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This paper is dedicated to Nicola Fusco on the occasion of his 60th birthday.
Nicola is expert and master in regularity; we like here to give a small contribution to this field.

Abstract. It is well known that an integral of the Calculus of Variations satisfying
anisotropic growth conditions may have unbounded minimizers if the growth exponents
are too far apart. Under sharp assumptions on the exponents we prove the local bounded-
ness of minimizers of functionals with anisotropic p, q-growth, via the De Giorgi method.
As a by-product, regularity of minimizers of some non coercive functionals is obtained
by reduction to coercive ones.

1. Introduction

An unusual point of view for the following integrals of the Calculus of Variations

F(u) =

∫
B1(0)

|x|α|Du|r dx, G(u) =

∫
B1(0)

|x|−α|Du|r dx, (1.1)

with r > 1 and α > 0, is to include them in the class of functionals satisfying some p, q-
growth conditions. In fact, for F(u) in (1.1) we have that for every exponent p ∈ [1, r),

|Du|p = (|x|α|Du|r)
p
r (|x|−α)

p
r ≤ p

r
|x|α|Du|r +

r − p
r
|x|−

αp
r−p

and |x|α|Du|r ≤ |Du|r for every x ∈ B1(0); so q = r. Hence F , not coercive inW 1,r
loc (B1(0)),

is coercive in W 1,p
loc (B1(0)). We claim that every local minimizer in W 1,p

loc (B1(0)) of the
integral F is locally bounded whenever{

0 < α < r − 1 if 1 < r ≤ n
n−1

0 < α < r2

n+r if n
n−1 < r ≤ n. (1.2)

This result is a particular case of our Theorem 2.5, that we now state not in its full
generality.

Theorem 1.1. Let f(x, u, ξ) be a Carathéodory function convex with respect to (u, ξ) ∈
R× Rn and such that

|ξ|p − a(x) ≤ f(x, u, ξ) ≤ L {|ξ|q + |u|q + a(x)} ,
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for a.e. x ∈ Ω, Ω open bounded set in Rn, u ∈ R, ξ ∈ Rn, for some L > 0 and
a ∈ Lsloc(Ω). Then, if 1 ≤ p ≤ q ≤ p∗ and s > max{np , 1}, every local minimizer of

F (u) =
∫

Ω f(x, u,Du) dx in the class W 1,p
loc (Ω) is locally bounded in Ω.

Indeed, if 0 < α < r − p, the function a(x) := |x|−
pα
r−p is in Ls(B1(0)) for some s > n

p .

Since we need r ≤ p∗, if r > n
n−1 the largest upper bound on α is obtained for p = rn

n+r , so

obtaining α < r2

n+r . When r ≤ n
n−1 , the largest upper bound on α is obtained for p = 1.

Similarly, we can deal with the integral G in (1.1). In fact, for q > r we have

|x|−α|Du|r ≤ r

q
|Du|q +

q − r
q
|x|−

αq
q−r ;

moreover, |x|−α|Du|r ≥ |Du|r, for a.e. x ∈ B1(0). Again, by Theorem 1.1, applied with
p = r and q ∈ (r, rn

n−r ] (if r < n) or any q > r (if r = n), we obtain that every local

minimizer of the integral G(u) in (1.1) is locally bounded if

0 < α <
r2

n
if r ≤ n. (1.3)

The functionals F and G described above are particular cases of the more general integral

F(u) =

∫
Ω
a (x) |Du|r dx (1.4)

with r > 1, a(x) ≥ 0 a.e. in Ω, a ∈ Lσloc(Ω) and 1
a ∈ L

τ
loc(Ω), with σ, τ > 1. In Theorem

6.1 we prove that, under suitable conditions on σ, τ related to n and r, see (6.2), there
exist p and q, with 1 ≤ p ≤ r ≤ q ≤ p∗, such that the integrand f(x,Du) = a (x) |Du|r
satisfies the assumptions of Theorem 1.1 and therefore every local minimizer in W 1,p

loc (Ω)
is locally bounded.

Non-uniformly elliptic equations and integrals of the Calculus of Variations of the type
(1.4) with r = 2 have been studied by Trudinger [29] in 1971; in particular Section 3
in [29] is devoted to the study of the local boundedness of weak solutions to the Euler’s
equation of integrals of the type in (1.1). Higher integrability has been considered in a
similar context by [5]. See also [25], [26], [32], [8], [27], and recently [22].

In this paper we consider a more general framework. In Section 2 we state our main reg-
ularity results, in particular the local boundedness of minimizers (and of quasi-minimizers
too) of general integrals of the Calculus of Variations of the type

F(u; Ω) :=

∫
Ω
f(x, u,Du) dx.

More precisely, let f : Ω×R×Rn → R be Carathéodory function, convex in (u, ξ) ∈ R×Rn
for |ξ| large enough and satisfying the following anisotropic growth condition

n∑
i=1

[g(|ξi|)]pi ≤ f(x, u, ξ) ≤ L {[g(|ξ|)]q + [g(|u|)]q + a(x)} , (1.5)

for a.e. x ∈ Ω, every u ∈ R and ξ ∈ Rn; for L > 0 and a ∈ Lsloc(Ω) for some s > 1 and
1 ≤ pi ≤ q, i = 1, . . . , n. Finally g : R+ → R+ is a function of class C1, increasing and
convex, g(0) = 0, g 6≡ 0, satisfying g (λt) ≤ λµg (t) for some µ ≥ 1 and every λ > 1.
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Let p be the harmonic average of {pi}; i.e.,
1

p
:=

1

n

n∑
i=1

1

pi
; and p∗ is the usual Sobolev

exponent of p, that is p∗ = np
n−p if p < n, otherwise p∗ is any t > p.

By assuming q ≤ p∗, every local minimizer or quasi-minimizer is locally bounded, see
Theorem 2.2. Note that the equality q = p∗ is a limit growth condition, due to the well
known counterexamples in [18], [23], [24] and the results in [4], [16], [17].

We observe that anisotropic functionals as in (1.5) appear in several branches of applied
analysis, in particular in models where the derivatives have different weights along distinct
directions. Moreover, the presence of the convex function g permits to consider some
particular variational model with logarithmic behavior, as it happens in the theory of
plasticity.

In [14] De Giorgi developed an original geometric method for the boundedness and reg-
ularity of solutions to elliptic equation with discontinuous coefficients. The fundamental
ideas of this technique have been successfully applied to get regularity for local minimiz-
ers of Calculus of Variations with standard p-growth (for an exhaustive overview on the
subject, see [19]). The proofs of our results are based on this method. Although the
strategy for establishing regularity goes as in the standard p-growth, we had to overcome
some difficulties for the presence of p, q-growth and the anisotropy of the functionals. In
particular, we obtain a special unbalanced Caccioppoli inequality, without the use of a
p-growth coercivity from below, which allows us to carry out the De Giorgi procedure for
the local boundedness of minimizers.

It is noteworthy that Trudinger, in the quoted paper [29], pointed out that in this
context of non-uniformly elliptic problems it is possible to give conditions to establish
the local boundedness of weak solutions, but in general, due to the lack of the uniform
ellipticity, it is not clear if they are Hölder continuous too.

In this paper we also study a class of variational integrals with linear growth from
below; i.e., min {pi} = 1 in (1.5). Because of the lack of coercivity we consider the relaxed
functional in the class of bounded variation functions BV (Ω), see Theorem 2.7; see also
[3] for related results.

In recent years the study of integrals and equations with p, q-growth has undergone a
remarkable development, also under the impulse of some applications, as in the study of
strongly anisotropic materials, see [30] and [31]. The bibliography on the regularity under
p, q-growth is large; we recall some recent papers on the subject: [2], [6], [7], [22] and, by
the authors, [9], [12]; in the vector-valued case [10], [11]; we refer to [27] for a detailed
survey on the subject.

The paper is organized as follows: in Section 2 we give the statement of the main
regularity results; in Section 3 we collect some preliminary and technical properties; in
Section 4 we establish an inequality of Caccioppoli type; Section 5 is devoted to the proofs
of our main theorems; finally, Section 6 contains the applications of Theorem 2.5 to the
functionals (1.4).
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2. Assumptions and statement of the main results

Consider the integral functional of the type

F(u; Ω) :=

∫
Ω
f(x, u,Du) dx, (2.1)

where Ω is an open and bounded subset of Rn, n ≥ 2, and f : Ω × R × Rn → R is a
Carathéodory function.

We recall the definition of quasi-minimizers of (2.1).

Definition 2.1. A function u ∈ W 1,1
loc (Ω) is a quasi-minimizer of (2.1) if f(x, u,Du) ∈

L1
loc(Ω) and there exists Q ≥ 1 such that

F(u; supp ϕ) ≤ QF(u+ ϕ; supp ϕ),

for all ϕ ∈W 1,1(Ω) with suppϕ b Ω. If Q = 1, then u is a local minimizer of (2.1).

We assume the following growth condition: there exist L > 0 and 1 ≤ pi ≤ q, i =
1, . . . , n, such that

n∑
i=1

[g(|ξi|)]pi ≤ f(x, u, ξ) ≤ L {[g(|ξ|)]q + [g(|u|)]q + a(x)} (2.2)

for a.e. x and for every u ∈ R and ξ ∈ Rn. Here a ∈ Lsloc(Ω), s ∈ (1,∞], and g : [0,∞)→
[0,∞) is a N -function of ∆2-class; precisely, we assume that g is of class C1, convex,
non-decreasing, g(0) = 0, g 6≡ 0, satisfying, for some µ ≥ 1,

g(λt) ≤ λµg(t) for every λ > 1 and every t ≥ t0 (2.3)

for some t0 > 0.
We now require a convexity assumption at infinity on f . Precisely, Let us denote

f∗∗ : Ω×R×Rn → R the convex envelope of f(x, u, ξ) with respect to (u, ξ). We assume
that

f(x, ·, ·) = f∗∗(x, ·, ·) in (R×Bt0(0))c . (2.4)

From now on, without any loss of generality, we assume t0 = 1 and g(t) ≥ 1 for all
t ≥ 1. We observe that if s = +∞ then 1

s has to be read as 0.

We denote by p the harmonic average of {pi}; i.e.,
1

p
:=

1

n

n∑
i=1

1

pi
; moreover, p∗ is the

Sobolev exponent of p:

p∗ :=

{ np
n−p , if p < n,

any t > p, if p ≥ n.
(2.5)

Let us now state our results. First, we deal with the case q < p∗.

Theorem 2.2. Assume (2.2)-(2.4) with 1 ≤ pi ≤ q,

q < p∗ and s >
p∗

p∗ − p
. (2.6)



REGULARITY OF MINIMIZERS UNDER LIMIT GROWTH CONDITIONS 5

Then any quasi-minimizer u of (2.1) is locally bounded. Moreover, for every BR(x0) b Ω,
there exists a positive constant c, depending on q, pi, s, µ,Q, L,R, such that

‖g(|u|)‖L∞(BR
2

(x0)) ≤ c

{
1 +

(∫
BR(x0)

gq(|u|) dx

)γ}
, (2.7)

where γ = p∗(1−1/s)−p
p(p∗−q) .

As far as the limit case q = p∗ is concerned, we have the following result.

Theorem 2.3. Assume (2.2)-(2.4) with 1 ≤ pi ≤ q = p∗, and

either max{pi} < p∗ or g(|u|) ∈ Lp
∗

loc(Ω).

If s > p∗

p∗−p , then any quasi-minimizer u of (2.1) is locally bounded.

Remark 2.4. As far as the assumption on s is concerned, we notice that if p < n we have

s >
p∗

p∗ − p
⇔ p∗

(
1− 1

s

)
− p > 0 ⇔ s >

n

p
.

If, instead p ≥ n, due to the arbitrariness of p∗, we can replace (2.6) with s > 1.

Note that, if the pi’s are equal, we obtain the straightforward consequence of the above
results.

Theorem 2.5. Assume (2.4) and that there exists L > 0, such that

|ξ|p ≤ f(x, u, ξ) ≤ L {|ξ|q + |u|q + a(x)} , 1 ≤ p < q ≤ p∗

for a.e. x, for every u ∈ R and ξ ∈ Rn, with a ∈ Lsloc(Ω), with s > max{np , 1}. Then the

quasi-minimizers of F are locally bounded.

Now, we deal with a minimization problem in a Dirichlet class.
We here consider g(t) := t; precisely, we assume that there exist L > 0 and 1 ≤ pi ≤ q,

i = 1, . . . , n, a ∈ Lsloc(Ω), s > 1, such that

n∑
i=1

|ξi|pi ≤ f(x, u, ξ) ≤ L {|ξ|q + |u|q + a(x)} , (2.8)

for a.e. x, for every u ∈ R and every ξ ∈ Rn.
A first result, with min{pi} > 1, is the following.

Theorem 2.6. Assume (2.4) and (2.8), with 1 < pi ≤ q ≤ p∗, i = 1, . . . , n. Let u0 ∈
W 1,1(Ω) ∩ Lp

∗

loc(Ω) be such that F(u0; Ω) < +∞. If u is a minimizer of F(·; Ω) in u0 +

W
1,(p1,...,pn)
0 (Ω), and s > n

p (if p < n) or s > p∗

p∗−p (if p ≥ n) then u is locally bounded.

Let us consider the case min{pi} = 1. Fix u0 ∈ W 1,1(Ω), such that F(u0; Ω) < +∞.

Since min{pi} = 1, then W 1,(p1,...,pn)(Ω) is a non-reflexive space and the direct method

generally fails. So, minimizers of F in u0 +W
1,(p1,...,pn)
0 (Ω) may not exist. Consider

F(u) := inf

{
lim inf
k→+∞

F(uk) : uk → u in L1(Ω), uk ∈ u0 +W
1,(p1,...,pn)
0 (Ω)

}
, (2.9)
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the relaxed functional of F(·; Ω) in BV (Ω). We prove that minimizers of F exist in BV (Ω)
and are locally bounded.

Theorem 2.7. Assume (2.4) and (2.8), with 1 ≤ pi ≤ q < p∗, min{pi} = 1.
Fixed u0 ∈ W 1,1(Ω), such that F(u0; Ω) < +∞, there exists a minimizer ū ∈ BV (Ω) of
F , such that ū ∈ L∞loc(Ω) and, for all BR(x0) b Ω,

‖ū‖L∞(BR
2

(x0)) ≤ c
{

1 +
(
F(ū) + ‖u0‖W 1,(p1,...,pn)(Ω)

)qγ}
,

where γ := p∗(1−1/s)−p
p(p∗−q) and c is depending on q, pi, s, L,R.

3. Preliminary results

We consider the following anisotropic Sobolev space:

W 1,(p1,...,pn)(Ω) :=
{
u ∈W 1,1(Ω) : uxi ∈ Lpi(Ω), for all i = 1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn)(Ω) := ‖u‖L1(Ω) +

n∑
i=1

‖uxi‖Lpi (Ω).

Let us denote W
1,(p1,...,pn)
0 (Ω) = W 1,1

0 (Ω) ∩W 1,(p1,...,pn)(Ω).
We recall the following embedding results for anisotropic Sobolev spaces. We refer to

[28].

Theorem 3.1. Let pi ≥ 1, i = 1, . . . , n, and p∗ be as in (2.5). Let u ∈ W 1,(p1,...,pn)
0 (Ω)

and Ω be an open bounded set in Rn. Then there exists c, depending on n, pi and, only in
the case p ≥ n, also on p∗ and on the measure of the support of u, such that

‖u‖Lp∗ (Ω) ≤ c
(
Πn
i=1‖uxi‖Lpi (Ω)

) 1
n . (3.1)

Remark 3.2. In general if n ≥ 2, the inclusion W 1,(p1,...,pn)(Ω) ⊂ Lp
∗
(Ω) may not hold,

even if Ω is a rectangular domain. See [20] and [21].

We also need the following result; see Proposition 1 in [9] for the proof.

Proposition 3.3. Let g be a ∆2 and N -function of C1 class (see Section 2) and u ∈
W 1,1

loc (Ω). Suppose that g(|uxi |) ∈ L
pi
loc(Ω), with 1 ≤ pi < p∗ for every i = 1, . . . , n. Then

g(|u|) ∈ Lp
∗

loc(Ω).

Moreover we need of some properties of the ∆2-functions; see [9] for the proof.

Lemma 3.4. Consider g : [0,∞)→ [0,∞) of class C1, convex, non-decreasing and satis-
fying (2.3), with t0 = 1. Then

g(λt) ≤ λµ(g(t) + g(1)) and g′(t)t ≤ µ(g(t) + g(1)),

for all t ≥ 0 and all λ > 1. Moreover, for every (t1, . . . , tk) ∈ [0,∞)k, we have:

k−1
k∑
i=1

g(ti) ≤ g

(
k∑
i=1

ti

)
≤ kµ

{
g(1) +

k∑
i=1

g(ti)

}
.
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The following is a well known classical result; see, e.g., [19].

Lemma 3.5. Let φ(t) be a non-negative and bounded function, defined in [τ0, τ1]. Suppose
that, for all s, t, such that τ0 ≤ s < t ≤ τ1, φ satisfies

φ(s) ≤ θφ(t) +
A

(t− s)α
+B,

where A,B, α are non-negative constants and 0 < θ < 1. Then, for all ρ and R, such that
τ0 ≤ ρ ≤ R ≤ τ1, we have

φ(ρ) ≤ C
{

A

(R− ρ)α
+B

}
.

4. Caccioppoli inequality

For u ∈W 1,1
loc (Ω) and BR(x0) ⊆ Ω, we define the super-level sets:

Ak,R := {x ∈ BR(x0) : u(x) > k}, k ∈ R.

For a quasi-minimizer of F the following Caccioppoli inequality holds.

Proposition 4.1. Assume (2.4) and

0 ≤ f(x, u, ξ) ≤ L {[g(|ξ|)]q + [g(|u|)]q + a(x)} , (4.1)

with q > 1 and a ∈ Ls(Ω), s > 1. Let u ∈ W 1,1
loc (Ω) be a quasi-minimizer of F , such that

g(|u|) ∈ Lqloc(Ω). Then for any BR(x0) b Ω, 0 < ρ < R, and for any k, d ∈ R, d ≥ k ≥ 1,∫
Ak,ρ

f(x, u,Du) dx ≤ c

(R− ρ)µq

∫
Ak,R

{gq(u− k) + gq(d)} dx+ c‖a‖Ls(BR)|Ak,R|1−
1
s ,

(4.2)
with c depending on n, q, µ,Q, L.

Proof. Let BR(x0) b Ω. Let ρ, s, t be such that 0 < ρ ≤ s < t ≤ R. Let η ∈ C∞0 (Bt) be a
cut-off function, satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t− s
. (4.3)

Fixed k ≥ 1, define

w := max(u− k, 0) and ϕ := −ηµqw.
Consider a number d, such that d ≥ k. By the quasi-minimality of u, we get∫
Ak,s

f(x, u,Du) dx ≤
∫
Ak,t∩supp η

f(x, u,Du) dx ≤ Q
∫
Ak,t∩supp η

f(x, u+ ϕ,Du+Dϕ) dx

= Q

∫
Ak,t∩supp η

f
(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
dx.

Denote

Ωk := {x ∈ Ω :
(
(1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
∈ R×B1(0)}.
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By (2.4), for a.e. x ∈ (Ak,t ∩ supp η) \ Ωk,

f
(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
= f∗∗

(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
≤ (1− ηµq)f∗∗ (x, u,Du) + ηµqf∗∗

(
x, k, µqη−1(k − u)Dη

)
≤ (1− ηµq)f (x, u,Du) + ηµqf

(
x, k, µqη−1(k − u)Dη

)
. (4.4)

By the growth assumption (4.1)

f
(
x, k, µqη−1(k − u)Dη

)
≤ L

{
a(x) + gq(µq|u− k

η
Dη|) + gq(d)

}
. (4.5)

Lemma 3.4 and (4.3) imply

gq(|µqu− k
η

Dη|) ≤ (2µq)µq

(t− s)µqηµq
{gq(|u− k|) + gq(1)} . (4.6)

Therefore, by (4.4), (4.5), (4.6) and 1 ≤ d, for a.e. x ∈ (Ak,t ∩ supp η) \ Ωk

f
(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
≤ (1− ηµq)f (x, u,Du) + Lηµqa(x) + Lηµq

(2µq)µq

(t− s)µqηµq
{gq(|u− k|) + gq(d)} . (4.7)

Let us now consider the case x ∈ Ak,t ∩ supp η ∩ Ωk. Since g is increasing and convex,
by Lemma 3.4 we have

g((1− ηµq)u+ ηµqk) ≤ (1− ηµq)g(u) + ηµqg(k) ≤ c (g(u− k) + g(d)) .

Therefore, again by (4.1), for a.e x ∈ Ak,t ∩ supp η ∩ Ωk and for (4.6)

f
(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
≤ c (a(x) + gq(u− k) + gq(d)) .

(4.8)

Taking into account that supp(1− ηµq) ⊂ Bt \Bs, ηµ(q−1) ≤ 1, we have∫
Ak,t∩supp η\Ωk

(1− ηµq)f(x, u,Du) dx ≤
∫
Ak,t\Ak,s

f(x, u,Du) dx.

By (4.7) and (4.8) we obtain∫
Ak,t∩supp η

f
(
x, (1− ηµq)u+ ηµqk, (1− ηµq)Du+ µqηµq−1(k − u)Dη

)
dx

≤
∫
Ak,t\Ak,s

f(x, u,Du) dx+ c

∫
Ak,R

(a(x) + gq(u− k) + gq(d)) dx

+ c
(2µq)µq

(t− s)µq

∫
Ak,R

{gq(u− k) + gq(d)} dx. (4.9)
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Therefore ∫
Ak,s

f(x, u,Du) dx ≤ Q
∫
Ak,t\Ak,s

f(x, u,Du) dx

+Qc‖a‖Ls(BR)|Ak,R|1−
1
s +

c

(t− s)µq

∫
Ak,R

{gq (u− k) + gq(d)} dx (4.10)

with c = c(n, µ, q,Q, L).

Conclusion.
By (4.10), adding to both sides Q times the left hand side, we get:∫

Ak,s

f(x, u,Du) dx ≤ Q

Q+ 1

∫
Ak,t

f(x, u,Du) dx+
Qc

Q+ 1
‖a‖Ls(BR)|Ak,R|1−

1
s

+
c

(Q+ 1)(t− s)µq

∫
Ak,R

{gq(u− k) + gq(d)} dx.

Thus, by Lemma 3.5, with τ0 := ρ, τ1 := R, φ(t) :=
∫
Ak,t

f(x, u,Du) dx, and

A :=

∫
Ak,R

{gq(u− k) + gq(d)} dx, B :=
Qc

Q+ 1
‖a‖Ls(BR)|Ak,R|1−

1
s ,

we get (4.2). �

5. Proof of Theorems 2.2, 2.3 and 2.6

Assume that g satisfies the assumptions in Section 2. Let u ∈ W 1,1
loc (Ω) be such that

g(|u|) ∈ Lqloc(Ω). Consider BR0(x0) b Ω, such that∫
BR0

(x0)
gq(|u|) dx ≤ 1. (5.1)

For any 0 < R ≤ R0, define the decreasing sequences

ρh :=
R

2
+

R

2h+1
=
R

2
(1 +

1

2h
), ρ̄h :=

ρh + ρh+1

2
=
R

2
(1 +

3

4 · 2h
).

Fixed a positive constant d ≥ 2, to be chosen later, define the increasing sequence of
positive real numbers

kh := d

(
1− 1

2h+1

)
, h ∈ N ∪ {0}. (5.2)

Define the sequence (Jh),

Jh :=

∫
Akh,ρh

gq(u− kh) dx. (5.3)

Notice that, by (5.1), Jh ≤ 1 for every h and that Jh is a decreasing sequence, because

Jh+1 ≤
∫
Akh+1,ρh

gq(u− kh+1) dx ≤
∫
Akh+1,ρh

gq(u− kh) dx ≤ Jh. (5.4)

The following lemma is the common root to prove Theorems 2.2 and 2.3.
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Lemma 5.1. Let u ∈ W 1,1
loc (Ω) be a quasi-minimizer of F . Assume (2.2)-(2.4), with q ≤

p∗, and a ∈ Lsloc(Ω), s > 1. Moreover assume that g(|u|) ∈ Lqloc(Ω) and let BR0(x0) b Ω
be such that

∫
BR0

(x0) g
q(|u|) dx ≤ 1. Let Jh be as in (5.3).

Then there exists a constant C > 0, depending on ‖a‖Ls(BR0
), such that, for all h ∈

N ∪ {0},

Jh+1 ≤
C

(g(d))
q− q2

p∗

(
1

R

)µ q2
p

λhJ1+α
h ,

where λ = 4
µ q

2

p and α = q
p

(
1− 1

s

)
− q

p∗ .

Proof. Since u is a quasi-minimizer of F and (2.2) holds, then g(|uxi |) ∈ L
pi
loc(Ω).

If q < p∗, then max{pi} < p∗ and, by Proposition 3.3, g(|u|) ∈ Lp
∗

loc(Ω).

If q = p∗, we have, by assumption, that g(|u|) ∈ Lp∗(BR0). Thus, Jh is finite for all h.
Let, now, define a sequence (ζh) of cut-off functions, satisfying the following properties:

ζh ∈ C∞c (Bρ̄h(x0)), ζh ≡ 1 in Bρh+1
, and |Dζh| ≤

2h+4

R
.

Denoting (u− kh+1)+ := max{u− kh+1, 0}, by the Hölder inequality we get

Jh+1 ≤ |Akh+1,ρ̄h |
1− q

p∗

(∫
Akh+1,ρ̄h

(g(u− kh+1)ζh)p
∗
dx

) q
p∗

= |Akh+1,ρ̄h |
1− q

p∗

(∫
Bρ̄h

(ζhg((u− kh+1)+))p
∗
dx

) q
p∗

. (5.5)

To apply the Sobolev embedding Theorem 3.1 to the function g((u− kh+1)+)ζh, we need

to prove that g((u − kh+1)+)ζh ∈ W
1,(p1,...,pn)
0 (Bρ̄h(x0)) i.e. that (ζhg((u − kh+1)+))xi ∈

Lpi(Bρ̄h(x0)).
Taking into account that

(g((u(x)− kh+1)+)))xi = g′(u(x)− kh+1)uxi(x)χAkh+1,ρ̄h
(x) for a.e. x ∈ Bρ̄h(x0),

(here χAkh+1,ρ̄h
is, as usual, the characteristic function of the set Akh+1,ρ̄h), noting that,

by the monotonicity of g and g′, g′(t1)t2 ≤ g′(t1)t1 + g′(t2)t2, and using Lemma 3.4 we get

|(ζhg((u− kh+1)+))xi | ≤ g((u− kh+1)+)|(ζh)xi |+ ζhg
′(u− kh+1)|uxi |χAkh+1,ρ̄h

≤g((u− kh+1)+)|Dζh|+ ζh
{
g′(u− kh+1)(u− kh+1) + g′(|uxi |)|uxi |

}
χAkh+1,ρ̄h

≤g(u− kh+1)|Dζh|χAkh+1,ρ̄h
+ ζhµ (g(u− kh+1) + g(|uxi |) + 2g(1))χAkh+1,ρ̄h

.

Since g(d) ≥ g(1), we have, for a.e. x ∈ Bρ̄h(x0),

|(ζhg((u− kh+1)+))xi |

≤ c(µ)
2h

R
(g(u− kh+1) + g(d))χAkh+1,ρ̄h

+ µg(|uxi |)χAkh+1,ρ̄h
. (5.6)
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Since g(|u|) and g(|uxi |) are in Lpiloc(Ω), we have (ζhg((u − kh+1)+))xi ∈ Lpi(Bρ̄h(x0)).
Thus, by (5.5) and the embedding Theorem 3.1,

Jh+1 ≤ c|Akh+1,ρ̄h |
1− q

p∗

Πn
i=1

(∫
Bρ̄h

|(ζhg((u− kh+1)+))xi |pi dx

) 1
pi


q
n

. (5.7)

Let us estimate the integrals in the right hand side. By (5.6), since (a+ b)
1
pi ≤ a

1
pi + b

1
pi ,

api ≤ aq + 1 for every a ≥ 0, ρ̄h ≤ ρh, and since (5.4) holds, then(∫
Bρ̄h

|(ζhg((u− kh+1)+)xi |pi dx

) 1
pi

≤ µ

(∫
Akh+1,ρ̄h

[g(|uxi |)]pi dx

) 1
pi

+
c2h

R

(∫
Akh+1,ρh

{gq(u− kh+1) + gq(d)} dx

) 1
pi

≤ µ

(∫
Akh+1,ρ̄h

[g(|uxi |)]pi dx

) 1
pi

+
c2h

R

(
Jh + gq(d)|Akh+1,ρh |

) 1
pi , (5.8)

where we used that g(d) ≥ g(1) ≥ 1. By (2.2), the Caccioppoli inequality (4.2) and (5.4),
we obtain, for any i = 1, . . . , n,∫

Akh+1,ρ̄h

gpi(|uxi |) dx ≤
∫
Akh+1,ρ̄h

f(x, u,Du) dx

≤ c
(

2h

R

)µq ∫
Akh+1,ρh

{gq(u− kh+1) + gq(d)} dx+ c‖a‖Ls(BR)|Akh+1,ρh |
1− 1

s

≤ c
(
‖a‖Ls(BR) + 1

)(2h

R

)µq (
Jh + gq(d)|Akh+1,ρh |+ |Akh+1,ρh |

1− 1
s

)
. (5.9)

Collecting (5.8) and (5.9), we have(∫
Akh+1,ρ̄h

|(ζhg(u− kh+1))xi |pi dx

) 1
pi

≤
{
c
(
‖a‖Ls(BR) + 1

)(2h

R

)µq (
Jh + gq(d)|Akh+1,ρh |+ |Akh+1,ρh |

1− 1
s

)} 1
pi

.

Using the above inequality to estimate (5.7), it follows that

Jh+1 ≤ c|Akh+1,ρ̄h |
1− q

p∗

{
Πn
i=1

(
2h

R

)µ q
pi
(
Jh + gq(d)|Akh+1,ρh |+ |Akh+1,ρh |

1− 1
s

) 1
pi

} q
n

,

(5.10)
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with c depending on ‖a‖Ls(BR0
). Note that

Jh ≥
∫
Akh+1,ρh

gq(u− kh) dx ≥ gq(kh+1 − kh)|Akh+1,ρh |

= gq(
d

2h+2
)|Akh+1,ρh | ≥

gq(d)

2(h+2)µq
|Akh+1,ρh |,

therefore

|Akh+1,ρ̄h | ≤ |Akh+1,ρh | ≤
2(h+2)µq

gq(d)
Jh ≤ c

2hµq

gq(d)
Jh. (5.11)

By (5.10) and (5.11), recalling that Jh ≤ 1 for every h, so Jh ≤ J
1− 1

s
h , we obtain

Jh+1 ≤ c
(

2hµq

gq(d)
Jh

)1− q
p∗

Πn
i=1

(
2h

R

)µ q
pi

Jh + 2hµqJh +

(
2(h+2)µq

gq(d)
Jh

)1− 1
s


1
pi


q
n

≤ c
(

2hµq

gq(d)
Jh

)1− q
p∗
{

Πn
i=1

(
2h

R

)µ q
pi
(

2hµqJ
1− 1

s
h

) 1
pi

} q
n

= c

(
2hµq

gq(d)
Jh

)1− q
p∗

[(

2h

R

)µq
2hµqJ

1− 1
s

h

]∑
i

1
pi


q
n

= c

(
2hµq

gq(d)
Jh

)1− q
p∗
(

2h

R

)µ q2
p
(

2hµqJ
1− 1

s
h

) q
p

≤ C

R
µ q

2

p (gq(d))
1− q

p∗

(
4
µ q

2

p

)h
J

1+ q
p(1− 1

s )−
q
p∗

h

with C depending on ‖a‖Ls(BR0
). The conclusion follows. �

To prove Theorems 2.2 and 2.3 we will use the following classical result; see, e.g., [19].

Lemma 5.2. Let α > 0 and (Jh) a sequence of real positive numbers, such that

Jh+1 ≤ AλhJ1+α
h ,

with A > 0 and λ > 1. If J0 ≤ A−
1
αλ−

1
α2 , then Jh ≤ λ−

h
αJ0 and limh→∞ Jh = 0.

We are now ready to prove the regularity result under the assumption q < p∗.

Proof of Theorem 2.2. Let d be a positive constant, d ≥ 2, to be chosen later.

We notice that by (2.2) and since q < p∗, it follows that g(|u|) ∈ Lp
∗

loc(Ω) (see Proposition
3.3). Therefore, fixed x0 ∈ Ω, there exists R0 > 0 small enough, such that BR0(x0) b Ω
and

∫
BR0

(x0) g
q(|u|) dx ≤ 1. By Lemma 5.1, we have that, for all h,

Jh+1 ≤
C

(g(d))
q− q2

p∗

(
1

R

)µ q2
p

λhJ1+α
h ,
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with λ := 4
µ q

2

p and α := q
p

(
1− 1

s

)
− q
p∗ > 0. Using Lemma 5.2, withA :=

C

R
µ q

2

p (g(d))
q− q2

p∗
,

we have that, if

J0 ≤ K[g(d)]
p(p∗−q)

p∗(1−1/s)−p , with K :=

{
C

R
µ q

2

p

}− 1
α

λ−
1
α2 , (5.12)

then limh→+∞ Jh = 0.
Since

J0 :=

∫
A d

2 ,R

gq(u− d

2
) dx ≤

∫
BR

gq(|u|) dx,

it is easy to check that (5.12) is satisfied, if we choose d such that

g(d) = g(2) +

{
1

K

∫
BR

gq(|u|) dx
} p∗(1−1/s)−p

p(p∗−q)
. (5.13)

Indeed we get d ≥ 2 and

g(d) ≥
{

1

K
J0

} p∗(1−1/s)−p
p(p∗−q)

,

so (5.12) follows. Therefore, we have lim
h→+∞

Jh =

∫
A
d,R2

gq(u − d) dx = 0. This implies

|Ad,R
2
| = 0 and we conclude that BR

2
⊆ {u ≤ d}.

On the other hand, since −u is a quasi-minimizer of the functional

I(v) :=

∫
f(x, u,Du) dx,

where f(x, u, ξ) := f(x,−u,−ξ), which satisfies the same assumptions of f , we obtain that
BR

2
⊆ {u ≥ −d}. Therefore, by (5.13) and the monotonicity of g,

g(|u|) ≤ g(2) +


(

C

R
µ q

2

p

) 1
α

λ
1
α2

∫
BR

gq(|u|) dx


p∗(1−1/s)−p
p(p∗−q)

a.e. in BR
2
,

that is

‖g(|u|)‖L∞(BR
2

(x0)) ≤ g(2) +
c

R
µ qp∗
p(p∗−q)

(∫
BR

gq(|u|) dx
) p∗(1−1/s)−p

p(p∗−q)
.

By a covering argument, we can obtain estimate (2.7).
�

We now turn to the proof of our boundedness result, under the assumption q = p∗.
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Proof of Theorem 2.3. If max{pi} = p∗, we know, by assumption, that g(|u|) ∈ Lp
∗

loc(Ω).
The same conclusion holds if max{pi} < p∗. Indeed, (2.2) implies g(|uxi |) ∈ L

pi
loc(Ω); so, by

Proposition 3.3, g(|u|) ∈ Lp
∗

loc(Ω). Consider BR0(x0) b Ω such that
∫
BR0

(x0) g
p∗(|u|) dx ≤ 1.

With Jh defined as at the beginning of this section and using Lemma 5.1, with q = p∗, we
get

Jh+1 ≤ C
(

1

R

)µ (p∗)2
p

λhJ1+α
h

where λ = 4
µ

(p∗)2
p and α = p∗

p

(
1− 1

s

)
− 1. Therefore, by Lemma 5.2 we have that

limh→+∞ Jh = 0, if

J0 ≤

C ( 1

R

)µ (p∗)2
p

−
1
α (

4
µ

(p∗)2
p

)− 1
α2

. (5.14)

By definition, J0 =
∫
A d

2 ,R

gp
∗
(u − d

2) dx. Since gp
∗
(|u|) ∈ L1(BR) we can choose d large,

such that (5.14) holds; in fact

J0 =

∫
A d

2 ,R

gp
∗
(
u− d

2

)
dx ≤

∫
A d

2 ,R

gp
∗
(|u|) dx→d→+∞ 0.

With this choice of d, we get

lim
h→∞

Jh =

∫
A
d,R2

gp
∗
(u− d) dx = 0.

Therefore, u ≤ d a.e. in BR
2

(x0). To get a bound from below, we proceed as in the

previous Theorem 2.2. �

We conclude the section with the proof of Theorems 2.6 and 2.7.

Proof of Theorem 2.6. If q < p∗, then we get the thesis by Theorem 2.2. Assume q = p∗.
By F(u0) < +∞ and (2.8), we get u0 ∈ W 1,(p1,...,pn)(Ω). Theorem 3.1 implies u − u0 ∈
Lp
∗
(Ω). Thus, u ∈ Lp

∗

loc(Ω). The conclusion follows by Theorem 2.3. �

Proof of Theorem 2.7. We proceed similarly to Theorem 2.5 in [12]. However, for the sake
of completeness we give a sketch of the proof.

Assume (2.8) with min{pi} = 1 and define F as in (2.9). By Rellich’s Theorem in BV ,

every minimizing sequence for F in u0 +W
1,(p1,...,pn)
0 (Ω) has a L1-convergent subsequence.

The lower semicontinuity of F gives the existence of a minimizer ū in BV , such that

F(ū) = min
u∈BV

F(u) = inf
u∈u0+W

1,(p1,...,pn)
0 (Ω)

F(u). (5.15)

By the minimality of ū and (5.15), there exists a sequence (uk) in u0 + W
1,(p1,...,pn)
0 (Ω),

such that, for all k,

F(uk) ≤ inf
u0+W

1,(p1,...,pn)
0 (Ω)

F +
1

k
, and uk →k→+∞ ū in L1(Ω). (5.16)
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By the Ekeland’s variational principle, see [15], for every k there exists a function vk ∈
u0 +W

1,(p1,...,pn)
0 (Ω), such that

F(vk) ≤ F(u) +
1√
k

n∑
i=1

(∫
Ω
|(vk − u)xi |pi dx

) 1
pi

∀u ∈ u0 +W
1,(p1,...,pn)
0 (Ω), (5.17)

and
n∑
i=1

(∫
Ω
|(vk − uk)xi |pi dx

) 1
pi

≤ 1√
k
∀k. (5.18)

Since uk − vk ∈W
1,(p1,...,pn)
0 (Ω), then (5.16) and (5.18) imply that vk → ū in L1.

Note that a1/pi ≤ a + 1 for every a > 0 and every i = 1, . . . , n. Thus, using (5.17) and

(2.8), we get that, for all u ∈ u0 +W
1,(p1,...,pn)
0 (Ω),

F(vk) ≤ F(u) +
1√
k

{
n∑
i=1

(∫
Ω
|(vk)xi |pi dx

)1/pi

+
n∑
i=1

(∫
Ω
|uxi |pi dx

)1/pi
}

≤
(

1 +
1√
k

)
F(u) +

1√
k
F(vk) +

2√
k
,

that implies (
1− 1√

k

)
F(vk) ≤

(
1 +

1√
k

)
F(u) +

2√
k
.

Therefore, we have that vk is a quasi-minimizer of the functional

I(u) :=

∫
Ω

(f(x, u,Du) + 1) dx,

with Q independent of k. Since (x, s, ξ) 7→ f(x, s, ξ) + 1 satisfies properties analogous to
f , we can apply Theorem 2.2 and then vk ∈ L∞loc(Ω). Fixed x0 ∈ Ω, consider QR(x0) b Ω,
cube centered at x0, with edges, of length 2R, parallel to the coordinate axes, by the
estimate (2.7) on the cubes, there exist γ > 0 and c > 0, independent of k, but depending
on R, such that

‖vk‖L∞(QR
2

(x0)) ≤ c(R)

{
1 +

(∫
QR(x0)

|vk|q dx

)γ}
. (5.19)

Since F(u0) < ∞, then u0 ∈ W 1,(p1,...,pn)(Ω). By the embedding theorem for anisotropic
Sobolev spaces on rectangular sets (see for example Lemma 2.1 in [1]), we have that
u0 ∈ Lp

∗
(QR(x0)) and

‖u0‖Lp∗ (QR) ≤ c

{
‖u0‖L1(QR) +

n∑
i=1

‖(u0)xi‖Lpi (QR)

}
(5.20)

for some c > 0. On the other hand, by applying the inequality (3.1) of Theorem 3.1 to

the function vk − u0 ∈W 1,(p1,...,pn)
0 (Ω) and by taking into account (5.20), we get{∫

QR(x0)
|vk|q dx

} 1
q

≤ c
n∑
i=1

(∫
Ω
|(vk − u0)xi |pi dx

) 1
pi

+ c‖u0‖W 1,(p1,...,pn)(Ω).
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Using the growth assumption (2.8), we have that

n∑
i=1

(∫
Ω
|(vk − u0)xi |pi dx

) 1
pi

≤ c {F(vk) + 1}+

n∑
i=1

{∫
Ω
|(u0)xi |pi dx

} 1
pi

≤ c
{
F(vk) + 1 + ‖u0‖W 1,(p1,...,pn)(Ω)

}
. (5.21)

Collecting (5.19)-(5.21), we obtain

‖vk‖L∞(QR
2

(x0)) ≤ c
{

1 +
(
F(vk) + ‖u0‖W 1,(p1,...,pn)(Ω)

)qγ}
,

for some positive c independent of k and u0. By (5.17), (5.18) and (5.16), we have

‖vk‖L∞(QR
2

(x0)) ≤ c

{
1 +

(
inf

u0+W
1,(p1,...,pn)
0 (Ω)

F +
2

k
+ ‖u0‖W 1,(p1,...,pn)(Ω)

)qγ}
.

So, up to subsequences, vk converges to to ū in the ∗-weak topology of L∞ and by the
lower semicontinuity of the L∞-norm, we conclude. �

6. Applications

In this section we discuss some applications of the local boundedness result Theorem
2.5. Let us consider

I(u) =

∫
Ω
a(x)|Du|r dx, 1 < r ≤ n, (6.1)

a(x) ≥ 0, a ∈ Lσloc(Ω) and a−1 ∈ Lτloc(Ω), σ, τ > 1. An application of Theorem 2.5 gives
the following result.

Theorem 6.1. If σ, τ satisfy

max{1, n
σ
· n+ σr

n+ r
} < r − n

τ
, (6.2)

then the local minimizers of I belongs to W 1,p
loc (Ω) for some p > 1 and they are locally

bounded.

The idea of the proof is to observe that for every 1 < p < r < q ≤ p∗ we have, by the
Young inequality, that there exist c1, c2 > 0 such that

c1|Du|p ≤ a(x)|Du|r + a(x)
− p
r−p ≤ c2 {|Du|q + b(x)} ,

with

b := a
q
q−r + a

− p
r−p .

Taking into account that I and

J (u) :=

∫
Ω

(
a(x)|Du|r + a(x)

− p
r−p
)
dx, (6.3)

have the same local minimizers, if we show that b ∈ Lsloc(Ω) for some s > n
p , than we can

conclude by applying Theorem 2.5 to J .
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Proof of Theorem 6.1. As remarked above, it is enough to show that it is possible to choose
p, q in such a way that

1 < p < r < q ≤ p∗ and b := a
q
q−r + a

− p
r−p ∈ Lsloc(Ω)

for some s > n
p .

By (6.2) there exists p such that

max{1, n
σ
· n+ σr

n+ r
} < p < r − n

τ
.

Then, in particular, pσ > n. We note that

n

σ
· n+ σr

n+ r
< p⇔ r <

rpσ

pσ − n
< p∗.

Thus, there exists q ∈
(

rpσ
pσ−n , p

∗
]
. Since

q >
rpσ

pσ − n
⇔ q

q − r
· n
p
< σ

and
p < r − n

τ
⇔ p

r − p
· n
p
< τ,

there exists s > n
p such that

q

q − r
s < σ

p

r − p
s < τ.

This implies that b ∈ Lsloc(Ω) for s > n
p . This allows to apply Theorem 2.5 to J , with our

choice of p and q. �

We observe that the functionals (1.1) in the Introduction are particular cases of (6.1).
Let

F(u) =

∫
B1(0)

|x|α|Du|r dx,

with α > 0 and 1 < r ≤ n. Assume that (1.2) holds. Then the local minimizers of F are
locally bounded. In fact a(x) := |x|α ∈ L∞ and a−1 ∈ Lτ for every τ < n

α . Since σ in
(6.2) can be arbitrarily chosen it is easy to check that (6.2) can be formulated as

max{1, nr

n+ r
} < r − α,

which is equivalent to (1.2).
Let us consider

G(u) =

∫
B1(0)

|x|−α|Du|r dx,

with α > 0 and 1 < r ≤ n. If 0 < α < r2

n , then the local minimizers of G are locally

bounded. In fact, a(x) := |x|−α ∈ Lσ for every σ < n
α and a−1 ∈ Lτ for every τ > 1. Since

τ in (6.2) can be arbitrarily chosen it is easy to check that (6.2) becomes

max{1, (α+ r)
n

n+ r
} < r,

which is equivalent to α < r2

n .
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