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Abstract

In this paper, first we study existence results for a linearly perturbed
elliptic problem driven by the fractional Laplacian. Then, we show a mul-
tiplicity result when the perturbation parameter is close to the eigenvalues.
This latter result is obtained by exploiting the topological structure of the
sublevels of the associated functional, which permits to apply a critical
point theorem of mixed nature due to Marino and Saccon.
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1 Introduction

In this paper we consider the problem{
(−∆)1/2u = λu+ g(x, u) in Ω

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain of RN , N ≥ 2, λ ∈ R and g : Ω × R → R is a
given function; more precise details will be given below. Of course, problem (1)
is a possible fractional counterpart of the problem{

−∆u = λu+ g(x, u) in Ω

u = 0 on ∂Ω,
(2)

which has been the object of extensive study in the last four decades, essentially
with the aid of variational methods, when N ≥ 3.

We will not go into details about existence and multiplicity results for (2)
according to different assumptions on g, since the bibliography would be huge,
but we focus on multiplicity results with very general assumptions on g. The
first result for g(x, t) ∼ |t|p−2t was established by Ambrosetti and Rabinowitz
in [1], where the authors assumed that

• g : Ω× R→ R is a continuous function;
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• there exist a1, a2 > 0 and p ∈ (2, 2N/(N − 2)) such that for all (x, t) ∈
Ω× R,

|g(x, t)| ≤ a1 + a2|t|p−1; (3)

• g(x, t) = o(|t|) for t→ 0 uniformly in Ω;

• there exists R ≥ 0 and µ > 2 such that for all |t| > R and all x ∈ Ω

0 < µG(x, t) ≤ g(x, t)t, (4)

where G(x, t) =
∫ t

0
g(x, σ)dσ.

Let us note that, as a consequence of (4), we get the existence of c1, c2 > 0 such
that for all (x, t) ∈ Ω× R

G(x, t) ≥ c1|t|µ − c2. (5)

Under this assumptions, in [1] it is proved that problem (2) has two nontrivial
solutions when λ = 0, though the same proof holds if λ < λ1, where λ1 is the first
eigenvalue of −∆ in Ω subject to homogeneous Dirichlet boundary conditions.

Almost twenty years later, in [25], assuming g : R → R is of class C1,
Wang proved that problem (2) has three nontrivial solutions under the same
related assumptions. Since then, thousands of papers have estabilished other
multiplicity results weakening the assumptions on the superlinear and subcritical
g (see the recent paper by Mugnai and Papageorgiou [14] for more general
operators). However, not much was done for the case λ > λ1. The first result
in proving Wang’s result for λ > λ1 and close to an eigenvalue can be found
in Mugnai [11], whose result is complemented by Rabinowitz–Su–Wang in [18].
However, while in [18] g : Ω × R → R is assumed to be of class C1, in [11], for
a superlinear and supercritical g, it is assumed that

• g : Ω× R→ R is a Carathéodory function;

• there exist a1, a2 > 0 and p ∈ (2, 2N/(N − 2)) such that (3) holds for all
t ∈ R and for a.e. x ∈ Ω;

• g(x, t) = o(|t|) for t→ 0 uniformly in Ω;

• the condition (4) holds for all t 6= 0 and for a.e. x in Ω with µ = p.

Let us remark that with these weak assumptions, inequality (4) does not imply
(5), and for this one has to assume that

• there exists c1 > 0 such that for all t ∈ R and for a.e. x in Ω, we have
G(x, t) ≥ c1|t|p, see Mugnai [13].

Going back to problem (1), some remarks are needed. The operator (−∆)1/2

which we consider is the spectral square root of the Laplacian, which should not
be confused with the integro–differential operator defined, up to a constant, as

−(−∆)su(x) =

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.
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Indeed, in this case the homogeneous Dirichlet “boundary conditions” should
be interpreted as u ≡ 0 in RN \ Ω (see [4], [20], [19] and [21]). In fact, in [20]
the authors show that these two operators, though often denoted in the same
way, are really different, with eigenvalues and eigenfunctions behaving quite
differently.

As already said, we will consider the spectral square root of the Laplacian,
defined according to the following procedure (see Cabré and Tan [2] and Caf-
farelli and Silvestre [3]). Let H1/2(Ω) denote the Sobolev space of order 1/2,
defined as

H1/2(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+1
dxdy <∞

}
with norm

‖u‖2H1/2(Ω) :=

∫
Ω

u2dx+

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+1
dxdy.

Introducing the cylinder C := Ω × (0,∞) with lateral boundary ∂LC = ∂Ω ×
[0,∞), set

H1
0,L(C) :=

{
v ∈ H1(C) : v = 0 a.e. on ∂LC

}
,

and denote by trΩ the trace operator on Ω× {0} for functions in H1
0,L(C),

trΩv(x, y) := v(x, 0) for all (x, y) ∈ C.

Then, from standard results, we know that

V0(Ω) :=
{
u = trΩv : v ∈ H1

0,L(C)
}
⊂ H1/2(Ω),

but a characterization of V0 is available from the following proposition.

Proposition 1.1 ([2], Proposition 2.1). We have

V0(Ω) =

{
u ∈ H1/2(Ω) :

∫
Ω

u2

d(x)
dx <∞

}
=

{
u ∈ L2(Ω) : u =

∞∑
k=1

αkϕk satisfies

∞∑
k=1

α2
kλk <∞

}
.

Here (λ2
k, ϕk)k is the Dirichlet spectral decomposition of −∆ in Ω, (ϕk)k being

an orthonormal basis in L2(Ω), and d(x) := dist(x, ∂Ω).

From these preliminaries, by [2, Proposition 2.2], for u =
∑∞
k=1 αkϕk, we

define

(−∆)1/2u :=

∞∑
k=1

αkλkϕk. (6)

With this definition in hand, the purpose of this paper is to prove a multi-
plicity result for problem (1), in a situation similar to that described above for
(2), and, in view of the previous considerations, we assume that
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(g1) g : Ω× R→ R is a Carathéodory function;

(g2) there exist a1, a2 > 0 and p ∈ (2, 2N/(N − 1)) such that (3) holds for all
t ∈ R and for a.e. x ∈ Ω;

(g3) g(x, t) = o(|t|) for t→ 0 uniformly in Ω;

(g4) we have

0 < pG(x, t) = p

∫ t

0

g(x, σ)dσ ≤ g(x, t)t

for all t 6= 0 and for a.e. x ∈ Ω;

(g5) there exists c1 > 0 such that G(x, t) ≥ c1|t|p for all t ∈ R and for a.e.
x ∈ Ω.

Remark 1.2. Note that (g3) implies that G(x, t) = o(|t|2) as t → 0 uniformly
in Ω and from (g2) we get that

|G(x, t)| ≤ a1|t|+
a2

p
|t|p

for all t ∈ R and for a.e. x ∈ Ω. As a consequence, u = 0 solves problem (1),
and we look for nontrivial solutions.

In the case g(x, t) = |t|p−2t, 2 < p < 2N/(N − 1), an existence result for
λ = 0 is proved in Cabré and Tan [2]. The proof therein can be immediately
extended to the case λ < λ1, but we are not aware of existence results for
λ ≥ λ1, nor for general nonlinearities g. For this, we state our first result:

Theorem 1.3. If (g1) − (g5) hold, then for every λ ∈ R problem (1) has one
nontrivial solution.

However, the previous result is standard, and we only present it for a com-
plete description of the existence setting, as a counterpart of the result in Ser-
vadei and Valdinoci [19], when the fractional Laplacian is represented by a
nonlocal integral operator, already introduced in [4, 21].

On the other hand, our main interest is providing a multiplicity theorem,
which is much more involved. This result relies on the application of a critical
point theorem of mixed type proved by Marino and Saccon in [7], recalled in
the Appendix, together with an additional linking theorem and a fine estimate
of critical levels. More precisely, we prove the following multiplicity result in
Wang’s direction, the main result of this paper:

Theorem 1.4. Assume (g1) − (g5) hold. Then, for all i ∈ N, i ≥ 2, there
exists δi > 0 such that problem (1) has at least three nontrivial solutions for all
λ ∈ (λi − δi, λi).

We conclude recalling that the ∇–theorem we will employ has been exten-
sively used in several contexts, in order to prove multiplicity results of different



5

problems, such as elliptic problems of second and fourth order, variational in-
equalities and reversed variational inequalities, see, for instance, [6, 5, 8, 12,
11, 10, 15, 22, 23, 24], and [9], where the analogous multiplicity result of this
paper is considered when the underlying operator is the nonlocal one studied in
[4, 19, 21].

2 Extended problem, preliminary lemmas and
proof of Theorem 1.3

We know from [2] that solving problem (1) is equivalent to solving its extension
in the cylinder C = Ω× (0,∞), that is,

∆v = 0 in C,
v = 0 on ∂LC,
∂v

∂ν
= λv + g(x, v) in Ω× {0},

(7)

where ∂LC = ∂Ω×(0,∞) is the cylinder lateral surface and ν is the outer normal
at C in Ω× {0}. Let us briefly recall the relation between (7) and (1).

First, we will look for weak solutions to (7). For this, we note that the
Sobolev space H1

0,L(C) introduced above is an Hilbert space when endowed with
the norm

‖v‖ =

(∫
C
|Dv|2 dxdy

)1/2

,

induced by the inner product

〈v, w〉 =

∫
C
Dv ·Dwdxdy.

Following the “Dirichlet to Neumann” approach in a bounded domain Ω of
RN (cfr. [2]), for a given u ∈ V0(Ω) we consider the harmonic extension v of u,
i.e. the solution of the problem

∆v = 0 in C,
v = 0 on ∂LC,
v = u in Ω× {0},

which is well defined by [2, Lemma 2.8]. Now, by [2, Proposition 2.2], we can
give a definition of (−∆)1/2 : V0(Ω)→ V0(Ω)∗, equivalent to (6), as the operator
that maps the Dirichlet datum u in the Neumann value of its harmonic extension

(−∆)1/2u =
∂v

∂ν
(·, 0),

and hence, if v solves (7), then u = trΩv solves (1), see [2, Proposition 2.2]. For
this reason, from now on, we will look for weak solutions to (7).
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Of course, problem (7) is variational and its solutions are critical points of
the C1 functional fλ : H1

0,L(C)→ R defined by

fλ(u) =
1

2

∫
C
|Du|2dxdy − λ

2

∫
Ω

u2dx−
∫

Ω

G(x, u)dx.

Before attacking functional fλ, we recall some other tools we will use in the
following. Recalling that (λk, ϕk)k denote the eigenvalues and the associated
eigenfunctions of −∆ with homogeneous Dirichlet condition on ∂Ω with (ϕk)k
an orthonormal basis of L2(Ω), from [2], we have

H1
0,L(C) =

{
v(x, y) =

∞∑
k=1

bkϕk(x)e−λky (x, y) ∈ C :

∞∑
k=1

λkb
2
k <∞

}
.

Setting ek(x, y) = ϕk(x)e−λky, we observe that the ek are orthogonal in
H1

0,L(C). Now, for every integer i ≥ 1, put

Hi = span(e1, · · · , ei) and H⊥i = span(ei+1, · · · ).

Then, a simple calculation gives the proof of the following inequalities:

Proposition 2.1. If u ∈ Hi, then∫
C
|Du|2 dxdy ≤ λi

∫
Ω

u2 dx. (8)

Proposition 2.2 (Constrained Poincaré inequality). If u ∈ H⊥i , then∫
C
|Du|2 dxdy ≥ λi+1

∫
Ω

u2 dx. (9)

We will also use the continuous inclusions (see [2, Lemma 2.4])

H1
0,L(C) ↪→ Lr(Ω) for all r ∈

[
1, 2N

N−1

]
, (10)

and the compact ones (see [2, Lemma 2.5])

H1
0,L(C) ↪→ Lr(Ω) for all r ∈

[
1, 2N

N−1

)
. (11)

Now, we have all the ingredients to look for critical points of functional fλ,
i.e. to solve problem (7). As usual, the first step in applying variational methods
is the following result:

Proposition 2.3. If c ∈ R, then fλ satisfies the (PS)c condition, namely:
every sequence (un)n such that fλ(un) → c and f ′λ(un) → 0 as n → ∞ has a
converging subsequence.
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Proof. Let (un)n ⊂ H1
0,L(C) be a Palais–Smale sequence at level c ∈ R. Then,

taken k ∈ (2, p), there exis M,N > 0 such that

kfλ(un)− f ′λ(un)un ≤M +N‖un‖ for all n ∈ N. (12)

On the other hand, by (g4) and (g5), we get

kfλ(un)− f ′λ(un)un

=

(
k

2
− 1

)
‖un‖2 − λ

(
k

2
− 1

)∫
Ω

u2
ndx+

∫
Ω

[g(x, un)un − kG(x, un)]dx

≥
(
k

2
− 1

)
‖un‖2 − λ

(
k

2
− 1

)∫
Ω

u2
ndx+ (p− k)

∫
Ω

G(x, un) dx

≥
(
k

2
− 1

)
‖un‖2 − λ

(
k

2
− 1

)∫
Ω

u2
ndx+ (p− k)c1

∫
Ω

|un|pdx.

(13)
By Young’s inequality, for every ε > 0 there exists Dε > 0 such that

u2
n ≤ ε|un|p +Dε.

Hence, (13) implies that

kfλ(un)−f ′λ(un)un ≥
(
k

2
− 1

)
‖un‖2+

[
(p− k)c1 − ε|λ|

(
k

2
− 1

)]∫
Ω

|un|pdx−Dε.

Choosing ε sufficiently small, we finally get

kfλ(un)− f ′λ(un)un ≥
(
k

2
− 1

)
‖un‖2 −Dε,

and by (12), we get that (un)n is bounded. Then, we can assume that un ⇀ u
in H1

0,L(C) and un → u in Lr(Ω) for all r ∈ [1, 2N/(N − 1)).
Since f ′λ(un)(un − u) → 0 as n → ∞, we immediately get that that un

converges strongly to u, i.e. (PS)c holds.

At this point we can prove Theorem 1.3:

Proof of Theorem 1.3. First of all we observe that, from the Remark 1.2, fλ(0) =
0 and by (g2) and (g3), we get that, given ε > 0, there exists Cε > 0 such that

G(x, s) ≤ ε|u|2 + Cε|s|p (14)

for a.e. x ∈ Ω and all s ∈ R.
Now, we have to distinguish two cases: λ < λ1 and λ ∈ [λi, λi+1), for some

i ∈ N.
First case: λ < λ1. We want to apply the mountain pass theorem (see [1]).
Supposing λ > 0 (the other case being easier), by (14), the Poincaré inequality
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(8) for i = 0 and by the continuous embedding of H1
0,L(C) in L2(Ω) and in

Lp(Ω), we have that

fλ(u) ≥ 1

2
‖u‖2 − λ

2λ1
‖u‖2 − ε

2
‖u‖2L2(Ω) − Cε‖u‖

p
Lp(Ω)

≥ 1

2

(
1− λ

λ1
− cε

λ1

)
‖u‖2 − C‖u‖p,

for some absolute constants c, C > 0. Now, choosing ε enough small, we can

suppose A =
1

2

(
1− λ

λ1
− cε

λ1

)
> 0 and taking ρ sufficiently small we have that

inf
‖u‖=ρ

fλ(u) ≥ α > 0

for some α > 0. Moreover, if u 6= 0 and t > 0, by (g5) we have

fλ(tu) =
t2

2
‖u‖2 − λ

2
t2‖u‖22 −

∫
Ω

G(x, tu) dx

≤ t2

2
‖u‖2 − λ

2
t2‖u‖22 − c1tp‖u‖pp → −∞,

since p > 2. Recalling that the (PS)c-condition holds for all c ∈ R, the Mountain
Pass Theorem implies that (1) has a nontrivial solution.

Second case: λ ∈ [λi, λi+1) for some i ∈ N. In this case we want to apply
the linking theorem (see the Appendix). If u ∈ Hi, from (8) and (g4), we have

fλ(u) ≤
(λi

2
− λ

2

)∫
Ω

u2dx−
∫

Ω

G(x, u) dx ≤ 0.

Moreover, by (14) and (9), if u ∈ H⊥i , then we have

fλ(u) ≥ 1

2
‖u‖2 − λ

2λi+1
‖u‖2 −

∫
Ω

G(x, u) dx

≥ 1

2

(
1− λ

λi+1

)
‖u‖2 − ε

2

∫
Ω

u2dx− Cε
∫

Ω

updx > 0.

Thus, by (10), we obtain

fλ(u) ≥ 1

2

(
1− λ

λi+1
− cε

2

)
‖u‖2 − C‖u‖p

for some c, C > 0 and for all u ∈ H⊥i . Choosing ε and ρ > 0 small enough, we
get

inf
u∈H⊥

i
,

‖u‖=ρ

fλ(u) ≥ α > 0.

Finally, if u ∈ Hi and t > 0, by (g5) we have

fλ(u+ tei+1) =
1

2
‖u+ tei+1‖2 −

λ

2

∫
Ω

(u+ tei+1)2dx−
∫

Ω

G(x, u+ tei+1) dx

≤ 1

2
‖u+ tei+1‖2 −

λ

2

∫
Ω

(u+ tei+1)2dx− c1
∫

Ω

|u+ tei+1|pdx→ −∞
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as t→∞, since all norms are equivalent in Hi ⊕ (ei+1).
Recalling that (PS)c-condition holds for all c ∈ R, the Linking Theorem

implies that problem (1) has a nontrivial solution.

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4, the main contribution of this paper. For
this, from now on, we assume that there exist i ≤ j in N such that λi−1 < λi =
· · · = λj < λj+1.

Let us start by introducing some notations. If i < j in N, we introduce the
following sets:

S+
j (ρ) = {u ∈ H⊥j : ‖u‖ = ρ},

and
Ti,j(R) =

{
u ∈ Hj : ‖u‖ = R

}
∪
{
u ∈ Hi : ‖u‖ ≤ R

}
.

We can now state our first Lemma.

Lemma 3.1. Assume i, j ≥ 2 are such that λi−1 < λi = · · · = λj < λj+1 and
λ ∈ (λi−1, λj). Then there exist R and ρ with R > ρ > 0 such that

sup fλ(Ti−1,j(R)) < inf fλ(S+
i−1(ρ)).

Proof. From (14), (9) and by the compact embedding in L2(Ω) and in Lp(Ω)
given in (11), we have the existence of ρ > 0 such that

inf fλ(S+
i−1(ρ)) > 0.

Moreover, it is clear that fλ(Hi−1) ≤ 0. We conclude the proof by showing
that

lim
‖u‖→∞
u∈Hj

fλ(u) = −∞.

Such a result easily follows from (g5) and from inequality (8). Indeed, if u ∈ Hj ,
then

fλ(u) ≤ 1

2
‖u‖2 − λ

2λj
‖u‖2 − c1‖u‖pp,

and since all norms in Hj are equivalent, the lemma follows.

Now take
a ∈

(
sup fλ(Ti−1,j(R), inf fλ(S+

i−1(ρ))
)

and b > sup fλ(Bj(R)), where Bj(R) is the ball in Hj with radius R. Then, we
have the following lemma.

Lemma 3.2. Suppose there exist integers i, j ≥ 2 such that λi−1 < λi = · · · =
λj < λj+1.Then, for every δ > 0 there exists ε0 > 0 such that ∀ λ ∈ [λi−1 +
δ, λj+1 − δ], the only critical point u of fλ in Hi−1 ⊕ H⊥j such that fλ(u) ∈
[−ε0, ε0], is the trivial one.
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Proof. Assume by contradiction that there exist δ > 0, λn ∈ [λi−1 + δ, λj+1− δ]
and (un)n in Hi−1 ⊕H⊥j \{0} such that

fλn(un) −→ 0 if n→∞

and such that for all z ∈ Hi−1 ⊕H⊥j , we have∫
C
Dun ·Dz dxdy − λn

∫
Ω

unz dx−
∫

Ω

g(x, un)z dx = 0, (15)

where

fλn(un) =
1

2

∫
C
|Dun|2 dxdy −

λn
2

∫
Ω

u2
n dx−

∫
Ω

G(x, un) dx.

Up to a subsequence, we can assume that λn → λ in [λi−1 +δ, λj+1−δ]. Choose
z = un in (15). Then, by (g4) we obtain

0 =

∫
C
|Dun|2 dxdy − λn

∫
Ω

u2
n dx−

∫
Ω

g(x, un)un dx

= 2fλn(un) +

∫
Ω

[2G(x, un)− g(x, un)un] dx

≤ 2fλn(un) + (2− p)
∫

Ω

G(x, un) dx.

In particular, we deduce that

lim
n→∞

∫
Ω

G(x, un) dx = 0. (16)

Now, let vn in Hi−1 and wn in H⊥j be such that un = vn + wn for every
n ∈ N, and choose z = vn − wn in (15). Then, we have∫

C
|Dvn|2 dxdy − λn

∫
Ω

v2
n dx−

(∫
C
|Dwn|2 dxdy − λn

∫
Ω

w2
n dx

)
=

∫
Ω

g(x, un)(wn − vn) dx ∀ n ∈ N.

By (8) and (9), we get the existence of c = δ/λj+1 > 0 independent of n,
(c = δ/λj+1), such that

c‖un‖2 ≤
∫

Ω

g(x, un)(vn − wn) dx ∀ n ∈ N. (17)

Here we used the fact that vn and wn are orthogonal, so that ‖un‖2 = ‖vn‖2 +
‖wn‖2 for every n ∈ N.

Moreover, by Hölder’s inequality, we get∣∣∣∣∫
Ω

g(x, un)(vn − wn) dx

∣∣∣∣ ≤(∫
Ω

|g(x, un)|p/(p−1) dx

)1−1/p

·
(∫

Ω

|vn − wn|p dx
)1/p

.

(18)
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By the Sobolev embedding and by the compact embedding in (11), there exists
an universal constant γp > 0 such that

‖vn − wn‖Lp(Ω) ≤ γp‖vn − wn‖ = γp‖un‖. (19)

In this way, since un 6= 0, (17), (18) and (19) imply that there exists c′ > 0 such
that

‖un‖ ≤ c′
(∫

Ω

|g(x, un)|p/(p−1) dx

)(p−1)/p

∀ n ∈ N. (20)

Up to a subsequence, there are two possibilities: either ‖un‖ → ∞, or ‖un‖
is bounded.

First case: ‖un‖ → ∞. Without loss of generality, we can suppose that there
exists u ∈ Hi−1 ⊕H⊥j such that un/‖un‖⇀ u in H1

0,L(C) and un/‖un‖ → u in
Lr(Ω) for every r ∈ [1, 2N/(N − 1)), see (11). First of all, (16) implies that

0← 2
fλn(un)

‖un‖2
−→ 1− λ

∫
Ω

u2 dx as n→∞,

so that u 6≡ 0. Moreover (g2) and (g5) imply that∫
Ω

|g(x, un)|p/(p−1) dx ≤ a′1 + a′2

∫
Ω

G(x, un) dx.

But the last quantity is bounded by (16), while (20) leads to a contradiction.
Second case: ‖un‖ is bounded. As before, we can suppose that there exists

u ∈ Hi−1⊕H⊥j such that un ⇀ u in Hi−1⊕H⊥j and un → u in Lr(Ω) for every
r ∈ [1, 2N/(N − 1)). Moreover (16) and (g5) imply that u = 0.

If un → 0, then by (20) and (g3), we would have

1 ≤ lim
n→∞

c′

(∫
Ω

|g(x, un)|p/(p−1) dx

)(p−1)/p

‖un‖
= 0,

which is absurd. So, there should exist σ > 0 such that ‖un‖ ≥ σ for all n ∈ N;
but also in this case, since un → 0 in Lp(Ω), from (20) we would obtain

σ ≤ lim
n→∞

c′
(∫

Ω

|g(x, un)|p/(p−1) dx

)(p−1)/p

= 0,

which is also absurd.

For the following result we denote by P : H1
0,L(C) −→ span(ei, · · · , ej) and

Q : H1
0,L(C) −→ Hi−1 ⊕H⊥i the orthogonal projections.

Lemma 3.3. Suppose there exist integers i, j ≥ 2 such that λi−1 < λi = · · · =
λj < λj+1. Let λ ∈ R and (un)n in H1

0,L(C) be such that (fλ(un))n is bounded,
Pun → 0 and Q∇fλ → 0 as n→∞. Then (un)n is bounded.
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Proof. Assume by contradiction that (un)n in unbounded. Then we can suppose
that there exists u inH1

0,L(C) such that un/‖un‖⇀ u inH1
0,L(C) and un/‖un‖ →

u in Lr(Ω) for every r ∈ [1, 2N/(N − 1)) as n→∞.
Note that un = Pun+Qun, Pun → 0 and Q∇fλ(un)→ 0, where ∇fλ(un) =

Vn is such that

f ′λ(un)v =

∫
C
Vn ·Dv dxdy ∀ v ∈ H1

0,L(C).

So we obtain
Vn = un −K(λun + g(x, un)),

where K : L2(Ω) −→ H1
0,L(C) is the operator defined by K(u) = v, where v is

the weak solution v of the problem
∆v = 0 in C,
v = 0 on ∂LC,
∂v

∂ν
= u in Ω× {0}.

(21)

In particular, we have

〈Q∇fλ(un), un〉 = 〈∇fλ(un), un〉 − 〈P∇fλ(un), un〉

= ‖un‖2 − λ
∫

Ω

u2
n dx−

∫
Ω

g(x, un)un dx

−
∫
C
D(P (un −K(λun + g(x, un)))) ·Dun dxdy.

But for every z ∈ H1
0,L(C), Pz is a smooth function and DPun = PDun,

because u ∈ span(ei, · · · , ej) and Pz⊥Qz. In this way the last integral in the
previous equation is equal to∫

C
|DPun|2 dxdy − λ

∫
Ω

|Pun|2 dx−
∫

Ω

g(x, un)Pun dx.

As a consequence, we have

〈Q∇fλ(un), un〉 = 2fλ(un) + 2

∫
Ω

G(x, un) dx

−
∫

Ω

g(x, un)un dx

− ‖Pun‖2 + λ

∫
Ω

|Pun|2 dx+

∫
Ω

g(x, un)Pun dx.

(22)

Now, observe that (g2) implies that

lim
n→∞

∫
Ω

|g(x, un)Pun| dx

‖un‖p−1
= 0,
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since
|g(x, un)Pun| ≤ ‖Pun‖∞(a1 + a2|un|p−1)

and ‖Pun‖∞ → 0 as n→∞ by assumption. So, starting from (22), using (g4)
and dividing by ‖un‖p−1 for p− 1 > 1, we get

lim
n→∞

∫
Ω

G(x, un) dx

‖un‖p−1
= 0.

Moreover, (g5) implies that

lim
n→∞

∫
Ω

|un|p dx

‖un‖p−1
= 0,

and so u ≡ 0. Now, dividing 2fλ(un) by ‖un‖2, we have

lim
n→∞

∫
Ω

G(x, un) dx

‖un‖2
=

1

2
(23)

and so, by (g5), there exists a constant c > 0 such that∫
Ω

|un|p dx ≤ c‖un‖2. (24)

Now, let us show that

lim
n→∞

∫
Ω

|g(x, un)Pun| dx

‖un‖2
= 0. (25)

Indeed, (g2) and Hölder’s inequality imply that

lim
n→∞

∫
Ω

|g(x, un)Pun| dx

‖un‖2

≤ ‖Pun‖∞
‖un‖2

(
a1 + a2

∫
Ω

|un|p−1 dx

)
≤ ‖Pun‖∞

[
a1

‖un‖2
+

a′2
‖un‖2/p

(∫
Ω
|un|p dx
‖un‖2

)(p−1)/p
]
,

and equality (25) follows from (24) and the fact that p > 2.
In this way (22), (g4) and (25) imply that

lim
n→∞

∫
Ω

G(x, un) dx

‖un‖2
= 0,

which contradicts (23).
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Now, by Lemma 3.2 and Lemma 3.3, we can prove the following result:

Proposition 3.4. Suppose there exist integers i, j ≥ 2 such that λi−1 < λi =
· · · = λj < λj+1. Then, for all δ > 0 there exists ε0 > 0 such that ∀ λ ∈ [λi−1 +
δ, λj+1−δ] and ∀ ε′, ε′′ ∈ (0, ε0) with ε′ < ε′′, condition (∇)(fλ, Hi−1⊕H⊥j , ε′, ε′′)
holds (see the Appendix).

Before proving Proposition 3.4, we will give a property of the operator K
definited in (21):

Lemma 3.5. The operator K : L2(Ω) −→ H1
0,L(C) is compact.

Proof. Let (un)n ⊂ L2(Ω) be a bounded sequence and set vn := K(un) for all
n ∈ N. Since, by (21), we have

‖vn‖2 ≤ ‖u‖L2(Ω)‖v‖L2(Ω),

we immediately get that (vn)n is bounded. Thus, we can suppose that there
exists v ∈ H1

0,L(C) such that vn ⇀ v in H1
0,L(C) and vn → v in L2(Ω) as n→∞.

In this way, since∫
C
|Dvn|2 dxdy −

∫
C
Dvn ·Dv dx−

∫
Ω

un(vn − v) dx = 0

for all n ∈ N, exploiting the previous convergences and recalling that (un)n is
bounded in L2(Ω), we immediately have that

‖vn‖2 → ‖v‖2 as n→∞,

that is, vn → v in H1
0,L(C) as n→∞.

Proof of Proposition 3.4. Assume by contradiction that there exists δ > 0 such
that for all ε0 > 0 there exist λ ∈ [λi−1 + δ, λj+1 − δ] and ε′, ε′′ ∈ (0, ε0), such
that the condition (∇)(fλ, Hi−1 ⊕H⊥j , ε′, ε′′) does not hold.

Take ε0 > 0 as given by Lemma 3.2, and take a sequence (un)n in H1
0,L(C)

such that fλ(un) ∈ [ε′, ε′′] for every n ∈ N, d(un, Hi−1 ⊕ H⊥j ) → 0 and
Q∇fλ(un)→ 0 as n→∞, i.e. (un) is a sequence which makes (∇)(fλ, Hi−1 ⊕
H⊥j , ε

′, ε′′) false.
Then, by Lemma 3.3, we get that (un)n is bounded and we can assume that

un ⇀ u in H1
0,L(C) and un → u in Lr(Ω) for all r ∈ [1, 2N/(N − 1)) as n→∞.

Now,
Q∇fλ(un) = un − Pun −K(λun + g(x, un)),

and we know that g(x, un) → g(x, u) in Lp/(p−1)(Ω) as n → ∞ by (g2). More-
over, Q∇fλ(un) → 0 and Pun → 0 as n → ∞. Thus, by Lemma 3.5, we find
that un → u in Hi−1⊕H⊥j and u is a critical point of fλ on Hi−1⊕H⊥j . There-
fore, by Lemma 3.2, we know that u = 0, while 0 < ε′ ≤ fλ(un) for all n ∈ N,
which contradicts the fact that fλ is continuous. Hence, the claim follows.
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In order to apply the ∇-Theorem (see the Appendix), at this point we have
only to show that sup fλ(Bj(R)) is small enough. In order to do that, we need
the following Lemma.

Lemma 3.6. We have
lim
λ→λj

sup fλ(Hj) = 0.

Proof. Assume by contradiction that there exist ε > 0 and sequences µn → λj ,
(un)n in Hj , such that

sup fµn(Hj) = fµn(un) ≥ ε ∀ n ∈ N.

Note that (un)n is well defined, since fµn attains a maximum in Hj thanks to
condition (g5).

If (un)n is bounded, we can assume that un → u in Hj . In this way, by
continuity, we have

ε ≤ 1

2

∫
C
|Du|2 dxdy − λj

2

∫
Ω

u2 dx−
∫

Ω

G(x, u) dx ≤ 0

by (8) and (g5), and a contradiction arises. So we can assume that ‖un‖ → ∞.
In this case, by (g5) and the Sobolev inequality, there exists γp > 0 such

that

0 < ε ≤ fµn(un) ≤ 1

2
‖un‖2 −

µn
2λj
‖un‖2 − c1γp‖un‖p, (26)

and since all norms are equivalent in Hj , the right hand side of the last inequality
would tend to −∞, which is absurd again.

In order to prove Theorem 1.4, first we need some preliminary results.

Theorem 3.7. Suppose there exist integers i, j ≥ 2 such that λi−1 < λi =
· · · = λj < λj+1. Then, there exist δ1 > 0, ε′, ε′′ > 0 such that for every
λ ∈ (λj − δ1, λj) problem (1) has at least two non trivial solutions u1, u2 with
fλ(ui) ∈ [ε′, ε′′], i = 1, 2.

Proof. Take δ′ > 0 and find ε0 as in Proposition 3.4. Fix ε′ < ε′′ < ε0.
Then, by Lemma 3.6, there exists δ1 ≤ δ′ such that, if λ ∈ (λj − δ1, λj), we
have sup fλ(Hj) < ε′′ and by Proposition 3.4 the condition (∇) − (fλ, Hi−1 ⊕
H⊥j , ε

′, ε′′) holds. Moreover, since λ < λj , the topological structure of Lemma
3.1 is satisfied.

By the ∇-Theorem (see Theorem 4.3 in the Appendix), there exist two
critical points u1, u2 of fλ such that fλ(ui) ∈ [ε′, ε′′], i = 1, 2. In particular u1

and u2 are nontrivial solutions of (1), since fλ(0) = 0.

In order to prove the existence of a third nontrivial solution, let us prove the
following Lemma.
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Lemma 3.8. Suppose there exist integers i, j ≥ 2 such that λi−1 < λi = · · · =
λj < λj+1. Then, there exists δi > 0, ρ1 > 0 and R1 > ρ1 such that for all
λ ∈ (λi − δi, λi), we have

inf fλ(S+
j (ρ1)) > sup fλ(Ti,j+1(R1)).

In particular there exists a critical point u3 of fλ such that

fλ(u3) ≥ inf fλ(S+
j (ρ1)).

Proof. Take λ ∈ [λi−1, λi). By (9) and (g5) we get that for all τ > 0 there exist
ρ1 > 0 such that, if v ∈ H⊥j and ‖v‖ = ρ1, then

fλ(v) ≥ 1

2

(
1− λ

λj+1
− τ
)
ρ2

1. (27)

Choosing τ small enough, we get that C = 1− λj
λj+1

− τ > 0, so that (27) reads

fλ(v) ≥ Cρ2
1.

By (g5) and (8), as in (26), we get that fλ(u)→ −∞ if u ∈ Hj+1 and ‖u‖ → ∞,
since all the norms in Hj+1 are equivalent. By Lemma 3.6, there exists δi > 0
such that ∀ λ in (λi − δi, λi), we have

sup fλ(Hj) < Cρ2
1.

Finally, we choose δi < δ1, where δ1 is the one found in Theorem 3.7.
In this way, the classical Linking Theorem (see the Appendix) shows the

existence of a critical point u3 of fλ such that fλ(u3) ≥ Cρ2
1.

Note that, although the topological structure found in Lemma 3.8 is equal
to the one of Lemma 3.1, it is not possible to apply the ∇-theorem again, since

it is not clear if (∇)−
(
fλ, Hj ⊕H⊥j+1, Cρ

2
1, sup fλ(Bj+1(R1))

)
holds.

Now, we are ready to prove Theorem 1.4, which becomes an obvious corollary
of all the previous results.

Proof of Theorem 1.4. Take δi as given in Lemma 3.8. Then the critical point
u3 found there is different from the critical points u1, u2 found in Theorem 3.7,
since

fλ(ui) ≤ sup fλ(Hj) < Cρ2
1 ≤ fλ(u3),

i = 1, 2.
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4 Appendix

Although it is a well-known result in critical point theory, we recall here the
linking theorem (see [17, Theorem 5.3] or [16, Theorem 1.1]), in order to state
an a priori estimate on critical values which we will use to prove Theorem 1.4.

Theorem 4.1 (Linking Theorem). Let X be a Banach space such that X =
X1 ⊕X2 with dim X1 <∞, and let f : X → R be of class C1. Assume that

i) f(0) = 0;

ii) there exist ρ, α > 0 such that inf f(Sρ ∩ X2) ≥ α and there exist R > ρ,
e ∈ X2 with ‖e‖ = 1 such that sup f(ΣR) ≤ 0, where Sρ denotes the sphere
in X of radius ρ, with

ΣR = ∂X1⊕span(e)∆R and

∆R = {u+ te : u ∈ X1, t > 0, ‖u+ te‖ ≤ R}.

iii) (PS)β holds, where
β = inf

h∈H
sup
u∈∆R

f(h(u))

and
H = {h ∈ C(∆R, X) : h|ΣR = Id}.

Then, β is a critical value for f , and

α ≤ β ≤ sup
u∈∆R

f(u).

Definition 4.2 (see [7]). Let X be a Hilbert space, f : X −→ R a C1 function,
M a closed subspace of X and a, b ∈ R ∪ {−∞,+∞}.

We say that the condition (∇)− (f,M, a, b) holds if there exists γ > 0 such
that

inf
{
‖PM∇f(u)‖ : a ≤ f(u) ≤ b, d(u,M) ≤ γ

}
> 0,

where PM : X −→ M is the orthogonal projection of X on M and d(u,M) =
inf
z∈M

d(u, z) denotes the distance of u from the subspace M .

This means that, if the condition above holds, then f|M cannot have critical
points u with a ≤ f(u) ≤ b with some uniformity.

Theorem 4.3 (∇-Theorem, see [7]). Let X be a Hilbert space and let Xi, i =
1, 2, 3 be three subspaces of X such that X = X1 ⊕X2 ⊕X3 with dim Xi < ∞
for i = 1, 2. Denote with Pi : X −→ Xi the orthogonal projection of X on Xi.
Let f : X −→ R be a function of class C1. Let ρ, ρ′, ρ′′, ρ1 be such that ρ1 > 0,
0 ≤ ρ′ < ρ < ρ′′ and define

∆ =
{
u ∈ X1 ⊕X2 : ρ′ ≤ ‖P2u‖ ≤ ρ′′, ‖P1u‖ ≤ ρ1

}
,
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T = ∂X1⊕X2
∆, S23(ρ) =

{
u ∈ X2 ⊕X3 : ‖u‖ = ρ

}
and

B23(ρ) =
{
u ∈ X2 ⊕X3 : ‖u‖ ≤ ρ

}
.

Suppose that
a′ := sup f(T ) < inf f(S23(ρ)) =: a′′.

Let a and b be such that a′ < a < a′′ and b > sup f(∆). Suppose that the
condition (∇) − (f,X1 ⊕X3, a, b) holds and that (PS)c holds for all c ∈ [a, b].
Then, f has at least two critical points in f−1([a, b]). Moreover, if

inf f(B23(ρ)) > −∞

and (PS)c holds for all c ∈ [a1, b] with

a1 < inf f(B23(ρ)),

then f has another critical level in [a1, a
′].

Note that, in our context, the critical level in [a1, a
′] could vanish, so that

no other nontrivial solution is obtained.
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Anal. Non Linéaire 8 (1991), no. 1, 43–57.

Dimitri Mugnai1: Dipartimento di Matematica e Informatica, University of
Perugia, Via Vanvitelli 1, 06123 Perugia - Italy
e-mail: dimitri.mugnai@unipg.it

Dayana Pagliardini: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126
Pisa- Italy
e-mail: dayana.pagliardini@sns.it

1D. M. is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le
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