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Abstract. We consider the quasi-static evolution of a prescribed cohesive interface: dissipative
under loading and elastic under unloading. We provide existence in terms of parametrized BV -
evolutions, employing a discrete scheme based on local minimization, with respect to the H1-
norm, of a regularized energy. Technically, the evolution is fully characterized by: equilibrium,
energy balance and Karush-Kuhn-Tucker conditions for the internal variable. Catastrophic regimes
(discontinuities in time) are described by gradient flows of visco-elastic type.

1 Introduction

In this work we study a quasi-static evolution for an elastic material containing a cohesive crack.
Models of this type have been studied under many different mechanical and mathematical hypothe-
ses. Before presenting our setting and our results, we recall some recent works, covering different
research directions.

First of all, we mention [9] and [7], a couple of results obtained in the framework of energetic
evolutions [17]. From our perspective, and from the mechanical point of view in general, it is in-
teresting that in these works the cohesive potential depends, at time t, both on the crack opening,
say JuK(t), and on an internal variable, say ξ(t), given (roughly speaking) by the maximal crack
opening JuK in the interval [0, t]. This feature allows to introduce irreversibility (by the monotonic-
ity of ξ) and to distinguish between different loading-unloading regimes: [9] considers a constant
unloading while [7] considers a more general convex unloading, introducing Young measures. These
energetic evolutions are obtained, as usual, taking the limit of time-discrete evolutions in which the
time-incremental problem is a (global) energy minimization problem. A similar approach is pursued
also in [21] employing a “damage like” interface energy, in place of an internal variable. We finally
mention [16] which studies global minimizers, for static problems, under very weak conditions on
the adhesive (or cohesive) potential. In this context we would like to point out also the weaker
notion of directional local minimizers proposed in [19], actually for a gradient damage model.

Let us turn to BV -evolutions, another class of quasi-static evolutions. In this framework, de-
veloped to overcome some issues of energetic evolutions, the system attains, at each time, an
equilibrium configuration which is not necessarily an energy minimizer, as it is for energetic evolu-
tions. Typically, BV -evolutions are obtained by vanishing viscosity, i.e., as the limit of auxiliary
time-continuous parabolic systems (see [17] for abstract results and [6, 1] for cohesive models).
Alternatively, see [18], they can be generated as the limit of time-discrete evolutions in which the
time-incremental problem is a local energy minimization problem. In both cases, it is necessary
to provide (or identify) a norm or a metric which, together with the energy, drives the evolution.
Clearly, different choices of this norm or metric are interesting from the mathematical and mechani-
cal point of view; for instance, in the frame of cohesive fracture, [6] employs the bulk L2-norm while
[1] employs a “metric” depending on the crack length (the surface energy actually has an activation
threshold followed by a cohesive behaviour).

Let us briefly mention some results in the one dimensional setting, i.e., for elastic bars with
cohesive cracks; this simplified setting is often useful to provide a representative picture of the
complex behaviour of more realistic problems. For instance, [4] and [10] contain fine studies of
(stable and unstable) equilibrium configurations, [15] studies a dynamic problem while [8] presents a
quasi-static evolution generated by gradient flows, as incremental problems, along different loading-
unloading paths.

We conclude this brief overview with some computational works, closely related to our work. We
first mention [2] which makes use of a regularized cohesive potential, similar to the one employed

∗Financial support was provided by INdAM-GNAMPA project ”Flussi gradiente ed evoluzioni rate-independent:
sviluppi dell’approccio variazionale ed applicazioni” and by the ERC Advanced Grant n. 290888 QuaDynEvoPro.
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here, in order to obtain convenient (differentiable) energies for numerical simulations. The class
of cohesive laws used here is inspired by [20] both for the loading-unloading regimes and for the
regularization of the density (labelled “Smith-Ferrante” in [20]). We finally remember the recent
[3] which contains an abstract approximation result (from discrete to continuum) applied to the
viscosity approach of [6] and also [23] which employs an arc-length approach, similar to ours, to
capture unstable regimes of propagation (see § 8).

Now, let us describe our setting and the main results, without going into technical details. We
work within the anti-plane setting. We start with a traction-separation law τ(|JuK|, ξ) (depending
on the modulus of the opening JuK and on the internal variable ξ) which is linear in the unloading
branch 0 < |JuK| ≤ ξ, decreasing and convex in the loading branch |JuK| > ξ (see Figure 2a). The
cohesive potential ψ(·, ξ) is then obtained by integration of τ(·, ξ). We remark that the cohesive
density JuK 7→ ψ(|JuK|, ξ) is not differentiable in the origin, unless ξ > 0. Given a function t 7→ g(t)
the potential energy is given by

F(t, u, ξ) = 1
2

∫

Ω\K

µ|∇(u + g(t))|2 dx+

∫

K

ψ(|JuK|, ξ) dH1,

where Ω is the reference configuration, K is the cohesive interface (or crack), u ∈ U = {u ∈
H1(Ω \K) : u = 0 on ∂DΩ} where ∂DΩ ⊂ ∂Ω. Since differentiability of the energy is a convenient
property, both theoretically and numerically, we introduce a family of regularized (differentiable)
potentials ψε(|JuK|, ξ) approximating ψ(|JuK|, ξ). We denote by Fε the corresponding energy.

We work within the framework of parametrized BV -evolutions [18]. Our strategy, to find an
evolution for F , is the following. First, we define a family of evolutions for the regularized energies
Fε and then, passing to the limit as ε→ 0, we find an evolution for F . To find an evolution for Fε

we follow this approach. First, we employ a discrete (incremental) scheme, in which the updated
configuration is given by a local minimization problem. More precisely, let ∆sn ց 0; for each n ∈ N

define by induction a sequence (tn,k, un,k, ξn,k), for k ∈ N, as follows: if ∂uFε(tn,k, un,k, ξn,k) 6= 0
then











tn,k+1 = tn,k ,

un,k+1 ∈ argmin {Fε(tn,k, v, ξn,k) : ‖v − un,k‖H1 ≤ ∆sn},

ξn,k+1 = ξn,k ∨ |Jun,k+1K|,

while, if ∂uFε(tn,k, un,k, ξn,k) = 0 then










tn,k+1 = tn,k +∆sn,

un,k+1 = un,k,

ξn,k+1 = ξn,k.

Note that in this scheme the time variable is updated only when an equilibrium configuration
is attained (the approach is indeed inspired by minimizing movements for gradient flows). The
piecewise-affine interpolation of the sequence (tn,k, un,k, ξn,k), for k ∈ N, in the discrete points
sn,k = k∆sn provides a parametrized “discrete” evolution s 7→ (tn(s), un(s), ξn(s)) for s ∈ [0,+∞).
By construction, the evolutions (tn, un, ξn), for n ∈ N, are uniformly Lipschitz continuous and thus
(upon extracting a subsequence) there exists a limit, say s 7→ (tε(s), uε(s), ξε(s)), which is indeed
the parametrized BV -evolution for the energy Fε. Finally, passing to the limit for ε → 0 yields a
parametrized BV -evolution s 7→ (t(s), u(s), ξ(s)) for the energy F .

Note that in general s is not the physical time variable but an auxiliary “length” parameter in
the (t, u) space. In this framework discontinuities in time are represented by intervals, say [s−, s+],
where t′ = 0 while u (and possibly ξ) changes; on the contrary, continuity points in time correspond
to parametrization points in which t′(s) > 0.

Now we describe in more detail the characterization of this evolution (for the precise statement
see Definition 3.1):

(C) for almost every s ∈ [0,+∞) the following Karush-Kuhn-Tucker conditions hold,

ξ′(s) ≥ 0, |Ju(s)K| ≤ ξ(s), ξ′(s)
(

|Ju(s)K| − ξ(s)
)

= 0 , H1-a.e. on K;

(S) for every s ∈ [0,+∞) with t′(s) > 0 the following equilibrium condition holds,

|∂−u F(t(s), u(s), ξ(s))| = 0,
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(E) for every s ∈ [0,+∞) the following energy balance holds,

F(t(s), u(s), ξ(s)) = F(t0, w0, ξ0) +

∫ s

0

∂tF(t(r), u(r), ξ(r)) t′(r) dr+

−

∫ s

0

|∂−u F(t(r), u(r), ξ(r))| dr .

In (S) and (E) we have to consider the slope |∂−u F(t, u, ξ)| (see § 2) since F is not everywhere
differentiable with respect to u. We remark that in our characterization the energy balance (E) is
an equality and, most important, that all the Karush-Kuhn-Tucker conditions (C) are provided in
a strong form. Moreover, it is noteworthy that for every T ∈ (0,+∞) there exists S ∈ (0,+∞) such
that t(S) = T ; as a by-product we also prove that discrete evolutions in a finite time horizon T > 0
are parametrized in a single, finite length, interval, say [0, S], and obtained by a finite number of
induction steps.

Finally, considering in U the norm ‖u‖ = (
∫

Ω\K
|∇u|2 dx)1/2, conditions (S) and (E) provide the

following system of PDEs: for v(s) = u(s) + g(t(s)) + λ(s)u′(s) and λ(s) = |∂−u F(t(s), u(s), ξ(s))|
it holds



















∆v = 0 in H−1(Ω \K),

v = g(t(s)) on ∂DΩ,

∂+ν v = ∂−ν v = h on K,

∂νv = 0 on [(∂Ω) \K] \ ∂DΩ,

where h ∈ L∞(K) and

{

h = τ(|JuK|, ξ)(sgn JuK) H1-a.e. on {(JuK, ξ) 6= (0, 0)},

|h| ≤ τ(0, 0) otherwise.

As we will see in § 7 and § 8 this system gives both the equilibrium conditions in the continuity
points, i.e. where t′(s) > 0, and the behaviour in the discontinuity intervals, i.e. where t′ = 0.
Note that, in the former case it turns out that λ(s) = 0, by condition (E), and thus v(s) becomes
simply the (total) displacement u(s) + g(t(s)); in the latter, when λ(s) 6= 0, we formally obtain
a visco-elastic (Kelvin-Voigt) system; this is a consequence of the choice of the H1-norm in the
discrete scheme.

2 Preliminaries

Lp vector-valued functions. Let us recall the following result (see, e.g., [14], § 2.22)

Lemma 2.1 Let X be a reflexive Banach space, and T > 0. Let Φ be a bounded linear functional
on Lp(0, T ;X) (1 ≤ p < +∞). Then there exists u ∈ Lp′

(0, T ;X ′) such that ‖Φ‖ = ‖u‖Lp′ and

Φ(v) =

∫ T

0

〈u(t), v(t)〉X′,X dt

for every v ∈ Lp(0, T ;X).

Remark 2.2 In particular, if X is a reflexive Banach space, then the space L∞(0, T ;X ′) can be
identified with the dual of the space L1(0, T ;X). The duality pair is given by

〈u, v〉L∞(0,T ;X′),L1(0,T ;X) =

∫ T

0

〈u(t), v(t)〉X′,X dt

Let us also recall that Lp(0, T ;X) (1 ≤ p < +∞) is separable if (and only if) X is separable
(see, e.g., [14], § 2.20). Hence, if X is a separable reflexive Banach space, then bounded sets in
L∞(0, T ;X ′) are sequentially relatively compact with respect to the weak∗ convergence.

Sobolev vector-valued functions. Let us recall (see, e.g., [5]) that if X is a Banach space and

g ∈ L1(0, T ;X) then the functions u defined by u(t) =
∫ t

0 g(s) ds is a.e. differentiable in (0, T ) and
u′ = g a.e. in (0, T ).
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We define the space W 1,p(0, T ;X) (with 1 ≤ p ≤ ∞) as the space of function u : [0, T ] → X
which can be represented as

u(t) = u(0) +

∫ t

0

g(s) ds (t ∈ [0, T ])

for a suitable g ∈ Lp(0, T ;X). The function g equals the derivative u′ of u a.e. in (0, T ). We set
‖u‖W 1,p(0,T ;X) = ‖u‖Lp(0,T ;X) + ‖u′‖Lp(0,T ;X).

Assume that X is reflexive and separable (hence X ′ is reflexive and separable). Then ([5],
Cor. A.2) the space of Lipschitz functions [0, T ] → X ′ coincides with W 1,∞(0, T ;X ′). Moreover,
the following proposition holds.

Proposition 2.3 Let (un) be a bounded sequence in W 1,∞(0, T ;X ′). Then there exists a function
u ∈ W 1,∞(0, T ;X ′) such that, up to a subsequence,

un(t)⇀ u(t) w-X ′ for every t ∈ [0, T ],

u′n ⇀ u′ w∗-L∞(0, T ;X ′).

Moreover, the w-X ′ convergence of un(t) is uniform with respect to t ∈ [0, T ], i.e.

if tn → t then un(tn)⇀ u(t) w-X ′.

We will refer to the convergence properties just stated as weak∗ convergence in W 1,∞(0, T ;X ′).

Slope of a functional. Directional derivatives. Let X be a Banach space, and F a functional X → R.
We define the slope of F in u0 ∈ X as

|∂−F (u0)| := lim sup
u→u0

[F (u)− F (u0)]−
‖u− u0‖

,

where [·]− denotes the negative part.
If F is Fréchet differentiable in u0, then

|∂−F (u0)| = ‖dF (u0)‖X′ .

Assume now that F admits only (unilateral) directional derivatives, i.e. for every z ∈ X the
following limit exists and is finite:

(2.1) ∂F (u0; z) := lim
h→0+

F (u0 + hz)− F (u0)

h
.

The following result provides a relationship between the slope and the directional derivatives.

Proposition 2.4 Let u0 ∈ X, and assume that the limit (2.1) is uniform with respect to ‖z‖ ≤ 1.
Then

|∂−F (u0)| = sup
{

[∂F (u0; z)]− : ‖z‖ ≤ 1
}

.

Proof. Let z ∈ X with ‖z‖ ≤ 1 and z 6= 0. Then by continuity of [·]−

[∂F (u0; z)]− = lim
h→0+

[F (u0 + hz)− F (u0)]−
h‖z‖

‖z‖

≤ lim sup
u→u0

[F (u)− F (u0)]−
‖u− u0‖

= |∂−F (u0)|.

By the arbitrariness of z we have |∂−F (u0)| ≥ sup
{

[∂F (u0; z)]− : ‖z‖ ≤ 1
}

. Let us address the
opposite inequality. Let un → u be a sequence satisfying

lim
n→+∞

[F (un)− F (u0)]−
‖un − u0‖

= |∂−F (u0)|.

Let hn = ‖un − u0‖ and zn = (un − u0)/hn; thus un = u0 + hnzn, with ‖zn‖ = 1. Fix ε > 0. By
assumption (see Remark 2.5 below, too) we can assume that for every n

∣

∣

∣

∣

F (u0 + hnzn)− F (u0)

hn
− ∂F (u0; zn)

∣

∣

∣

∣

< ε,
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Ω \K

∂DΩ∂DΩ

Γ1

Γ2

Γ3

Γ4

(a) Crack path K and Dirichlet boundary ∂DΩ

Ω3

∂DΩ∂DΩ

Ω1

Ω2

Ω4

(b) Decomposition of Ω \K in piecewise-C1 do-
mains

Figure 1: Geometric setting

thus
F (u0 + hnzn)− F (u0)

hn
≥ ∂F (u0; zn)− ε.

Since [·]− is monotone and [x− ε]− ≤ [x]− + ε, we get

[F (u0 + hnzn)− F (u0)]−
hn

≤ [∂F (u0; zn)]− + ε ≤ sup
{

[∂F (u0; z)]− : ‖z‖ ≤ 1
}

+ ε.

The first item of these inequalities tends to |∂−F (u0)| and we conclude by the arbitrariness of ε.

Remark 2.5 a) The uniformity assumption in the preceding proposition can be expressed by
requiring that for any positive infinitesimal sequence (hn) and for every sequence (zn) in X , with
‖zn‖ ≤ 1, we have

lim
n→+∞

∣

∣

∣

∣

F (u0 + hnzn)− F (u0)

hn
− ∂F (u0; zn)

∣

∣

∣

∣

= 0.

b) It is easy to check that if F is Fréchet differentiable in u0 then the limit (2.1) is uniform with
respect to ‖z‖ ≤ 1.

3 Setting

Let Ω ⊆ R
2 be an open, bounded and connected set with a piecewise-C1 boundary (i.e. every point

of ∂Ω has a neighbourhood which is the graph of a piecewise-C1 function). Let α1, . . . , αm be C1

simple curves [0, 1] → Ω such that the sets Γj = αj((0, 1)) are pairwise disjoint, see Figure 1(a).
Let K :=

⋃

j αj([0, 1]). We will assume that

i) K ∩ ∂Ω is a subset of the set of endpoints of the arcs Γj ; in particular, (∂Ω) \K consists of a
finite number of arcs;

ii) up to a negligible set, Ω \ K is the disjoint union of finitely many connected piecewise-C1

open sets Ωi, see Figure 1(b); in particular, none of the curves Γj is tangent to ∂Ω;

iii) each arc Γj is part of the boundaries of exactly two sets of the family (Ωi)i.

In the setting of anti-plane elasticity, the displacement is a scalar function on Ω\K. On a portion
∂DΩ of the boundary ∂Ω with H1(∂DΩ) > 0 we impose boundary conditions, parametrized over the
positive ‘time’ axis R

+ = [0,+∞): if g is a given function [0,+∞) → H1(Ω), we require that the
displacement equals g(t) on ∂DΩ at any t. More precisely, we assume that g ∈ C1

(

[0,+∞);H1(Ω)
)

with ‖g‖C1([0,+∞);H1) < +∞.1 In particular g ∈ W 1,∞
(

[0, T ];H1(Ω)
)

for every T > 0. Note that,
directly from the definition of g′, the map ∇g : [0,+∞) → L2(Ω,R2) is a.e. differentiable, and

d

dt
∇g(t) = ∇g′(t) a.e. in Ω.

1 The case of a datum g which is assigned on a bounded interval [0, T ] can be managed in a similar way.
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ξ w

τξ = τ(·, ξ)

τ̂

(a) Traction-separation law: function τ(·, ξ)

ξ w

ψ(·, ξ)

ψ̂

(b) Potential ψ(·, ξ)

Figure 2: Traction-separation law and potential for a cohesive failure model

For convenience, for every t, we will write the admissible displacements as v = g(t) + u where
u ∈ U , with

U = {u ∈ H1(Ω \K) : u = 0 on ∂DΩ}.

This space will be equipped with the usual H1 norm: we simply write ‖u‖ if u ∈ U .
A natural assumption on ∂DΩ is that each connected component A of Ω \ K shares a part of

the boundary where the datum g is placed (for instance, this guarantees that we can control the
H1 norm on A by the L2 norm of the gradient). Thus, we require that

H1(∂DΩ ∩ ∂A) > 0, for every connected component A of Ω \K.

Moreover, we require that ∂DΩ consists of a finite number of C1 arcs.
If u ∈ U , we denote by

JuK = u+ − u−

the jump of u on K, with respect to a fixed orientation (however, the relevant results involve only
the absolute value of JuK; see Remark 3.2, too).

We consider an elastic energy with the simple form:

E(t, u) = 1
2

∫

Ω\K

µ|∇(u + g(t))|2 dx (t ≥ 0, u ∈ U),

where µ > 0 is the shear modulus. For the sake of simplicity, we will assume, without loss of
generality, that µ = 1. We match this energy with a cohesive potential energy, which we define
starting from the traction-separation law, as follows.

Let τ̂ : [0,+∞) → [0,+∞) be a C1, non-increasing, summable, convex function: τ̂ can be
interpreted as the traction-separation law for the originally unfractured configuration in a cohesive
failure model. Denote by w the crack opening, defined (pointwise) on the crack path K; consider a
configuration where the maximum opening previously experienced by the material is given pointwise
by the non-negative function ξ. If ξ = 0 we define τ(w, ξ) = τ̂ (w). If ξ > 0 we assume a linear
loading-unloading regime followed by a softening loading regime; thus we get a traction-separation
law of the form (see Figure 2(a)):

τ(w, ξ) =

{

(τ̂ (ξ)/ξ)w if w ≤ ξ,

τ̂ (w) if w ≥ ξ.

Next, we define the cohesive energy density ψ as a function of both w and the maximum opening
ξ through the traction-separation law τ(w, ξ) as (see Figure 2(b)):

(3.1) ψ(w, ξ) =

∫ ξ

0

τ̂(r) dr −

∫ ξ

w

τ(r, ξ) dr.

The first term in (3.1) corresponds to the energy of the opening crack ξ, while the second term
gives the released energy when the opening is reduced to w ≤ ξ. Note that the underlying physical
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model will naturally force the condition w ≤ ξ in the definition of an evolution path, however (3.1)
defines ψ for every (w, ξ) ∈ R

+ × R
+ (and not only for w ≤ ξ). Clearly ∂ψ/∂w = τ .

We point out that ψ can be equivalently expressed as

(3.2) ψ(w, ξ) =

∫ w

0

τ̂(r) dr +

∫ ξ

w

[τ̂ (r) − τ(r, ξ)] dr

and also as

(3.3) ψ(w, ξ) = ψs(w, ξ) + ψd(ξ),

where

ψs(w, ξ) =

∫ w

0

τ(r, ξ) dr, ψd(ξ) =

∫ ξ

0

[τ̂ (r) − τ(r, ξ)] dr

denote the stored and the dissipated energy, respectively. In the sequel, we will work with the
density ψ without making the distinction between stored and dissipated energy. In Proposition 3.3
we gather the main properties of ψ.

On the crack path K we consider the energy

(3.4) K(u, ξ) =

∫

K

ψ(|JuK|, ξ) dH1 ,

defined in U × L2
+(K) (here L2

+(K) denotes the space of positive functions in L2(K)). For ease of
notation, we extend ψ(·, ξ) all over R as an even function; thus, we can also write

K(u, ξ) =

∫

K

ψ(JuK, ξ) dH1 .

The two terms previously set forth give the energy functional F : R+×U×L2
+(K) → R

+ defined
by

F(t, u, ξ) = E(t, u) +K(u, ξ) = 1
2

∫

Ω\K

|∇(u + g(t))|2 dx+

∫

K

ψ(|JuK|, ξ) dH1.

Let us now introduce the notion of quasi-static evolution we deal with in this paper; as in [18]
we express it in terms of parametrized BV evolutions.

Definition 3.1 Let u0 ∈ U and ξ0 ∈ L2
+(K), with |Ju0K| ≤ ξ0 a.e. on K. Let (t, u, ξ) : [0,+∞) →

R
+ × U × L2

+(K) be a Lipschitz map such that

(t(0), u(0), ξ(0)) = (0, u0, ξ0), lim
s→+∞

t(s) = +∞,

with t(·) a non-decreasing function.
The map (t, u, ξ) is a parametrized BV evolution for F if

(C) for almost every s ∈ [0,+∞) we have

(3.5) ξ′(s) ≥ 0, |Ju(s)K| ≤ ξ(s), ξ′(s)
(

|Ju(s)K| − ξ(s)
)

= 0 , H1-a.e. on K;

(S) for every s ∈ [0,+∞) with t′(s) > 0 we have

(3.6) |∂−u F(t(s), u(s), ξ(s))| = 0 ;

(E) for every s ∈ [0,+∞) we have

F(t(s), u(s), ξ(s)) = F(t0, w0, ξ0) +

∫ s

0

∂tF(t(r), u(r), ξ(r)) t′(r) dr+

−

∫ s

0

|∂−u F(t(r), u(r), ξ(r))| dr .

(3.7)
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When the boundary condition is defined in a finite time interval [0, T ] the parametrization
(t, u, ξ) is defined in a finite interval [0, S] and correspondingly the conditions (C), (S) and (E)
hold in [0, S].

In Theorem 6.2 we prove the existence of a parametrized BV evolution for the energy F .

Finally, we collect here a few properties which we will need in the sequel.

Remark 3.2 Let ν be a unit, normal vector field on ∂Ω and K∩Ω; assume that ν∣
∣∂Ω

is the exterior

normal vector, and that ν∣
∣Γj

is continuous for every j. Let u ∈ H1(Ω \K). For every i, the trace

of u on ∂Ωi is well defined as a function in H1/2(∂Ωi). This yields a trace u◦ of u on (∂Ω) \K. As
to the trace on K, let Γ be any of the arcs Γj which decompose K. Let i+ and i− be such that
Γ ⊆ ∂Ωi+ ∩ ∂Ωi− and that the orientation ν on Γ agrees with the outer unit normal of Ωi+ on Γ.
We denote by u+ on Γ the trace of u∣

∣Ωi+

on Γ, and by u− on Γ the trace of u∣
∣Ωi

−

on Γ.

Let us now point out some properties of these traces.

a) By the continuity of the trace operator on each Ωi, if u ∈ H1(Ω \K) then

‖JuK‖L2(K) ≤ ‖u+‖L2(K) + ‖u−‖L2(K) ≤ C‖u‖

for a suitable constant C depending only on Ω and K.

b) Let Γ, i+ and i− be as above. Then the trace operators map continuously H1(Ωi+), H
1(Ωi−)

to the space H1/2(Γ), which is continuously and compactly embedded in Lq(Γ) for every
q ∈ [2,+∞) (see, e.g., [11], §§ 6 and 7).

c) If (un) is a sequence in H1(Ω\K) which converges weakly to an element u, then the continuity
of the trace operator implies that u±n ⇀ u± weakly in H1/2(Γ) for every Γ as above, hence
u±n → u± in L2(K) and in particular JunK → JuK in L2(K).

Proposition 3.3 The following properties hold.

a) ψ is continuous and bounded in R
+ × R

+.

b) Define (see Fig. 2(b))

ψ̂(w) =

∫ w

0

τ̂ (r) dr, for every w ≥ 0.

Then, if ξ > 0

ψ(w, ξ) =











ψ̂(ξ)− 1
2
τ̂(ξ)
ξ (ξ2 − w2) if 0 ≤ w ≤ ξ,

ψ̂(w) if w ≥ ξ

while ψ(w, 0) = ψ̂(w) for every w ≥ 0.

c) ψ(·, ξ) ∈ C1
(

[0,+∞)
)

for every ξ ≥ 0, and ∂wψ = τ . In particular, 0 ≤ ∂wψ ≤ τ̂(0) on
[0,+∞), and ∂wψ(0, ξ) = 0 if ξ > 0; remembering that ψ(·, ξ) is extended from R

+ to R by
even symmetry, it follows that ψ(·, ξ) ∈ C1(R) for every ξ > 0.

d) ψ(w, ·) is non-decreasing on [0,+∞) for every w ≥ 0; moreover, it is continuously differen-
tiable on [w,+∞), and 0 ≤ ∂ξψ ≤ 1

2 τ̂ (0).

e) ψ is Lipschitz continuous on R
+ × R

+ (hence on R× R
+).

Proof. a) The continuity is immediate; the boundedness follows from the fact that τ̂ is summable,

and both the integrals in (3.1) are bounded by
∫ +∞

0
τ̂ .

b) This follows from (3.1) making use of the explicit form of τ .
c) The property can be immediately deduced from (3.1) since τ(·, ξ) is continuous on [0,+∞)

for every ξ ≥ 0.
d) Let w ≥ 0. Since ψ(w, ξ) = ψ̂(w) if ξ ≤ w, to prove that ψ(w, ·) is non-decreasing we have

only to show that ψ(w, ξ1) ≤ ψ(w, ξ2) if w ≤ ξ1 ≤ ξ2: this follows immediately from equation (3.1)
since τ(·, ξ1) ≥ τ(·, ξ2).
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Let us now prove the C1-differentiability of ψ(w, ·) on [w,+∞). If w = 0 then

ψ(0, ξ) = ψ̂(ξ)− 1
2 τ̂ (ξ)ξ, for every ξ ≥ 0,

and
d

dξ
ψ(0, ξ) = τ̂ (ξ)− 1

2 τ̂
′(ξ)ξ − 1

2 τ̂ (ξ) =
1
2

(

τ̂(ξ)− τ̂ ′(ξ)ξ
)

;

now, taking the convexity of τ̂ into account, we have 0 ≤ τ̂(ξ)− τ̂ ′(ξ)ξ ≤ τ̂ (0).

If w > 0 and ξ ≥ w, then ψ(w, ξ) = ψ̂(ξ)− 1
2
τ̂(ξ)
ξ (ξ2 − w2), so that

∂

∂ξ
ψ(w, ξ) = 1

2

τ̂ (ξ)− τ̂ ′(ξ)ξ

ξ2
(ξ2 − w2).

Since 0 ≤ (ξ2 − w2)/ξ2 ≤ 1, we conclude again by the convexity of τ̂ .
e) By (c) and (d) the functions ψ(·, ξ) and ψ(w, ·) are Lipschitz continuous on R

+ with Lipschitz
constants independent of ξ and w (recall that ψ(w, ·) is constant on [0, w]): the global Lipschitz
continuity of ψ on R

+ × R
+ then follows.

Corollary 3.4 The functional K : U × L2
+(K) → R

+ is Lipschitz continuous.

Proof. Take Proposition 3.3 (e) into account together with Remark 3.2 (a).

Lemma 3.5 The functional E is of class C1 on R
+×U (i.e., it is Fréchet differentiable on R

+×U
with continuous derivative), and

∂tE(t, u) =

∫

Ω\K

∇
(

u+ g(t)
)

∇g′(t) dx,

∂uE(t, u)[z] =

∫

Ω\K

∇(u+ g(t)
)

∇z dx (z ∈ U).

Proof. It is enough to show that the partial Fréchet derivatives exist and are continuous. The
result about ∂uE(t, u) is standard; that about ∂tE(t, u), can be obtained by composition.

Since the partial derivative ∂wψ(w, ξ) does not exist in the origin, i.e. for w = ξ = 0, it will
be useful to have the directional derivative ∂wψ(w, ξ; z) of ψ in R × R

+ (according to (2.1) with
X = R): for every (w, ξ) ∈ R× R

+ and z ∈ R it turns out that

(3.8) ∂wψ(w, ξ; z) =

{

∂wψ(w, ξ)z = τ(|w|, ξ)(sgnw)z if (w, ξ) 6= (0, 0)

τ̂ (0)|z| = τ(0, 0)|z| if (w, ξ) = (0, 0),

where we have set sgn 0 = 0 (however, note that if w = 0 then τ(|w|, ξ) = 0 if ξ 6= 0). In the
following result we study the directional differentiability of F according to (2.1),

Lemma 3.6 The functional K admits (unilateral) directional derivative ∂uK(u, ξ; z) for any z ∈ U ,
and

(3.9) ∂uK(u, ξ; z) =

∫

K

∂wψ(JuK, ξ; JzK) dH
1

(where ∂wψ is defined in (3.8)). Moreover, the limit defining ∂uK(u, ξ; z) is uniform with respect
to z ∈ U , with ‖z‖ ≤ 1. In particular, by Remark 2.5 if zn → z and hn is positive and infinitesimal
then

lim
n→+∞

∣

∣

∣

∣

K(u+ hnzn, ξ)−K(u, ξ)

hn
− ∂uK(u, ξ; zn)

∣

∣

∣

∣

= 0.

Proof. Let u ∈ U and ξ ∈ L2
+(K) be fixed. Let (hn) be a positive infinitesimal sequence and (zn)

a sequence in U , with ‖zn‖ ≤ 1. Denote JuK and JznK by w and wn, respectively. According to
Remark 2.5 (a), consider

∣

∣

∣

∣

K(u+ hnzn, ξ)−K(u, ξ)

hn
−

∫

K

∂wψ(w, ξ;wn) dH
1

∣

∣

∣

∣

≤

∫

K

∣

∣

∣

∣

ψ(w + hnwn, ξ)− ψ(w, ξ)

hn
− ∂wψ(w, ξ;wn)

∣

∣

∣

∣

dH1 =

∫

K

σn|wn|dH
1,
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where

σn = 1{wn 6=0}

∣

∣

∣

∣

ψ(w + hnwn, ξ)− ψ(w, ξ)

hn|wn|
− ∂wψ(w, ξ; sgnwn)

∣

∣

∣

∣

(note that ∂wψ(w, ξ;λwn) = λ∂wψ(w, ξ;wn) for λ ≥ 0). Since hnzn → 0 in H1(Ω \ K), we
can assume (up to a subsequence) that hnwn → 0 in L2(K) and pointwise a.e. on K. Setting
ηn = hn|wn| if wn > 0 we have

∣

∣

∣

∣

ψ(w + hnwn, ξ)− ψ(w, ξ)

hn|wn|
− ∂wψ(w, ξ; sgnwn)

∣

∣

∣

∣

=

∣

∣

∣

∣

ψ(w + ηn, ξ)− ψ(w, ξ)

ηn
− ∂wψ(w, ξ; 1)

∣

∣

∣

∣

while for wn < 0
∣

∣

∣

∣

ψ(w + hnwn, ξ)− ψ(w, ξ)

hn|wn|
− ∂wψ(w, ξ; sgnwn)

∣

∣

∣

∣

=

∣

∣

∣

∣

ψ(w − ηn, ξ)− ψ(w, ξ)

ηn
− ∂wψ(w, ξ;−1)

∣

∣

∣

∣

.

Considering the subsequences where wn > 0 or wn < 0 we have in both the cases that the difference
quotient converge to the directional derivative and hence σn → 0 a.e. on K.

By Hölder’s inequality and Remark 3.2
∫

K

σn|wn|dH
1 ≤ C‖σn‖L2(K)‖zn‖ ≤ C‖σn‖L2(K).

By the Lipschitz continuity of ψ(·, ξ) (see Proposition 3.3 (e)) the incremental quotients in the
definition of σn are bounded by max |∂wψ(·, ξ;±1)| = τ̂(0). Therefore, |σn| ≤ 2τ̂(0), and, by the
dominated convergence theorem ‖σn‖L2(K) → 0.

The convergence now proved yields both (3.9) (take a constant sequence (zn)) and the uniform
condition for the limit (2.1) for K.

Since the elastic energy E is Fréchet differentiable we can introduce the directional derivative

(3.10) ∂uF(t, u, ξ; z) = ∂uE(t, u)[z] + ∂uK(u, ξ; z).

By the previous lemma and by Proposition 2.4 we can represent the slope as

(3.11) |∂−u F(t, u, ξ)| = sup
{

[∂uF(t, u, ξ; z)]− : ‖z‖ ≤ 1
}

.

4 Regularized energy

The main result of this paper will be first proved for a modified energy Fε where an additional
regularity is required for the energy density on the crack. Thus, a modified traction-separation law
is considered, to overcome the lack of differentiability in zero of the function ψ(| · |, ξ) which enters
the line energy (3.4).

For every ε > 0 and w ∈ R
+ let (see Figure 3)

(4.1) τ̂ε(w) = min[w/ε, τ̂(w)].

Let ξε > 0 such that ξε/ε = τ̂(ξε), then the regularized function τε takes the form τ̂ε(w) = τ(w, ξε).
For (w, ξ) ∈ R

+ × R
+ we define

(4.2) τε(w, ξ) =

{

τ(w, ξε) = τ̂ε(w) if ξ ≤ ξε,

τ(w, ξ) if ξ ≥ ξε.

Thus, τε(0, ξ) = 0, and τε(·, ξ) is Lipschitz continuous on R
+, uniformly with respect to ξ ∈ R

+.
Moreover, it is worthwhile to note that ξε → 0 as ε→ 0 and that

(4.3) τε(w, ξ) = τ(w, ξ) if ξ ≥ ξε or w ≥ ξε.

Next, we define the regularized potential ψε(w, ξ) by analogy with the definition of ψ:

ψε(w, ξ) =

∫ ξ

0

τ̂ε(r) dr −

∫ ξ

w

τε(r, ξ) dr

=

∫ w

0

τ̂ε(r) dr +

∫ ξ

w

[τ̂ε(r) − τε(r, ξ)] dr

= ψs
ε(w, ξ) + ψd

ε (ξ),

(4.4)
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τε(·, ξ)

wξε ξ

τ̂ε(·, ξε) = τ̂ε

(a) Traction-separation law: function τε(·, ξ).

ψε(·, ξ)

w
ξ

ψ̂ε

(b) Potential ψε(·, ξ).

Figure 3: A regularized model

where

ψs
ε(w, ξ) =

∫ w

0

τε(r, ξ) dr, ψd
ε (ξ) =

∫ ξ

0

[τ̂ε(r) − τε(r, ξ)] dr.

We extend ψε(·, ξ) to the whole R as an even function. In the following proposition we collect
some of the main properties of the function ψε (see Figure 3).

Let us now introduce the regularized energy as the energy corresponding to the potential in
(4.4). Let

Kε(u, ξ) =

∫

K

ψε(JuK, ξ) dH
1 ,

and

Fε(t, u, ξ) = E(t, u) +Kε(u, ξ) =
1
2

∫

Ω\K

|∇
(

u+ g(t)
)

|2 dx+

∫

K

ψε(JuK, ξ) dH
1 .

In analogy with Definition 4.1 a parametrized BV-evolution for Feps can be defined as follows.

Definition 4.1 Let u0 ∈ U and ξ0 ∈ L2
+(K), with |Ju0K| ≤ ξ0 a.e. on K. Let (t, u, ξ) : [0,+∞) →

R
+ × U × L2

+(K) be a Lipschitz map such that

(t(0), u(0), ξ(0)) = (0, u0, ξ0), lim
s→+∞

t(s) = +∞,

with t(·) a non-decreasing function.
The map (t, u, ξ) is a parametrized BV evolution for Fε if

(C) for almost every s ∈ [0,+∞) we have

(4.5) ξ′(s) ≥ 0, |Ju(s)K| ≤ ξ(s), ξ′(s)
(

|Ju(s)K| − ξ(s)
)

= 0 , H1-a.e. on K;

(S) for every s ∈ [0,+∞) with t′(s) > 0 we have

(4.6) ‖∂uFε(t(s), u(s), ξ(s))‖U ′ = 0 ;

(E) for every s ∈ [0,+∞) we have

Fε(t(s), u(s), ξ(s)) = Fε(t0, w0, ξ0) +

∫ s

0

∂tFε(t(r), u(r), ξ(r)) t
′(r) dr+

−

∫ s

0

‖∂uFε(t(r), u(r), ξ(r))‖U ′ dr .

(4.7)

Let us see the properties of the regularized energies and their convergence as ε vanishes.

Proposition 4.2 The following properties hold.

a) ψε is continuous and bounded, uniformly with respect to ε > 0, in R× R
+;

11



b) Define

ψ̂ε(w) =

∫ w

0

τ̂ε(r) dr, for every w ≥ 0.

Then ψε(·, ξ) = ψ̂ε on R
+ if 0 ≤ ξ ≤ ξε. Moreover, if ξ ≥ ξε then

ψε(w, ξ) =











ψ̂ε(ξ)−
1
2
τ̂(ξ)
ξ (ξ2 − w2) if 0 ≤ w ≤ ξ,

ψ̂ε(w) if w ≥ ξ.

c) ψε(·, ξ) ∈ C1(R) for every ξ ≥ 0, and ∂wψε = τε.

d) ψε(w, ·) is non-decreasing on [0,+∞) for every w ∈ R.

Proof. (a), (b) and (d) can be proved as the analogous properties in Proposition 3.3. Property (c)
follows from the fact that, as pointed out above, τε(0, ξ) = 0.

Proposition 4.3 As ε→ 0 we have:

a) ψε → ψ in R× R
+, uniformly;

b) ∂wψε → ∂wψ uniformly on compact subsets of
(

R× R
+
)

\ {(0, 0)}. Moreover,

lim sup
n→+∞

∂wψεn(wn, ξn)z ≤ ∂wψ(w, ξ; z)

whenever εn → 0, wn → w and ξn → ξ.

Proof. a) It is enough to consider R+ ×R
+. Let w, ξ ∈ R

+ be fixed. From the definition of ψ and
ψε, we have

ψ(w, ξ) − ψε(w, ξ) =

∫ ξ

0

(

τ̂ (r)− τ̂ε(r)
)

dr −

∫ ξ

w

(

τ(r, ξ) − τε(r, ξ)
)

dr.

If ξ ≥ ξε then the second integral vanishes by (4.2). Otherwise, its absolute value is not greater

than
∫ ξε
0

(

τ̂ (r) − τ̂ε(r)
)

dr, which tends to zero as ε → 0, uniformly with respect to w and ξ, since

ξε → 0. The first integral is bounded by
∫ ξε
0

(

τ̂ (r) − τ̂ε(r)
)

dr, too.

(b) On compact subsets of
(

R
+ × R

+
)

\ {(0, 0)} we have ∂wψε = τε and ∂wψ = τ , hence
the uniform convergence is an immediate consequence of (4.3). This implies also the uniform
convergence on the whole

(

R×R
+
)

\{(0, 0)} since the extensions of ψε(·, ξ) and ψ(·, ξ) to R is even.
Let now εn → 0, wn → w and ξn → ξ. If (w, ξ) = (0, 0) then ∂wψ(w, ξ; z) = τ̂ (0)|z| for every

z ∈ R and
|∂wψεn(wn, ξn)z| = τε(|wn|, ξn)|z| ≤ τ(|wn|, ξn)|z| ≤ τ̂(0)|z|;

therefore the lim sup inequality is trivial. If (w, ξ) 6= (0, 0) then (wn, ξn) is bounded away from
(0, 0) for n large enough, so that ∂wψεn(wn, ξn)z → ∂wψ(w, ξ)z = ∂wψ(w, ξ; z) for every z ∈ R.

Lemma 4.4 For every ξ ∈ L2
+(K) the functional Fε(·, ·, ξ) is of class C1 on R

+ × U , with

∂tFε(t, u, ξ) = ∂tE(t, u),

∂uFε(t, u, ξ)[z] = ∂uE(t, u)[z] + ∂uKε(u, ξ)[z],

where ∂tE and ∂uE are given in Lemma 3.5, and, for every z ∈ U ,

∂uKε(u, ξ)[z] =

∫

K

∂wψε(JuK, ξ)JzK dH
1 =

∫

K

τε(|JuK|, ξ) sgn(JuK)JzK dH
1.

Moreover, the map u 7→ ∂uFε(t, u, ξ) is Lipschitz continuous from U to U ′, uniformly with respect
to (t, ξ) ∈ R

+ × L2
+(K).
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Proof. Let ξ ∈ L2
+ be fixed. For every z ∈ U we have

lim
h→0

Kε(u + hz, ξ)−Kε(u, ξ)

h
=

∫

K

∂wψε(JuK, ξ)JzK dH
1

since ψε(·, ξ) is C
1 with bounded derivative. The continuity of the right-hand side with respect to

z ∈ U follows from Remark 3.2(a). Thus Kε(·, ξ) is Gâteaux differentiable, with derivative

∂uKε(u, ξ)[z] =

∫

K

∂wψε(JuK, ξ)JzK dH
1 =

∫

K

τε(|JuK|, ξ) sgn(JuK)JzK dH
1 .

Let u1, u2 ∈ U . For every z ∈ U we have

|∂uKε(u1, ξ)[z]− ∂uKε(u2, ξ)[z]| ≤ Lε

∫

K

|Ju1K − Ju2K||JzK| dH
1 ≤ L′

ε‖u1 − u2‖ ‖z‖ ,

where Lε denotes a Lipschitz constant for the function r 7→ τε(|r|, ξ) sgn(r). It follows that

‖∂uKε(u1, ξ)− ∂uKε(u2, ξ)‖U ′ ≤ L′
ε‖u1 − u2‖

and hence Kε(·, ξ) is Fréchet differentiable, with Lipschitz derivative. The same Lipschitz property
is shared by ∂uE(t, ·), indeed

|∂uE(t, u1)[z]− ∂uE(t, u2)[z]| ≤

∫

Ω\K

|∇(u1 − u2)| |∇z| dx.

We conclude that the map u 7→ ∂uF(t, u, ξ) is Lipschitz continuous from U to U ′, uniformly with
respect to (t, ξ) ∈ R

+ × L2
+(K).

Lemma 4.5 Let (tn), (un) and (ξn) be such that

tn → t; un ⇀ u in H1(Ω \K); ξn → ξ in L2(K).

Then

(a) Fε(t, u, ξ) ≤ lim inf
n→+∞

Fε(tn, un, ξn);

(b) ‖∂uFε(t, u, ξ)‖U ′ ≤ lim inf
n→+∞

‖∂uFε(tn, un, ξn)‖U ′ ;

(c) lim
n→+∞

∂tFε(tn, un, ξn) = ∂tFε(t, u, ξ) .

Proof. (a) By the weak-L2 convergence of (∇un) and the convergence of
(

∇g(tn)
)

in L2, we
have the lower semicontinuity inequality for E . As to Kε, consider a subsequence (not relabeled)
such that lim infn→+∞

∫

K
ψε(JunK, ξn)dH

1 is a limit. By the strong convergence of (ξn) and by
Remark 3.2 (c), we can assume that (ξn) and (JunK) converge a.e. Hence, by Fatou’s Lemma
∫

K ψε(JuK, ξ) dH
1 ≤ lim infn→+∞

∫

K ψε(JunK, ξn) dH
1 .

(b) Let z ∈ U with ‖z‖ ≤ 1. Then

‖∂uFε(tn, un, ξn)‖U ′ ≥ ∂uFε(tn, un, ξn)[z]

=

∫

Ω\K

∇(un + g(tn))∇z dx+

∫

K

τε(|JunK|, ξn) sgn(JunK)JzK dH1 .

Remembering that τε(·, ξ) is continuous and that τε(0, ξ) = 0, a similar argument as in (a) yields
the lower semicontinuity for both these integral terms; hence

lim inf
n→+∞

‖∂uFε(tn, un, ξn)‖U ′ ≥

∫

Ω\K

∇(u+ g(t))∇z dx+

∫

K

τε(|JuK|, ξ) sgn(JuK)JzK dH
1

= ∂uFε(t, u, ξ)[z] .

By the arbitrariness of z we get

lim inf
n→+∞

‖∂uFε(tn, un, ξn)‖U ′ ≥ ‖∂uFε(t, u, ξ)‖U ′ .

(c) This property is an immediate consequence of the expression of ∂tFε and the continuity of
the map t 7→ ∇g′(t) in L2(Ω,R2).
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Lemma 4.6 Let (tn), (un) and (ξn) be sequences such that

tn → t; un ⇀ u in H1(Ω \K); ξn → ξ in L2(K).

Then, for εn → 0 we have

(a) F(t, u, ξ) ≤ lim inf
n→+∞

Fεn(tn, un, ξn) ,

(b) |∂−u F(t, u, ξ)| ≤ lim inf
n→+∞

‖∂uFεn(tn, un, ξn)‖U ′ ,

(c) ∂tF(t, u, ξ) = lim
n→+∞

∂tFεn(tn, un, ξn) .

Proof. We can assume that (JunK) and (ξn) converge a.e. (recall Remark 3.2 (c)).

(a) The l.s.c. inequality for E , which is independent of ε, has already been checked in Lemma
4.5 (it follows from the weak-L2 convergence of (∇un) and the convergence of

(

∇g(tn)
)

in L2). As
to K, it is enough to apply Lemma 4.3 (a) and Fatou’s Lemma, indeed

K(u, ξ) =

∫

K

ψ(|JuK|, ξ) dH1 ≤ lim inf
n→+∞

∫

K

ψεn(|JunK|, ξn) dH
1 = lim inf

n→+∞
Kεn(un, ξn).

(b) Let z ∈ U be fixed, with ‖z‖ ≤ 1. Recall that, by Lemma 3.5 and Lemma 4.4

∂uFεn(tn, un, ξn)[z] =

∫

Ω\K

∇
(

un + g(tn)
)

∇z dx+

∫

K

∂wψεn(JunK, ξn)JzK dH
1.

The first integral in the right-hand side converges to
∫

Ω\K
∇
(

u+ g(t)
)

∇z dx. Moreover, by Propo-

sition 4.3 (b), a.e. on K we have

lim sup
n→+∞

∂wψεn(JunK, ξn)JzK ≤ ∂wψ(JuK, ξ; JzK)

since (JunK, ξn) → (JuK, ξ) a.e. on K. Therefore Fatous’s Lemma yields

lim sup
n→+∞

∂uFεn(tn, un, ξn)[z] ≤

∫

Ω\K

∇
(

u+ g(t)
)

∇z dx+

∫

K

∂wψ(JuK, ξ; JzK) dH
1 = ∂uF(t, u, ξ; z),

where the directional derivative ∂wF(t, u, ξ; z) has been defined in (3.10). Note now that for any
real sequence (an) it holds (lim sup an)− = (lim inf(−an))+; then by the monotonicity of (·)−

(

∂uF(t, u, ξ; z)
)

−
≤

(

lim sup
n→+∞

∂uFεn(tn, un, ξn)[z]
)

−

=
(

lim inf
n→+∞

∂uFεn(tn, un, ξn)[−z]
)

+

≤ lim inf
n→+∞

‖∂uFεn(tn, un, ξn)‖U ′ .

We can now conclude by taking the supremum with respect to z, thank to (3.11).

(c) Since ∂tF = ∂tE = ∂tFεn , this item is as in Lemma 4.5.

5 Quasi-static evolution for the regularized energy Fε

In the space R+×U×L2
+(K) of the variables t, u and ξ we first introduce (Subsection 5.1) a discrete

evolution (from an initial point (0, u0, ξ0)), depending on an incremental parameter ∆s which acts
both as a time increment and as a range for the local minimality of the displacement (see below).
This sequence of points is read as a piecewise-affine function on the space of the parameter s.
Actually, the increment ∆s varies along a sequence ∆sn → 0; thus we get a sequence (tn, un, ξn)
of piecewise-affine approximating evolutions. We prove (Subsection 5.2) its convergence (up to a
subsequence) to a parametrized BV evolution for Fε according to Definition 3.1.

In Subsection 5.1 (Theorem 5.3) we prove that the functions tn satisfy a coercivity condition,
uniform with respect to n; this guarantees that the discrete evolution is globally defined in the time
interval [0,+∞). Moreover, as a by-product, we get that the polygonal path in U given by (un) has
locally-finite length, uniformly bounded with respect to n.
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5.1 Discrete (in time) evolution

Fix ε > 0. Let ∆sn ց 0 (we assume ∆sn ≤ 1). Let u0 ∈ U and ξ0 ∈ L2
+(K) be given, with

|Ju0K| ≤ ξ0 a.e. on K. Let
tn,0 = 0, un,0 = u0, ξn,0 = ξ0,

and define (tn,k, un,k, ξn,k), for every k ∈ N, by applying the following recursive rule:

(r1) If ∂uFε(tn,k, un,k, ξn,k) = 0 then











tn,k+1 = tn,k +∆sn ,

un,k+1 = un,k ,

ξn,k+1 = ξn,k .

(r2) If ∂uFε(tn,k, un,k, ξn,k) 6= 0 then











tn,k+1 = tn,k ,

un,k+1 ∈ argmin{Fε(tn,k, v, ξn,k) : v ∈ U , ‖v − un,k‖ ≤ ∆sn},

ξn,k+1 = ξn,k ∨ |Jun,k+1K|.

In the recursive rule (r2) the internal variable is updated a posteriori, i.e. after the minimization
of Fε(tn,k, ·, ξn,k). In particular it may happen that Jun,k+1K ≥ ξn,k. This is not an issue, since, a
posteriori, the minimization of Fε(tn,k, ·, ξn,k+1) provides the same minimizer, as stated in the next
proposition.

Lemma 5.1 If ∂uFε(tn,k, un,k, ξn,k) 6= 0 then

un,k+1 ∈ argmin{Fε(tn,k+1, v, ξn,k+1) : v ∈ U , ‖v − un,k‖ ≤ ∆sn}.

Proof. Clearly tn,k+1 = tn,k by definition; hence Fε(tn,k+1, · , ξn,k+1) = Fε(tn,k, · , ξn,k+1). Next,
we show that for every v ∈ U with ‖v − un,k‖ ≤ ∆sn

Fε(tn,k, v, ξn,k+1) ≥ Fε(tn,k, v, ξn,k) ≥ Fε(tn,k, un,k+1, ξn,k) = Fε(tn,k, un,k+1, ξn,k+1).(5.1)

from which the thesis follows.
The first inequality is a direct consequence of the increasing monotonicity of ψε(w, ·) (see Propo-

sition 4.2 (d)). The second follows by minimality. As to the last equality, it is enough to consider
the points on K where |Jun,k+1K| > ξn,k; in this case: ξn,k < ξn,k+1 = |Jun,k+1K|, which implies that

ψε(|Jun,k+1K|, ξn,k+1) = ψ̂ε(|Jun,k+1K|) = ψε(|Jun,k+1K|, ξn,k) (recall Proposition 4.2 (b)). Thus, the
line integrals in the definition of both sides of the second inequality in (5.1) are the same.

At this point we define the map

(5.2) (tn, un, ξn) : [0,+∞) → [0,+∞)×H1(Ω \K)× L2
+(K)

as a piecewise-affine function taking the values (tn,k, un,k, ξn,k) at the points sn,k = k∆sn.

The following proposition points out that the local minimization appearing in the recursive rule
behaves as a normalized gradient flow.

Proposition 5.2 Assume that ∂uFε(tn,k, un,k, ξn,k) 6= 0 and ∂uFε(tn,k+1, un,k+1, ξn,k+1) 6= 0.
Then ‖un,k+1 − un,k‖ = ∆sn and there exists λ > 0 such that

(5.3) ∂uFε(tn,k+1, un,k+1, ξn,k+1)[v] = 〈λ
un,k − un,k+1

‖un,k − un,k+1‖
, v〉H1(Ω\K)

for every v ∈ U . In particular λ = ‖∂uFε(tn,k+1, un,k+1, ξn,k+1)‖U ′ and

∂uFε(tn,k+1, un,k+1, ξn,k+1)[un,k+1 − un,k] = −‖∂uFε(tn,k+1, un,k+1, ξn,k+1)‖U ′‖un,k+1 − un,k‖.
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Proof. Let G = Fε(tn,k+1, ·, ξn,k+1). Since ∂uFε(tn,k, un,k, ξn,k) 6= 0, by the previous lemma un,k+1

minimizes G on the closed ball in U with centre un,k and radius ∆sn. Since ∂G(un,k+1) 6= 0, we
have ‖un,k+1 − un,k‖ = ∆sn (otherwise, the minimality condition would require the vanishing of
the derivative). Let z0 = un,k − un,k+1. It is easy to check that ∂G(un,k+1) vanishes on z⊥0 , the
orthogonal complement of the span of z0 in the subspace U of the Hilbert space H1(Ω \K); indeed,
fix α > 0 and v ∈ z⊥0 , and let z = αz0 + v. Then ‖(un,k+1 + hz)− un,k‖ < ∆sn if 0 < h < δ, with
δ > 0 sufficiently small; thus

0 ≤
d

dh
G(un,k+1 + hz)∣

∣

h=0+
= ∂G(un,k+1)[z] = α∂G(un,k+1)[z0] + ∂G(un,k+1)[v].

Therefore ∂G(un,k+1)[v] = 0 by the arbitrariness of α and v.
Hence, we can represent ∂G(un,k+1) through an element of the span of z0, i.e. (5.3) holds (λ is

positive since un,k+1 is a minimum).

The following theorem proves a uniform coercivity condition for the time parametrization; it
implies that the whole time interval [0,+∞) is parametrized.

Theorem 5.3 There exist c0, c1 > 0, independent of n, ∆sn and ε, such that

tn(S) ≥ c0S − c1 ,

for every S ≥ 0 and n ∈ N.

For the proof we need a technical lemma.

Lemma 5.4 Let (tn,k, un,k, ξn,k) be as above. Define

wn,k = Jun,kK, wn,k+1 = Jun,k+1K.

Then
[

τε
(

|wn,k|, ξn,k
)

sgn(wn,k)− τε
(

|wn,k+1|, ξn,k+1

)

sgn(wn,k+1)
]

(wn,k+1 − wn,k) ≤

≤
∣

∣τ̂ (ξn,k+1)− τ̂ (ξn,k)
∣

∣|wn,k+1 − wn,k|
(5.4)

a.e. on K.

Proof. If wn,k+1 > 0 > wn,k or wn,k+1 < 0 < wn,k, then the left-hand side in (5.4) is non-positive,
and the inequality holds. Therefore, we assume that wn,k and wn,k+1 have the same sign. Let
wn,k, wn,k+1 ≥ 0.

If ξn,k+1 = ξn,k then the left-hand side of (5.4) is non-positive by the monotonicity of τε(·, ξn,k)
on [0, ξn,k]. If ξn,k+1 > ξn,k then wn,k+1 = ξn,k+1 > ξn,k ≥ wn,k; thus wn,k+1 > wn,k and

τε(wn,k, ξn,k)− τε(wn,k+1, ξn,k+1) ≤ τε(ξn,k, ξn,k)− τε(ξn,k+1, ξn,k+1).

Now we have to consider two subcases. If ξn,k+1 ≤ ξε (see (4.2)) then τε(·, ξn,k) and τε(·, ξn,k+1)
are the same linear function with slope 1/ε on the interval [0, ξε]; therefore we have τε(ξn,k, ξn,k)−
τε(ξn,k+1, ξn,k+1) ≤ 0, and (5.4) holds. If, on the contrary, ξn,k+1 > ξε, then τε(ξn,k+1, ξn,k+1) =
τ̂(ξn,k+1); thus

τε(ξn,k, ξn,k)− τε(ξn,k+1, ξn,k+1) ≤ τ̂ (ξn,k)− τ̂(ξn,k+1) ,

and (5.4) follows again.
The proof in the case wn,k, wn,k+1 ≤ 0 is analogous.

Proof of Theorem 5.3. We need to consider separately the cases (r1) and (r2) in the recursive
rule. In particular, for the second, we will provide first an estimate for a pair of consecutive indices
and then an estimate for a “maximal” interval of indices where (r2) holds.
First step. For every k ∈ N let γk = ‖∂uFε(tn,k, un,k, ξn,k))‖U ′ . Assume that γk 6= 0 and γk+1 6= 0.
Then, by Proposition 5.2:

∂uFε(tn,k+1, un,k+1, ξn,k+1)[un,k+1 − un,k] = −γk+1‖un,k+1 − un,k‖.
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Since ∂uFε(tn,k, un,k, ξn,k)[un,k+1 − un,k] ≥ −γk‖un,k+1 − un,k‖, we deduce that

∂uFε(tn,k, un,k, ξn,k)[un,k+1 − un,k]− ∂uFε(tn,k+1, un,k+1, ξn,k+1)[un,k+1 − un,k] ≥

≥ (γk+1 − γk)‖un,k+1 − un,k‖.

Let us estimate the left-hand side; since tn,k+1 = tn,k, this term reads as

∫

Ω\K

∇(un,k − un,k+1)∇(un,k+1 − un,k) dx +

+

∫

K

[

τε
(

|Jun,kK|, ξn,k
)

sgn(Jun,kK) +

− τε
(

|Jun,k+1K|, ξn,k+1

)

sgn(Jun,k+1K)
]

Jun,k+1 − un,kK dH
1 .

By Lemma 5.4 a bound from above is given by

−‖∇(un,k+1 − un,k)‖
2
L2(Ω\K) +

∫

K

∣

∣τ̂ (ξn,k+1)− τ̂ (ξn,k)
∣

∣ |Jun,k+1 − un,kK| dx.

Therefore

(γk+1 − γk)‖un,k+1 − un,k‖ ≤ − ‖∇(un,k+1 − un,k)‖
2
L2(Ω\K) +

+ ‖τ̂ (ξn,k+1)− τ̂(ξn,k)‖L2(K) ‖Jun,k+1 − un,kK‖L2(K).

Let c, C > 0 be such that ‖∇u‖2L2 ≥ c‖u‖2 and ‖JuK‖L2(K) ≤ C‖u‖ for every u ∈ U (recall Remark
3.2). Then

(γk+1 − γk)‖un,k+1 − un,k‖ ≤ − c‖un,k+1 − un,k‖
2 +

+ C‖τ̂ (ξn,k+1)− τ̂(ξn,k)‖L2(K) ‖un,k+1 − un,k‖.

Since γn,k 6= 0 and γn,k+1 6= 0 then ‖un,k+1 − un,k‖ 6= 0 (by Proposition 5.2) and thus

γk+1 − γk ≤ −c‖un,k+1 − un,k‖+ C‖τ̂(ξn,k+1)− τ̂(ξn,k)‖L2(K) ,

i.e.

(5.5) c‖un,k+1 − un,k‖ ≤ γk − γk+1 + C‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖L2(K) .

In order to get a telescopic sum, we need to replace the L2 norm by an L1 term. By interpolation
inequality

‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖L2(K) ≤ ‖τ̂ (ξn,k+1)− τ̂(ξn,k)‖
α
L1(K)‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖

1−α
Lq(K) ,

where α and q satisfy 2 < q and 1/2 = α + (1 − α)/q. Apply now Young’s inequality to the
right-hand side: for every δ > 0 there exists a constant Cδ such that

‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖L2(K) ≤ Cδ‖τ̂ (ξn,k+1)− τ̂(ξn,k)‖L1(K) + δ‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖Lq(K) .

If L denotes a Lipschitz constant for τ̂ , then

(5.6) ‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖L2(K) ≤ Cδ‖τ̂(ξn,k+1)− τ̂ (ξn,k)‖L1(K) + δL‖ξn,k+1 − ξn,k‖Lq(K) .

Note that

|ξn,k+1 − ξn,k| ≤
∣

∣|Jun,k+1K| − |Jun,kK|
∣

∣ ≤
∣

∣Jun,k+1K − Jun,kK
∣

∣ = |Jun,k+1 − un,kK|,

so that
‖ξn,k+1 − ξn,k‖Lq(K) ≤ C′‖un,k+1 − un,k‖

for a suitable constant C′. From (5.5) and (5.6) we can choose δ sufficiently small in such a way
that

(5.7) c‖un,k+1 − un,k‖ ≤ γk − γk+1 + C‖τ̂ (ξn,k+1)− τ̂(ξn,k)‖L1(K)
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(possibly with a new value for c and C). Note that, by monotonicity of the sequence (ξn,k)k and of
the function τ̂ , we have

‖τ̂(ξn,k+1)− τ̂(ξn,k)‖L1(K) =

∫

K

(

τ̂ (ξn,k)− τ̂ (ξn,k+1)
)

dx.

Second step. Given k2 ∈ N with k2 > 0 and ∂uFε(tn,k2
, un,k2

, ξn,k2
) 6= 0 let us denote

k1 = min{0 ≤ k ≤ k2 : ∂uFε(tn,m, un,m, ξn,m) 6= 0 for every k ≤ m ≤ k2}.

Note that the interval of indices [k1, k2] is “maximal on the left-side” and that

either k1 = 0 or ∂uFε(tn,k1−1, un,k1−1, ξn,k1−1) = 0.

Consider the case k1 < k2. We will prove that there exists C0 > 0, independent of n, ∆sn and ε,
such that,

(5.8) (k2 − k1)(∆sn) ≤























C0

(

∆sn +

∫

K

(

τ̂(ξn,k1
)− τ̂ (ξn,k2

)
)

dH1 + 1
)

if k1 = 0,

C0

(

∆sn +

∫

K

(

τ̂(ξn,k1
)− τ̂ (ξn,k2

)
)

dH1
)

otherwise.

By (5.7)

c

k2−1
∑

k=k1

‖un,k+1 − un,k‖ ≤ γk1
− γk2

+ C

∫

K

(

τ̂(ξn,k1
)− τ̂ (ξn,k2

)
)

dH1

≤ γk1
+ C

∫

K

(

τ̂ (ξn,k1
)− τ̂ (ξn,k2

)
)

dH1.

Consider now the case k1 = 0; then γk1
is bounded by a constant depending only on u0 and ξ0

(recall the form of ∂uFε given in Lemma 4.4). Otherwise, by assumption, the index k0 := k1 − 1
satisfies ∂uFε(tn,k0

, un,k0
, ξn,k0

) = 0 and thus tn,k1
= tn,k0

+ ∆sn, un,k1
= un,k0

and ξn,k1
= ξn,k0

by (r1). Therefore, by the Lipschitz continuity of ∂uE (hence of ∂uFε) with respect to t, we have

γk1
= ‖∂uFε(tn,k0

+∆sn, un,k0
, ξn,k0

)− ∂uFε(tn,k0
, un,k0

, ξn,k0
)‖ ≤ C′′∆sn

for a suitable constant C′′ depending on ‖g‖C1([0,+∞);H1) This concludes the proof of (5.8), since,
as remarked in Proposition 5.2, it turns out that ‖un,k+1 − un,k‖ = ∆sn for every k1 ≤ k < k2.

Third step. Let now S > 0 be fixed, and denote by Nn(S) = ⌊S/(∆sn)⌋ the integer part of S/(∆sn).
Following the recursive rule, we set

An(S) = {k ∈ [1, Nn(S)] : ∂uF(tn,k, un,k, ξn,k) = 0},

Zn(S) = {k ∈ [1, Nn(S)] : ∂uF(tn,k, un,k, ξn,k) 6= 0}.

For technical reasons it is useful to distinguish between isolated points and interval of indices in
Zn(S). Therefore we further split Zn(S) into the two subsets

Z0
n(S) = {k ∈ Zn(S) : ∂uF(tn,k−1, un,k−1, ξn,k−1) = 0 and ∂uF(tn,k+1, un,k+1, ξn,k+1) = 0},

Z1
n(S) = Zn(S) \ Z

0
n(S).

Let Ii = [ki1, k
i
2] with k

i
1 < ki2 (i = 1, . . . , ln) denote the maximal intervals of indices in Z1

n(S). By
the recursive rule (r2) we have #An(S) ≤ (tn(S)/∆sn) + 1, moreover

#Z0
n(S) ≤ (Nn(S) + 1)/2, #Z1

n(S) ≤

ln
∑

i=1

(

(ki2 − ki1) + 1
)

, ln ≤ #An(S) + 1.

Note that for every Ii = [ki1, k
i
2] (i = 1, . . . , ln) we have

ki1 = min{0 ≤ k ≤ ki2 : ∂uFε(tn,m, un,m, ξn,m) 6= 0 for every k ≤ m ≤ ki2}.
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Thus we can apply (5.8) to each interval Ii. At most one interval has ki1 = 0 and thus

ln
∑

i=1

(ki2 − ki1)∆sn ≤ C0

(

ln∆sn + 1 +

∫

K

ln
∑

i=1

(

τ̂(ξn,ki
1
)− τ̂ (ξn,ki

2
)
)

dH1
)

.

Since τ̂ is monotone decreasing we deduce that

ln
∑

i=1

(ki2 − ki1)∆sn ≤ C0

(

ln∆sn + 1 +

∫

K

τ̂ (ξn,k1
1
) dH1

)

≤ C0

(

ln∆sn + 1 + τ̂(0)H1(K)
)

.

Up to a suitable change in the definition of C0,

ln
∑

i=1

(ki2 − ki1)∆sn ≤ C0(ln∆sn + 1).

It follows that

#Z1
n(S)∆sn ≤ ln∆sn +

ln
∑

i=1

(ki2 − ki1)∆sn ≤ C0(ln∆sn + 1) ≤ C′
0(#An(S)∆sn + 1).

Since
Nn(S) ≤ #An(S) + #Z0

n(S) + #Z1
n(S) ≤ #An(S) +

1
2Nn(S) + 1 + #Z1

n(S)

we get
1
2Nn(S)∆sn ≤ C1(#An(S)∆sn + 1) ≤ C1(tn(S) + 2)

for a suitable C1 > 0. We conclude since Nn(S)∆sn ≥ (S − 1).

Corollary 5.5 Let T > 0 and kn(T ) = min{k : tn,k ≥ T } (note that kn(T ) is finite by Theorem
5.3). Then

kn(T )−1
∑

k=0

‖un,k+1 − un,k‖ ≤ (T + c1)/c0,

where c0 and c1 are as in Theorem 5.3. Hence, the length of the polygonal path (un,k)0≤k≤kn(T ) in
U is bounded independently of n and ε > 0.

Proof. By Theorem 5.3, c0
(

kn(T )∆sn
)

− c1 ≤ T ; since ‖un,k+1 − un,k‖ ≤ ∆sn for every k, we
deduce that

kn(T )−1
∑

k=0

‖un,k+1 − un,k‖ ≤ kn(T )∆sn ≤ (T + c1)/c0 .

The following energy estimate for the discrete evolution (tn,k, un,k, ξn,k)k will be used in the
next subsection to prove the energy balance for the limit evolution.

Proposition 5.6 Let T > 0 be fixed. For every k ∈ N with tn,k+1 < T we have

Fε(tn,k+1, un,k+1, ξn,k+1) ≤ Fε(tn,k, un,k,ξn,k) +

∫ tn,k+1

tn,k

∂tFε(t, un,k, ξn,k) dt+

− ‖∂uFε(tn,k, un,k, ξn,k)‖U ′∆sn + Cε(∆sn)
2,

(5.9)

where Cε depends on ε and ‖g‖C1([0,+∞);H1(Ω)).

Proof. Let wn,k = |Jun,kK| and wn,k+1 = |Jun,k+1K|. First of all, note that ψε(wn,k+1, ξn,k+1) =
ψε(wn,k+1, ξn,k). Clearly, the equality has to be checked only if k falls within recursive rule (r2)
and ξn,k < ξn,k+1; in this case, ξn,k < wn,k+1 = ξn,k+1 and, by Proposition 4.2 (b),

ψε(wn,k+1, ξn,k) = ψ̂ε(wn,k+1) = ψε(wn,k+1, ξn,k+1).
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Therefore

(5.10) Fε(tn,k+1, un,k+1, ξn,k+1) = Fε(tn,k+1, un,k+1, ξn,k).

Second,

Fε(tn,k+1, un,k+1, ξn,k) = Fε(tn,k, un,k+1, ξn,k) +

∫ tn,k+1

tn,k

∂tFε(t, un,k+1, ξn,k) dt.

By Lemma 4.4 and Lemma 3.5
∣

∣∂tFε(t, un,k+1, ξn,k)− ∂tFε(t, un,k, ξn,k)
∣

∣ ≤ C‖un,k+1 − un,k‖H1(Ω\K) ≤ C∆sn ,

where C = ‖g‖C1([0,+∞);H1(Ω)). Then

(5.11) Fε(tn,k+1, un,k+1, ξn,k) ≤ Fε(tn,k, un,k+1, ξn,k) +

∫ tn,k+1

tn,k

∂tFε(t, un,k, ξn,k) dt+ CT (∆sn)
2 .

Third, it is not restrictive to assume that un,k+1 6= un,k (otherwise ‖∂uFε(tn,k, un,k, ξn,k)‖U ′ = 0
and there is nothing else to prove). Let z ∈ U with ‖z‖ ≤ 1, by the minimality property of un,k+1

we have

(5.12) Fε(tn,k, un,k+1, ξn,k) ≤ Fε(tn,k, un,k +∆snz, ξn,k).

Moreover

Fε(tn,k, un,k +∆snz, ξn,k) = Fε(tn,k, un,k, ξn,k) +

∫ ∆sn

0

d

dh
Fε(tn,k, un,k + hz, ξn,k) dh

= Fε(tn,k, un,k, ξn,k) +

∫ ∆sn

0

∂uFε(tn,k, un,k + hz, ξn,k)[z] dh.

By Lemma 4.4, for every h ∈ [0,∆sn]

‖∂uFε(tn,k, un,k + hz, ξn,k)− ∂uFε(tn,k, un,k, ξn,k)‖U ′ ≤ Cε‖hz‖H1 ≤ Cε∆sn ,

for a suitable constant Cε depending on ε. Therefore

Fε(tn,k, un,k +∆snz, ξn,k) ≤ Fε(tn,k, un,k, ξn,k) + ∆sn∂uFε(tn,k, un,k, ξn,k)[z] + Cε(∆sn)
2;

by (5.12) we get

Fε(tn,k, un,k+1, ξn,k) ≤ Fε(tn,k, un,k, ξn,k) + ∆sn∂uFε(tn,k, un,k, ξn,k)[z] + Cε(∆sn)
2.

By the arbitrariness of z we conclude that

Fε(tn,k, un,k+1, ξn,k) ≤ Fε(tn,k, un,k, ξn,k)−∆sn‖∂uFε(tn,k, un,k, ξn,k)‖U ′ + Cε(∆sn)
2.

This, together with (5.10) and (5.11), gives the stated inequality.

5.2 Quasi-static evolution for the regularized energy

Let (tn, un, ξn) be the map defined in (5.2). Let S > 0 be fixed. From the definition it is easy to
see that:

(tn) is bounded in W 1,∞(0, S), (un) is bounded in W 1,∞(0, S;H1(Ω \K)).

Moreover, these sequences are bounded independently of ε. Remember that

(5.13) ‖ξn,k+1 − ξn,k‖Lp(K) ≤ C‖un,k+1 − un,k‖ ≤ C∆sn

for every 1 ≤ p < +∞ and for a suitable constant C > 0, independent of n, k and ε. We conclude
that (ξn) is bounded in W 1,∞(0, S;Lp(K)) for every 1 ≤ p < +∞.

By recalling Proposition 2.3, and by applying a standard diagonal argument, we deduce the
following result.
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Proposition 5.7 Let (tn), (un) and (ξn) be defined as above. Then, up to a subsequence (not

relabeled) tn
∗
⇀ t in W 1,∞(0, S), un

∗
⇀ u in W 1,∞(0, S;H1(Ω \K)), ξn

∗
⇀ ξ in W 1,∞(0, S;Lp(K))

for 1 < p < +∞ and for any finite interval (0, S).

Theorem 5.8 Let (tn, un, ξn) and (t, u, ξ) be as in Proposition 5.7. Then (t, u, ξ) is a (parametrized)
BV evolution for the energy Fε according to Definition 4.1.

Proof. By Theorem 5.3 it turns out that t(s) → +∞ as s → +∞. The sequences (tn), (un) and
ξn are uniformly Lipschitz continuous in (0,+∞), by the recursive rule and by (5.13), hence their
limits are Lipschitz continuous as well. Let S > 0 be fixed.

Proof of (C) in Definition 3.1: for almost every s ∈ [0, S]

ξ′(s) ≥ 0, |Ju(s)K| ≤ ξ(s), ξ′(s)
(

|Ju(s)K| − ξ(s)
)

= 0 H1-a.e. on K.

By definition ξn,k+1 ≥ ξn,k pointwise on K for every k ∈ N; then ξn(s2)− ξn(s1) ≥ 0 pointwise on
K if 0 ≤ s1 ≤ s2 ≤ S. Passing to the limit (with respect to the weak convergence in L2(K)) we get
ξ(s2)− ξ(s1) ≥ 0 and thus

ξ′(s) ≥ 0 H1-a.e. on K for a.e. s ∈ [0, S].

Let s = λsn,k+(1−λ)sn,k+1, for some k ∈ N and λ ∈ [0, 1]. Then un(s) = λun,k+(1−λ)un,k+1

and ξn(s) = λξn,k + (1− λ)ξn,k+1. By linearity of the trace operator

|Jun(s)K| ≤ λ|Jun,kK|+ (1 − λ)|Jun,k+1K|.

Since |Jun,kK| ≤ ξn,k and |Jun,k+1K| ≤ ξn,k+1 we deduce that

|Jun(s)K| ≤ ξn(s) H1-a.e. on K for every s ∈ [0, S].

Since un(s) ⇀ u(s) in H1(Ω \K), by Remark 3.2 (c) we have that |Jun(s)K| → |Ju(s)K| in L2(K)
for every s ∈ [0, S]. Then, the w − L2(K) convergence of

(

ξn(s)
)

implies that:

|Ju(s)K| ≤ ξ(s) H1-a.e. on K for every s ∈ [0, S].

Let us now address the equation

ξ′(s)
(

Ju(s)K| − ξ(s)
)

= 0 H1-a.e. on K for a.e. s ∈ [0, S],

which is equivalent to

∫ σ

0

ds

∫

B

ξ′(s)
(

|Ju(s)K| − ξ(s)
)

dH1 = 0 for every σ ∈ [0, S] and for every Borel subset B of K.

From the definition, we deduce that (pointwise onK) either ξn,k+1−ξn,k = 0 or ξn,k+1−|Jun,k+1K| =
0, i.e.

(ξn,k+1 − ξn,k)(|Jun,k+1K| − ξn,k+1) = 0 pointwise on K.

Then, for a.e. s ∈ [0, S]

(5.14) ξ′n(s)
(

|Jun,k+1K| − ξn,k+1

)

= 0,

where k = k(n, s) satisfies sn,k < s < sn,k+1.

Fix σ and B as above. Since JunK → JuK in L1(0, S;L2(K)) and since ξn
∗
⇀ ξ in L∞(0, S;L2(K)),

we have

(5.15) lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)|Jun(s)K|dH
1 =

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K|dH1 .

Note now that, if k = k(n, s) is as in (5.14), and un(s) = λun,k + (1− λ)un,k+1, then we have

‖Jun,k+1K − Jun(s)K‖L2(K) = λ‖Jun,k+1 − un,kK‖L2(K) ≤ C‖un,k+1 − un,k‖ ≤ C∆sn .
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Therefore

(5.16) lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)|Jun,k(n,s)+1K|dH
1 =

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K|dH1 .

Let us now consider the term ξ′n(s)ξn,k+1 in (5.14). By monotonicity of ξn and by (5.14) we
have

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1 ≤

∫ σ

0

ds

∫

B

ξ′n(s)ξn,k+1dH
1 =

∫ σ

0

ds

∫

B

ξ′n(s)|Jun,k+1K|dH
1

so that by (5.16)

(5.17) lim sup
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1 ≤

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K|dH1 .

Since ξ2n ∈ W 1,∞(0, S;Lr(K)) for some r > 1 and (ξ2n)
′ = 2ξ′nξn (see Remark 5.9 below) we can

apply the fundamental theorem of calculus, see §2, to write

(5.18)

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1 = 1

2

∫

B

(

ξ2n(σ) − ξ2(0)
)

dH1 .

By the weak L2(K)-convergence of (ξn(σ)) we deduce that

(5.19) lim inf
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1 ≥ 1

2

∫

B

(

ξ(σ)2 − ξ(0)2
)

dH1 =

∫ σ

0

ds

∫

B

ξ′(s)ξ(s)dH1 ,

where the last equality follows again by Remark 5.9. Recalling (5.17) we get

∫ σ

0

ds

∫

B

ξ′(s)ξ(s)dH1 ≤ lim inf
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1

≤ lim sup
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1

≤

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K|dH1 ≤

∫ σ

0

ds

∫

B

ξ′(s)ξ(s)dH1,

where the last inequality follows from ξ′(s) ≥ 0 and |Ju(s)K| − ξ(s) ≤ 0.
In addition, we have proved that

lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s)dH
1 =

∫ σ

0

ds

∫

B

ξ′(s)ξ(s)dH1 = 1
2

∫

B

(

ξ(σ)2 − ξ(0)2
)

dH1.

This allows to get an improvement of the convergence properties of the sequence (ξn). Indeed, the
limit in the left-hand side equals limn→+∞

1
2

∫

B

(

ξn(σ)
2 − ξ(0)2

)

dH1 by (5.18); thus

lim
n→+∞

∫

K

ξn(σ)
2dH1 =

∫

K

ξ(σ)2dH1 .

Since ξn(σ)⇀ ξ(σ) weakly in L2(K), we deduce that

ξn(σ) → ξ(σ) strongly in L2(K) for every σ ∈ [0, S].

By the uniform Lipschitz continuity of ξn it is easy to check that for σn → σ

(5.20) ξn(σn) → ξ(σ) strongly in L2(K).

Proof of (S): for every s ∈ [0, S] with t′(s) > 0 we have

‖∂uFε(t(s), u(s), ξ(s))‖U ′ = 0 .

Let s ∈ (0, S) be such that t′(s) > 0. Let δ > 0 be fixed; we note that there exists n ∈ N such that
for every n ≥ n we can find k ∈ N with the property that

|sn,k − s| < δ and tn,k < tn,k+1 .
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Indeed, assume, by contradiction, that there exists an increasing sequence (nj) of integers such that
for every k satisfying |sn,k−s| < δ we have tn,k = tn,k+1. Then tnj

(·) is constant in a neighbourhood
of s, thus t′(s) = 0.

The arbitrariness of δ implies that there exists a sequence sn,kn
→ s such that tn,kn

< tn,kn+1.
By Proposition 5.7 we know that

tn,kn
= tn(sn,kn

) → t(s), un,kn
= un(sn,kn

)⇀ u(s) w-H1(Ω \K)

while, by (5.20) and the equi-boundedness of the Lipschitz constants of (ξn)n (see (5.13)):

ξn,kn
= ξn(sn,kn

) → ξ(s) strongly in L2(K).

These convergences allow to apply Lemma 4.5 and get

‖∂uFε(t(s), u(s), ξ(s))‖U ′ ≤ lim inf
n→+∞

‖∂uFε(tn,kn
, un,kn

, ξn,kn
)‖U ′ .

Now, we conclude since ∂uFε(tn,kn
, un,kn

, ξn,kn
) = 0: this is a direct consequence of the recursive

rule, otherwise tn,kn
= tn,kn+1.

Proof of (E): for every s ∈ [0, S] we have

Fε(t(s), u(s), ξ(s)) = Fε(t0, w0, ξ0) +

∫ s

0

∂tFε(t(r), u(r), ξ(r)) t
′(r) dr+

−

∫ s

0

‖∂uFε(t(r), u(r), ξ(r))‖U ′ dr .

It is useful to introduce the function (t̂n, ûn, ξ̂n) as the right-continuous piecewise-constant function
on [0,+∞) taking the value (tn,k, un,k, ξn,k) on [sn,k, sn,k+1). In particular, the integral on the
right-hand side in (5.9) can be written as:

∫ sn,k+1

sn,k

∂tFε

(

tn(s), ûn(r), ξ̂n(r)
)

t′n(r) dr.

Let s ∈ [0, S) be fixed, and n sufficiently large so that s + ∆sn < S. Let kn be such that
sn,kn

≤ s < sn,kn+1 (i.e. kn∆sn ≤ s < (kn + 1)∆sn). Since tn,k ≤ k∆sn ≤ S for every k =
0, . . . , kn + 1, we can apply the energy estimate (5.9) with the constant Cε,S (depending on ε > 0
and on ‖g‖W 1,∞(0,S;H1)). Summing up for every k = 0, . . . , kn yields the energy estimates

Fε(tn,kn+1, un,kn+1, ξn,kn+1) ≤ Fε(0, u0, ξ0) +

∫ sn,kn+1

0

∂tFε

(

tn(r), ûn(r), ξ̂n(r)
)

t′n(r) dr

−

∫ sn,kn+1

0

‖∂uFε

(

t̂n(r), ûn(r), ξ̂n(r)
)

‖U ′ dr + Cε,S∆snS.

(5.21)

As above, we have:

tn,kn+1 → t(s), un,kn+1 ⇀ u(s), w-H1(Ω \K) ξn,kn+1 → ξ(s) L2(K).

Therefore, Lemma 4.5 (a) implies that

Fε

(

t(s), u(s), ξ(s)
)

≤ lim inf
n→+∞

Fε(tn,kn+1, un,kn+1, ξn,kn+1).

Consider now the right-hand side in (5.21). Note that, for every r ∈ [0, S),

tn(r) → t(r); t̂n(r) → t(r); ûn(r)⇀ u(r) w-H1(Ω \K); ξ̂n(r) → ξ(r) L2(K).

Denote now the second term in the right-hand side of (5.21) by I1n; then

I1n =

∫ S

0

1n(r) ∂tFε

(

tn(r), ûn(r), ξ̂n(r)
)

t′n(r) dr,
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where 1n is the characteristic function of the interval (0, sn,kn+1). Denote by hn(r) the function

∂tFε

(

tn(r), ûn(r), ξ̂n(r)
)

; because of the convergence properties of (tn, ûn, ξ̂n), by Lemma 4.5 (c)
we have

hn(r)χn(r) → ∂tFε

(

t(r), u(r), ξ(r)
)

1(0,S)(r) for a.e. r ∈ (0, S),

where 1(0,S) denotes the characteristic function of the interval (0, S). Moreover (recall Lemma 4.4)

|hn(r)| ≤

∫

Ω\K

|∇
(

un(r) + g(tn(r))
)

∇g′
(

tn(r)
)

| dx

≤
(

‖un‖W 1,∞(0,S;H1) + ‖g‖W 1,∞(0,S;H1)

)

‖g‖W 1,∞(0,S;H1) .

The equi-boundedness of (hn) on (0, S) follows. Hence hn1n converge in L1(0, S); since t′n
∗
⇀ t′ in

L∞(0, S), we conclude that

lim
n→+∞

I1n =

∫ s

0

∂tFε

(

t(r), u(r), ξ(r)
)

t′(r) dr.

Let now I2n be the third term in the right-hand side of (5.21). It can be written as

I2n = −

∫ S

0

1n(r)‖∂uFε

(

t̂n(r), ûn(r), ξ̂n(r)
)

‖U ′ dr.

Thus, by Lemma 4.5 and Fatou’s Lemma,

lim sup
n→+∞

I2n ≤ −

∫ s

0

‖∂uFε

(

t(r), u(r), ξ(r)
)

‖U ′ dr.

By collecting the estimates for the terms I1n and I2n, we conclude that

Fε

(

t(s), u(s), ξ(s)
)

≤ Fε(0, u0, ξ0) +

∫ s

0

∂tFε

(

t(r), u(r), ξ(r)
)

t′(r) dr

−

∫ s

0

‖∂uFε

(

t(r), u(r), ξ(r)
)

‖U ′ dr.

(5.22)

We have now to prove the opposite inequality. To this aim we compute the derivative of the
map r 7→ Fε

(

t(r), u(r), ξ(r)
)

which is Lipschitz continuous and, hence, a.e. differentiable. Fix a
differentiability point r ∈ (0, S); by the monotonicity of Fε with respect to ξ, it turns out that

d

dr
Fε

(

t(r), u(r), ξ(r)
)

= lim
h→0+

1

h

[

Fε

(

t(r + h), u(r + h), ξ(r + h)
)

−Fε

(

t(r), u(r), ξ(r)
)]

≥ lim inf
h→0+

1

h

[

Fε

(

t(r + h), u(r + h), ξ(r)
)

−Fε

(

t(r), u(r), ξ(r)
)]

.

Since Fε(·, ·, ξ) is Fréchet differentiable for every ξ, it turns out that for a.e. r ∈ (0, S) the last term
in the previous inequality can be computed by the usual chain rule. Thus, for a.e. r ∈ (0, S), this
term equals

∂tFε

(

t(r), u(r), ξ(r)
)

t′(r) + ∂uFε

(

t(r), u(r), ξ(r)
)

[u′(r)]

≥ ∂tFε

(

t(r), u(r), ξ(r)
)

t′(r) − ‖∂uFε

(

t(r), u(r), ξ(r)
)

‖U ′

where we used that ‖u′(r)‖ ≤ 1.
Therefore, we can estimate the right-hand side of (5.22):

Fε(0, u0, ξ0) +

∫ s

0

∂tFε

(

t(r), u(r), ξ(r)
)

t′(r) dr −

∫ s

0

‖∂uFε

(

t(r), u(r), ξ(r)
)

‖U ′ dr

≤ Fε(0, u0, ξ0) +

∫ s

0

d

dr
Fε

(

t(r), u(r), ξ(r)
)

dr = Fε

(

t(s), u(s), ξ(s)
)

.

We conclude that in (5.22) the equality holds.
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Remark 5.9 If z ∈W 1,∞(0, S;Lp(K)) for every 1 ≤ p <∞ then z2 ∈ W 1,∞(0, S;Lr(K)) for every
1 < r < +∞ and (z2)′ = 2z′z. Since Lr(K) is reflexive and separable, to prove that z2 ∈ W 1,∞ it
is enough to show (see §2) that z2 is a Lipschitz map in Lr(K). Let p1, p2 ∈ (2,∞), and let r > 1
be such that 1/r = (1/p1) + (1/p2); then

(
∫

K

|z2(s2)− z2(s1)|
r dx

)1/r

=

(
∫

K

|z(s2)− z(s1)|
r |z(s2) + z(s1)|

r dx

)1/r

≤ ‖z(s2)− z(s1)‖Lp2 ‖z(s2) + z(s1)‖Lp1 ≤ C|s2 − s1|.

For the chain rule, let us write

z2(s+ h)− z2(s)

h
=
z(s+ h)− z(s)

h
(z(s+ h) + z(s))

Then for a.e. s ∈ (0, S) the left-hand side converges strongly in Lr(K), and thus in L1(K), to
(z2)′(s). Moreover (z(s+ h)− z(s))/h→ z′(s) and z(s+ h) → z(s) again strongly in L2(K).

6 Quasi-static evolution for the energy F

For every ε > 0, Proposition 5.7 and Theorem 5.8 provide a triple (tε, uε, ξε) which is a parametrized
BV evolution for the energy Fε. By the estimates shown in introducing Proposition 5.7, for every
S > 0 the functions tε, uε, and ξε turn out to be bounded, uniformly with respect to ε > 0, in
W 1,∞(0, S), W 1,∞(0, S;H1(Ω\K)) andW 1,∞(0, S;Lq(K)) (for any 1 ≤ q < +∞) respectively and
the map

s 7→
(

tε(s), uε(s), ξε(s)
)

: [0,+∞) → [0,+∞)×H1(Ω \K)× Lq(K)

has a Lipschitz constant independent of ε (see §5.2). Therefore, Proposition 2.3 and a standard
diagonal argument yield the following compactness result.

Proposition 6.1 Let (εn) be a positive infinitesimal sequence. There exists a map (t, u, ξ) : [0,+∞) →

[0,+∞) × H1(Ω \ K) × Lq(K) such that (up to a subsequence) tεn
∗
⇀ t in W 1,∞(0, S), uεn

∗
⇀ u

in W 1,∞(0, S;H1(Ω \K)) and ξεn
∗
⇀ ξ in W 1,∞(0, S;Lq(K)) for 1 < q < +∞ and for any finite

interval (0, S). Moreover, for any 1 ≤ q < +∞, the map (t, u, ξ) is Lipschitz continuous.

Theorem 6.2 The triple (t, u, ξ) in Proposition 6.1 is a (parametrized) BV evolution for the energy
F according to Definition 3.1.

Proof. The Lipschitz continuity has been checked in the previous Proposition. Let S > 0 be fixed.
If (εn) is as above, we denote Fεn simply by Fn and similarly for (tn), (un) and (ξn).

Let us retrace the proof of Theorem 5.8. Note that the convergence properties of the sequence
(tn, un, ξn) are the same in both cases.

First, let us prove condition (C) in Definition 3.1, i.e., for almost every s ∈ [0, S]

(6.1) ξ′(s) ≥ 0, |Ju(s)K| ≤ ξ(s), ξ′(s)
(

|Ju(s)K| − ξ(s)
)

= 0 , H1-a.e. on K.

The first two items of (6.1) follow by passing to the limit in the corresponding inequalities for ξn
and un.

Consider now the third item in (6.1). This, as in the proof of Theorem 5.8, is equivalent to

(6.2)

∫ σ

0

ds

∫

B

ξ′(s)
(

|Ju(s)K| − ξ(s)
)

dH1 = 0

for every σ ∈ [0, S] and for every Borel subset B of K.We know that

ξ′n(s)
(

|Jun(s)K| − ξn(s)
)

= 0 , H1-a.e. on K.

By the same argument applied in Theorem 5.8, equation (5.15) continues to hold, i.e.

lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)|Jun(s)K|dH
1 =

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K|dH1 .

25



Since ξ′n(s)|Jun(s)K| = ξ′n(s)ξn(s), this implies that

lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s) dH
1 =

∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K| dH1 .

Since ξ, ξn ∈W 1,∞(0, S;Lq(K)) (for any 1 < q < +∞), we can apply Remark 5.9; then:
∫ σ

0

ds

∫

B

ξ′(s)|Ju(s)K| dH1 = lim
n→+∞

∫ σ

0

ds

∫

B

ξ′n(s)ξn(s) dH
1 = lim

n→+∞

1

2

∫

B

(

ξn(σ)
2 − ξ(0)2

)

dH1

≥
1

2

∫

B

(

ξ(σ)2 − ξ(0)2
)

dH1 =

∫ σ

0

ds

∫

B

ξ′(s)ξ(s) dH1 .

Since we know that |Ju(s)K| ≤ ξ(s), the first and the last term term in the above inequalities must
coincide, i.e. (6.2) holds. Moreover, we deduce that

∫

K ξn(σ)
2 dH1 →

∫

K ξ(σ)2 dH1; thus, the weak
L2-convergence implies

ξn(σ) → ξ(σ) strongly in L2(K) for every σ ∈ [0, S].

By the uniform Lipschitz continuity of ξn we deduce that for σn → σ

ξn(σn) → ξ(σ) strongly in L2(K).

Now, let us address condition (S) of Definition 3.1, i.e.: for every s ∈ [0, S] with t′(s) > 0

(6.3) |∂−u F(t(s), u(s), ξ(s))| = 0.

Let s ∈ [0, S] be such that t′(s) > 0. Let us note that there exists a sequence sn → s such that
t′n(sn) > 0 for n sufficiently large. Assume by contradiction that there exists δ > 0 with the
property that, for every k ∈ N we can find n > k such that t′n ≡ 0 in Iδ = (s− δ, s+ δ). Then, an
increasing sequence (nk)k would exist with t′nk

≡ 0 in Iδ; this implies, in particular, that t′(s) = 0:
a contradiction. Then, from

tn(sn) → t(s), un(sn)⇀ u(s), in H1(Ω \K), ξn(sn) → ξ(s) in L2(K),

by Lemma 4.6 we have

|∂−u F(t(s), u(s), ξ(s))| ≤ lim inf
n→+∞

‖∂uFn(tn(sn), un(sn), ξn(sn))‖U ′ .

Being condition (S) satisfied by (tn, un, ξn), the right-hand side of this inequality is zero, thus the
left-hand side is zero, too.

Let us now address condition (E) of Definition 3.1 i.e.: for every s ∈ [0, S]

F(t(s), u(s), ξ(s)) = F(0, w0, ξ0) +

∫ s

0

∂tF(t(r), u(r), ξ(r)) t′(r) dr+

−

∫ s

0

|∂−u F(t(r), u(r), ξ(r))| dr .

(6.4)

By Theorem 5.8 this holds for the energy Fn = Fεn and the triple (tn, un, ξn), i.e. (tεn , uεn , ξεn).
Passing to the limit we get

lim inf
n→+∞

Fn(tn(s), un(s), ξn(s)) ≤ lim sup
n→+∞

Fn(0, u0, ξ0) + lim sup
n→+∞

∫ s

0

∂tFn(tn(r), un(r), ξn(r)) t
′
n(r) dr

− lim inf
n→+∞

∫ s

0

‖∂uFn(tn(r), un(r), ξn(r))‖U ′ dr .

The pointwise convergence of ψε as ε→ 0 (Proposition 4.3) together with the uniform boundedness
of ψε (Proposition 4.2) yields Fn(0, u0, ξ0) → F(0, u0, ξ0) as n→ +∞. Moreover, ∂tFn(tn(·), un(·), ξn(·))
converge to ∂tF(t(·), u(·), ξ(·)) pointwise, by Lemma 4.6 (c), and then in L1(0, s) by dominated con-
vergence. Taking into account Lemma 4.6 (b) we manage the last term. Summing up

F(t(s), u(s), ξ(s)) ≤ F(0,u0, ξ0)+

+

∫ s

0

∂tF(t(r), u(r), ξ(r)) t′(r) dr −

∫ s

0

|∂−u F(t(r), u(r), ξ(r))| dr .
(6.5)
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As in the proof of Theorem 5.8, to get the opposite inequality note that r 7→ F
(

t(r), u(r), ξ(r)
)

is
Lipschitz continuous as a composition of Lipschitz functions; indeed, E is locally Lipschitz continu-
ous on R

+ × U since it is quadratic in u+ g and both u and g are Lipschitz function from [0,+∞)
to H1(Ω \K); moreover, K is Lipschitz by Corollary 3.4.

Let now r be a point of differentiability for the functions t, u and F
(

t(·), u(·), ξ(·)
)

. Let (hn) be
a positive infinitesimal sequence. By the monotonicity of ψ with respect to ξ, it turns out that

d

dr
F
(

t(r), u(r), ξ(r)
)

=
d

dr
E
(

t(r), u(r)
)

+ lim
n→+∞

1

hn

[

K
(

u(r + hn), ξ(r + hn)
)

−K
(

u(r), ξ(r)
)]

≥
d

dr
E
(

t(r), u(r)
)

+ lim inf
n→+∞

1

hn

[

K
(

u(r + hn), ξ(r)
)

−K
(

u(r), ξ(r)
)]

.

Since E is Fréchet differentiable, the usual chain rule yields:

d

dr
E
(

t(r), u(r)
)

= ∂tE
(

t(r), u(r)
)

t′(r) + ∂uE
(

t(r), u(r)
)

[u′(r)].

As to the other term, write u(r+ hn)− u(r) as hn
(

u′(r) +Z(hn)
)

, where Z(h) → 0 in U as h→ 0.
Let zn = u′(r) + Z(hn). Then, by Lemma 3.6

∣

∣

∣

∣

1

hn

[

K
(

u(r) + hnzn, ξ(r)
)

−K
(

u(r), ξ(r)
)]

− ∂uK
(

u(r), ξ(r); zn
)

∣

∣

∣

∣

→ 0 as n→ +∞.

It follows that

lim inf
n→+∞

1

hn

[

K
(

u(r + hn), ξ(r)
)

−K
(

u(r), ξ(r)
)]

≥ lim inf
n→+∞

∂uK
(

u(r), ξ(r); zn
)

.

From the convergence zn → u′(r) in U and the explicit form of ∂uK(u, ξ; z) given in Lemma 3.6 we
deduce that ∂uK

(

u(r), ξ(r); zn
)

→ ∂uK
(

u(r), ξ(r);u′(r)
)

, so that

d

dr
F
(

t(r), u(r), ξ(r)
)

≥ ∂tE
(

t(r), u(r)
)

t′(r) + ∂uE
(

t(r), u(r)
)

[u′(r)] + ∂uK
(

u(r), ξ(r);u′(r)
)

,

i.e.

(6.6)
d

dr
F
(

t(r), u(r), ξ(r)
)

≥ ∂tE
(

t(r), u(r)
)

t′(r) + ∂uF
(

u(r), ξ(r);u′(r)
)

.

Now, recall that ‖u′(r)‖ ≤ 1:

∂uF
(

t(r), u(r), ξ(r);u′(r)
)

≥ −
(

∂uF
(

t(r), u(r), ξ(r);u′(r)
)

)

−

≥ − sup
{(

∂uF
(

t(r), u(r), ξ(r); z
)

)

−
: ‖z‖ ≤ 1

}

= −
∣

∣∂−F
(

t(r), u(r), ξ(r)
)∣

∣,

where in the last line we have used the representation (3.11) of the slope. We conclude that

d

dr
F
(

t(r), u(r), ξ(r)
)

≥ ∂tE
(

t(r), u(r)
)

t′(r) −
∣

∣∂−u F
(

t(r), u(r), ξ(r)
)
∣

∣.

This inequality, together with (6.5), implies

F(t(s), u(s), ξ(s)) ≤ F(0, u0, ξ0) +

∫ s

0

∂tF(t(r), u(r), ξ(r)) t′(r) dr −

∫ s

0

|∂−u F(t(r), u(r), ξ(r))| dr

≤ F(0, u0, ξ0) +

∫ s

0

d

dr
F
(

t(r), u(r), ξ(r)
)

dr = F(t(s), u(s), ξ(s)).

Therefore, inequality (6.5) must actually be an equality.
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7 Equilibrium condition in PDE form

In this section we express the equilibrium condition |∂−u F(t(s), u(s), ξ(s))| = 0 of equation (3.6) in
a more explicit form. We need some preliminary remarks.

Let v ∈ H1(Ω \ K) be such that the distributional Laplacian ∆v is in L2(Ω \ K). For every
z ∈ H1(Ω \K) define

(7.1) Lvz =

∫

Ω\K

∇v∇z dx+

∫

Ω\K

(∆v)z dx.

Then Lv is linear and continuous on H1(Ω \K).

Remark 7.1 Let us first consider the case of a regular v. Assume, e.g., that

v ∈ C∞(Ω \K), and v ∈ C∞(Ωi) for every i

(where the sets Ωi are introduced in § 3). In the same way we followed introducing the trace u± for
a function u ∈ H1(Ω \K) according to the chosen orientation ν on K (Remark 3.2), we can define
the traces (∇v)± on K (actually, these simply are the restrictions of ∇v to a suitable boundary).
For every z ∈ H1(Ω \K), and for every i, we have:

∫

Ωi

∇v∇z dx+

∫

Ωi

(∆v)z dx =

∫

∂Ωi

z(∇v) · n dH1,

where n is the outer unit normal. Summing up over i we get

Lvz =

∫

(∂Ω)\K

z◦(∇v) · ν dH1 +

∫

K

z+(∇v)+ · ν dH1 −

∫

K

z−(∇v)− · ν dH1;

by introducing the integral operators ∂νv, ∂
±
ν v with density (∇v) · ν or (∇v)± · ν on ∂Ω and K,

respectively, this equation can be written as:

(7.2) Lvz = 〈∂νv, z
◦〉+ 〈∂+ν v, z

+〉 − 〈∂−ν v, z
−〉

Hence, the value Lvz depends on z only through the trace tr z := (z◦, z+, z−). This is true even in
the general case, stated in the following result.

Proposition 7.2 Let v ∈ H1(Ω \K) be such that the distributional Laplacian ∆v is in L2(Ω \K).
Let z ∈ H1(Ω \K) and let Lv be as in (7.1). If tr z = 0 (i.e., z ∈ H1

0 (Ω \K)), then Lvz = 0.

Proof. It is enough to prove the statement assuming that z = ϕ ∈ C∞
c (Ω \K). Let Ω′ ⊂⊂ (Ω \K)

be a regular open set containing the support of ϕ. Let V = ∇v; thus V ∈ L2(Ω′;R2) and the
distributional divergence div V is in L2(Ω′). Then (see, e.g., [22], Theorem 1.1) there exists a

sequence (Vk) in C
∞(Ω

′
;R2) such that

Vk → V in L2(Ω′;R2), div Vk → div V in L2(Ω′).

An integration by parts gives
∫

Ω′

Vk∇ϕdx +

∫

Ω′

(div Vk)ϕdx =

∫

∂Ω′

ϕVk · n dH1,

where n is the outer unit normal. The right-hand side vanishes since ϕ = 0 on ∂Ω′. Now it is
enough to pass to the limit as k → ∞.

Therefore, Lv defines a linear operator on the quotient space H1(Ω \K)/H1
0 (Ω \K); this can

be identified with the space T (Ω \K) of the traces ζ = (z◦, z+, z−) when z varies in H1(Ω \K):

(7.3) Lvζ =

∫

Ω\K

∇v∇z dx+

∫

Ω\K

(∆v)z dx, ζ = tr z, z ∈ H1(Ω \K).

It is standard that the operator Lv is linear and continuous with respect to the quotient norm

‖ζ‖H1/H1
0
= inf{‖z‖H1(Ω\K) : tr z = ζ}.

28



Let us now turn to the equilibrium condition (3.6). Let us denote (t(s), u(s), ξ(s)) simply by
(t, u, ξ). By (3.11) this is equivalent to

[∂uF(t, u, ξ; z)]− = 0 for every z ∈ U ,

or
∂uF(t, u, ξ; z) ≥ 0 for every z ∈ U ,

i.e.

(7.4)

∫

Ω\K

∇
(

u+ g(t)
)

∇z dx+

∫

K

∂wψ(JuK, ξ; JzK) dH
1 ≥ 0 for every z ∈ U .

If z ∈ H1(Ω) ∩ U , then JzK = 0 on K and the second integral vanishes. By linearity:

∫

Ω\K

∇
(

u+ g(t)
)

∇z dx = 0 for every z ∈ H1(Ω) ∩ U .

This implies, in particular, that ∆v = 0 in H−1(Ω \ K), where v = u + g(t). Therefore Lvζ =
∫

Ω\K ∇v∇z dx for ζ ∈ T (Ω \K) with ζ = tr z; moreover

Lvζ +

∫

K

∂wψ(JuK, ξ; JzK) dH
1 ≥ 0, for every z ∈ U , with ζ = tr z,(7.5)

Lvζ = 0 for every ζ ∈ T 1 := {tr z : z ∈ H1(Ω) ∩ U}.(7.6)

Remark 7.3 Condition (7.6) can be “splitted” into

Lvζ = 0 for every ζ ∈ T 1
0 := {tr z : z ∈ H1

0 (Ω)} ⊆ T 1,

Lvζ = 0 for every ζ ∈ T 1
K := {tr z : z ∈ H1(Ω) ∩ U , z+ = z− = 0} ⊆ T 1.

Recalling the meaning of Lv in case of a regular v (see (7.2)) we can understand these equations
respectively as a weak form of

∂+ν v − ∂−ν v = 0 on K, ∂νv = 0 on [(∂Ω) \K] \ ∂DΩ.

In the sequel we go further towards a more precise definition of these normal-derivative trace
operators. In order to do this we will define a “localization” of the functional Lv to K and [(∂Ω) \
K] \ ∂DΩ.

Let γ be a curve which is part of the boundary of a piecewise-C1 open set A ⊆ R
2. Let ζ be

a function on ∂A such that ζ∣
∣γ

∈ H1/2(γ) and ζ∣
∣γc

∈ H1/2(γc), where γc = (∂A) \ γ. Theorem

1.5.2.3 in [13] gives necessary and sufficient (integrability) conditions that guarantee that ζ has a
lifting to a function in H1(A). These conditions motivate the following definition.

Definition 7.4 Let x : [0, lγ ] → γ be the length distance along γ. We denote by W0(γ) the subspace
of H1/2(γ) consisting of the functions ζ such that

σ 7→
ζ
(

x(σ)
)2

σ
, σ 7→

ζ
(

x(σ)
)2

lγ − σ

are integrable in a neighbourhood of 0 and lγ, respectively.

For instance, W0(γ) contains all piecewise-C
1 functions with compact support.

From Theorem 1.5.2.3 in [13] we deduce the following result.

Theorem 7.5 Let A and γ be as above. Let ζ ∈ H1/2(γ); extend ζ to the whole of ∂A with value
0. Then ζ is the trace on ∂A of a function in H1(A) if and only if ζ ∈W0(γ).

Let now Γ be any of the arcs Γj which decomposeK. Let i+ and i− be such that Γ ⊆ ∂Ωi+∩∂Ωi−

and that the orientation ν on Γ agrees with the outer unit normal of Ωi+ on Γ. Apply the previous
remarks with γ = Γ. Let ζ ∈ W0(Γ). By the previous theorem there exists a function z ∈ H1(Ωi+)
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whose trace on Γ is ζ, and whose trace on (∂Ωi+) \ Γ is 0. The function z can be extended (with
value 0) to a function in H1(Ω \K); therefore

(7.7) z ∈ H1(Ω \K) ∩ U , and ζ+ := (z◦, z+, z−) = (0, 1Γζ, 0).

In the same way we get the existence of a function z such that

(7.8) z ∈ H1(Ω \K) ∩ U , and ζ− := (z◦, z+, z−) = (0, 0, 1Γζ).

This suggests the following definition.

Definition 7.6 Let Γ ⊆ K be as above, and ζ ∈ W0(Γ). We set

〈
(

∂+ν v
)

∣

∣Γ
, ζ〉 = Lvζ+, 〈

(

∂−ν v
)

∣

∣Γ
, ζ〉 = −Lvζ−,

where ζ± are defined in (7.7) and (7.8) (and Lv in (7.3)).

We explicitly note the slight abuse in using a pointwise-restriction notation in denoting this
operator.

Let us now address the problem of the trace of the normal derivative on ∂Ω.
By assumption, (∂Ω)\K consists of a finite number of piecewise-C1 curves γi. Let z ∈ H1(Ω)∩U

with z+ = z− = 0; then, for each i, we can apply Theorem 7.5 (to a suitable neihbourhood of γi)
and deduce that for every maximal arc γ in γi \ ∂DΩ, the trace of z on γ belongs to W0(γ). On
the other hand, if ζ is a function on [(∂Ω) \K] \ ∂DΩ such that ζ∣

∣γ
∈ W0(γ) for every maximal arc

γ in [(∂Ω) \K] \ ∂DΩ, then it is the trace of a function z ∈ H1(Ω) ∩ U with z+ = z− = 0 on K.
Therefore, the space of traces T 1

K in Remark 7.3 is the natural domain for the normal-derivative
operator on [(∂Ω) \K] \ ∂DΩ along the line of Definition 7.6.

Definition 7.7 Let ζ = (ζ, 0, 0) ∈ T 1
K (i.e. ζ is the trace of z on (∂Ω) \K for some z ∈ H1(Ω)∩U

with z+ = z− = 0 on K). We set

〈
(

∂νv
)

[(∂Ω)\K]\∂DΩ
, ζ〉 = Lvζ.

We are now in a position to prove the next result, following the analysis in [6].

Theorem 7.8 Let (t, u, ξ) :=
(

t(s), u(s), ξ(s)
)

satisfy the equilibrium condition (3.6). Let v =
u(s) + g(t(s)). Then

(7.9)



















∆v = 0 in H−1(Ω \K),

v = g(t) on ∂DΩ,

∂+ν v = ∂−ν v on every Γj ⊂ K,

∂νv = 0 on [(∂Ω) \K] \ ∂DΩ,

where the boundary operators are introduced in Definitions 7.6 and 7.7 and the sets Γj are defined
in § 3.

In addition, there exists h ∈ L∞(K) such that the following properties hold.

a) Let Γ be any of the arcs Γj which decompose K. Let ζ ∈W0(Γ). Then

(7.10) 〈∂+ν v, ζ〉 = 〈∂−ν v, ζ〉 =

∫

Γ

hζ dH1.

and thus ∂+ν v = ∂−ν v = h in Γ (in the sense of Definition 7.6).

b) Further
{

h = ∂wψ(JuK, ξ) H1-a.e. on {x ∈ Γ : (JuK(x), ξ(x)) 6= (0, 0)}

|h| ≤ τ̂(0) otherwise.

30



Proof. To prove (7.9) only the statement about the normal-derivative boundary conditions have
to be addressed.

Remark 7.3 immediately implies that the operator introduced in Definition 7.7 vanishes: this
condition is summed up in the equation ∂νv = 0 on [(∂Ω) \K] \ ∂DΩ.

Let Γ be any of the arcs Γj which decompose K. Let ζ ∈ W0(Γ) and let ζ± be as in (7.7) and
(7.8). Then ζ+ + ζ− ∈ T 1

0 and Lv(ζ+ + ζ−) = 0 according to Remark 7.3. By linearity and the
definition of ∂±ν v we conclude that ∂+ν v = ∂−ν v on Γ.

Let us now address the integral representation of ∂±ν v. Let Γ, ζ, and ζ+ be as above.
By (7.5) applied to ζ+ and −ζ+ we have

|Lvζ+| ≤

∫

Γ

|∂wψ(JuK, ξ; ζ)| dH
1 ≤ τ̂ (0)‖ζ‖L1(Γ).

It follows that the functional ζ 7→ Lvζ+ is linear and continuous on W0(Γ) with respect to the
L1(Γ)-norm. Therefore, it can be extended to a bounded linear functional on L1(Γ) which admits
an integral representation through a function h ∈ L∞(Γ), i.e. we have (7.10). Moreover, |h| ≤ τ̂ (0)
a.e. on Γ.

As to property (b), by (7.5) and the definition of h, we get

∫

Γ

hζ dH1 +

∫

Γ

∂wψ(JuK, ξ; ζ) dH
1 ≥ 0, for every ζ ∈ W0(Γ).

By density, and recalling the definition (3.8) of ∂wψ, this inequality holds for every ζ ∈ L1(Γ). Let
now J := {x ∈ Γ : (JuK(x), ξ(x)) 6= (0, 0)}. Note that ∂wψ(JuK, ξ; ζ) = 1J∂wψ(JuK, ξ)ζ + 1Jc τ̂ (0)|ζ|.
Then

∫

Γ

[

h− 1J∂wψ(JuK, ξ)
]

ζ dH1 +

∫

Γ

1Jc τ̂ (0)|ζ| dH1 ≥ 0, for every ζ ∈ L1(Γ).

By choosing ζ > 0 and ζ < 0, this implies that

|h− 1J∂wψ(JuK, ξ)| ≤ 1Jc τ̂ (0) H1-a.e. on Γ.

In particular, H1-a.e. on J we have |h− ∂wψ(JuK, ξ)| = 0.

8 Jump transition in PDE form

Let t∗ ∈ [0, T ]. Let us assume that t−1(t∗) = [s−, s+] with s− < s+. Clearly t(s) = t∗ for
every s ∈ [s−, s+]. Denote u(s±) = u± and ξ(s±) = ξ±. Under these assumptions, the map
s 7→ (u(s), ξ(s)) for s ∈ [s−, s+] describes (in the parametric setting) the instantaneous transition
from (u−, ξ−) to (u+, ξ+) at time t∗. The following theorem provides a characterization of the
evolution in PDE form; it is formally that of Theorem 7.8 for a different function v.

Theorem 8.1 Assume the space U is equipped with the equivalent norm ‖u‖ = (
∫

Ω\K |∇u|2 dx)1/2.

Under the above assumptions, for t∗ = t(s), let λ(s) = |∂−u F
(

t∗, u(s), ξ(s)
)

|. Let v(s) = (u(s) +
g(t∗)) + λ(s)u′(s). Then, a.e. in [s−, s+], v solves the following system

(8.1)



















∆v = 0 in H−1(Ω \K),

v = g(t∗) on ∂DΩ,

∂+ν v = ∂−ν v on every Γj ⊂ K,

∂νv = 0 on [(∂Ω) \K] \ ∂DΩ,

where the boundary operators are introduced in Definitions 7.6 and 7.7 and the sets Γj are defined
in § 3. In addition, a.e. in [s−, s+], there exists h ∈ L∞(K) such that the following properties hold.

a) Let Γ be any of the arcs Γj which decompose K. Let ζ ∈W0(Γ). Then

(8.2) 〈∂+ν v, ζ〉 = 〈∂−ν v, ζ〉 =

∫

Γ

hζ dH1

and thus ∂+ν v = ∂−ν v = h in Γ (in the sense of Definition 7.6).
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b) Further
{

h = ∂wψ(JuK, ξ) H1-a.e. on {x ∈ Γ : (JuK(x), ξ(x)) 6= (0, 0)}

|h| ≤ τ̂(0) otherwise.

Note that, being t(s) = t∗ constant in [s−, s+], we can write v(s) = (u(s) + g(t∗)) + λ(s)(u(s) +
g(t∗))′. In this way (8.1) becomes formally a visco-elastic (Kelvin-Voigt) system with stress ∇v(s) =
∇(u(s) + g(t∗)) + λ(s)∇(u(s) + g(t∗))′.

Proof. From the proof of Theorem 6.2 (see (6.6)) we know that r 7→ F(t(r), u(r), ξ(r)) is a.e. dif-
ferentiable and

d

dr
F
(

t(r), u(r), ξ(r)
)

≥ ∂tE
(

t(r), u(r)
)

t′(r) + ∂uF
(

t(r), u(r), ξ(r);u′(r)
)

for a.e. r ∈ [0,+∞). On the other hand, the energy balance (6.4) yields

d

dr
F
(

t(r), u(r), ξ(r)
)

= ∂tF(t(r), u(r), ξ(r)) t′(r) − |∂−u F(t(r), u(r), ξ(r))|

= ∂tE(u(r), ξ(r)) t
′(r) − |∂−u F(t(r), u(r), ξ(r))|.

Therefore, we deduce that

∂uF
(

t(r), u(r), ξ(r);u′(r)
)

≤ −|∂−u F(t(r), u(r), ξ(r))|.

Let us now express the right-hand side as a supremum according to (3.11); then (being −(a)− ≤ a)
we have

∂uF
(

t(r), u(r), ξ(r);u′(r)
)

≤ − sup
{

[

∂uF
(

t(r), u(r), ξ(r); z
)]

−
: ‖z‖ ≤ 1

}

= inf
{

−
[

∂uF
(

t(r), u(r), ξ(r); z
)]

−
: ‖z‖ ≤ 1

}

≤ inf
{

∂uF
(

t(r), u(r), ξ(r); z
)

: ‖z‖ ≤ 1
}

.

Hence u′(r) ∈ argmin{∂uF(t(r), u(r), ξ(r); z) : ‖z‖ ≤ 1} and

∂uF
(

t(r), u(r), ξ(r);u′(r)
)

= −|∂−u F(t(r), u(r), ξ(r))|.

Let G be the functional ∂uF
(

t(r), u(r), ξ(r); ·
)

on U ; now we use the fact that the space U is

equipped with the norm ‖u‖ = (
∫

Ω\K
|∇u|2 dx)1/2 and denote by 〈 , 〉 the corresponding scalar

product. G is convex, continuous and positively 1-homogeneous. Denote by B the closed unit ball
in U and by IB the indicator function of B. Since u′(r) minimizes G + IB on U we have

(8.3) 0 ∈ ∂
(

G + IB
)

(u′(r)),

where the right-hand side denotes the subdifferential of G + IB in u′(r). We know that (see, e.g.,
[12, Proposition 5.6]) that

∂
(

G + IB
)

(u′(r)) = ∂G(u′(r)) + ∂IB(u
′(r)), ∂IB(z) =

{

{0} if ‖z‖ < 1,

{λz : λ ≥ 0} if ‖z‖ = 1.

Then, by (8.3) we deduce the existence of λ(r) ≥ 0 such that

−λ(r)u′(r) ∈ ∂G(u′(r))

(note that λ(r) = 0 if ‖u′(r)‖ < 1). Therefore, by the definition of subdifferential we have:

G(z) ≥ G(u′(r)) − λ(r)〈u′(r), z − u′(r)〉 for every z ∈ U .

If ‖u′(r)‖ = 1 then, by taking z = 2u′(r) and z = 0, we get G(u′(r)) + λ(r) = 0, so that

λ(r) = −G(u′(r)) = |∂−u F(t(r), u(r), ξ(r))|,
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and the previous inequality yields

G(z) + λ(r)〈u′(r), z〉 ≥ G(u′(r)) + λ(r) = 0 for every z ∈ U .

If ‖u′(r)‖ < 1 then λ(r) = 0 and, by the positive 1-homogeneity of G, we have that the minimum
value G(u′(r)) of G is 0, too. In any case, we have proved that λ(r) = |∂−u F(t(r), u(r), ξ(r))| ≥ 0
satisfies

G(z) + λ(r)〈u′(r), z〉 ≥ 0 for every z ∈ U .

At this point, remembering that the duality above is in H1(Ω \ K) endowed with the norm
‖u‖ = (

∫

Ω\K
|∇u|2 dx)1/2, we can write the previous variational inequality as

∫

Ω\K

∇
(

u(r) + g(t) + λ(r)u′(r)
)

∇z dx+

∫

K

∂wψ(JuK(r), ξ(r); JzK) dH
1 ≥ 0 for every z ∈ U .

Defining v(r) = (u(r) + g(t)) + λ(r)u′(r) and following step by step the proof of Theorem 7.8 we
get the thesis.

Remark 8.2 The PDE characterizations of Theorem 7.8 and Theorem 8.1 distinguish between
equilibrium configurations (in continuity points) and jump transitions (in discontinuity points)
because the mechanical behaviour is different. However, it is possible to provide a unified mathe-
matical characterization: the system of PDEs is indeed the same and the function v(s) = (u(s) +
g(t)) + λ(s)u′(s), appearing in Theorem 8.1, boils down to v(s) = u(s) + g(t) when, under the
assumptions of Theorem 7.8, λ(s) = |∂−u F(t(s), u(s), ξ(s))| = 0.
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