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Abstract. The goal of the paper is to give an optimal transport characterization of sectional curvature
lower (and upper) bounds for smooth n-dimensional Riemannian manifolds. More generally we chara-

cterize, via optimal transport, lower bounds on the so called p-Ricci curvature which corresponds to

taking the trace of the Riemann curvature tensor on p-dimensional planes, 1 ≤ p ≤ n. Such characteri-
zation roughly consists on a convexity condition of the p-Renyi entropy along L2-Wasserstein geodesics,

where the role of reference measure is played by the p-dimensional Hausdorff measure. As applica-

tion we establish a new Brunn-Minkowski type inequality involving p-dimensional submanifolds and the
p-dimensional Hausdorff measure.
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1. Introduction

The interplay between Ricci curvature and optimal transport is well known and it has been a topic of
tremendous interest in the last years. On the other hand it seems to be still an open problem to find the
link between sectional curvature bounds (and more generally intermediate Ricci curvature bounds) and
optimal transportation. The goal of the paper is to address such a question.

Inspired by the pioneering work on Ricci curvature lower bounds via optimal transport by Sturm and
von Renesse [18], later extended to non-smooth spaces in the foundational works of Lott-Villani [8] and
Sturm [16, 17], we analyze convexity properties of the p-Renyi entropy along L2-Wasserstein geodesics,
where the role of the reference measure is played here by the p-dimensional Hausdorff measure. In a first
approximation, one can think of studying the convexity of the p-Renyi entropy along an L2-Wasserstein
geodesics made of probability measures concentrated on p-dimensional submanifolds of M .
The study of optimal transportation between measures supported on arbitrary submanifolds in an arbi-
trary Riemannian manifold seems to be quite a new topic in the literature. Nevertheless several authors
treated remarkable particular cases and related questions:

• Gangbo-McCann [5] proved results about optimal transport between measures supported on
hyper-surfaces in Euclidean space;
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• McCann-Sosio [11] and Kitagawa-Warren [6] gave more refined results about optimal transport
between two measures supported on a codimension one sphere in Euclidean space;

• Castillon [2] considered optimal transport between a measure supported on a submanifold of
Euclidean space and a measure supported on a linear subspace;

• Lott [7] characterized the tangent cone (in the W2-metric) to a probability measure supported
on a smooth submanifold of a Riemannian manifold.

In order to state the results, let us introduce some notation (for more details see Section 2). Let (Mn, g)
be a smooth, complete, n-dimensional Riemannian manifold without boundary. For p = {1, . . . , n},
denote by Hp the p-dimensional Hausdorff measure and consider the space Pc(M,Hp) of probability
measures with compact support which are absolutely continuous with respect to Hp. Given 1 ≤ p ≤ p′ <
∞, the p′-Renyi entropy with respect to Hp is defined as

Sp′(·|Hp) : Pc(M,Hp)→ [−∞, 0], Sp′(µ|Hp) = −
∫
ρ

1− 1
p′ dHp,

where ρ is the density of µ with respect to Hp, i.e. µ = ρHp. Note that in the borderline case p′ = p = 1,
one gets

S1(µ|H1) = −H1(supp(µ)).

The (relative) Shannon entropy is defined by

Ent(·|Hp) : Pc(M,Hp)→ [−∞,∞], Ent(µ|Hp) = lim
ε↓0

∫
{ρ>ε}

ρ log ρ dHp.

This coincides with
∫
{ρ>0} ρ log ρ dHp, provided that

∫
{ρ≥1} ρ log ρ dHp <∞, and Ent(µ|Hp) :=∞ other-

wise. Recall also the definition of the distortion coefficients. Given K ∈ R , we set for (t, θ) ∈ [0, 1]×R+,

σ
(t)
K,1(θ) :=



∞ if Kθ2 ≥ π2,

sin(tθ
√
K)

sin(θ
√
K)

if 0 < Kθ2 < π2,

t if Kθ2 = 0,

sinh(tθ
√
−K)

sinh(θ
√
−K)

if Kθ2 ≤ 0.

A subset Σ ⊂M is said to be countably Hp-rectifiable if, up to a Hp-negligible subset, it can be covered
by countably many p-dimensional Lipschitz submanifolds. We say that a W2-geodesic {µt}t∈[0,1] is
countably Hp-rectifiable if for every t ∈ [0, 1] the measure µt ∈ Pc(M,Hp) is concentrated on a countably
Hp-rectifiable set Σt ⊂ M (see Section 3 for a through discussion of rectifiable W2-geodesics and in
particular Remark 3.7 for a sufficient generic condition of rectifiability).

Our first main result is an optimal transport characterization of sectional curvature upper bounds.

Theorem 1.1 (OT characterization of sectional curvature upper bounds, Theorem 5.2). Let (M, g) be a
complete Riemannian manifold without boundary and let K ≥ 0. Then the following statements (i) and
(ii) are equivalent:

(i) The sectional curvature of (M, g) is bounded above by K.

(ii) Let {µt}t∈[0,1] be a countably H1-rectifiable W2-geodesic, and let Π be the corresponding dynamical
optimal plan. Then, if t0, t1 ∈ (0, 1) and τ(s) = (1− s)t0 + st1, it holds

H1(suppµτ(s)) ≤
∫ [

σ
(1−s)
K,1 (| ˙γ ◦ τ |)ρt0(γ(t0))−1 + σ

(s)
K,1(| ˙γ ◦ τ |)ρt1(γ(t1))−1

]
dΠ(γ), ∀s ∈ [0, 1],

where ρt is the density of µt with respect to H1.

In the case of K = 0 the inequality in (ii) becomes

H1(suppµτ(s)) ≤ (1− s)H1(suppµt0) + sH1(suppµt1), ∀s ∈ [0, 1].
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See Remark 5.3 for the motivation why the upper bound K must be non-negative. Let us also stress
that in the assertion (ii) one cannot relax the assumption to t0, t1 ∈ [0, 1], see Remark 5.4 for a coun-
terexample.

The second main result is an optimal transport characterization of sectional curvature lower bounds.
In order to state it, some more notation must be introduced. First of all, given a Hp-rectifiable W2-
geodesic {µt}t∈[0,1], thanks to the Monge-Mather shortening principle [19, Theorem 8.5] we know that,
for every t ∈ [0, 1], µt = (T t1/2)]µ1/2 with T t1/2 : Σ1/2 → Σt Lipschitz. For µ1/2-a.e. x we can set (see

Lemma 3.10 and Remark 3.11 for the details)

Bx(t) : TxΣ1/2 → Tγx(t)Σt, Bx(t) := DT t1/2(x) ∀t ∈ [0, 1].

In Lemma 3.9 we will prove a Monge-Ampère inequality implying that Bx(t) is invertible. Let γx(t) :=
T t1/2(x) be a geodesic performing the transport and consider

Ux(t) := (∇tBx(t))Bx(t)−1 : Tγx(t)Σt → Tγx(t)M,

U⊥x (t) := [Ux(t)]⊥ : Tγx(t)Σt → (Tγx(t)Σt)
⊥,

where ∇t denotes the covariant derivative along γx(t) in M and ⊥ is the orthogonal projection on the
orthogonal complement (Tγ(t)Σt)

⊥ of Tγ(t)Σt. If |γ̇x| 6= 0, we set

κγx : [0, |γ̇x|]→ R, κγx(|γ̇x| t) |γ̇x|2 :=
∥∥U⊥x (t)

∥∥2
, ∀t ∈ [0, 1],

if |γ̇x| = 0, we set κγx(0) = 0. We now introduce the generalized distortion coefficients σκ associated to
a continuous function κ : [0, θ] → R (cf. [9]). First of all, the generalized sin-function associated to κ,
denoted by sinκ, is defined as the unique solution v : [0, θ]→ R of the equation

v′′ + κv = 0 & v(0) = 0, v′(0) = 1.

The generalized distortion coefficients σ
(t)
κ (θ), for t ∈ [0, 1] and θ > 0, are defined as

σ(t)
κ (θ) :=

{
sinκ(tθ)
sinκ(θ) if sinκ(tθ) > 0 for all t ∈ [0, 1],

∞ otherwise.

In the case κ = K = const one has σ
(t)
κ (θ) = σ

(t)
K,1(θ). It is convenient to also set σ

(·)
κ (0) ≡ 1, κ−(t) =

κ(θ − t) and κ+(t) := κ(t). Finally, consider the Green function g : [0, 1]× [0, 1]→ [0, 1] given by

g(s, t) :=

{
(1− s)t if t ∈ [0, s],

s(1− t) if t ∈ [s, 1].

We can now state the optimal transport characterization of sectional curvature lower bounds.

Theorem 1.2 (OT characterization of sectional curvature lower bounds). Let (M, g) be a complete
n-dimensional Riemannian manifold without boundary and fix K ∈ R.

• If K ≥ 0 the next conditions are equivalent:
(i) M has sectional curvature bounded from below by K.

(ii) Let p ∈ {2, . . . , n} be arbitrary, let {µt}t∈[0,1] be a Hp-rectifiable W2-geodesic and Π be the
corresponding dynamical optimal plan. Then, for any p′ ≥ p, for all t ∈ [0, 1] it holds

Sp′(µt|Hp) ≤ −
∫ [

σ
(1−t)
((p−1)K−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

((p−1)K−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ).

(ii)’ The condition (ii) holds for p = 2.
(iii) Let p ∈ {2, . . . , n} be arbitrary, {µt}t∈[0,1] and Π be as in (ii). Then for all t ∈ [0, 1] it holds

Ent(µt|Hp) ≤ (1− t) Ent(µ0|Hp) + tEnt(µ1|Hp)−
∫ ∫ 1

0

g(s, t) |γ̇|2 ((p− 1)K − κγ(s|γ̇|)) ds dΠ(γ).

(iii)’ The condition (iii) holds for p = 2.
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• If K ≤ 0 the next conditions are equivalent:
(i) M has sectional curvature bounded from below by K.

(ii) Let p ∈ {1, . . . , n} be arbitrary, let {µt}t∈[0,1] be a Hp-rectifiable W2-geodesic and Π be the
corresponding dynamical optimal plan. Then, for any p′ ≥ p, for all t ∈ [0, 1] it holds

Sp′(µt|Hp) ≤ −
∫ [

σ
(1−t)
(K̄−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

(K̄−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ),

where K̄ := min{p, n− 1}K.
(ii)’ The condition (ii) holds for p = 1.
(iii) Let p ∈ {1, . . . , n} be arbitrary, K̄, {µt}t∈[0,1] and Π be as in (ii). Then for all t ∈ [0, 1] it

holds

Ent(µt|Hp) ≤ (1− t) Ent(µ0|Hp) + tEnt(µ1|Hp)−
∫ ∫ 1

0

g(s, t) |γ̇|2 (K̄ − κγ(s|γ̇|)) ds dΠ(γ).

(iii)’ The condition (iii) holds for p = 1.

Note that, in case p = n, the correction term κγ vanishes (indeed it does not appear in the OT
characterization of Ricci curvature lower bounds), but for p < n Theorem 1.2 is sharp in the sense that
one can not suppress κγ (see Remark 6.2); more strongly, for the very same example of Remark 6.2,
all the inequalities involved in the proof Theorem 1.2 become identities (see Remark 6.4), showing the
sharpness of the arguments.

Theorem 1.2 is actually a particular case of Theorem 6.1 (see also Remark 2.3, for the link between
p-Ricci and sectional curvatures) where we characterize lower bounds on the p-Ricci curvature in terms
of optimal transport, for any p ∈ {1, . . . , n}. For the rigorous definition and basic properties of the
p-Ricci curvature we refer to Section 2, here let us just mention the intuitive idea behind: in the standard
Ricci curvature (corresponding in this notation to the n-Ricci curvature), one considers the trace of the
Riemann curvature tensor along all the tangent space to M at some point x ∈ M , while in the p-Ricci
curvature one considers the trace of the Riemann curvature tensor just along p-dimensional subspaces.
The notion of p-Ricci curvature has already been considered in the literature, in particular in connection
with topological results (see for instance the works of Wu [22], Shen [15], Wilhelm [21], Petersen-Wilhelm
[12] and Xu-Ye [23]). Just to fix the ideas, let us recall that if the sectional curvature is bounded below
by K ≥ 0, then the p-Ricci curvature is bounded below by (p− 1)K; if instead the sectional curvature is
bounded below by K ≤ 0, then the p-Ricci curvature is bounded below by min{p, n− 1}K.

The paper is organized as follows: Section 2 settles the notation and the preliminaries. In Section 3 we
analyze Hp-rectifiable W2-geodesics and in Section 4 we perform the Jacobi fields computations/estimates
that will be used to prove the main results. Section 5 is devoted to the proof of Theorem 1.1, namely
the optimal transport characterization of sectional curvature upper bounds. Finally, in Section 6 we
state and prove our main results characterizing sectional and p-Ricci lower bounds in terms of optimal
transportation; as a consequence, we also obtain a new Brunn-Minkowski type inequality involving p-
dimensional submanifolds and the p-Ricci curvature (see Corollary 6.5).
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Differential Geometry Program and MSRI for providing great environment for research and collaboration.
In the final steps of the project, A. M. has been supported by the EPSRC First Grant EP/R004730/1.
We also wish to express our gratitude to Robert McCann for suggesting the Remark 3.7, and to Martin
Kell and Gerardo Sosa for their careful reading of the manuscript.
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2. Preliminaries

Optimal transport and Wasserstein geometry. It is out of the scopes of this short section to give
a comprehensive introduction to optimal transport, for this purpose we refer to [19]. Instead, we will be
satisfied by recalling those notions and results that we will use throughout the paper.

Let (X, d) be a complete, separable and proper metric space. A curve γ : [0, 1] → X is said to be a
(length-minimizing, constant speed) geodesic if

d(γ(s), γ(t)) = |s− t| d(γ(0), γ(1)), ∀s, t ∈ [0, 1].

We denote by Geo(X) := {γ : [0, 1] → X s.t. γ is a geodesic} the family of geodesics equipped with the
L∞-topology. The evaluation map et : Geo(X)→ X is given by et(γ) = γ(t), and it is clearly continuous
with respect to the sup-distance d∞(γ, γ̃) = supt∈[0,1] d(γ(t), γ̃(t)).

Pc(X) denotes the space of Borel probability measures with compact support and P2(X) denotes the
space of Borel probability measures µ with finite second moment, i.e. satisfying

∫
X
d2(x, x0) dµ(x) <∞

for some (and thus for any) x0 ∈ X.
The space P2(X) is naturally endowed with the L2-Wasserstein distance W2 defined by

W2(µ1, µ2)2 := inf

{∫
X×X

d2(x, y)dπ(x, y) s.t. π ∈ Cpl(µ1, µ2)

}
,

where Cpl(µ1, µ2) is the family of all couplings between µ1 and µ2, i.e. of all the probability measures
π ∈ P(X2) such that (Pi)]π = µi, i = 1, 2, P1, P2 being the projection maps. (P2(X),W2) becomes a
separable metric space that is a geodesic metric space provided X is a geodesic metric space.

A coupling π ∈ Cpl(µ1, µ2) is optimal if∫
X2

d(x, y)2dπ(x, y) = W2(µ1, µ2)2.

Optimal couplings always exist, and if an optimal coupling π is induced by a map T : Z → X via
(T, IdX)]µ1 = π, where Z is a measurable subset of X, we say that T is an optimal map. A probability
measure Π ∈ P(Geo(X)) is called an optimal dynamical coupling or plan if (e0, e1)]Π is an optimal
coupling between the initial and final marginal distribution. For every W2-geodesic {µt}t∈[0,1] there
exists an optimal dynamical plan Π ∈ P(Geo(X)) such that µt = (et)]Π for all t ∈ [0, 1].

In the present paper, a key role is played by the subspace P2(X,Hp) ⊂ P2(X) made of probability
measures that are absolutely continuous with respect to the p-dimensional Hausdorff measure Hp. We
also denote with Pc(X,Hp) ⊂ P2(X,Hp) the subspace of absolutely continuous probability measures
with compact support.

In the introduction, for simplicity, we defined the entropy functionals for compactly supported prob-
ability measures; the definitions carry over to probability measures with finite second moment, let us
briefly recall them. Given 1 ≤ p ≤ p′ < ∞, the p′-Renyi entropy with respect to the p-dimensional
Hausdorff measure Hp is defined as

Sp′(·|Hp) : P2(X,Hp)→ [−∞, 0], Sp′(µ|Hp) = −
∫
ρ

1− 1
p′ dHp,

where ρ is the density of µ with respect to Hp, i.e. µ = ρHp. Notice that, by Jensen’s inequality, we have

[−∞, 0] 3 −
(
Hp(suppµ)

)1/p′ ≤ Sp′(µ|Hp).
In particular if ρ is concentrated on a set of finite Hp-measure then Sp′(µ|Hp) > −∞. Note that in the
borderline case p′ = p = 1, one gets

S1(µ|H1) = −H1(supp(µ)).

Finally, the (relative) Shannon entropy is defined by

Ent(·|Hp) : P2(X,Hp)→ [−∞,∞], Ent(µ|Hp) = lim
ε↓0

∫
{ρ>ε}

ρ log ρ dHp.
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This coincides with
∫
{ρ>0} ρ log ρ dHp, provided that

∫
{ρ≥1} ρ log ρ dHp < ∞, and Ent(µ|Hp) := ∞ oth-

erwise.
Rectifiable sets. Let Σ ⊂ Rn and m ∈ N,m ≤ n. We say that Σ is countably m-rectifiable if there is
a countable family of Lipschitz maps fi : Rm → Rn, such that Σ ⊂

⋃
i fi(Rm). The set Σ is countably

Hm-rectifiable if there is a countably m-rectifiable set Σ′ ⊂ Rn such that Hm(Σ\Σ′) = 0.
As it is well known, using Whitney extension Theorem, it is possible to show that a subset Σ ⊂ Rn is

countably Hm-rectifiable if and only if there exists a sequence of m-dimensional C1-submanifolds {Si}i∈N
such that

Hm
(

Σ\
⋃
i∈N

Si

)
= 0.

Clearly, by considering local coordinates (or by Nash isometric embedding Theorem), one can define the
same notions for subsets of an n-dimensional Riemannian manifold.

Intermediate Ricci curvature. Let (M, g) be an n-dimensional Riemannian manifold and let

R : TM × TM × TM → TM, R(X,Y )Z := ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

the Riemannian curvature tensor (of course ∇ denotes the Levi-Civita connection of (M, g) and [·, ·]
denotes the Lie bracket). Sometimes we will use the notation |v| :=

√
g(v, v) and 〈v, w〉 := g(v, w).

Using the standard notation, TxM is the tangent space of M at the point x ∈ M . For a 2-plane
P ⊂ TxM spanned by v, w ∈ TxM , let

Sec(P ) = Sec(v, w) :=
〈R(v, w)v, w〉
|v|2|w|2 − 〈v, w〉2

be the sectional curvature. Recall that, given w ∈ TxM , the Ricci curvature Ric(w,w) is defined by

Ric(w,w) := tr [R(w, ·)w] .

Definition 2.1 (p-Ricci Curvature). Let p ∈ {1, . . . , n}. For a p-dimensional plane P in TxM and a
vector w ∈ TxM , we define the p-Ricci curvature of P in the direction of w as

Ricp(P,w) := tr
[
>P ◦

(
R(w, ·)w

)
|P
]

=

p∑
i=1

Sec(ei, w)(|w|2 − 〈ei, w〉2),(1)

where e1, . . . , ep is an orthonormal basis of P , and >P : TxM → P is the orthogonal projection of TxM
onto P .

Note that, in particular, if |w| = 1 and w is orthogonal to P then

Ricp(P,w) =

p∑
i=1

Sec(ei, w).

It is standard to check that Ricp is well-defined and independent of the choice of a basis for P . Notice
also that, if w /∈ P , then

Ricp(P,w) = Ricp+1(span(P,w), w) = Ricp(span(P,w) ∩ w⊥, w) =

p∑
i=1

Sec(ei, w)|w|2,(2)

where {ei}i=1,...,p is an orthonormal basis of span(P,w)∩w⊥, w⊥ ⊂ TxM being the orthogonal subspace
to w.

Definition 2.2 (p-Ricci upper and lower bounds). We say that (M, g) has p-Ricci curvature bounded
from below (resp. from above) by K if, for any x ∈M and any p-dimensional plane P ⊂ TxM , we have
Ricp(P,w) ≥ K|w|2 (resp. Ricp(P,w) ≤ K|w|2); in this case we write Ricp ≥ K (resp. Ricp ≤ K).

Remark 2.3 (Some notable cases). The cases p = 1, 2 are strictly linked with the sectional curvature
while p = n− 1, n are related to the standard Ricci curvature. More precisely



SECTIONAL AND INTERMEDIATE RICCI BOUNDS VIA OPTIMAL TRANSPORT 7

• p = 1: if P is the real line spanned by v, 〈v, w〉 = 0, |v| = |w| = 1, then

Ric1(P,w) = Sec(v, w);

on the other hand Ric1(P, v) = 0, i.e. the 1-Ricci curvature always vanishes in the direction
of P itself. In particular no Riemannian manifold has 1-Ricci curvature bounded from below
(resp. above) by a strictly positive (resp. negative) constant. Nevertheless M has non-negative
(resp. non-positive) 1-Ricci curvature if and only if the sectional curvature is non-negative (resp.
non-positive).

• p = 2: if P is the 2-plane spanned by the orthonormal vectors e1, e2 then

(3) Ric2(P, e1) = Ric2(P, e2) = Sec(e1, e2).

Moreover, if w is orthogonal to P with |w| = 1 then

Ric2(P,w) = Sec(e1, w) + Sec(e2, w).

In particular for every K ≥ 0 (resp. K ≤ 0), it holds Ric2 ≥ K (resp. Ric2 ≤ K) if and only if
Sec ≥ K (resp. Sec ≤ K). Note also that if Sec ≥ K ≥ 0 then for every p ∈ {2, . . . , n} it holds
Ricp ≥ (p− 1)K.

• p = n− 1: if P is an n− 1-plane and w is orthogonal to P , then

Ricn−1(P,w) = Ric(w,w).

• p = n: in this case one has P = TxM , and for every w ∈ TxM it holds

Ricn(TxM,w) = Ric(w,w).

• If Sec ≥ K, depending on the sign of K ∈ R we have:
· Sec ≥ K ≥ 0 implies that Ricp ≥ (p− 1)K, for all p ∈ {1, . . . , n}
· Sec ≥ K with K ≤ 0 implies that Ricn ≥ (n− 1)K and Ricp ≥ pK for all p ∈ {1, . . . , n− 1}.

3. Countably Hp-rectifiable geodesics in Wasserstein space

The next result is a well known consequence of the Monge-Mather shortening principle [19, Theorem
8.5].

Theorem 3.1. Consider a Riemannian manifold (M, g), fix a compact subset E ⊂⊂ M and let Π be a
dynamical optimal plan such that (et)]Π is supported in E for every t ∈ [0, 1].

Then Π is supported on a set of geodesics S ⊂ Geo(M) satisfying the following: for every t0 ∈ (0, 1)
there exists CE(t0) > 0 such that for any two geodesics γ, η ∈ S it holds

sup
t∈[0,1]

d(γ(t), η(t)) ≤ CE(t0) d(γ(t0), η(t0)),

where d is the Riemannian distance on (M, g).

Remark 3.2. As a consequence of Theorem 3.1, if {µt}t∈[0,1] is a W2-geodesic such that µ0, µ1 are com-
pactly supported probability measures on M , and t0 ∈ (0, 1) is given, then for any t ∈ [0, 1] the map
T tt0 : γ(t0) 7→ γ(t) is well-defined µt0-almost everywhere and Lipschitz continuous on its domain; more-
over it is the unique optimal transport map between µt0 and µt. In other words, the optimal coupling
(et0 , et)]Π is induced by T tt0 , i.e. (et0 , et)]Π = (Id, T tt0)]µt0 .

Lemma 3.3. Let (M, g) be a complete n-dimensional Riemannian manifold without boundary, and let
p ∈ {1, . . . , n}. Let µ0, µ1 ∈ Pc(M,Hp) and assume {µt}t∈[0,1] is a W2-geodesic between µ0, µ1 such that
for some t0 ∈ (0, 1) the measure µt0 is concentrated on a countably Hp-rectifiable set Σt0 ⊂M .

Then for every t ∈ [0, 1] there exists a countably Hp-rectifiable set Σt ⊂M such that µt is concentrated
on Σt; moreover µt = ρtHpxΣt ∈ Pc(M,Hp) for a suitable probability density ρt ∈ L1(M,Hp).

Proof. Step 1. By Theorem 3.1 and Remark 3.2 we know that for every t ∈ [0, 1] there exists a Lipschitz
map T tt0 : suppµt0 → suppµt such that µt = (T tt0)]µt0 . Since by assumption µt0 is concentrated on the
countably Hp-rectifiable set Σt0 , it is then clear that µt is concentrated on Σt := T tt0(Σt0) which is count-
ably Hp-rectifiable set too, as Lipschitz image of a countably Hp-rectifiable set. In order to conclude that
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µt = ρtHpxΣt ∈ Pc(M,Hp) it is then enough to show that µt(A) = 0 for every A ⊂ suppµt satisfying
Hp(A) = 0. This will be proved in Step 3, using the discussion of Step 2.

Step 2. Consider µ0, µ1 ∈ Pc(M,Hp) and write µi = ρiHp for i = 0, 1. Let Π ∈ P(Geo(M)) a
dynamical optimal plan between µ0 and µ1, and let {µt := (et)]Π}t∈[0,1] be the induced L2-Wasserstein

geodesic. We denote with πt,s = (et, es)]Π the corresponding optimal coupling between µt and µs for any
t, s ∈ [0, 1]. Since µ0 and µ1 have compact support, then there exists a compact subset E ⊂⊂ M such
that suppµt ⊂ E for every t ∈ [0, 1].

By Theorem 3.1, the dynamical optimal plan Π is supported on set S ⊂ Geo(M) satisfying the
following: for any t ∈ (0, 1) there exists CE(t) > 0 such that for any s ∈ [0, 1] it holds

d(γ(s), η(s)) ≤ CE(t) d(γ(t), η(t)) for any pair γ, η ∈ S.(4)

As observed in Remark 3.2, the optimal plan πt,s is then induced by a Lipschitz-continuous optimal
transport map T st : suppµt → suppµs with Lipschitz constant bounded above by CE(t). In particular
(T st )]µt = µs.

Step 3. Let t ∈ (0, 1), and consider πt,0 := (et, e0)]Π. Our goal is to show that if A ⊂ suppµt
satisfyies Hp(A) = 0, then µt(A) = 0 as well. Since by Step 2 the plan πt,0 is induced by the map T 0

t ,
we have

(5) µt(A) = πt,0(A,M) = πt,0(A, T 0
t (A)).

On the other hand

(6) πt,0(A, T 0
t (A)) ≤ πt,0(M,T 0

t (A)) = µ0(T 0
t (A)).

Since T 0
t : suppµt → suppµ0 is Lipschitz and Hp(A) = 0, then it also holds Hp(T 0

t (A)) = 0. Recalling
that by assumption µ0 � Hp, we then get that µ0(T 0

t (A)) = 0. The claim follows then by the combination
of (6) and (5). �

Definition 3.4. We say that a W2-geodesic {µt}t∈[0,1] is countably Hp-rectifiable if for every t ∈ [0, 1]
the measure µt ∈ Pc(M,Hp) is concentrated on a countably Hp-rectifiable set Σt ⊂M .

Remark 3.5. By Lemma 3.3, a W2-geodesic {µt}t∈[0,1] is countably Hp-rectifiable if and only if µ0, µ1 ∈
P2
c (M,Hp) and there exists t0 ∈ (0, 1) such that the measure µt0 is concentrated on a countably Hp-

rectifiable set Σt0 ⊂M .

Remark 3.6. Note that, in Definition 3.4, one can replace Σt by Σt ∩ suppµt; thus from now on we will
always tacitly assume that Σt = Σt ∩ suppµt, for all t ∈ [0, 1]. Also, since for s ∈ (0, 1) and t ∈ [0, 1] the
optimal transport map T ts given in Remark 3.2 is well defined µs-a.e., from now on we will just consider
the restriction T tsxΣs and, for simplicity of notation, write T ts to indicate the map T tsxΣs : Σs → T ts(Σs).
Note that, with this notation, for µs-almost every x, the differential DT ts(x) is a linear map from the
p-dimensional space TxΣs to the q-dimensional space TT ts (x)(T

t
s(Σs)), q ≤ p (q possibly depending on x).

Remark 3.7 (A sufficient condition for the p-rectifiability of µt). The following sufficient condition for the
p-rectifiability of the geodesic µt follows by combining the work of McCann-Pass-Warren [10, Theorem
1.2] with Lemma 3.3.

Given p ∈ {1, . . . , n}, let µ0, µ1 ∈ Pc(M,Hp) with µi = ρiHpxΣi, for some smooth p-dimensional
submanifolds Σi, i = 1, 2. Consider the restriction of the quadratic cost function d2 to the product
Σ0 × Σ1; if

(7) det

[(
∂2

∂xi∂yj
d2 |Σ0×Σ1

)
i,j=1,...,p

]
6= 0

and moreover

(8) Σ0 ∩
( ⋃
x∈Σ1

Cut(x)
)

= ∅ and Σ1 ∩
( ⋃
x∈Σ0

Cut(x)
)

= ∅,
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where Cut(x) is the cut locus of the point x ∈M , then every W2-geodesic {µt}t∈[0,1] between µ0 and µ1

satisfies that µt = ρtHpxΣt ∈ Pc(M,Hp) for every t ∈ [0, 1] for a countably Hp-rectifiable set Σt ⊂M .
Indeed, calling π the L2-optimal coupling induced by the geodesic {µt}t∈[0,1], by using (7) we can

apply [10, Theorem 1.2] and get that π is supported on a p-dimensional Lipschitz submanifold S of
Σ0 ×Σ1 ⊂M ×M . Using now (8), we get that for every (x, y) ∈ Σ0 ×Σ1 there exists a unique geodesic
t 7→ γt(x, y) from x = γ0(x, y) ∈ Σ0 to y = γ1(x, y) ∈ Σ1; moreover the map γt(·, ·) : Σ0×Σ1 →M ×M is
Lipschitz, for every fixed t ∈ [0, 1]. Calling Σt := γt(S) we get that µt is concentrated on the p-rectifiable
subset Σt. The fact that we can write µt = ρtHpxΣt for some density ρt ∈ L1(Hp) follows then by
Lemma 3.3.

Remark 3.8. For fixed s and t, pick a (resp. orthonormal) basis (ei)i=1,...,p of TxΣs ⊂ TxM , and also a
(resp. orthonormal) basis (fi)i=1,...,n of TT ts (x)M such that (fi)i=1,...,q is a basis of TT ts (x)(T

t
s(Σs)). We

can then see DT ts(x) as a linear map from Rp to Rp (if q < p just identify Rq with {(x1, . . . , xp) : x1 =
. . . = xp−q = 0}). Since the rank and the determinant are independent of the chosen basis, det[DT ts(x)]
and the fact that DT ts(x) is non-degenerate are then well defined concepts.

In the next lemma we show that the optimal transport map T ts is differentiable µs-a.e. on Σs and that
at least an inequality holds in the Monge-Ampère equation (cf. [3]); this will be sufficient (and crucial)
to our aims of characterizing curvature bounds in terms of optimal transport.

Lemma 3.9. Let M be a complete Riemannian manifold and {µt}t∈[0,1] a W2-geodesic with µt �
HpxΣt ∈ Pc(M,Hp) for some countably Hp-rectifiable subset Σt ⊂ M , for every t ∈ [0, 1]. For fixed
s ∈ (0, 1) and t ∈ [0, 1], let T ts be the optimal transport map from µs to µt given in Remark 3.2.

Then T ts : Σs → T ts(Σs) ⊂ M is differentiable µs-a.e. and the following Monge-Ampère inequality
holds:

(9) ρs(x) ≤ det[DT ts(x)] ρt(T
t
s(x)) µs-a.e. x, ∀s ∈ (0, 1), ∀t ∈ [0, 1].

In particular, DT ts : Rp → Rp is µs-a.e. non-degenerate. Moreover (9) holds with equality if t, s ∈ (0, 1).

Let us stress that in the above lemma we do not claim that T ts is µs-a.e. differentiable as a map
from M to M , but just as a map from Σs to its image, i.e. we claim differentiability with respect to
infinitesimal variations which are tangential to Σs.

Proof. Step 1. Differentiabiliy µs-a.e..
From Theorem 3.1 and Remark 3.2, we know that T ts : Σs → T ts(Σs) is a Lipschitz map; since by
assumption Σs is countably Hp-rectifiable, Rademacher Theorem implies that T ts : Σs → T ts(Σs) is
differentiable Hp-a.e. .

Step 2. Monge-Ampère inequality.
Since by construction (T ts)]µs = µt, it follows that for an arbitrary Borel subset A ⊂ Σs it holds

(10) µs(A) ≤ µs
(
(T ts)−1(T ts(A))

)
= µt

(
T ts(A)

)
.

Equality holds for s, t ∈ (0, 1) as the map T ts is µs-essentially injective. Recalling that µs = ρsHpxΣs
and µt = ρtHpxΣt, by the area formula we infer that

µt
(
T ts(A)

)
=

∫
T ts (A)

ρt dHpxΣt

≤
∫
T ts (A)

ρt(y)H0((T tsxA)−1(y)) dHpxΣt(y) =

∫
A

ρt(T
t
s(x)) det

[
DT ts(x)

]
dHpxΣs(x),(11)

with equality if s, t ∈ (0, 1) as the map T ts is µs-essentially injective. The combination of (10) and (11)
gives that for an arbitrary Borel subset A ⊂ Σs it holds∫

A

ρs dHp = µs(A) ≤ µt(T ts(A)) ≤
∫
A

ρt(T
t
s) det

[
DT ts

]
dHp,

and the Monge-Ampère inequality (9) follows, with equality for s, t ∈ (0, 1). �
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In order to have a more clear notation, in the next lemma we pick s = 1/2 and consider the Lipschitz
map T t1/2 : Σ1/2 → Σt, t ∈ [0, 1], but the same arguments hold for any fixed s ∈ (0, 1). For µ1/2-a.e. x ∈M
let γx ∈ Geo(M) be the geodesic defined by [0, 1] 3 t 7→ γx(t) := T t1/2(x) and, for µ1/2-a.e. x ∈ Σ1/2

let v(x) ∈ TxM be such that γx(t) = expx((t − 1
2 ) v(x)), that is v(x) = γ̇x( 1

2 ). Denote also with ∇t the
covariant derivative in M in the direction of γ̇x(t) and with Dt = > ◦ ∇t where > : Tγx(t)M → Tγx(t)Σt
is the orthogonal projection map.

Lemma 3.10. The map M 3 x 7→ v(x) ∈ TM is well defined and differentiable µ1/2-a.e. . As a
consequence we can find a subset N ⊂ Σ1/2 (independent of t ∈ [0, 1] ) with µ1/2(N) = 0, such that for
every t ∈ [0, 1] the map T t1/2 : Σ1/2 → Σt is differentiable at every x ∈ Σ1/2 \N .

Moreover, up to replacing N with a larger set of null µ1/2-measure, for every x ∈ Σ1/2 \ N the map
t 7→ DxT

t
1/2 : TxΣ1/2 → TT t

1/2
(x)Σt is differentiable at t = 1/2 and Dt|t=1/2DxT

t
1/2 : TxΣ1/2 → TxΣ1/2 is

self-adjoint.

Proof. Step 1: the map v(·) : Σ1/2 \N → TM is well defined.
In a first instance let N ⊂ Σ1/2, with µ1/2(N) = 0, be such that for every x ∈ Σ1/2 \ N the curve

t 7→ γx(t) := T t1/2(x) is a well defined geodesic. In particular, the curve t 7→ γx(t) is C1 and we can set

v(x) = γ̇x( 1
2 ); this is clearly well defined as a map from Σ1/2 \N to TM . Note moreover that, since by

standing assumption µ0 and µ1 (and therefore all the measures µt) have compact support, we have

(12) µ1/2−ess supx∈Σ1/2
|v(x)| ≤ 1

2
sup

(x,y)∈suppµ0×suppµ1

d(x, y) =: Cµ0,µ1
<∞.

Step 2: the map v(·) : Σ1/2 \N → TM is differentiable.
First of all, note that there exists δ > 0 small enough so that TxM ⊃ BCµ0,µ1 (0) 3 w 7→ expx(tw) is a

diffeomorphism onto its image for every t ∈ (−δ, δ) and every x ∈ Σ1/2. Fix x0 ∈ Σ1/2 \ N . Since by

Lemma 3.9 the map T
(1+δ)/2
1/2 is differentiable µ1/2-a.e., it follows that also the map

BδCµ0,µ1 (x0) ∩ Σ1/2 \N → TM, x 7→ v(x) :=
2

δ
exp−1

x

(
T

(1+δ)/2
1/2 (x)

)
is differentiable µ1/2-a.e.. Therefore, up to redefining the µ1/2-negligible set N , the claim is proved.
Notice that in particular the map

(13) T t1/2(x) = expx(tv(x)) is differentiable everywhere on Σ1/2 \N for every t ∈
(1− δ

2
,

1 + δ

2

)
.

Step 3: the map T t1/2 : Σ1/2 \N → Σt is differentiable for every t ∈ [0, 1].

By construction we have that T t1/2(x) = expx(tv(x)) and, using again that µ0 and µ1 have compact

support, we know that there exists a compact subset E ⊂⊂ M such that T t1/2(Σ1/2) ⊂ E for every

t ∈ [0, 1]. In particular, there exists δ > 0 small enough such that, for every x0 ∈ E, the exponential map

exp(·)(·) : BδCµ0,µ1 (x0)×BδCµ0,µ1 (0)→M

is smooth, where Cµ0,µ1 was defined in (12).

Let tj := 1
2 + δ

2j, for j = −b 1
δ c, . . . , 0, . . . , b

1
δ c, be a δ

2 -grid in [0, 1] centered at 1/2; for convenience choose

δ /∈ Q so that 1
2 + δ

2b
1
δ c < 1. By repeating the same argument of step 2 and replacing 1/2 by tj in (13),

we get that for every j = −b 1
δ c, . . . , 0, . . . , b

1
δ c there exists a subset Nj ⊂ Σtj with µtj (Nj) = 0 such that

T ttj is differentiable everywhere on Σtj \Nj for every t ∈ (tj−1, tj+1).

Since by Lemma 3.9 the maps T
ti+1

ti : suppµti → suppµti+1 are bi-Lipschitz and since µt is equivalent to
Hpx(Σt ∩ {ρt > 0}) for every t ∈ [0, 1], we get that

N+ := N0 ∪
[
(T t11/2)−1(N1)

]
∪
[
(T t2t1 ◦ T

t1
1/2)−1(N2)

]
∪ . . . ∪

[
(T tb 1δ c

◦ . . . ◦ T t2t1 ◦ T
t1
1/2)−1(Nb 1δ c)

]
satisfies µ1/2(N+) = 0. Defining analogously N− by considering tj ≤ 1

2 and setting N = N+ ∪N− we get
that µ1/2(N) = 0.

Fix now an arbitrary t ∈ [1/2, 1] and let j0 := max{j : tj ≤ t}. Since we can write T t1/2 = T ttj0 ◦ . . .◦T
t2
t1 ◦
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T t11/2, it follows that T t1/2 : Σ1/2 \ N → Σt is differentiable everywhere, as composition of differentiable

functions. The argument for t ∈ [−1, 1/2] is completely analogous, so the lemma is proved.
Step 4: the map t 7→ DxT

t
1/2 : TxΣ1/2 → T

T
1/2
t (x)

Σt is differentiable at t = 1/2 and Dt|t=1/2DxT
t
1/2 :

TxΣ1/2 → TxΣ1/2 is self-adjoint.
Recall that the transport geodesics γx(t) := T t1/2(x) are precisely the gradient flow curves of the

corresponding Hamilton-Jacobi shift φt = Htφ of a d2-Kantorovich potential φ from µ0 to µ1. Note in
particular that, for t ∈ (0, 1], φt is semi-concave. Moreover, φ1/2 is differentiable in x and admits a
gradient ∇φ1/2 in the classical sense with ∇φ1/2(x) = γ̇x(1/2) (page 61 in [13]). In particular, φ1/2 is
differentiable µ1/2-a.e. .

By construction, ∇φ1/2 coincides µ1/2-a.e. with the vector field v defined above and v is also differ-
entiable on Σ1/2 \ N as vector field along Σ1/2. For every x ∈ Σ1/2 \ N denote Ax : TxΣ1/2 → TxΣ1/2,

Axw := Dwv(x) := (∇wv(x))>. For any fixed x ∈ Σ1/2 \ N , thanks to the semi-concavity of φ1/2 and
the differentiability of v : Σ1/2\N → TM we can follow the proof of [14, Theorem 2.8] to show that
the second derivatives of φ1/2 in x tangential to Σ1/2 exist, and the following Taylor expansion holds for

every curve λ(t) ∈ Σ1/2 with λ(0) = x and λ̇(0) = w ∈ TxΣ1/2:

φ1/2(λ(t)) = φ1/2(λ(0)) + t〈∇φt(λ(0)), w〉+
t2

2
〈Axw,w〉+ o(t2).(14)

Though [14] only considers the case of convex functions in Rn, it is clear that the proof works as well
in the context of Riemannian manifolds and semi-concave functions. Finally, the Taylor expansion (14)
implies that Ax must be self-adjoint.
In order to conclude the proof, observe that (0, 1) 3 t 7→ DT t1/2(x) is C1 and that, by the symmetry of

second order derivatives of distributions, for µ1/2-a.e. x ∈ Σ1/2 it holds

Dt|t=1/2(DT t1/2(x)) = D(∇t|t=1/2T
t
1/2(x)) =: Dw := Ax.

�

Remark 3.11. Let {µt}t∈[0,1] be a countably Hp-rectifiable W2-geodesic, s ∈ (0, 1), and x ∈ Σs \N where
N ⊂ Σs with µs(N) = 0 is given by Lemma 3.10. Since a countably Hp-rectifiable set has p-dimensional
euclidean tangent spaces Hp-a.e., without loss of generality we can assume that for every x ∈ Σs \ N
it holds dimTxΣs = p. Choose an orthonormal basis (e1, . . . , ep) of TxΣs and consider the vector fields
J1, . . . , Jp : [0, 1]→ Tγx(t)M along the geodesic γx : [0, 1]→M defined by

Ji(t) :=
(
DT ts(x)

)
[ei] =

(
D(exp(·)(tv(·)))(x)

)
[ei], ∀i = 1 . . . , p, ∀t ∈ [0, 1]

where v(x) was defined before in Lemma 3.10. A standard computation of Riemannian geometry shows
that the map t 7→ Ji(t) satisfies the Jacobi equation

∇t∇tJi +R(γ̇x, Ji)γ̇x = 0, ∀i = 1, . . . , p, on [0, 1],

where ∇t is the covariant derivative of vector fields along γx at the point γx(t). In other words, Ji is a
Jacobi field. We then set

(15) Bx(t) : TxΣs → Tγx(t)M, Bx(t) := DT ts(x) ∀t ∈ [0, 1], ∀x ∈ Σs \N.
The combination of Lemma 3.9 and Lemma 3.10 yields that Bx(t) is non-degenerate for every t ∈ [0, 1]
for µs-almost every x ∈ Σs. So in particular, for µs-a.e. x we have that dim[Im[DT ts(x)]] = p and
{Ji(t)}i=1,...,p is a basis of Im[DT ts(x)] for everyt ∈ [0, 1]. We can (and will) consider Bx(t) as a map from

TxΣs to Tγx(t)Σt. Finally, we also proved that DtBx(t)|t=s : TxΣs → TxΣs is self-adjoint for µs-almost
every x ∈ Σs.

4. Jacobi fields computations

Let (M, g) be a complete Riemannian manifold without boundary, and let γ : [0, 1]→M be a minimizing,
constant speed geodesic with γ(0) = x. Moreover, let {ei}i=1,...,p be orthonormal vectors in TxM , and
let Jei : [0, 1] → TM be non-vanishing Jacobi fields along γ with Ji(0) = ei and J ′i(0) = fi, for some
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fi ∈ TxM to be specified later. We denote with Tγ(t)Σt ⊂ Tγ(t)M the span of {Jei(t)}i=1,...,p for

each t ∈ [0, 1], and with v> the orthogonal projection of a vector v ∈ Tγ(t)M to the subspace Tγ(t)Σt.

Similarly, v⊥ is its projection to the orthogonal complement (Tγ(t)Σt)
⊥ of Tγ(t)Σt. We also denote with

> : Tγ(t)M → Tγ(t)Σt the orthogonal projection map.

Lemma 4.1. Define the vector fields Ei : [0, 1] → Tγ(t)Σt, i = 1, . . . , p, along γ with values in⋃
t∈[0,1] Tγ(t)Σt as the solution of

(16) (∇tEi)> = 0, with Ei(0) = ei,

where ∇t is the covariant derivative of vector fields along γ at the point γ(t). Then {Ei(t)}i=1,...,p is an

orthonormal basis for Tγ(t)Σt for every t ∈ [0, 1].

Proof. The existence and uniqueness of Ei : [0, 1] → Tγ(t)Σt solving (16) is standard as it corresponds
to solve a system of first order linear homogeneous ODEs with Cauchy conditions. By definition of Ei,
i = 1, . . . , p we have

d

dt
〈Ei, Ej〉 = 〈∇tEi, Ej〉+ 〈Ei,∇tEj〉 = 〈(∇tEi)>, Ej〉+ 〈Ei, (∇tEj)>〉 = 0.

Hence, 〈Ei, Ej〉 is constant along γ, and since Ei(0) = ei, i = 1, . . . , p, is an orthonormal basis of Tγ0Σ0

the claim follows. �

In the following we denote Dt := >◦∇t. For Ei as in Lemma 4.1, by construction we have DtEi = 0.
Let B(t) : Tγ(0)Σ0 → Tγ(t)M be the 1-parameter family of linear maps defined via B(t)ei = Jei(t),

and consider ∇tB(t) : Tγ0Σ0 → Tγ(t)M given by (∇tB(t))ei = ∇tJei . If we consider B(t) as a map from
Tγ(0)Σ0 to Tγ(t)Σt, its derivative DtB(t) defined by [DtB(t)] ei = DtJei is a map from Tγ0Σ0 to Tγ(t)Σt
as well. Moreover, since {Jei}i=1,...,p are Jacobi fields in M , the Jacobi equation yields

∇t∇tB(t) +R(γ̇t, B(t))γ̇t = 0.(17)

In the rest of the section we are going to work under the assumption that B(t) : Tγ(0)Σ0 → Tγ(t)Σt is
invertible for all t ∈ [0, 1], in fact that will be satisfied in the optimal transport application of the next
section thanks to Lemma 3.9. It will be convenient to consider the operators:

U(t) := (∇tB(t))B(t)−1 : Tγ(t)Σt → Tγ(t)M(18)

U>(t) := [U(t)]> = (DtB(t))B(t)−1 : Tγ(t)Σt → Tγ(t)Σt.(19)

U⊥(t) := [U(t)]⊥ : Tγ(t)Σt → (Tγ(t)Σt)
⊥.(20)

Lemma 4.2. Let Ji := Jei and Ei, i = 1, . . . , p be as above. Then

Tγ(t)Σ
⊥
t 3 ∇tEi(t) = U⊥(t)Ei.

Proof. First, we write Ji =
∑p
j=1〈Ji, Ej〉Ej and set Aij = 〈Ji, Ej〉 where the matrix A := (Aij)i,j ∈

GLn(R). Let A−1 be its inverse. We compute

∇tJi(t) =

p∑
j=1

〈∇tJi(t), Ej(t)〉Ej(t) +

p∑
j=1

〈Ji(t),∇tEj(t)〉Ej(t) +

p∑
j=1

〈Ji(t), Ej(t)〉∇tEj(t),

where the second sum on the right hand side vanishes since (∇tEj(t))> = 0. Rearranging terms and
multiplying by A−1 yields for k = 1, . . . , p

p∑
i=1

(A−1)ki(∇tJi(t))⊥ =

p∑
i=1

(A−1)ki

∇tJi(t)− p∑
j=1

〈∇tJi(t), Ej(t)〉Ej(t)


=

p∑
i=1

(A−1)ki

 p∑
j=1

〈Ji(t), Ej(t)〉∇tEj(t)

 =

p∑
i=1

p∑
j=1

(A−1)kiAij∇tEj(t) = ∇tEk(t).
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Now, we recall that ∇tJi = ∇tJEi = ∇tJB−1(t)Ji = U(t)Ji. Therefore

∇tEk(t) =

p∑
i=1

(A−1)ki (∇tJi(t))⊥ =

p∑
i=1

(A−1)ki [U(t)Ji]
⊥

=

[
U(t)

(
p∑
i=1

(A−1)kiJi

)]⊥
= [U(t)Ek(t)]⊥,

as desired. �

Lemma 4.3. Let B(t) : Tγ(0)Σ0 → Tγ(t)Σt, t ∈ [0, 1], be as above, and B(t)−1 : Tγ(t)Σt → Tγ0Σ0. Then

Dt[B(t)−1] = −B(t)−1(DtB(t))B(t)−1.(21)

Proof. Let {Ei}i=1,...,p be as in the previous lemma. Then, we obviously have B(t)B(t)−1Ei(t) = Ei(t)
for any i = 1, . . . , p. Applying Dt yields

(DtB(t))B(t)−1Ei(t) +B(t)(Dt(B(t)−1))Ei(t) +B(t)B(t)−1(DtEi(t)) = DtEi(t) = 0.

Rearranging the terms and applying B(t)−1 from the left of both sides yields the claim. �

The next proposition expresses the “p-dimensional volume distortion” along the geodesic γ in terms
of the p-Ricci curvature and will be crucial for proving the characterization of lower curvature bounds in
terms of optimal transport in the next section.

Proposition 4.4. Let U(t),U(t)>,U(t)⊥ be defined in (18), (19), (20). Then it holds

∇tU(t) + U(t)U>(t) +R(γ̇t, ·)γ̇t = 0.

Taking the trace along Tγ(t)Σt yields

tr(DtU(t)) + tr((U>(t))2) + Ricp(Tγ(t)Σt, γ̇) = 0,

and moreover

tr(U>(t))′ + tr((U>(t))2) + Ricp(Tγ(t)Σt, γ̇(t)) = ‖U⊥(t)‖2.(22)

If DtB(t)|t=0 : Tγ(0)Σ0 → Tγ(0)Σ0 is self-adjoint then U>(t) : Tγ(t)Σt → Tγ(t)Σt is self-adjoint for all
t ∈ [0, 1] and, setting y(t) = log detB(t), it holds

(23) y′′(t) +
1

p
y′(t)2 + Ricp(Tγ(t)Σt, γ̇(t))− ‖U⊥(t)‖2 ≤ 0.

Remark 4.5. In case p = dim(M) then U>(t) = U(t), U⊥(t) = 0 and Ricp(Tγ(t)Σt, γ̇(t)) = Ric(γ̇(t), γ̇(t)),
so that Proposition 4.4 recovers the classical Jacobian estimates expressing the volume distortion along
a geodesic in terms of Ricci curvature (see for instance [4, Lemma 3.1]).

Proof. First of all, there is a natural extension of B(t) (and of ∇tB(t)) to maps from the whole Tγ(0)M

just by composing with the orthogonal projection into Tγ(0)Σ0, i.e. for v ∈ Tγ(0)M we consider B(t)v>.
Differentiating the identity > ◦ > = > gives ∇t> ◦ > + > ◦ ∇t> = ∇t>; left and right composing with
>, yields > ◦ ∇t> ◦ > = 0. Therefore, using (17) and (21), we get

∇t [U(t)] = [∇t∇tB(t)]B(t)−1 +∇tB(t)(> ◦ ∇t> ◦ >)B(t)−1 +∇tB(t)[∇tB(t)−1]>

= −R(γ̇(t), ·)γ̇(t) +∇tB(t)[DtB(t)−1] = −R(γ̇(t), ·)γ̇(t)−∇tB(t)B(t)−1DtB(t)B(t)−1

= −R(γ̇(t), ·)γ̇(t)− U(t)U>(t).

Taking the trace along Tγ(t)Σt yields the second identity. To get the identity (22), observe that trU>(t) =∑p
i=1〈U(t)Ei(t), Ei(t)〉 and

〈U(t)Ei(t), Ei(t)〉′ = 〈[DtU(t)]Ei(t), Ei(t)〉+ 〈U(t) [DtEi(t)] , Ei(t)〉+ 〈U(t)Ei(t),∇tEi(t)〉 .

Since DtEi = (∇tEi)> = 0 and ∇tEi = (∇tEi)⊥, we conclude that

(trU>(t))′ = tr(DtU(t)) +

p∑
i=1

〈U(t)Ei(t),∇tEi(t)〉 = tr(DtU(t)) +

p∑
i=1

〈(U(t)Ei(t))
⊥,∇tEi(t)〉.
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In particular let us explicitly observe that, in general, tr(DtU(t)) 6= tr(U>(t))′. The claimed identity (22)
follows by observing that ‖U(t)⊥‖2 =

∑p
i=1〈(U(t)Ei(t))

⊥,∇tEi(t)〉.
The rest of the proof is devoted to show (23). Setting y(t) = log detB(t), we have that

y′(t0) =
d

dt

∣∣∣∣
t=t0

log det
(
B(t)B(t0)−1

)
=

d

dt

∣∣∣∣
t=t0

log det
[(
〈B(t)B(t0)−1Ei(t), Ej(t)〉

)
i,j

]
= tr

[
(DtB(t))B(t0)−1

]
|t=t0 + 2

p∑
i=1

〈DtEi(t), Ei(t)〉|t=t0

= tr
[
(DtB(t))B(t0)−1

]
|t=t0 = tr(U>(t0)),(24)

since by construction DtEi(t) = 0.
We next claim that, under the assumption that DtB(t)|t=0 is self-adjoint, then

(25) U>(t) : Tγ(t)Σt → Tγ(t)Σt is self-adjoint for all t ∈ [0, 1].

To this aim, calling (U>(t))∗ the adjoint operator, we observe that

(26) (U>(t))∗ − U>(t) = (B(t)∗)−1 [(DtB(t)∗)B(t)−B(t)∗(DtB(t))]B(t)−1,

and that

(27) Dt [(DtB(t)∗)B(t)−B(t)∗(DtB(t))] = (D2
tB(t)∗)B(t)−B(t)∗(D2

tB(t)).

Now, combining the Jacobi equation (17) with the identity > ◦ ∇t> ◦ > = 0 proved at the beginning of
the proof, we have

D2
tB(t) = >∇t (>∇tB(t)) = >

(
∇2
tB(t)

)
+>(∇t>)>∇tB(t) = >

(
∇2
tB(t)

)
= − (R(γ̇(t), B(t))γ̇(t))

>
= −R(t)B(t),(28)

where

(29) R(t) : Tγ(t)Σt → Tγ(t)Σt, R(t)[v] := [R(γ̇(t), v)γ̇(t)]
>

is self-adjoint; indeed, in the orthonormal basis {Ei(t)}i=1,...,p, it is represented by the symmetric matrix
〈R(γ̇(t), Ei(t))γ̇(t), Ej(t)〉. Plugging (28) into (27), we obtain that (DtB(t)∗)B(t) − B(t)∗(DtB(t)) is
constant in t and thus vanishes identically, since by assumption B(0) = Id and DtB(t)|t=0 is self-adjoint.
Taking into account (26), this concludes the proof of the claim (25).
Using that U>(t) is a self-adjoint operator over a p-dimensional space, by Cauchy-Schwartz inequality,
we have that

(30) tr
[
(U>(t))2

]
≥ 1

p

(
tr
[
U>(t)

])2
.

The desired estimate (23) then follows from the combination of (22), (24) and (30). �

In the final part of the section we specialize to the case p = 1, giving the self-contained easier arguments.

Proposition 4.6. Assume p = 1, let J := Je1 and E := E1 be as above. In particular, dimTγ(t)Σt = 1

for every t ∈ [0, 1], and E = |J(t)|−1J(t). Then

∇tE(t) = |J(t)|−1(∇tJ(t))⊥.(31)

Proof. We compute ∇tE as follows

∇tE(t) =
(
|J(t)|−1

)′
J(t) + |J(t)|−1∇tJ(t).

Since (
|J |−1

)′
=
(
〈J, J〉− 1

2

)′
= −|J |−3〈J,∇tJ〉 = −|J |−2〈E,∇tJ〉,

we get

∇tE = −|J |−1〈E,∇tJ〉E + |J |−1∇tJ = |J |−1(∇tJ)⊥.

�
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Corollary 4.7. Assume p = 1, and consider U>(t) as above. Then, we have

〈U>(t)E(t), E(t)〉′ + 〈U>(t)E(t), E(t)〉2 + Ric1(Tγ(t)Σt, γ̇t) = |(U(t)E(t))⊥|2.

Proof. Since

tr((U>)2) = 〈(U>)2(t)E(t), E(t)〉 = 〈U>(t)E(t), E(t)〉2,
and, from (31), we have

∇tE(t) = |J(t)|−1(∇tJ(t))⊥ = |J(t)|−1(∇tJB(t)−1J(t))
⊥ = |J(t)|−1(U(t)J(t))⊥ = (U(t)E(t))⊥,(32)

the claim follows from (22). �

5. OT characterization of sectional curvature upper bounds

Proposition 5.1. Let M be a complete Riemannian manifold without boundary with Ric1 ≤ K, let
{µt}t∈[0,1] be a countably H1-rectifiable W2-geodesic, and consider Bx(t) : TxΣ0 → Tγ(t)Σt, t ∈ [0, 1] as

in Remark 3.11. Then, the function [0, 1] 3 t 7→ Jx(t) := detBx(t) ∈ R belongs to C([0, 1]) ∩ C2((0, 1))
and satisfies

J ′′x +K|γ̇|2Jx ≥ 0 on (0, 1).(33)

In particular, if t0, t1 ∈ [0, 1], τ(s) = s(t1 − t0) + t0, and s ∈ [0, 1] 7→ ςs = γτ(s), we have for all s ∈ [0, 1]

Jx(τ(s)) ≤ σ(1−s)
K,1 (|ς̇|)Jx(t0) + σ

(s)
K,1(|ς̇|)Jx(t1).(34)

Proof. First note that, setting t ∈ [0, 1] 7→ yx(t) := logJx(t) we have that y′x(t) = tr((DtBx(t))B−1
x (t)) =

trUx(t) = trUx(t)>. Then Corollary 4.7 yields that

y′′x + (y′x)2 +K|γ̇x|2 ≥ 0 on (0, 1).

By computing J ′′x (t) = (eyx)
′′

(t) this yields (33). Moreover, considering t0, t1, τ and ς as above we get

d2

ds2
Jx ◦ τ +K|ς̇|2Jx ◦ τ ≥ 0 on (0, 1).

that is equivalent to (34) by classical comparison principle. �

Theorem 5.2 (Curvature upper bounds). Let (M, g) be a complete Riemannian manifold without bound-
ary and let K ≥ 0. Then the following statements (i) and (ii) are equivalent:

(i) Ric1 ≤ K or, equivalently, Sec ≤ K.

(ii) Let {µt}t∈[0,1] be a countably H1-rectifiable W2-geodesic, and let Π be the corresponding dynamical
transport plan. Then, if t0, t1 ∈ (0, 1) and τ(s) = (1− s)t0 + st1, it holds

H1(suppµτ(s)) ≤
∫ [

σ
(1−s)
K,1 (| ˙γ ◦ τ |)ρt0(γ(t0))−1 + σ

(s)
K,1(| ˙γ ◦ τ |)ρt1(γ(t1))−1

]
dΠ(γ), ∀s ∈ [0, 1],

where ρt is the density of µt w.r.t. H1.

In the case of K = 0 the inequality in (ii) becomes

H1(suppµτ(s)) ≤ (1− s)H1(suppµt0) + sH1(suppµt1), ∀s ∈ [0, 1].

Remark 5.3. Recall from Remark 2.3 that the condition Ric1 ≤ K < 0 is never satisfied as Ric1(Rv, v) = 0
for every v ∈ TM ; hence it makes sense just to assume a non-negative upper bound K ≥ 0 and, in this
case, Ric1 ≤ K is equivalent to Sec ≤ K.

Remark 5.4. In the assertion (ii) of Theorem 5.2, one cannot relax the assumption to t0, t1 ∈ [0, 1]. For
instance, one can consider a cylinder R× S1 that is a space of zero (in particular non-positive) sectional
curvature. Parametrize S1 by arclength on [0, 2π], in particular 0 and π are two antipodal points in
S1. Then, the uniform distribution on the set of all geodesics connecting (s, 0) and (s, π) for s ∈ [0, 1]
defines a countably H1-rectifiable W2-geodesic {µt}t∈[0,1] such that suppµ0 = [0, 1] × {0} , suppµ1 =

[0, 1]×{π} , suppµ1/2 = [0, 1]×{π/2}∪[0, 1]×{3π/2}. Hence, we have H1(suppµ1/2) = 2, H1(suppµ0) =

H1(suppµ1) = 1.
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Proof. (i) =⇒ (ii). Let {µt}t∈[0,1] be a countably H1-rectifiable W2-geodesic, i.e. for every t ∈ [0, 1] the

probability measure µt is concentrated on a countably H1-rectifiable set Σt ⊂M and is H1|Σt-absolutely
continuous. Also, thanks to Theorem 3.1 (see also Remark 3.2), the W2-geodesic {µt}t∈[0,1] is given by
Lipschitz optimal transport maps; more precisely there exist unique Lipschitz maps T t1/2 : Σ1/2 → Σt

such that (T t1/2)]µ1/2 = µt and π0,1 := (T 0
1/2, T

1
1/2)]µ1/2 is an optimal coupling between µ0 and µ1. Let

γx(t) := T t1/2(x) ∈ Geo(M) and γx ◦ τ(s) =: ςx(s).

The map x 7→ (t 7→ T t1/2(x)) =: γx ∈ Geo(X) yields a measurable map from M into the space of

geodesics Geo(X), and the push-forward of µ1/2 under this map is the associated optimal dynamical
transport plan Π. In particular ∫

f(γ) dΠ(γ) =

∫
f(γx) dµ1/2(x)(35)

for any non-negative measurable function f : Geo(X)→ [0,∞].
Setting Jx(t) := det[DT t1/2(x)] for µ1/2-a.e. x ∈ Σ1/2 and making use of Lemma 3.9 and Proposition

5.1, we can compute for every s ∈ [0, 1]:∫
Στ(s)

ρτ(s)(x)−1dµτ(s)(x) =

∫
Σ1/2

ρτ(s)(T
τ(s)
1/2 (y))−1 dµ1/2(y)

(9)
=

∫
Σ1/2

Jx(τ(s))dH1(x)

(34)

≤
∫

Σ1/2

[
σ

(1−s)
K,1 (|ς̇x|)Jx(t0) + σ

(s)
K,1(|ς̇x|)Jx(t1)

]
dH1(x)

(9)
=

∫
Σ1/2

[
σ

(1−s)
K,1 (|ς̇x|)ρt0(T t01/2(x))−1 + σ

(s)
K,1(|ς̇x|)ρt1(T t11/2(x))−1

]
ρ1/2(x) dH1(x)

(35)
=

∫ [
σ

(1−s)
K,1 (| ˙γ ◦ τ |) ρt0(γ(t0))−1 + σ

(s)
K,1(| ˙γ ◦ τ |) ρt1(γ(t1))−1

]
dΠ(γ).

Note that the assumption t0, t1 ∈ (0, 1) was used above in order to apply (9) with equality.
(ii) =⇒ (i).

We argue by contradiction. Assume there exist x0 ∈ M , a line P ⊂ Tx0
M and 0 6= v ∈ Tx0

M such that
the 1-Ricci curvature of P in the direction of v satisfies

(36) Ric1(P, v) > (K + 3ε)|v|2,
for some ε > 0. Let δ > 0 be sufficiently small such that expx0

|Bδ(0) is a diffeomorphism onto its image.
Then expx0

(P ∩Bδ(0)) =: Σ 1
2

is a smooth 1-dimensional submanifold. Let φ ∈ C∞0 (M) be a Kantorovich
potential such that

(37) ∇φ(x0) = v 6= 0 and ∇2φ(x0) = 0.

By replacing φ with ηφ for a sufficiently small number η > 0 we get that φ is a Kantorovich poten-
tial as well and |∇φ|(y) is smaller than the injectivity radius at y, for every y ∈ supp(φ) ⊂ M . It is
easily checked that for δ > 0 small enough the map y 7→ Tt(y) = expy(−t∇φ(y)) is a diffeomorphism

from Bδ(0) onto its image for any t ∈ [− 1
2 ,

1
2 ]. Hence, Σt := Tt− 1

2
(Σ 1

2
) for t ∈ [0, 1] is a 1-parameter

family of smooth 1-dimensional submanifolds with finite 1-dimensional Hausdorff measure. We define
µ 1

2
:= H1(Σ 1

2
)−1H1xΣ 1

2
; note that µt := (Tt− 1

2
)]µ 1

2
, with t ∈ [0, 1], is the unique L2-Wasserstein geo-

desic between µ0 and µ1. Moreover, by construction, µt is aH1-absolutely continuous probability measure
concentrated on Σt.

Calling γx(t) := Tt− 1
2
(x) = expx

(
−
(
t− 1

2

)
∇φ(x)

)
for x ∈ Σ 1

2
the geodesic performing the transport,

note that by continuity there exist δ, σ > 0 small enough such that

(38) Ric1(Tγx(t)Σt, γ̇x(t)) > (K + 2ε)|γ̇x(t)|2, ∀x ∈ Σ 1
2
⊂ Bδ(x0), ∀t ∈

[
1

2
− σ, 1

2
+ σ

]
.
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For every x ∈ Σ 1
2

note that γx(t) := Tt− 1
2
(x) is a geodesic connecting T− 1

2
(x) ∈ Σ0 to T 1

2
(x) ∈ Σ1. Choose

e ∈ TxΣ 1
2
, consider the Jacobi field J : [0, 1] → Tγx(t)M such that J( 1

2 ) = e and J ′( 1
2 ) = [∇2φ(x)]e,

and set |J(t)|−1J(t) = E(t). We introduce again the linear operator U>(t) = DtBx(t)Bx(1)−1 where
Bx(t) : TxΣ 1

2
→ Tγx(t)M by Bx(t)e := J(t) = DTt− 1

2
(x)e. Then, as in Corollary 4.7, we get

(39) 〈U>x (t)E(t), E(t)〉′ + 〈U>x (t)E(t), E(t)〉2 + Ric1(Tγ(t)Σt, γ̇t) = |(Ux(t)E(t))⊥|2 ≤ |Ux(t)E(t)|2.

Since by construction Ux0
(0) := ∇tBx0

(0)B−1
x0

(0) = ∇2φ(x0)|Tx0Σ 1
2

= 0 and v 6= 0, again by continuity

we can choose δ, σ > 0 even smaller so that

(40) |Ux(t)E(t)|2 < ε|γ̇x(t)|2, ∀x ∈ Σ 1
2
⊂ Bδ(x0), ∀t ∈

[
1

2
− σ, 1

2
+ σ

]
.

The combination of (38), (39) and (40) then yields

0 > 〈U>(t)E(t), E(t)〉′ + 〈U>(t)E(t), E(t)〉2 + (K + ε) |γ̇x(t)|2, ∀x ∈ Σ 1
2
, ∀t ∈

[
1

2
− σ, 1

2
+ σ

]
.

Observe that the affine reparametrization t = g(s) = 1
2 −σ+ 2σs, g : [0, 1]→

[
1
2 − σ,

1
2 + σ

]
, corresponds

to consider the rescaled Kantorovich potential 2σφ in place of φ in the arguments above, and thus gives

0 > 〈U>(g(s))E(g(s)), E(g(s))〉′ + 〈U>(g(s))E(g(s)), E(g(s))〉2 + (K + ε) |γ̇x(g(s))|2

∀x ∈ Σ 1
2
, ∀s ∈ [0, 1].

Since g is affine, the restricted and rescaled curve {µ̃s := µg(s)}s∈[0,1] is still a W2-geodesic from µ̃0 = µ 1
2−σ

to µ̃1 = µ1/2+σ. By repeating the arguments in the proof of (i) =⇒ (ii), with reversed inequalities and
K replaced by K + ε, we obtain

(41)

∫ [
σ

( 1
2 )

K+ε,1(| ˙γ ◦ g|)ρ̃0(γ(1/2−σ))−1+σ
( 1

2 )
K+ε,1(| ˙γ ◦ g|)ρ̃1(γ(1/2+σ))−1

]
dΠ̃(γ) <

∫
Σ 1

2

ρ̃ 1
2
(y)−1dµ̃ 1

2
(y),

where Π̃ is the optimal plan induced by the W2-geodesic {µ̃s}s∈[0,1]. Using that the distortion coefficients

σ
(t)
K,1(θ) are monotone increasing in K, we arrive to contradict (ii) with t = 1

2 . �

We remind the reader that there is a notion of upper curvature bounds for geodesic metric spaces
(X, d) that goes under the name CAT(K) for K ∈ R (see for instance [1, Chapter 9]). In case K = 0, the
condition reduces to require 1-convexity of 1

2 d(y, ·)2 for any y ∈ X. For Riemannian manifolds (M, gM )
the condition CAT(K) for the induced metric space (M, dM ) implies an upper sectional curvature bound
by K, moreover it also implies that geodesics are always extendible in case K ≤ 0. The next corollary
then follows.

Corollary 5.5. Let (M, g) be a complete, simply connected Riemannian manifold without boundary.
Then the following statements (i) and (ii) are equivalent:

(i) (M,dM ) satisfies CAT(0).

(ii) Let {µt}t∈[0,1] be a countably H1-rectifiable W2-geodesic. Then

H1(suppµt) ≤ (1− t)H1(suppµ0) + tH1(suppµ1), ∀t ∈ [0, 1].

Proof. The implication (i)⇒(ii) follows from the extendibility of geodesics.
The reverse implication follows from the reverse implication in Theorem 5.2. Indeed, the theorem implies
that M has non-positive sectional curvature, therefore the CAT(0)-condition holds locally. Then, since
M is simply connected the condition globalizes by [1, Theorem 9.2.9]. �
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6. OT characterization of sectional, and more generally p-Ricci, curvature lower
bounds

Throughout the section, {µt}t∈[0,1] is a countably Hp-rectifiable W2-geodesic and Π is the correspon-
ding dynamical optimal plan, i.e. µt = ρtHpxΣt where Σt ⊂ M is a countably Hp-rectifiable subset
and ρt ∈ L1(M,Hp). From Theorem 3.1 (see also Remark 3.2), we know that µt = (T t1/2)]µ1/2 with

T t1/2 : Σ1/2 → Σt is Lipschitz. Lemma 3.10 (see also Remark 3.11) ensures the existence of a subset

N ⊂ Σ1/2, with Hp(N) = 0, such that T t1/2 is differentiable for every x ∈ Σ1/2 \N and we set

Bx(t) : TxΣ1/2 → Tγx(t)Σt, Bx(t) := DT t1/2(x) ∀t ∈ [0, 1], ∀x ∈ Σ1/2 \N.

Moreover DtBx(t)|t=1/2 : TxΣ1/2 → TxΣ1/2 is self-adjoint for every x ∈ Σs \N .
Lemma 3.9 yields that Bx(t) is invertible for every t ∈ [0, 1] for every x ∈ Σ1/2 \N , up to enlarging the
subset N . Since Bx(1/2) = Id, it follows in particular that det[Bx(t)] > 0 for all t ∈ [0, 1]. Now, for every
x ∈ Σ1/2 \N and t ∈ [0, 1], let γx(t) := T t1/2(x) be the geodesic performing the transport and consider

Ux(t) := (∇tBx(t))Bx(t)−1 : Tγx(t)Σt → Tγx(t)M,

U>x (t) := [Ux(t)]> = (DtBx(t))Bx(t)−1 : Tγx(t)Σt → Tγx(t)Σt,

U⊥x (t) := [Ux(t)]⊥ : Tγx(t)Σt → (Tγx(t)Σt)
⊥,

where ∇t denotes the covariant derivative along γx(t) in M and Dt := > ◦ ∇t, > being the orthogonal
projection on Tγx(t)Σt and ⊥ being the orthogonal projection on the orthogonal complement (Tγ(t)Σt)

⊥

of Tγ(t)Σt. For every x ∈ Σ1/2 \N such that |γ̇x| 6= 0, we define

(42) κγx : [0, |γ̇x|]→ R, κγx(|γ̇x| t) |γ̇x|2 :=
∥∥U⊥x (t)

∥∥2
, ∀t ∈ [0, 1],

if |γ̇x| = 0, we set κγx(0) = 0. Observe that the map [0, 1] 3 t 7→ κγx(|γ̇x| t) ∈ R is invariant under
constant speed reparametrization of the geodesic γx.

We now introduce the generalized distortion coefficients σκ associated to a continuous function κ :
[0, θ] → R (cf. [9]). First of all, the generalized sin-function associated to κ, denoted by sinκ, is defined
as the unique solution v : [0, θ]→ R of the equation

v′′ + κv = 0 & v(0) = 0, v′(0) = 1.

The generalized distortion coefficients σ
(t)
κ (θ), for t ∈ [0, 1] and θ > 0, are defined as

σ(t)
κ (θ) :=

{
sinκ(tθ)
sinκ(θ) if sinκ(sθ) > 0 for all s ∈ [0, 1],

∞ otherwise.
(43)

Using Sturm-Picone comparison Theorem one can check that (see for instance [9, Proposition 3.4])

κ1 ≤ κ2 on [0, θ] =⇒ σ(t)
κ1

(θ) ≤ σ(t)
κ2

(θ) ∀t ∈ [0, 1].(44)

Moreover, by the strong maximum principle (see for instance [20, XVIII]), it holds

κ1 < κ2 on (0, θ) & σ(·)
κ1

(θ) 6≡ ∞ =⇒ σ(t)
κ1

(θ) < σ(t)
κ2

(θ), ∀t ∈ (0, 1).(45)

It is convenient to also set σ
(·)
κ (0) ≡ 1, κ−(t) := κ(θ − t) and κ+(t) := κ(t).

If v0, v1 ∈ [0,∞), a straightforward computation gives that v(t) := σ
(1−t)
κ− (θ)v0 + σ

(t)
κ+(θ)v1 solves

v′′(t) + κ(tθ)θ2v = 0, ∀t ∈ (0, 1) with v(0) = v0 & v(1) = v1,(46)

provided t ∈ [0, 1] 7→ σ
(t)
κ+(θ) (or, equivalently, t ∈ [0, 1] 7→ σ

(t)
κ−(θ)) is real-valued.

By [9, Proposition 3.8], if u : [0, 1]→ (0,∞) with u ∈ C0([0, 1]) ∩ C2((0, 1)) satisfies

u′′(t) + κ(tθ)θ2 u(t) ≤ 0, ∀t ∈ (0, 1) with u(0) = v0 & u(1) = v1 =⇒ u ≥ v on [0, 1].(47)
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It also convenient to consider a slightly different comparison function. To this aim we define the function
g : [0, 1]× [0, 1]→ [0, 1] by

(48) g(s, t) :=

{
(1− s)t if t ∈ [0, s],

s(1− t) if t ∈ [s, 1],

so that for all s ∈ (0, 1) one has

(49) − ∂2

∂t2
g(s, t) = δs in D ′(0, 1), g(s, 0) = g(s, 1) = 0.

Given w0, w1 ∈ [0,∞) and a continuous function u : [0, 1]→ [0,∞), a straightforward computation gives

that w(t) := (1− t)w0 + tw1 +
∫ 1

0
g(s, t)u(s) ds solves

w′′(t) + u(t) = 0, ∀t ∈ (0, 1) with w(0) = w0 & w(1) = w1.(50)

Theorem 6.1 (OT Characterization of curvature lower bounds). Let (M, g) be a complete Riemannian
manifold with ∂M = ∅ and let K ∈ R. Then the following statements are equivalent:

(i) Ricp ≥ K.

(ii) Let {µt}t∈[0,1] be a countably Hp-rectifiable W2-geodesic, and let Π be the corresponding dynamical
optimal plan. Then, for any p′ ≥ p, it holds

Sp′(µt|Hp) ≤ −
∫ [

σ
(1−t)
(K−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

(K−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ), ∀t ∈ [0, 1](51)

where κγ was defined in (42) and the generalized distortion coefficients σ are as in (43).
(iii) Let {µt}t∈[0,1] and Π be as in (ii). Then

Ent(µt|Hp) ≤ (1− t) Ent(µ0|Hp) + tEnt(µ1|Hp)−
∫ ∫ 1

0

g(s, t) |γ̇|2 (K − κγ(s|γ̇|)) ds dΠ(γ), ∀t ∈ [0, 1]

where g(s, t) was defined in (48).

Remark 6.2. We emphasize that Theorem 6.1 is sharp. First of all, one can not omit the correction
term κγ : even in Rn, the convexity of Sp is not true in general. For instance consider R2 and the
line segment

{
(t, 1

2 t) : t ∈ [0, 1]
}

=: L0 and let µ0 = H1|L0
; similarly, define µ1 = H1|L1

where L1 :={
(t,− 1

2 t) : t ∈ [0, 1]
}

. Then, it is easy to check that the optimal transport between µ0 and µ1 is supported

on geodesics that connect (t, 1
2 t) and (t,− 1

2 t) and µ1/2 is exactly H1|[0,1]×{0}. If Theorem 6.1 would hold
with K = 0 and κγ ≡ 0, then the Brunn-Minkowski inequality (see Corollary 6.5 below) would contradict
that the H1-measure of [0, 1]× {0} is strictly smaller than the one of L0 and L1.
Second, we stress that the arguments in the proof of Theorem 6.1 are sharp, since for this example all
the inequalities become identities (for the details see Remark 6.4 after the proof).

The proof of Theorem 6.1 will make use of the next proposition.

Proposition 6.3. Let M be a complete Riemannian n-dimensional manifold without boundary. Assume
that Ricp ≥ K, for some p ∈ {1, . . . , n} and K ∈ R, and consider a countably Hp-rectifiable W2-geodesic
{µt}t∈[0,1].
Then, using the notation recalled at the beginning of Section 6 and denoting Jx(t) := det[Bx(t)], it holds

(52)
d2

dt2
J

1
p′
x (t) ≤ −

(
K − κγx(t)

)
p′

|γ̇x|2J
1
p′
x (t), ∀x ∈ Σ1/2 \N, µ1/2(N) = 0, ∀p′ ≥ p, ∀t ∈ (0, 1),

and thus

J
1
p′
x (t) ≥ σ(1−t)

K−κ−γx
p′

(|γ̇x|)J
1
p′
x (0) + σ

(t)

K−κ+γx
p′

(|γ̇x|)J
1
p′
x (1). ∀x ∈ Σ1/2 \N, ∀t ∈ [0, 1], ∀p′ ≥ p.(53)
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Proof. If we set yx(t) = logJx(t) = log detBx(t), from (23) in Proposition 4.4 we know that

y′′x(t) +
1

p
y′x(t)2 + Ricp(Tγx(t)Σt, γ̇x(t))− ‖U⊥(t)‖2 ≤ 0, ∀t ∈ (0, 1), ∀x ∈ Σ1/2 \N.

Plugging the assumption Ricp ≥ K together with the definition (42) of κγx , we get

y′′x(t) +
1

p′
y′x(t)2 + (K − κγx(t))|γ̇x(t)|2 ≤ 0, ∀t ∈ (0, 1), ∀x ∈ Σ1/2 \N, ∀p′ ≥ p,(54)

which is equivalent to

(J
1
p′ )′′x(t) +

K − κγx(t)

p′
|γ̇x(t)|2J

1
p′ (t) ≤ 0, ∀t ∈ (0, 1), ∀x ∈ Σ1/2 \N, ∀p′ ≥ p.(55)

The claimed (53) follows then by the comparison principle (47) and by Proposition 3.8 in [9]. More

precisely, in step 3 of the proof of [9, Proposition 3.8] it is showed that if J
1
p′ satisfies (55) and J

1
p′ (t) > 0

for some t ∈ [0, 1] then σ
(t)

(K−κ±γ )/p
(|γ̇|) <∞; the desired (53) follows then from (47). �

Proof of Theorem 6.1. (i) =⇒ (ii). Let {µt}t∈[0,1] be a countably Hp-rectifiable geodesic. Recall that for
every t ∈ [0, 1] it holds µt = ρtHpxΣt = (T t1/2)]µ1/2. Let Π be the optimal dynamical plan associated to

the W2-geodesic {µt}t∈[0,1], i.e. µt = (et)]Π.
Setting Jx(t) = detBx(t) = det[DT t1/2(x)], for all t ∈ (0, 1) and p′ ≥ p we get:∫

Σt

ρt(y)
− 1
p′ dµt(y) =

∫
Σ1/2

ρt(T
t
1/2(x))

− 1
p′ dµ1/2(x)

(9)
=

∫
Σ1/2

J
1
p′
x (t) ρ1/2(x)

1− 1
p′ dHp(x)

(53)

≥
∫

Σ1/2

[
σ

(1−t)
(K−κγx )−/p′(|γ̇x|)J

1
p′
x (0) ρ1/2(x)

1− 1
p′ + σ

(t)

(K−κ+
γx )/p′

(|γ̇x|)J
1
p′
x (1) ρ1/2(x)

1− 1
p′
]
dHp(x)

(9)

≥
∫

Σ1/2

[
σ

(1−t)
(K−κγx )−/p′(|γ̇x|)ρ0(T 0

1/2(x))
− 1
p′ + σ

(t)
(K−κγx )+/p′(|γ̇x|)ρ1(T 1

1/2(x))
− 1
p′
]
ρ1/2(x) dHp(x)

(35)
=

∫ [
σ

(1−t)
(K−κγ)−/p′(|γ̇|)ρ0(γ(0))

− 1
p′ + σ

(t)
(K−κγ)+/p′(|γ̇|)ρ1(γ(1))

− 1
p′
]
dΠ(γ).

This concludes the proof of (51) for t ∈ (0, 1). In case t = 0 or t = 1 just observe that from the very

definition (43) it holds σ
(0)
(K−κγ)−/p′(|γ̇|) = 0 and σ

(1)
(K−κγ)−/p′(|γ̇|) = 1, so the claim (51) is trivially

satisfied.

(ii) =⇒ (i).
We argue by contradiction. Assume there exist x0 ∈ M , a p-dimensional plane P ⊂ Tx0

M and 0 6= v ∈
Tx0M such that the p-Ricci curvature of P in the direction of v satisfies

(56) Ricp(P, v) ≤ (K − 4ε)|v|2,
for some ε > 0. Let δ > 0 be sufficiently small such that expx0

|Bδ(0) is a diffeomorphism onto its image.
Then expx0

(P ∩Bδ(0)) =: Σ 1
2

is a smooth p-dimensional submanifold. Let φ ∈ C∞0 (M) be a Kantorovich
potential such that

(57) ∇φ(x0) = v 6= 0 and ∇2φ(x0) = 0.

By replacing φ with ηφ for a sufficiently small number η > 0 we get that φ is a Kantorovich potential
as well and |∇φ|(y) is smaller than the injectivity radius at y, for every y ∈ supp(φ) ⊂ M . It is
easily checked that for δ > 0 small enough the map y 7→ Tt(y) = expy(−t∇φ(y)) is a diffeomorphism

from Bδ(0) onto its image for any t ∈ [− 1
2 ,

1
2 ]. Hence, Σt := Tt− 1

2
(Σ 1

2
) for t ∈ [0, 1] is a 1-parameter

family of smooth p-dimensional submanifolds with finite p-dimensional Hausdorff measure. We define
µ 1

2
:= Hp(Σ 1

2
)−1HpxΣ 1

2
; note that µt := (Tt− 1

2
)]µ 1

2
, with t ∈ [0, 1], is the unique L2-Wasserstein

geodesic between µ0 and µ1. Moreover, by construction, µt is a Hp-absolutely continuous probability
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measure concentrated on Σt.
Calling γx(t) := Tt− 1

2
(x) = expx

(
−
(
t − 1

2

)
∇φ(x)

)
for x ∈ Σ 1

2
the geodesic performing the transport,

note that by continuity there exist δ, σ > 0 small enough such that

(58) Ricp(Tγx(t)Σt, γ̇x(t)) < (K − 3ε)|γ̇x(t)|2, ∀x ∈ Σ 1
2
⊂ Bδ(x0), ∀t ∈

[
1

2
− σ, 1

2
+ σ

]
.

The identity (22) proved in Proposition 4.4 reads as

tr[U>x (t)]′ + tr[(U>x (t)2] + Ricp(Tγx(t)Σt, γ̇x(t)) = ‖U⊥x (t)‖2, ∀x ∈ Σ 1
2
, ∀t ∈ [0, 1].(59)

Since by construction Ux0(0) := ∇tBx0(0)B−1
x0

(0) = ∇2φ(x0)|Tx0Σ 1
2

= 0 and v 6= 0, again by continuity

we can choose δ, σ > 0 even smaller so that

‖U⊥x (t)‖2 + tr[(U>x (t)2] =

p∑
i=1

[
|U⊥(t)Ei|2 + |U>(t)Ei|2

]
=

p∑
i=1

|U(t)Ei|2 = ‖Ux(t)‖2 < ε|γ̇x(t)|2(60)

for all x ∈ Σ 1
2
⊂ Bδ(x0) and all t ∈

[
1
2 − σ,

1
2 + σ

]
. The combination of (58), (59) and (60) yields

0 ≤ ‖U⊥x (t)‖2 < tr[U>x (t)]′ + (K − 2ε)|γ̇x(t)|2 ≤ tr[U>x (t)]′ +
1

p
tr[U>x (t)]2 + (K − 2ε) |γ̇x(t)|2,(61)

for all x ∈ Σ 1
2

and all t ∈
[

1
2 − σ,

1
2 + σ

]
. Observe that the affine reparametrization t = g(s) = 1

2−σ+2σs,

g : [0, 1] →
[

1
2 − σ,

1
2 + σ

]
, corresponds to consider the rescaled Kantorovich potential 2σφ in place of φ

in the arguments above, and thus gives

tr[U>x (g(s))]′ +
1

p
tr[U>x (g(s))]2 + (K − 2ε) |γ̇x(g(s))|2 = 4σ2

[
tr[U>x (t)]′ +

1

p
tr[U>x (t)]2 + (K − 2ε) |γ̇x(t)|2

]
> 0, ∀x ∈ Σ 1

2
, ∀s ∈ [0, 1].

Arguing as in the proof of Proposition 6.3 (but with reversed inequalities), the last differential inequal-
ity gives

(62) J
1
p
x (g(s)) ≤ σ(1−t)

K−2ε
p

(|γ̇x ◦ g|)J
1
p
x (0) + σ

(t)
K−2ε
p

(|γ̇x ◦ g|)J
1
p
x (1), ∀x ∈ Σ1/2 \N, ∀s ∈ [0, 1].

Note in particular that, since J
1
p
x (g(s)) > 0 for all s ∈ [0, 1], then σ

(·)
K−2ε
p

(|γ̇x ◦ g|) 6≡ 0.

Since g is affine, the restricted and rescaled curve {µ̃s := µg(s)}s∈[0,1] is still a W2-geodesic from
µ̃0 = µ 1

2−σ
to µ̃1 = µ 1

2 +σ. By repeating the arguments in the proof of (i) =⇒ (ii), with reversed

inequalities (note that (9) holds with equality since we are considering the interior of a geodesic, use (62)
instead of (53), and replace K − κγ by K − 2ε), we obtain

(63)

∫
Σ 1

2

ρ̃ 1
2
(y)−

1
p dµ̃ 1

2
(y) ≤

∫ [
σ

( 1
2 )

(K−2ε)/p(|γ̇|)ρ̃0(γ(0))−
1
p + σ

( 1
2 )

(K−2ε)/p(|γ̇|)ρ̃1(γ(1))−
1
p

]
dΠ̃(γ),

where Π̃ is the dynamical optimal associated to {µ̃s = ρ̃sHp}s∈[0,1].

Observing that (60) gives κγ ≤ ε and noting that
∥∥U⊥x (t)

∥∥2
correctly scales when we apply the the

reparametrization g), using (44) we get that (63) implies∫
Σ 1

2

ρ̃ 1
2
(y)−

1
p dµ̃ 1

2
(y) ≤

∫ [
σ

( 1
2 )

(K−κγx−ε)/p
(|γ̇|)ρ̃0(γ(0))−

1
p + σ

( 1
2 )

(K−κγx−ε)/p
(|γ̇|)ρ̃1(γ(1))−

1
p

]
dΠ̃(γ)

(45)
<

∫ [
σ

( 1
2 )

(K−κγx )/p(|γ̇|)ρ̃0(γ(0))−
1
p + σ

( 1
2 )

(K−κγx )/p(|γ̇|)ρ̃1(γ(1))−
1
p

]
dΠ̃(γ).

This contradicts (ii) for the geodesic {µ̃s = ρ̃sHp}s∈[0,1].
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(i) =⇒ (iii).
For t ∈ (0, 1) we have

Ent(µt|Hp) =

∫
Σt

log ρt(y) dµt(y) =

∫
Σ1/2

log ρt(T
t
1/2(x)) dµ1/2(x)

(9)
=

∫
Σ1/2

log[ρ1/2(x)Jt(x)−1] dµ1/2(x)

= Ent(µ1/2|Hp)−
∫

Σ1/2

yx(t) dµ1/2(x),(64)

where yx(t) = log(Jt(x)). Using (54) we obtain

(65)
d2

dt2
Ent(µt|Hp) ≥

∫
Σ1/2

(
K − κγx(t)

)
|γ̇x(t)|2 dµ1/2(x), ∀t ∈ (0, 1).

We then get (iii) using (50) and standard comparison.

(iii) =⇒ (i).
Assume that by contradiction (58) holds and repeat verbatim the first part of the proof of (ii) =⇒ (i) to
reach (61), i.e.

tr[U>x (t)]′ + (K − 2ε)|γ̇x(t)|2 > 0, ∀x ∈ Σ 1
2
, ∀t ∈

[
1

2
− σ, 1

2
+ σ

]
.

Considering as above the affine reparametrization t = g(s) = 1
2 − σ+ 2σs, g : [0, 1]→

[
1
2 − σ,

1
2 + σ

]
and

recalling (24), we obtain

yx(g(s))′′ + (K − 2ε) |γ̇x(g(s))|2 > 0, ∀x ∈ Σ 1
2
, ∀s ∈ [0, 1].

Calling as above {µ̃s := µg(s)}s∈[0,1] the corresponding rescaled W2-geodesic, the combination of the last
inequality with (64) gives

(66)
d2

ds2
Ent(µ̃s|Hp) <

∫
Σ1/2

(
K − 2ε

)
|γ̇x(g(s))|2 dµ1/2(x), ∀s ∈ (0, 1).

Calling Π̃ the dynamical optimal plan associated to the geodesic {µ̃s := µg(s)}s∈[0,1], using (50) and
standard comparison we get that

Ent(µ̃s|Hp) > (1− s) Ent(µ̃0|Hp) + s Ent(µ̃1|Hp)−
∫ ∫ 1

0

g(t, s) |γ̇|2 (K − 2ε) dt dΠ̃(γ).

Observing now that (60) gives κγ ≤ ε for Π̃-a.e. γ, we obtain

Ent(µ̃s|Hp) > (1− s) Ent(µ̃0|Hp) + s Ent(µ̃1|Hp)−
∫ ∫ 1

0

g(t, s) |γ̇|2 (K − κγ(t|γ̇|)− ε) dt dΠ̃(γ),

which contradicts (iii) thanks to the strict positivity of g on (0, 1)× (0, 1). �

Remark 6.4. In order to show that Theorem 6.1 is sharp, we show that equality is achieved in (51) for
the example of Remark 6.2, p′ = 1. First of all recall that, in euclidean spaces, the Jacobi fields are affine
functions along the geodesics. The initial measure µ0 is supported on the segment

{
(t, 1

2 t) : t ∈ [0, 1]
}

that is generated by the unit vector 1√
5
(2, 1) = e, and the final measure is supported on the segment{

(t,− 1
2 t) : t ∈ [0, 1]

}
that is generated by − 1√

5
(2, 1). Set ( 2√

5
, 0) = v and (0, 1√

5
) = w. We have

Bx(t) = Je(t) = v + (1− 2t)w =

(
2√
5
, (1− 2t)

1√
5

)
,

and J ′e(t) = −2w =
(

0,− 2√
5

)
. Clearly, u(t) = (t− 1

2 , 1) is orthogonal to Je(t) for every t ∈ [0, 1]. Thus,∥∥(J ′e(t))
⊥∥∥ =

1

‖u(t)‖
〈J ′e(t), u(t)〉 = − 2√

5(t2 − t+ 5
4 )
.
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Using the identity (32), we get that

κγ(t|γ̇x|)|γ̇x|2 =
∥∥(U(t)E(t))⊥

∥∥2
=
∥∥∥‖Je(t)‖−1

(J ′e(t))
⊥
∥∥∥2

=
1(

t2 − t+ 5
4

)2 = κ(t)

where E(t) = ‖Je(t)‖−1
Je(t). It follows that the coefficient κγ(t|γ̇|)|γ̇|2 does not depend on γ. We thus

get

H1(suppµt) = σ
(1−t)
−κ− (1)H1(suppµ0) + σ

(t)
−κ+(1)H1(suppµ1).(67)

Indeed, the H1-measure of the support of µt is given by the length of the Jacobi field Je(t) with the
normalisation α > 0 such that αJe(

1
2 ) = (1, 0):

H1(suppµt) =

√
t2 − t+

5

4
.

A straightforward computation shows that t 7→ H1(suppµt) solves the boundary value problem f ′′(t) =

κ(t)f(t), f(1) = f(0) = H1(suppµ0) = H1(suppµ1) =
√

5
2 , thus (67) follows.

Note that, for this example, in the proof of Theorem 6.1 every inequality becomes an identity, showing
the sharpness of the arguments.

As an application of Theorem 6.1 we establish a new Brunn-Minkowski type inequality involving the
Hp-measure and countably Hp-rectifiable sets. The main novelty is about the measure: the standard
Brunn-Minkowski inequality involves the top Hausdorff measure Hn in an n-dimensional Riemannian
manifold. A second refinement is that, in comparison with the standard Brunn-Minkowski inequality
where one gives a lower bound on the measure of all intermediate points, here we give more sharply a
lower bound on the measure of just the t-intermediate points where the optimal transport is performed
(let us mention that this was already the case in [17] even if not explicitly stated, but there one considers
the top dimensional Hausdorff measure).

Corollary 6.5 (p-Brunn-Minkowski inequality). Let (M, g) be a complete n-dimensional Riemannian
manifold without boundary. Assume that Ricp ≥ K for some p ∈ {1, . . . , n} and K ∈ R. Let A0, A1 ⊂M
be bounded p-rectifiable subsets with positive and finite Hp-measure. Set µi = Hp(Ai)−1HpxAi for i = 0, 1
and assume that there exists a W2-geodesic {µt}t∈[0,1] such that for some t0 ∈ (0, 1) the measure µt0 is
concentrated on a countably Hp-rectifiable subset Σt0 ⊂M .

Then for every t ∈ [0, 1] one has µt = ρtHp ∈ Pc(M,Hp) and it holds

(68) Hp ({ρt > 0})
1
p′ ≥

∫ [
σ

(1−t)
(K−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

(K−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ), ∀p′ ≥ p.

In particular, calling

At := {γ(t) : γ ∈ Geo(X), γ(0) ∈ A0, γ(1) ∈ A1}

the set of all t-intermediate points of geodesics with endpoints in A0 and A1, it holds

(69) Hp(At)
1
p′ ≥

∫ [
σ

(1−t)
(K−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

(K−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ), ∀p′ ≥ p.

Proof. From Lemma 3.3 we know that for every t ∈ [0, 1] it holds µt = ρtHp ∈ Pc(M,Hp). Moreover
Hp ({ρt > 0} \At) = 0. Therefore, if we prove (68) then also (69) will follow.
In order to get (68), observe that from Theorem 6.1 the W2-geodesic {µt}t∈[0,1] satisfies

∫
{ρt>0}

ρt(x)
− 1
p′ dµt(x) ≥

∫ [
σ

(1−t)
(K−κ−γ )/p′

(|γ̇|) ρ
− 1
p′

0 (γ(0)) + σ
(t)

(K−κ+
γ )/p′

(|γ̇|) ρ
− 1
p′

1 (γ(1))

]
dΠ(γ), ∀p′ ≥ p,

(70)



24 CHRISTIAN KETTERER AND ANDREA MONDINO

On the other hand, from Jensen inequality we get∫
{ρt>0}

ρt(x)
− 1
p′ dµt(x) = Hp({ρt > 0})

∫
{ρt>0}

ρ
1− 1

p′
t d

(
1

Hp({ρt > 0})
Hpx{ρt > 0}

)

≤ Hp({ρt > 0})

(∫
{ρt>0}

ρt d

(
1

Hp({ρt > 0})
Hpx{ρt > 0}

))1− 1
p′

= Hp({ρt > 0})
1
p′ .(71)

The combination of (70) and (71) implies (68). �
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