ing the same process we can also obtain ũ2k is uniformly bounded above in B r0
2
(p).

On the other hand, we note that

ũ1k = vk − log ρ1k, ũ2k = wk − log ρ2k.

As a consequence, we get p /∈ S as claimed.

Step 2. It follows that if p ∈ S, either σ1,p ≥ 1
3 or σ2,p ≥ 1

3 : together with the fact
that ρ1k, ρ2k ≤ C by assumption, we deduce |S| < ∞. Hence, we finish the proof
of the lemma. �

For the terms α1k, α2k the following holds.

Lemma 2.3. There exists a constant C ∈ R independent of k such that αik ≥ C, i = 1, 2.

Proof. Note that vk, wk satisfy{
∆vk + h1evk − h2ewk = 0, vk = −α1k on ∂Ω,

∆wk − h1evk + h2ewk = 0, wk = −α2k on ∂Ω.
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Using Green’s representation formula, we have

vk =
∫

Ω
G(x, z) (h1evk (z)− h2ewk (z))dz− α1k,

wk =
∫

Ω
G(x, z) (h2ewk (z)− h1evk (z))dz− α2k.

Thus we get

‖vk + α1k‖L1(Ω) ≤ C, ‖wk + α2k‖L1(Ω) ≤ C. (2.11)

We know by Lemma 2.2 that S ⊂ Ω is finite, and both vk and wk are uniformly
bounded from above in any compact subset of Ω \S. Therefore, from (2.11) we
see that α1k, α2k are bounded from below, which proves the lemma. �

Finally, we state the Pohozaev-type identities which are one of the key ingredi-
ents of the argument in the sequel.

Lemma 2.4. Let u be a solution of equation (1.1) and let α1, α2 be defined analogously as
before (2.1). Let D ⊆ Ω be a smooth domain. Then, for any ξ ∈ R2 it holds that∫

D
2
(
h1eu−α1 + h2e−u−α2

)
+
∫

D
〈x− ξ,∇h1〉eu−α1 +

∫
D
〈x− ξ,∇h2〉e−u−α2

=
∫

∂D

(
h1eu−α1 + h2e−u−α2

)
〈x− ξ, ν〉+

∫
∂D

∂u
∂ν
〈x− ξ,∇u〉

− 1
2

∫
∂D
|∇u|2〈x− ξ, ν〉, (2.12)

where ν stands for the outer normal unit vector on ∂D.

Moreover, let (ui)i be a solution of equation (1.8) and let ũi = ui − log
( ∫

Ω hieui

ρi

)
for

i = 1, · · · , n. Then, for any ξ ∈ R2 we have∫
D

n

∑
i=1

Kni

Kin

(
〈x− ξ,∇hi〉eũi + 2hieũi

)
=
∫

∂D

n

∑
i=1

Kni

Kin

n

∑
j=1

Kij
(
〈x− ξ,∇ũi〉〈∇ũj, ν〉 − 1

2
〈x− ξ, ν〉〈∇ũi,∇ũj〉

)
+
∫

∂D

n

∑
i=1

Kni

Kin hieũi 〈x− ξ, ν〉,

(2.13)

where (Kij)n×n is the inverse matrix of K and K is either An, Bn, Cn or G2.

Proof. Multiplying the equation (1.1) by 〈x − ξ,∇u〉 and integrating by parts we
readily obtain (2.12).

On the other hand, we rewrite equation (1.8) as
n

∑
j=1

Kij∆ũj + hieũi = 0, i = 1, · · · , n. (2.14)

Multiplying the i−th equation by 〈x − ξ,∇ũi〉 and integrating by parts it is not
difficult to derive (2.13) after some straightforward computations. We skip the
details. �
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3. PROOF OF THE THEOREMS 1.1 AND 1.2

In this section we shall prove the main Theorems 1.1 and 1.2 concerning the
no boundary blow up. Since the proofs are very similar we shall give full details
for deducing Theorem 1.1 in Subsection 3.1 and sketch the main steps to derive
Theorem 1.2 in Subsection 3.2.

3.1. Proof of Theorem 1.1. Let uk be a sequence of solutions for (1.1) relative to
(ρ1k, ρ2k) and we recall the blow up set for |uk| is given by

S =

{
p ∈ Ω | ∃{xk}, xk → p, |uk|(xk)→ +∞

}
. (3.1)

Recall the definitions of vk, wk in (2.1) and the definition of S in (2.3). We have the
following.

Lemma 3.1. It holds that S = S .

Proof. First we prove S ⊆ S . It suffices to show that if x 6∈ S , then x 6∈ S. Suppose
x 6∈ S , we have |uk(x)| ≤ C uniformly, by some constant C > 0. Using Lemma 2.3,
we have

vk(x) = uk(x)− α1k ≤ C and wk(x) = −uk(x)− α2k ≤ C,

where C > 0 is a constant independent of k. Consequently x 6∈ S. Therefore we
have S ⊆ S .

To prove the other inclusion, we shall show that uk is uniformly bounded in
any compact subset of Ω \S. More precisely, for any compact subset K b Ω \S,
we shall prove that there is a constant CK > 0 that depends on the compact set K
such that

|uk(x)| ≤ CK, ∀x ∈ K.

By Green’s representation formula we have

uk(x) =
∫

Ω
G(x, z)

(
ρ1kh1eũ1k − ρ2kh2eũ2k

)
=
∫

Ω1

G(x, z)
(

ρ1kh1eũ1k − ρ2kh2eũ2k
)

+
∫

Ω\Ω1

G(x, z)
(

ρ1kh1eũ1k − ρ2kh2eũ2k
)

,

(3.2)

where ũik, i = 1, 2 are defined in (2.5), Ω1 =
⋃

p∈S
Br0(p) and r0 > 0 is small enough

such that K b Ω \Ω1. It is easy to see that∫
Ω1

G(x, z)
(

ρ1kh1eũ1k − ρ2kh2eũ2k
)
= O(1),

because G(x, z) is bounded due to the distance d(x, z) ≥ δ0 > 0 for z ∈ Ω1, and
x ∈ K. In Ω \Ω1, we can see that ũik are bounded above by some constant that
depends on r0. Then it is not difficult to obtain that∫

Ω\Ω1

G(x, z)
(

ρ1kh1eũ1k − ρ2kh2eũ2k
)
= O(1).
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Therefore, by using (3.2) we can conclude that |uk(x)| ≤ C, where C > 0 depends
on K only. Hence, |uk(x)| is bounded away from S and S ⊆ S. This completes
the proof. �

Since S is finite, see Lemma 2.2, we let

S = {p1, p2, · · · , pm}.
For any pi ∈ Ω, let r be a positive number such that Br(pi) ∩ Br(pj) = ∅ for i 6= j.
Let pi,k ∈ Ω be such that

Mk(pi,k) = max
Ω∩Br(pi)

Mk(x),

where
Mk(x) = max{vk(x), wk(x)}.

Define µi,k by

µi,k = e−
1
2 Mk(pi,k).

Observe that µi,k → 0. On the other hand, pi,k /∈ ∂Ω because we know that
Mk(x) |∂Ω≤ C from Lemma 2.3. Furthermore, we can estimate more precisely
the distance of the point pi,k from the boundary.

Lemma 3.2. It holds that, for k→ +∞,

dist(pi,k, ∂Ω)

µi,k
→ ∞.

Proof. Suppose by contradiction the result is not true. Then, one can find a se-
quence (pi,k, µi,k), such that dist(pi,k, ∂Ω) = O(µi,k). Let us consider the following
dilated domain:

Ωi,k =
(Ω− pi,k)

µi,k
.

We may assume without loss of generality that Ωi,k → (−∞, t0)×R. Moreover,
we may further assume vk(pi,k) = −2 log µi,k and define

v̂k(y) = vk(pi,k + µi,ky) + 2 log µi,k + log h1(pi,k),

ŵk(y) = wk(pi,k + µi,ky) + 2 log µi,k + log h2(pi,k).

We note that

v̂k + ŵk = vk + wk + 4 log µi,k + log h1(pi,k) + log h2(pi,k)

= 4 log µi,k − α1k − α2k + C ≤ 4 log µi,k + C.

Let R > 0 and y ∈ BR(0) ∩Ωi,k. By the Green representation formula, with a little
abuse of notation we have

|∇v̂k| = |µi,k∇vk(pi,k + µi,ky)|

= µi,k

∣∣∣∣∫Ω
∇G(pi,k + µi,ky, z) [h1evk (z)− h2ewk (z)]dz

∣∣∣∣
≤ Cµi,k

[∫
B2Rµi,k

(pi,k)
+
∫

Ω\B2Rµi,k
(pi,k)

] ∣∣∣h1evk(z) − h2ewk(z)
∣∣∣∣∣pi,k + µi,ky− z
∣∣ dz.

(3.3)
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In B2Rµi,k (pi,k) we have evk , ewk ≤ evk(pi,k) = µ−2
i,k . On the other hand, in Ωi,k \

B2Rµi,k(pi,k)
we have

|pi,k + µi,ky− z| ≥ |z− pi,k| − µi,k|y| ≥ Rµi,k.

Hence,

|∇v̂k| ≤ Cµi,k

∫
B2Rµi,k

(pi,k)

|h1evk − h2ewk |
|pi,k + µi,ky− z| + C(R)

∫
Ω
|h1evk − h2ewk | ≤ C(R).

Therefore, we get |∇v̂k| = |∇ŵk| ≤ C(R) in BR(0) ∩Ωi,k, which implies

|v̂k(y)− v̂k(0)| ≤ C|y| ≤ C for any y ∈ BR(0) ∩Ωi,k.

Choosing y0 in ∂Ωi,k, we obtain

|vk(pi,k) + α1k| = |v̂k(y0)− v̂k(0)| ≤ C.

Then, we have
−2 log µi,k + α1k = O(1),

from which we get a contradiction to Lemma 2.3 and the fact µi,k → 0. Thus we
proved the lemma. �

Next, we study the behavior of the blow up solutions around each blow up
point pi. The starting point is the following selection process for (2.2) which was
carried out in [25, Proposition 2.1]. The idea is to select a bubbling area which con-
sists of a finite number of disks and in each disk the blow up solution resembles
(after dilation) a globally defined Liouville-type solution. The only difference here
is that we have to take into account the presence of the boundary of Ω. However,
we have from Lemma 3.2 an estimate about dist(pi,k, ∂Ω) for pi,k → pi (see also
part (2) of the following proposition). As a consequence, after a suitable dilation
we will not see the effect of the boundary of Ω and hence we still end up with
globally defined solutions, see part (3) of the following proposition for more de-
tails. In particular, since the Liouville-type problem in R2 is completely classified
we gain the information about its total mass which yields then (3.4).

Proposition 3.1. Let uk be a sequence of bubbling solutions of (1.1) and vk, wk be defined
in (2.1). Let S be defined in (2.3). Then around each point pi ∈ S there exists a finite
sequence of points

Σk,i :=
{

pk
i,1, pk

i,2, · · · , pk
i,mi

} (
lim
k→∞

pk
i,j → pi, j = 1, · · · , mi

)
and positive numbers lk

i,1, · · · , lk
i,mi
→ 0 such that

(1) For j = 1, . . . , mi, i = 1, · · · , m we have

max
{

vk(pk
i,j), wk(pk

i,j)
}
= max

x∈B
lki,j

(pk
i,j)

max {vk(x), wk(x)} .

(2) For j = 1, . . . , mi, i = 1, · · · , m, we let εi,j,k = e−
1
2 max

{
vk(pk

i,j),wk(pk
i,j)
}

. Then,

lk
i,j

εi,j,k
→ ∞,

dist(pk
i,j, ∂Ω)

εi,j,k
→ ∞.
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(3) In each Blk
i,j
(pk

i,j) we define the dilated functions

v̂k,i,j(y) = vk(pk
i,j + εi,j,ky) + 2 log εi,j,k,

ŵk,i,j(y) = wk(pk
i,j + εi,j,ky) + 2 log εi,j,k.

Then it holds that one of the vk,i,j, wk,i,j converges to a solution of Liouville equa-
tion (1.2) in the C2

loc(R
2) norm, while the other one tends to minus infinity over

all compact subsets of R2. In particular, it holds

lim
r→0

lim
k→∞

∫
Br(pk

i,j)
(h1evk + h2ewk ) ≥ 8π. (3.4)

(4) There exits a constant C > 0 independent of k such that

max{vk(x), wk(x)}+ 2 log dist(x, Σk,i) ≤ C, (3.5)

for all x ∈ Br(pi), i = 1, 2, · · · , m.

We observe that from (3.5) we deduce the following result.

Lemma 3.3. Let Σk = ∪m
i=1Σk,i. Then, there exists a constant C > 0 independent of k

such that
max{vk(x), wk(x)}+ 2 log dist(x, Σk) ≤ C, ∀x ∈ Ω. (3.6)

Moreover, we derive the following estimates which will be used later on.

Lemma 3.4. There exists a constant C > 0 independent of k such that

dist(x, Σk)|∇vk(x)| ≤ C, dist(x, Σk)|∇wk(x)| ≤ C, ∀x ∈ Ω.

Proof. By Green’s representation formula, we have

|∇vk| ≤ C
∫

Ω

1
|x− z| |h1evk (z)− h2ewk (z)|dz.

To simplify the notation, we denote

Σk = {qk,1, · · · , qk,n}.

Let
Rk(x) := inf

i=1,··· ,n
|x− qk,i|,

Ωk,i =
{

x ∈ Ω : |x− qk,i| = Rk(x)
}

, i = 1, · · · , n.

It is easy to see that Ω = ∪n
i=1Ωk,i. By using (3.6), for any z ∈ Ωk,i \ B |x−qk,i |

2

(qk,i),

|x− z|−1evk(z) ≤ C
|x− z||z− qk,i|2

≤ C
|x− z||x− qk,i|2

.

Then, ∫
Ωk,i\B |x−qk,i |

2

(qk,i)

h1evk (z)
|x− z| dz ≤ C

|x− qk,i|
. (3.7)
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On the other hand, for z ∈ Ωk,i ∩ B |x−qk,i |
2

(qk,i), we have |x − z| ≥ 1
2 |x − qk,i| and

hence ∫
Ωk,i∩B |x−qk,i |

2

(qk,i)

h1evk (z)
|x− z| dz ≤ C

|x− qk,i|
. (3.8)

By (3.7) and (3.8), we have∫
Ωk,i

h1evk (z)
|x− z| dz ≤ C

|x− qk,i|
. (3.9)

Similarly, ∫
Ωk,i

h2ewk (z)
|x− z| dz ≤ C

|x− qk,i|
. (3.10)

From (3.9) and (3.10), we can easily obtain that

inf
i=1,··· ,n

|x− qk,i||∇vk(x)| ≤ C.

Equivalently, we get
dist(x, Σk)|∇vk(x)| ≤ C.

Finally, we note that |∇vk(x)| = |∇wk(x)|. Therefore, the proof is completed. �

Concerning the asymptotic behavior of the blowing up solutions we have the
following.

Lemma 3.5. Let uk be a sequence of solutions to (1.1), let S be defined in (3.1) and let
vk, wk be defined in (2.1). Then, in the sense of measures, we have

h1evk dx → r1(x)dx + ∑
p∈S∩Ω

m1(p)δp in Ω, (3.11)

h2ewk dx → r2(x)dx + ∑
p∈S∩Ω

m2(p)δp in Ω, (3.12)

where ri(x) ∈ L1(Ω)∩C∞
loc(Ω \ S) and mi(p) are multiple of 8π for i = 1, 2. Moreover,

uk → G + U

in C∞
loc(Ω \ S) and in W1,q

0 (Ω) for any q < 2, where G,U are defined by

∆G(x) + ∑
p∈S∩Ω

(
m1(p)−m2(p)

)
δp = 0 in Ω, G(x) = 0 on ∂Ω,

∆U (x) + r1(x)− r2(x) = 0 in Ω, U (x) = 0 on ∂Ω.

Proof. By [28, Lemma 3.4] we readily get (3.11)-(3.12). Using the quantization re-
sult of [28, Theorem 1.1] (see also [25] for a different proof) we have(

m1(p), m2(p)
)
=
(
4π(l + 1)l, 4π(l − 1)l

)
or
(
4π(l − 1)l, 4π(l + 1)l

)
,

for l ∈N and p ∈ S . The left conclusion of the Lemma 3.5 is a direct consequence
of classical elliptic regularity theory and Lemma 3.3. �

We prove now the main result concerning the no boundary blow up.
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Proof of Theorem 1.1. Let uk be a sequence of solutions to (1.1). We have to prove
that S ∩ ∂Ω = ∅, where S is given in (3.1). We argue by contradiction. Let x0 ∈
S ∩ ∂Ω. Since |S| is finite, see Lemma 2.2, we may assume that S ∩ Br(x0) = {x0}.
Let zk = x0 + Θk,rν(x0) with

Θk,r =

∫
∂Ω∩Br(x0)

〈x− x0, ν〉
∣∣∣ ∂uk

∂ν

∣∣∣2∫
∂Ω∩Br(x0)

〈ν(x0), ν〉
∣∣∣ ∂uk

∂ν

∣∣∣2 ,

where r > 0 is small such that 1
2 ≤ 〈ν(x0), ν〉 ≤ 1 for x ∈ ∂Ω ∩ Br(x0). Here ν(x)

is the unit outer normal at x ∈ ∂Ω. It is then easy to check that |Θk,r| ≤ 2r for
|〈x− x0, ν〉| ≤ r. Observing

x− zk = x− x0 −Θk,rν(x0),

we deduce that ∫
∂Ω∩Br(x0)

〈x− zk, ν〉
∣∣∣∣∂uk

∂ν

∣∣∣∣2 = 0. (3.13)

Now, by applying the Pohozaev identity (2.12) of Lemma 2.4 in Ω ∩ Br(x0) with
ξ = zk, we have that∫

Ω∩Br(x0)
2h1euk−α1k +

∫
Ω∩Br(x0)

2h2e−uk−α2k +
∫

Ω∩Br(x0)
euk−α1k 〈x− zk,∇h1〉

+
∫

Ω∩Br(x0)
e−uk−α2k 〈x− zk,∇h2〉

=
∫

∂(Ω∩Br(x0))

(
h1euk−α1k + h2e−uk−α2k

)
〈x− zk, ν〉+

∫
∂(Ω∩Br(x0))

∂uk
∂ν
〈x− zk,∇uk〉

− 1
2

∫
∂(Ω∩Br(x0))

|∇uk|2〈x− zk, ν〉, (3.14)

where α1k, α2k are defined before (2.1). In view of the boundary conditions in (1.1),
it is easy to see that

lim
k→+∞

∫
∂Ω∩Br(x0)

(
h1euk−α1k + h2e−uk−α2k

)
〈x− zk, ν〉 = O(r2)

and, by (3.13),∫
∂Ω∩Br(x0)

∂uk
∂ν
〈x− zk,∇uk〉 −

1
2

∫
∂Ω∩Br(x0)

|∇uk|2〈x− zk, ν〉

=
1
2

∫
∂Ω∩Br(x0)

〈x− zk, ν〉|∇uk|2 = 0.

On the other hand, since
∫

Ω h1euk−α1k ≤ C and
∫

Ω h2e−uk−α2k ≤ C, it holds that

lim
k→+∞

∫
Ω∩Br(x0)

euk−α1k 〈x− zk,∇h1〉 = O(r)

and

lim
k→+∞

∫
Ω∩Br(x0)

e−uk−α2k 〈x− zk,∇h2〉 = O(r).
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Finally, we claim

lim
k→+∞

∫
Ω∩∂Br(x0)

(
h1euk−α1k + h2e−uk−α2k

)
〈x− zk, ν〉 = O(ε(r)),∫

Ω∩∂Br(x0)

∂uk
∂ν
〈x− zk,∇uk〉 −

1
2

∫
Ω∩∂Br(x0)

|∇uk|2〈x− zk, ν〉 = O(ε(r)),
(3.15)

where ε(r) → 0 as r → 0. We postpone the proof of the latter claim in Lemma 3.6.
Once we have (3.15) we conclude

lim
r→0

lim
k→∞

∫
Ω∩Br(x0)

(
h1euk−α1k + h2e−uk−α2k

)
= 0,

which is a contradiction to the lower bound on the local mass (3.4). The proof is
completed, once we prove the claim (3.15). �

We are left with the proof of the claim (3.15) which we derive in the following
lemma.

Lemma 3.6. For any ε > 0 there exists r > 0 sufficiently small such that,

lim
k→∞

∫
Ω∩∂Br(x0)

(
h1euk−α1k + h2e−uk−α2k

)
|〈x− zk, ν〉| = O(ε), (3.16)

and ∫
Ω∩∂Br(x0)

∂uk
∂ν
〈x− zk,∇uk〉 −

1
2

∫
Ω∩∂Br(x0)

|∇uk|2〈x− zk, ν〉 = O(ε). (3.17)

Proof. By Lemma 3.5 we know that uk → G + U in C∞
loc(Ω \ S). We let r ∈(

0, 1
2 dist(x0,S \ {x0})

)
. Then, we have ‖G‖C2(Ω∩∂Br(x0))

≤ C for some C inde-
pendent of r. Note that

|x− zk| = |x− x0 −Θk,rν(x0)| ≤ |x− x0|+ |Θk,r| = O(r) for x ∈ ∂Br(x0) ∩Ω.

By the above facts and by Lemmas 2.3, 3.5, in order to get (3.16) and (3.17) it suf-
fices to show that for any ε > 0 there exists r > 0 sufficiently small such that∫

Ω∩∂Br(x0)
re|U | = O(ε) and

∫
Ω∩∂Br(x0)

r|∇U|2 = O(ε). (3.18)

We recall that

∆U (x) + r1(x)− r2(x) = 0 in Ω, U (x) = 0 on ∂Ω.

By Green’s representation formula and Lemma 2.1, for any x ∈ ∂Br(x0) ∩Ω,

|U (x)| =
∫

Ω

∣∣G(x, y)
(
r1(y)− r2(y)

)∣∣dy

≤ C
∫

Ω
log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy

≤ C
∫

Ω∩Br′ (x0)
log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy

+ C
∫

Ω\Br′ (x0)
log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy, (3.19)
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where r′ > 0 is chosen so that B3r′(x0) ∩ (S \ {x0}) = ∅ and∫
Ω∩Br′ (x0)

(
|r1(y)|+ |r2(y)|

)
dy ≤ δ,

with δ > 0 to be determined later. Here we note that the choice of r′, δ and the
constants C in (3.19) are independent of r. For the last term on the right hand side
of (3.19), we have∫

Ω\Br′ (x0)
log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy ≤ C log

(
1 +

1
r′

)
, (3.20)

where C depends only on ‖ri‖L1(Ω), i = 1, 2 and the shape of the domain Ω, but
independent of r. For the first term in (3.19), we rewrite it as∫

Ω∩Br′ (x0)
log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy

=
∫

Ω∩Br′ (x0)∩B r
N
(x)

log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy

+
∫
(Ω∩Br′ (x0))\B r

N
(x)

log
(

2 +
1

|x− y|

)(
|r1(y)|+ |r2(y)|

)
dy

= I1 + I2,

where N > 0 will be determined later on. From Lemma 3.3 and recalling that
B3r′(x0) ∩ (S \ {x0}) = ∅, we have

|x− x0|2 max
{
|r1(x)|, |r2(x)|

}
≤ C in Ω ∩ Br′(x0). (3.21)

Let us further impose r < min
{

r′
4 , 1

2 dist(x0,S \ {x0})
}

. For any y ∈ B r
N
(x) we

have

|y− x0| ≥ |x− x0| − |x− y| = N − 1
N

r.

Then, by (3.21) and the latter fact we have

max
{
|r1(y)|, |r2(y)|

}
≤ C

( N
N − 1

)2 1
r2 .

By the latter estimate we get

I1 ≤ C
( N

N − 1

)2( 1
N

)2
log
(

2 +
N
r

)
= C

( 1
N − 1

)2
log
(

2 +
N
r

)
. (3.22)

On the other hand, for y ∈
(
Ω ∩ Br′(x0)

)
\ B r

N
(x) we have

log
(

2 +
1

|x− y|

)
≤ log

(
2 +

N
r

)
.

Therefore,

I2 ≤ C log
(

2 +
N
r

) ∫
Ω∩Br′ (x0)

(
|r1(y)|+ |r2(y)|

)
dy ≤ Cδ log

(
2 +

N
r

)
. (3.23)

As a consequence of (3.19)-(3.23) we deduce

|U |(x) ≤ C log
(

1 +
1
r′

)
+ C

(
1

(N − 1)2 + δ

)
log
(

2 +
N
r

)
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and

e|U |(x) ≤
(

1 +
1
r′

)C (
2 +

N
r

)C
(

1
(N−1)2

+δ

)
.

Finally, we first choose N sufficiently large and then r′ sufficiently small such that
C
( 1
(N−1)2 + δ

)
< 2. Here we note the choices of N and r′ are independent of r. As

a final step, for any given ε we choose r sufficiently small such that

r2
(

1 +
1
r′

)C (
2 +

N
r

)C
(

1
(N−1)2

+δ

)
≤ ε.

This concludes the proof of the first estimate in (3.18). A similar argument yields
the second estimate in (3.18). We skip the details to avoid repetitions. This finishes
the proof of the lemma. �

3.2. Proof of Theorem 1.2. Let u1k, u2k, · · · , unk be a sequence of bubbling solu-
tions to (1.8) relative to ρ1k, · · · , ρnk. We set

ũik = uik + log ρik − log
∫

Ω
hieuik , i = 1, · · · , n. (3.24)

Then we can write (1.8) as{
∆ũik + ∑n

j=1 kijhje
ũjk = 0 in Ω,

ũik = log ρik − log
∫

Ω hieuik on ∂Ω.
(3.25)

We set
Sui =

{
p ∈ Ω | ∃{xk}, xk → p, ũik → +∞

}
, i = 1, · · · , n, (3.26)

and

Su =
n⋃

i=1

Sui . (3.27)

Similarly, we define the blow up set for u1k, u2k, · · · , unk:

Su =

{
p ∈ Ω | ∃{xk}, xk → p, max

i
uik(xk)→ +∞

}
. (3.28)

The same arguments of Lemmas 2.2 and 3.1 yield the following result.

Lemma 3.7. Su = Su and |Su| = |Su| is finite.

We then let
Su = {p1, · · · , pl}.

For any pi ∈ Ω, and r be a positive number such that Br(pi)∩ Br(pj) = ∅ for i 6= j.
Let pj,k ∈ Ω be such that

λj,k = max
i

ũi,k(pj,k) = max
Ω∩Br(pj)

max
i

ũi,k, i = 1, · · · , n, j = 1, · · · , l.

We have the following lemma.
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Lemma 3.8. It holds that, for k→ +∞,

dist(pj,k, ∂Ω)

µ̃j,k
→ +∞, (3.29)

where µ̃j,k = e−
λj,k

2 , j = 1, · · · , l.

Proof. We shall prove it by contradiction. Suppose the conclusion is not true and
one can find a sequence (pj,k, µ̃j,k), such that dist(pj,k, ∂Ω) = O(µ̃j,k). Let us con-
sider the following dilated domain:

Ωj,k =
(Ω− pj,k)

µ̃j,k
.

We may assume without loss of generality that Ωj,k → (−∞, t0)×R. Moreover,
we may further assume ũ1k(pj,k) = −2 log µ̃j,k and define

ūik(y) = ũik(pj,k + µ̃j,ky) + 2 log ũj,k + 2 log hi(pj,k), i = 1, · · · , n.

We note that ūik(y) is uniformly bounded above. Let R > 0 and y ∈ BR(0) ∩Ωj,k.
By the Green representation formula, with a little abuse of notation we have

|∇ūik| = |µ̃j,k∇ũik(pj,k)|

= µ̃j,k

∣∣∣∣∣
∫

Ω
∇G(pj,k + µ̃j,ky, z)

n

∑
`=1

ki`h`eũ`k(z)dz

∣∣∣∣∣
≤ Cµ̃j,k

[∫
B2Rµ̃j,k

(pj,k)
+
∫

Ω\B2Rµ̃j,k
(pj,k)

] ∣∣∣∑n
`=1 ki`h`eũ`k(z)

∣∣∣∣∣∣pj,k + µ̃j,ky− z
∣∣∣ dz.

(3.30)

In B2Rµ̃j,k
(pj,k) we have euik ≤ eu1k(pj,k) = µ̃−2

j,k , i = 1, · · · , n. On the other hand, in
Ωj,k \ B2Rµ̃j,k(pj,k)

we have

|pj,k + µ̃j,ky− z| ≥ |z− pj,k| − µ̃j,k|y| ≥ Rµ̃j,k.

Hence,

|∇ūik| ≤ Cµ̃j,k

∫
B2Rµ̃j,k

(pj,k)

|∑n
`=1 ki`h`eũ`k |

|pj,k + µ̃j,ky− z| + C(R)
∫

Ω

∣∣∣∣∣ n

∑
`=1

h`eũ`k

∣∣∣∣∣ ≤ C(R).

Therefore, we get |∇ūik| ≤ C(R) in BR(0) ∩Ωj,k, which implies

|ūik(y)− ūik(0)| ≤ C|y| ≤ C for any y ∈ BR(0) ∩Ωj,k

and any i ∈ {1, · · · , n}. Choosing y0 in ∂Ωj,k, we obtain

|ũ1k(pk) + log

∫
Ω h1eu1k

ρ1k
| = |ū1k(y0)− ū1k(0)| ≤ C.

Then, we have

−2 log µ̃j,k + log

∫
Ω h1eu1k

ρ1k
= O(1),

from which we get a contradiction to the fact that log
∫

Ω h1eu1k

ρ1k
is bounded from

below and µ̃j,k → 0. Thus we proved the lemma. �
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As explained after Lemma 3.2, by means of Lemma 3.8 we will not see the effect
of the boundary of Ω after suitable scaling. Therefore, A similar selection process
as in Proposition 3.1 can be carried out also for the Toda-type system in (1.8).In
particular, we can use the conclusions in [34, Proposition 2.1] and [36, Proposition
3A] to obtain the following result.

Lemma 3.9. Let u1k, · · · , unk be a sequence of bubbling solutions of (1.8) and ũik be
defined in (3.24). Let Su be defined in (3.27). Then around each point pj ∈ Su there
exists a finite sequence of points

Σk,i := {pj,1,k, · · · , pj,mj ,k}, lim
k→+∞

pj,`,k → pj, ` = 1, · · · , mj,

and positive numbers rk
j,1, · · · , rk

j,mj
→ 0 such that

(1) For ` = 1, · · · , mj, j = 1, · · · , l we have

max
{

ũ1k(pj,`,k), · · · , ũnk(pj,`,k)
}
= max

x∈B
rk
j,`
(pj,`,k)

max
i
{ũ1k(x), · · · , ũnk(x)}.

(2) For ` = 1, · · · , mj, j = 1, · · · , l, we let δj,`,k = e−
1
2 max{ũ1k(pj,`,k),··· ,ũ1k(pj,`,k)}.

Then,
rk

j,`

δj,`,k
→ ∞,

dist(pk
j,`, ∂Ω)

δj,`,k
→ ∞.

(3) In each Brk
j,`
(pj,`,k) we define the dilated functions

ûik,j,`(y) = ũik(pj,`,k + δj,`,ky) + 2 log δj,`,k, i = 1, · · · , n.

Then û1k,j,`, · · · , ûnk,j,` either satisfies (a) or (b):
(a) the sequence is fully bubbling: along a subsequence, û1k,j,`, · · · , ûnk,j,` con-
verges in C2

loc(R
2) to u1, · · · , un which satisfies

∆ui +
n

∑
`=1

ki`h`(pj)eul = 0 in R2,

(b) {1, · · · , n} = J1 ∪ · · · ∪ Jt ∪ N, where J1, · · · , Jt and N are disjoint sets of
indices, N 6= ∅ and each Ji, 1 ≤ i ≤ t consists of consecutive indices. For each
i ∈ N, uik,j,` → −∞ over any fixed compact subsets of R2. The components with
index in Ji converge in C2

loc(R
2) to a low rank Toda system, where |Ji| is the rank.

(4) There exists a constant C > 0 independent of k such that

max
i

ũik(x) + 2 log dist(x, Σk,j) ≤ C,

for all x ∈ Br(pj), j = 1, · · · , l.

From the fourth conclusion of Lemma 3.9 we deduce the following result.

Lemma 3.10. Let Σk =
⋃l

j=1 Σk,i. Then, there exists a constant C > 0 independent of k
such that

max
i

ũik(x) + 2 log dist(x, Σk) ≤ C, ∀x ∈ Ω. (3.31)

With the above lemma we can derive the following crucial estimate.
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Lemma 3.11. There exists a constant C > 0 independent of k such that

dist(x, Σk)|∇uik| ≤ C, ∀x ∈ Ω, i = 1, · · · , n.

Proof. Using equation (3.25) and Green’s representation formula, we have

|∇uik| ≤ C
∫

Ω

1
|x− z| |

n

∑
`=1

eũi`(z)|dz.

For convenience, we set
Σk = {qk1, · · · , qks}.

Let
Dk(x) := infj|x− qkj|,

and
Ωk,j = {x ∈ Ω : |x− qkj| = Dk(x)}, j = 1, · · · , s.

It is easy to see that Ω =
⋃s

j=1 Ωk,j. Using Lemma 3.10, for any z ∈ Ωk,j \ B |x−qkj |
2

(qkj),

|x− z|−1eũ`k ≤ C
|x− z||z− qkj|2

≤ C
|x− z||x− qkj|2

.

Then, ∫
Ωk,j\B |x−qkj |

2

(qkj)

h`eũ`k

|x− z|dz ≤ C
|x− qkj|

. (3.32)

On the other hand, for z ∈ Ωk,j ∩ B |x−qkj |
2

(qkj), we have |x − z| ≥ 1
2 |x − qkj| and

hence ∫
Ωk,j∩B |x−qkj |

2

(qkj)

eũ`k(z)

|x− z|dz ≤ C
|x− qkj|

. (3.33)

By (3.32) and (3.33), we have ∫
Ωk,j

h`eũ`k(z)

|x− z| dz, (3.34)

and the above inequality holds for any ` = 1, · · · , n. As a consequence, we obtain
that there exists a constant independent of i such that

inf
j=1,··· ,s

|x− qkj||∇uik| ≤ C, i = 1, · · · , n.

Therefore, we finish the proof. �

Finally, for what concerns the Toda system (1.8) we have a similar blow up
picture as the one presented in Lemma 3.5 for the sinh-Gordon equation (1.1). Let
(uik)i be a sequence of solutions to (1.8) and let (ũik)i be defined as in Lemma 2.4.
Then, in the sense of measures, we have

hieũik dx → fi(x) + ∑
p∈S∩Ω

li(p)δp in Ω, i = 1, · · · , n,
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where f1, · · · , fn ∈ L1(Ω) ∩ C∞
loc(Ω \ S) and each li(p) is a multiple of 4π. More

precisely, for rank 2 Toda system the values of li(p) are completely classified; for
K = A2 we have(

l1(p), l2(p)
)
∈
{
(4π, 0), (0, 4π), (4π, 8π), (8π, 4π), (8π, 8π)

}
,

see [34, Remark 1.2], for K = B2 (= C2) it holds(
l1(p), l2(p)

)
∈
{
(4π, 0), (0, 4π), (8π, 4π), (4π, 12π), (8π, 16π), (12π, 12π), (12π, 16π)

}
,

see [39, Theorem 1.1], while for K = G2 we have(
l1(p), l2(p)

)
∈
{
(4π, 0), (0, 4π), (4π, 16π), (8π, 4π), (24π, 36π), (24π, 40π),

(8π, 24π), (16π, 16π), (16π, 36π), (20π, 24π), (20π, 40π)
}

,

see [36, Theorem 1.3]. For what concerns the An, Bn, Cn type Toda systems the clas-
sification of the values li(p) is more involved. Nevertheless, recently the authors
in [38] proved li(p) is multiple of 4π.

Proof of Theorem 1.2. The proof is derived reasoning by contradiction and by using
the Pohozaev identity (2.13) around a boundary blow up point. Since the argu-
ments are local in nature, by exploiting Lemmas 3.7-3.11 we can reason exactly as
in the proof of Theorem 1.1 to estimate each term in the Pohozaev identity and
prove Theorem 1.2. We omit the details to avoid repetitions. �

4. APPENDIX: PROOF OF THE THEOREMS 1.3 AND 1.4

In this section we shall provide the proof of Theorems 1.3 and 1.4 concerning
existence of solutions. Since their proof has become rather standard we will point
out just the main steps and ideas.

Let us first consider Theorem 1.3. Its proof is based on the variational structure
of the problem by considering the following functional associated to (1.1),

Jρ(u) =
1
2

∫
Ω
|∇u|2 − ρ1 log

∫
Ω

h1(x) eu − ρ2 log
∫

Ω
h2(x) e−u u ∈ H1

0(Ω), (4.1)

where ρ = (ρ1, ρ2). The goal is to exploit a Morse-type approach to detect critical
points of the latter functional. However, standard deformation lemmas typically
rely on some compactness assumption, for example the Palais-Smale condition.
With respect to our problem, it is still unknown at the moment whether the func-
tional (4.1) satisfies this condition. To bypass this obstruction one usually appeals
to the compactness of the set of solutions to (1.1). To this end, we recall that for a
sequence of blowing up solutions (un)n relative to ρn, we have by Lemma 3.5,

ρn
h1euk∫
Ω h1euk

dx → r1(x)dx + ∑
p∈S∩Ω

m1(p)δp in Ω,

ρn
h2e−uk∫
Ω h2e−uk

dx → r2(x)dx + ∑
p∈S∩Ω

m2(p)δp in Ω,
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in the sense of measures, where ri(x) ∈ L1(Ω) ∩ C∞
loc(Ω \ S) and mi(p) are multi-

ple of 8π for i = 1, 2. Concerning the residual mass, it is by now well known that
either r1 ≡ 0 or r2 ≡ 0, see for instance [6] where the latter property is derived for
a much more general problem. Therefore, the following result is granted.

Proposition 4.1. Let K b (8πN×R) ∪ (R× 8πN) ⊂ R2. Then, the set of solutions
{uρ}ρ ⊂ H1

0(Ω) with ρ = (ρ1, ρ2) ∈ K is compact in C2,α(Ω) for some α > 0.

With the latter result at hand the Morse approach follows a common strategy
so we will be sketchy. We will denote the sublevels of the functional Jρ by

JL
ρ =

{
u ∈ H1

0(Ω) : Jρ(u) ≤ L
}

, L ∈ R.

The arguments in [41] jointly with the compactnss property in Proposition 4.1 al-
low to derive the following deformation lemma.

Lemma 4.1. Let a, b ∈ R be such that a < b and let ρ1, ρ2 /∈ 8πN. Suppose that Jρ has
no critical points uc with a ≤ Jρ(uc) ≤ b. Then, Ja

ρ is a deformation retract of Jb
ρ .

We can now prove the main existence result in Theorem 1.3.

Proof of Theorem 1.3. The goal is to study the topology of the sublevels of the func-
tional Jρ and to apply Lemma 4.1. Roughly speaking, we aim to show a change of
topology between high sublevels JL

ρ and low sublevels J−L
ρ for some L� 0.

Let us start with high sublevels. The compactness of solutions in Proposition
4.1 also implies boundedness from above of the energy on solutions, hence the
following: if ρ1, ρ2 /∈ 8πN, then there exists L � 0 such that JL

ρ is a deformation
retract of H1

0(Ω). In particular, it is contractible. On the other hand, since by
assumption we have χ(Ω) ≤ 0 and since the analysis in [5] concerning this part
is local in nature, the same arguments as in [5] show that J−L

ρ is not contractible.
Therefore, by the latter change of topology between sublevels of Jρ we conclude by
Lemma 4.1 that there exists a critical point of Jρ. This finishes the proof of Theorem
1.3.

�

The proof of Theorem 1.4 follows exactly the same steps introduced in the proof
of Theorem 1.3 with obvious modifications. We omit the details to avoid repeti-
tions.
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