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Abstract

We establish existence and uniqueness results for initial boundary value problems with
nearly incompressible vector fields. We then apply our results to establish well-posedness of
the initial-boundary value problem for the Keyfitz and Kranzer system of conservation laws
in several space dimensions.

1 Introduction

The Keyfitz and Kranzer system is a system of conservation laws in several space dimensions that
was introduced in [24] and takes the form

d
U + 320, (F(UNU) = 0.

i=1

The unknown is U : R* — RN and |U| denotes its modulus. Also, for every ¢ = 1,...,d the
function f*: R — RY is smooth. In this work we establish existence and uniqueness results for
the initial-boundary value problem associated to (1.1).

The well-posedness of the Cauchy problem associated to (1.1) was established by Ambrosio,
Bouchut and De Lellis in [2, 6] by relying on a strategy suggested by Bressan in [12]. Note that the
results in [2, 6] are one of the very few well-posedness results that apply to systems of conservation
laws in several spaces dimensions. Indeed, establishing either existence or uniqueness for a general
system of conservation laws in several space dimensions is presently a completely open problem,
see [18, 27, 28] for an extended discussion on this topic.

The basic idea underpinning the argument in [2, 6] is that (1.1) can be (formally) written
as the coupling between a scalar conservation law and a transport equation with very irregular
coefficients. The scalar conservation law is solved by using the foundamental work by Kruzkov [25],
while the transport equation is handled by relying on Ambrosio’s celebrated extension of the
DiPerna-Lions’ well-posendess theory, see [1] and [21], respectively, and [3, 20] for an overview.
Note, however, that Ambrosio’s theory [1] does not directly apply to (1.1) owing to a lack of
control on the divergence of the vector fields. In order to tackle this issue, a theory of nearly
incompressible vector fields was developed, see [19] for an extended discussion. Since we will need
it in the following, we recall the definition here.

Definition 1.1. Let Q C R? be an open set and T > 0. We say that a vector field b € L>=((0,T) x
Q:RY) is nearly incompressible if there are a density function p € L>=((0,T)xQ) and a constant
C > 0 such that
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i. 0< p<C, L —ae. in (0,T) x Q, and

1. the equation
O¢p +div(pb) =0 (1.1)
holds in the sense of distributions in (0,T) x Q.

The analysis in [2, 6, 19] ensures that, if b € L>°((0,T) x R%;RY) N BV ((0,T) x R%RY) is a
nearly incompressible vector field with density p € BV ((0,T) x R?), then the Cauchy problem

O [pu] + div[pbu] =0 in (0,7) x R?
u=u att =0

is well-posed for every initial datum @ € L°(RY). This result is pivotal to the proof of the
well-posedness of the Cauchy problem for the Keyfitz and Kranzer system (1.1). See also [4]
for applications of nearly incompressible vector fields to the so-called chromatography system of
conservation laws. Note, furthermore, that here and in the following we denote by BV the space
of functions with bounded variation, see [7] for an extended introduction.

The present paper aims at extending the analysis in [2, 6, 19] to the case of initial-boundary
value problems. First, we establish the well-posedness of initial-boundary value problems with
BV, nearly incompressible vector fields, see Theorem 1.2 below for the precise statement. In
doing so, we rely on well-posedness results for continuity and transport equations with weakly
differentiable vector fields established in [16], see also [17] for related results. Next, we discuss the
applications to the Keyfitz and Kranzer system (1.1).

We now provide a more precise description of our results concerning nearly incompressible
vector fields. We fix an open, bounded set 2 and a nearly incompressible vector field b with
density p and we consider the initial-boundary value problem

O¢[pu] + div[pud] =0 in (0,T) x Q
u=1u att=0 (1.2)
u=4gqg onI'~,

where I'” is the part of the boundary (0,7") x 992 where the characteristic lines of the vector
field pb are inward pointing. Note that, in general, if b and p are only weakly differentiable, one
cannot expect that the solution w is a regular function. Since I'” will in general be negligible,
then assigning the value of w on I'” is in general not possible. In § 3 we provide the rigorous
(distributional) formulation of the initial-boundary value problem (1.2) by relying on the theory
of normal traces for low regularity vector fields, see [5, 8, 13, 14].

We can now state our well-posedness result concerning (1.2).

Theorem 1.2. Let T > 0 and Q C R? be an open, bounded set with C? boundary. Also, let
be BV((0,T) x R N L>®((0,T) x RY) be a nearly incompressible vector field with density
p € BV((0,T) x Q)N L>®((0,T) x Q), see Definition 1.1. Further, assume that w € L () and
ge LeI).

Then there is a distributional solution u € L*((0,T) x Q) to (1.2) satisfying the maximum
principle

l[ull oo < max{[[a]| Lo, [[g]| =< }- (1.3)

Also, if uy, ug € L*((0,T) x Q) are two different distributional solutions of the same initial-
boundary value problem, then pu; = pug a.e. in (0,T) x Q.

Note that the reason why we do not exactly obtain uniqueness of the function u is because p
can attain the value 0. If p is bounded away from 0, then the distributional solution u of (1.2)
is unique. Also, we refer to [9, 11, 16, 17, 22, 26] for related results on the well-posedness of
initial-boundary value problems for continuity and transport equation with weakly differentiable
vector fields.

In § 7 we discuss the applications of Theorem 1.2 to the Keyfitz and Kranzer system and our
main well-posedness result is Theorem 7.3. Note that the proof of Theorem 7.3 combines Theo-
rem 1.2, the analysis in [19], and well-posedness results for the initial-boundary value problems
for scalar conservation laws established in [10, 15, 28].



Paper outline

In § 2 we go over some preliminary results concerning normal traces of weakly differentiable vector
fields. By relying on these results, in § 3 we provide the rigorous formulation of the initial-
boundary value problem (1.2). In § 4 we establish the existence part of Theorem 1.2, and in § 5
the uniqueness. In § 6 we establish some stability and space continuity property results. Finally,
in § 7 we discuss the applications to the Keyfitz and Kranzer system.

Notation
For the reader’s convenience, we collect here the main notation used in the present paper.
e div: the divergence, computed with respect to the = variable only.

e Div: the complete divergence, i.e. the divergence computed with respect to the (¢, z) vari-
ables.

e Tr(B,0A): the normal trace of the bounded, measure-divergence vector field B on the
boundary of the set A, see § 2.

e (pu)g, po: the initial datum of the functions pu and p, see Lemma 3.1 and Remark 3.2 .
o T(f): the trace of the BV function f, see Theorem 2.6.

e #°: the s-dimensional Hausdorff measure.

® f|,: the restriction of the function f to the set F.

e L E: the restriction of the measure p to the measurable set E.

e a.e.:. almost everywhere.

e |u|: the total variation of the measure pu.

e a-b: the (Euclidean) scalar product between a and b.

e 15 : the characteristic function of the measurable set E.

o I''T—,I'", T see (3.6).

e 7i: the outward pointing, unit normal vector to T.

2 Preliminary results

In this section, we briefly recall some notions and results that shall be used in the sequel.

First, we discuss the notion of normal trace for weakly differentiable vector fields, see [5, 8,
13, 14]. Our presentation here closely follows that of [5]. Let A C R be an open set and let us
denote by M. (A), the family of bounded, measure-divergence vector fields. The space M, (A),
therefore, consists of bounded functions B € L°(A;RY) such that the distributional divergence
of B (denoted by DivB) is a locally bounded Radon measure on A.

The normal trace of B € M (A) on the boundary A can be defined as follows.

Definition 2.1. Let A C RY be an open and bounded set with Lipschitz continuous boundary and
let B € Moo (A). The normal trace of B on OA is a distribution defined by the identity

<ﬁ(3,aA),w> - /Aw ‘B dy—i—/Az/J d(DivB), Ve CX(RY). (2.1)

Here DivB denotes the distributional divergence of B and is a bounded Radon measure on A.



Note that, owing to the Gauss-Green formula, if B is a smooth vector field, then Tr(B,dA) =
B - 71, where 7 denotes the outward pointing, unit normal vector to OA.

Note, furthermore, that the analysis in [5] shows that the normal trace distribution satisfies
the following properties.

(a) The normal trace distribution is induced by an L* function on A, which we shall continue
to refer to as Tr(B,dA). The bounded function Tr(B, dA) satisfies

ITe(B, 0A) ||z on) < [ Bllnec(a)-

(b) Let X be a Borel set contained in dA; N JAs, and let 7y = 72 on ¥ (here 71, 7iy denote the
outward pointing, unit normal vectors to A1, dAs respectively). Then

Tr(B,0A1) = Tr(B,0As) HN 1 ae. on . (2.2)

In the following we will use several times the following renormalization result, which was estab-
lished in [5].
Theorem 2.2. Let B € BV (A;RY) N L®(A;RY) and w € L>®(A) be such that Div(wB) is a

Radon measure. If A CC A is an open set with bounded and Lipschitz continuous boundary and

h € CY(R), then

Tr(wB, 9A')

Te(h(w)B,0A') = h ( Te(B,0N)

) Tr(B,0A") HN 1 a.e. on ON,
Tr(wB, OA")
Tv(B,0N)

We can now introduce the notion of normal trace on a general bounded, Lipschitz continuous,
oriented hypersurface ¥ C R¥ in the following manner. Since ¥ is oriented, an orientation of the
normal vector 71y is given. We can then find a domain A; C RY such that ¥ C 9A; and the
normal vectors 7iy, 7, coincide. Using (2.2), we can then define

where the ratio is arbitrarily defined at points where the trace Tr(B,0N’) vanishes.

Tr™ (B, X) := Tr(B, 0A1).

Similarly, if Ay C RY is an open set satisfying ¥ C 9A,, and 7y = —fs;, we can define
Trt(B,Y) := —Tr(B, 0Ay).

Furthermore we have the formula

(DivB)LY = (TW(B, 2) — Tr™ (B, z))HN—le.
Thus Tr* and Tr™ coincide N "' —a.e. on ¥ if and only if ¥ is a (DivB)-negligible set.

We next recall some results from [5] concerning space continuity.

Definition 2.3. A family of oriented surfaces {X,}rer € RY (where I C R is an open interval)
is called a family of graphs if there exist

e a bounded open set D C RN—1,
e a Lipschitz function f: D — R,
e a system of coordinates (x1,-+- ,TN)

such that the following holds true: For each r € I, we can write
Zr:{(l"lw";IN)5f(T/1,"',IN—l)*itN:T}, (2.3)

(*Vf, 1)
VIV

and the orientation of X, is determined by the normal



We now quote a space continuity result.

Theorem 2.4 (see [5]). Let B € Mo (RY) and let {3, },e1 be a family of graphs as above. For
a fivred rg € I, let us define the functions ag, o : D — R as

aog(xy, -+ ,on—1) == Tr (B, X)) (x1, - ,2an—1, f(x1, - ,&N—1) — T0), and

. (2.4)
ap(xy, - ,on—1) =T (B, %) (z1,- - ,an—1, f(z1, -+ ,&N—1) — 7).

Then a, = ay weakly* in L>°(D, LN D) asr —ryf.
We will also need the following result, which was originally established in [16].

Lemma 2.5. Let A C RY be an open and bounded set with bounded and Lipschitz continuous
boundary and let B belong to Moo (A). Then the vector field

B2 ::{ B(z) z€A

0 otherwise

belongs to Moo (RY).

We conclude by recalling some results concerning traces of BV functions and we refer to [7,
§3] for a more extended discussion.

Theorem 2.6. Let A C RY be an open and bounded set with bounded and Lipschitz continuous
boundary. There ezists a bounded linear mapping

T:BV(A) — L*(OA;HN ) (2.5)

such that T(f) = f,, if [ is continuous up to the boundary. Also,

/w~f dy = —/ 0 d(Divf)+/ o Tf-it dHN 71, (2.6)
A A AA
for all f € BV(A) and ¢ € C(RYN). In the above expression, @i denotes the outward pointing,
unit normal vector to OA.
By comparing (2.1) and (2.6) we conclude that
Tr(f,0A) =T(f) -7, forevery f € BV(A). (2.7)
By combining Theorems 3.9 and 3.88 in [7] we get the following result.

Theorem 2.7 ([7]). Assume A C R is an open set with bounded and Lipschitz continuous
boundary. If f € BV(A;R™), then there is a sequence {f} € C°(A) such that

fim = f strongly in L*(A;R™), T(fm) — T(f) strongly in L*(dA;R™). (2.8)
Also, we can choose fm i such a way that

o fm>0iff>0,

o if f € L®(A;R™), then 3
[ fmllzee < 4l1f] Lo (2.9)

A sketch of the proof of Theorem 2.7 is provided in § 4.3.



3 Distributional formulation of the problem

In this section, we follow [11, 16] and we provide the distributional formulation of the problem
(1.2). We first establish a preliminary result.

Lemma 3.1. Let Q C R? be an open bounded set with C? boundary and let T > 0. We assume
that b € L>((0,T) x Q;R?) is a nearly incompressible vector field with density p € L>((0,T) x Q),
see Definition 1.1. If u € L*°((0,T) x ) satisfies

T
/ / pu(Dy6 +b- Vo) dedt =0, ¥ e C((0,T) x Q), (3.1)
0 Q

then there are two unique functions, which we henceforth denote by Tr(pub) € L>®((0,T) x 99Q)
and (pu)o € L™(Q), that satisfy

T T
/ / (Db dadt — / / Tr(pub)ip dHO dt— / 0(0, ) (pu)o dz, Vb € C2([0, T)xR).
0 Q 0 o0 Q

(3.2)
Also, we have the bounds

T (pub) || Lo ((0,ryx00)> [|(Pw)oll Lo (@) < max{||pul| Lo ((0,1)x0); [|publ Lo ((0,7)x0) }- (3.3)

Proof. First of all, let us note that the uniqueness of such functions follow from the liberty in
choosing the test functions ¥. Therefore it is enough to discuss the existence of the functions with
the above properties. Let us define

— J (up,upb) (t,x) € (0,T) x Q
B(t, @) = { 0 elsewhere in R4, (34)

Then B € L*°(R%1) and from (3.1), it also follows that [DivBL(0,T) x Q] = 0. We can now
apply Lemma 2.5 with A = (0,7) x Q to conclude that B € M (R%*!). Hence B induces the
existence of normal trace on OA. Let

Tr(pub) := Tr(B,@A)‘ (pu)g := —Tr(B,@A)‘

(0,7)x09’ (0yxa’

The identity (3.2) then follows from (2.1) by virtue of the fact that DivB =01in (0,7) x Q. O

Remark 3.2. We define the vector field P := (p, pb) and we point out that P € L>((0,T) x ;R +1)
since p and b are both bounded functions. By introducing the same extension as in (3.4) and using
the fact that

T
//p(@t(b—i—b-V(b) dedt =0, ¥ ¢eC®((0,T)x 9),
0 Q

we can argue as in the proof of the above lemma to establish the existence of unique functions
Tr(pb) € L>((0,T) x 9Q) and pg € L™ () defined as

Tr(pb) := Tr(P, 0A) po := —Tr(P,0A)

(0.7)x09’ {0}xQ’

In this way, we can give a meaning to the normal trace Tr(pb) and to the initial datum py. Also,
we have the bounds

||Tr(Pb)||L°°((0,T)xaQ)7 HPOHLN(Q) < maX{HPHL“((O,T)XQ); ||Pb||L°°((0,T)xQ)}- (3.5)

We can now introduce the distributional formulation to the problem (1.2) by using Lemma
3.1. We introduce the following notation:

I:=(0,T) x 09, I~ :={(t,x) eT": Tr(pb)(t,x) < 0},

T+ = {(t,e) €T : Tr(pb)(t,x) >0}, TO:= {(t,2) €T : Tr(pb)(t,a) = O}. (36)



Definition 3.3. Let Q C R? be an open bounded set with C? boundary and let T > 0. Let
b e L*((0,T) x Q;RY) be a nearly incompressible vector field with density p, see Definition 1.1.
Fixw e L*(Q) and g € L>(I'"). We say that a function uw € L>*((0,T) x Q) is a distributional
solution of (1.2) if the following conditions are satisfied:

i. u satisfies (3.1);
. (pu)o = Upo;

iti. Tr(pub) = gTr(pb) on the set T'~.

4 Proof of Theorem 1.2: existence of solution

In this section we establish the existence part of Theorem 1.2, namely we prove the existence of
functions u € L>=((0,T) x ) and w € L>®(I'° UT*) such that for every ¢ € C°([0,T) x R?),

Tr(pb)w d?-[d_ldt—/ pow(0,-) dr.
+uro Q

(4.1)
We proceed as follows: first, in § 4.1 we introduce an approximation scheme. Next, in § 4.2 we
pass to the limit and establish existence.

T
/ / pu(Op)p+b-Vh) dadt = / gTr(pb)y dH Tdt+ /
0 Q r— T

4.1 Approximation scheme

In this section we rely on the analysis in [19, § 3.3], but we employ a more refined approximation
scheme which guarantees strong convergence of the traces.

We set A := (0,T) x Q and we recall that by assumption p € BV (A) N L>°(A). We apply
Theorem 2.7 and we select a sequence {p,,,} € C°(A) satisfying (2.8) and (2.9). Next, we set

1 - 1
P = — + pm > —. (4.2)
m m
We then apply Theorem 2.7 to the function bp and we set
o
by, == % (4.3)
Pm
Owing to Theorem 2.7 we have
pm — pstrongly in L1((0,T) x Q),  bppm — bp strongly in L*((0,T) x Q;RY). (4.4)
and, by using the identity (2.7),
Tr(pm) — Tr(p) strongly in L (T'),  Tr(pmbm) — Tr(pb) strongly in L*(T), (4.5)
Pmo — po strongly in L' (). '
Note, furthermore, that
(3.5) (2.9)
[Tr(bmpm)Le < [[bmpmllLe < 4lbpllLe-. (4.6)

In the following, we will use the notation
I, = {(t,z) €T : Tr(pmbym) < 0}, b= {(t,z) €T : Tr(pmbym) >0} (4.7

Finally, we extend the function § to the whole I'" by setting it equal to 0 outside '™ and we
construct two sequences {g,,} € CH(I') and {u,,} € C°>°(Q) such that

G,, — g strongly in LY(T), 1, — @ strongly in L' () (4.8)



and
1GmllLee < Glleee,  amllLe < U]l Lo (4.9)

We can now define the function u,, as the solution of the initial-boundary value problem

Ottt + by - Vuy,, =0 on (0,T) x Q
U = U att =0 (4.10)
Um = G onl',

where T, is the subset of I such that the characteristic lines of b, starting at a point in I';, are
entering (0,7") x Q. We recall (4.7) and we point out that

I, CI,, C{(t,x)eT: by, -7 <0}.

In the previous expression, 7 denotes as the outward pointing, unit normal vector to Q2. By using
the classical method of characteristics (see also [9]) we establish the existence of a solution w,y,
satisfying

(4.9)
[t lloo < max{|[Tm [loos [Tmllec} < max{|[@llco, [[Glloc}- (4.11)

We now introduce the function h,, by setting
him i = Otpm + div (b pim) (4.12)
and by using the equation at the first line of (4.10) we get that
Ot (pmum) + Aiv(bm pmtm) = Rty -

Owing to the Gauss-Green formula, this implies that, for every 1 € C2°([0,T) x R%),

T T
/ / P um[0¢) + by, - VU] dadt + / / hmtum dxdt
0 Q 0 Q

T
= _/ ’(/J(O,{L‘)ﬁmoum dx — / / wumpmbm . ﬁd?‘ld_ldt
Q 0 JoQ

T T
- / V(0,2) Py lm dx — / / Lp- G0 Tr(pmbu )dH ™~ dt — / / Lt Uy T (P b )AHdit.
Q 0 Joq 0 Joq
(4.13)
In the above expression, we have used the notation introduced in (4.7) and the fact that Tr(pmbm) =
Oon I\ (T, UL).
4.2 Passage to the limit

Owing to the uniform bound (4.11), there are a subsequence of {u,,} (which, to simplify notation,
we do not relabel) and a function u € L ((0,7) x £ such that

Uy — u weakly™ in L((0,T) x Q). (4.14)

The goal of this paragraph is to show that the function u in (4.14) is a distributional solution
of (1.2) by passing to the limit in (4.13). We first introduce a technical lemma.

Lemma 4.1. We can construct the approzimating sequences {pm,} and {by,} in such a way that
the sequence {hn,} defined as in (4.12) satisfies

B — O strongly in L*((0,T) x Q). (4.15)

The proof of Lemma 4.1 is deferred to § 4.3 . For future reference, we state the next simple
convergence result as a lemma.



Lemma 4.2. Assume that
Tr(pmbm) — Tr(pb) strongly in L*(T). (4.16)
Let Ty, and T} as in (4.7) and T™ and Tt as in (3.6), respectively. Then, up to subsequences,
1.- — 1p- + 1y strongly in LYT) (4.17)

and
]'F;',; — 1F+ + 11‘*// StT’O’]’Lgly mn Ll (F), (418)

where TV and T are (possibly empty) measurable sets satisfying
', 1" cr°. (4.19)

Proof of Lemma 4.2. Owing to (4.16) we have that, up to subsequences, the sequence {Tr(p,,b.)}
satisfies
T (b ) (t, ) — Tr(pb)(t,x), for L' @ H-almost every (t,x) € T

Owing to the Lebesgue Dominated Convergence Theorem, this implies (4.17) and (4.18). O
We can now pass to the limit in all the terms in (4.13). First, by combining (4.4), (4.11), (4.14)
and (4.15) we get that

/OT/Q P tm [0 + by, - VU] dadt + /OT/Q R ) dadt — /OT/Q pulOp) + b - V] dadt, (4.20)

for every 1 € C>°([0,T) x R?). Also, by combining the second line of (4.5) with (4.8) and (4.9)
we arrive at

/w(O,x)pmoﬂm dr — / ¥(0, z)pou du, (4.21)
Q Q

for every ¢ € C°([0,T) x R?). Next, we combine (4.5), (4.8), (4.9), (4.17), (4.19) and the fact
that Tr(pb) = 0 on I'? to get that

r T
/ / 1F—§mwTr(pmbm)ded—1dt %/ / 1Ff§%/1Tr(pb)d7-Ld*1dt
o Joo ™ o Joo

- /0 ' [ gumionant-at

for every ¢ € C°([0,T) x Q;R%). We are left with the last term in (4.13): first, we denote by
U the restriction of u,, to I'. Since uy, is a smooth function, then

(4.22)

el 0y < Timlomoimysey S mave (s, gl )
and hence there is a function w € L*(I") such that, up to subsequences,
Uy — w weakly™ in L>(T). (4.23)
By combining (4.5), (4.18), (4.23) and the fact that Tr(pb) = 0 on I'° we get that

T T
/ / Lot U T (pim by )AHE T dt — / / 1r+ wTr(pb)dH e dt
0o Joa " 0 Jon (4.24)

:/ wipTr(pb)dH ™ dt.
[+Uro

By combining (4.20), (4.21), (4.22) and (4.24) we get that u satisfies (4.1) and this establishes
existence of a distributional solution of (1.2).



4.3 Proof of Lemma 4.1

To ensure that (4.15) holds we use the same approximation ¢ la Meyers-Serrin as in [7, pp.122-

123]. We now recall some details of the construction. First, we fix a countable family of open sets
{Ah} such that

i. Ay is compactly contained in A, for every h;
ii. {Ah} is a covering of A, namely
oo
iii. every point in A is contained in at most 4 sets Aj,.

Next, we consider a partition of unity associated to {Ah}, namely a countably family of smooth,
nonnegative functions {¢5} such that

iv. we have

Y =1 in® (4.25)
h=1

v. for every h > 0, the support of (; is contained in Ay.

Finally, we fix a convolution kernel n : R**! — R* and we define 7. by setting

Ne(z) = Ed%n (g)

For every m > 0 and h > 0 we can choose &,,;, in such a way that (pCx) * 7., , is supported in A
and furthermore

T —h
2
| 10000 #0100 100G (091G 01 | 10T~ (Vo) 1t < 2 (426)
0
We then define p,, by setting
P =D (PCh) * e - (4.27)
h=1

The function (bvb)m is defined analogously. Next, we proceed as in [7, p.123] and we point out that

4.12) 4.12) — <
hom ( (“)tpm + div(pmbm) (4.12) Z(atpgh) *Me, .+ Z(dlv(pb)(h) * M,
h=1 h=1
=0 by (1.1)

Z (P OuCh) * e, + Z (pb - VCh) % e,

h=1 h=1
4.25 > 0o o
(4.25) Z(P&Ch) Ty =P O+ Y (P V) xne,, —pb > Vs

h=1 h=1 h—1 pyrt

By using (4.26) we then get that

//|hm|d;cdt<zi =

h=1

and this establishes (4.15).
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5 Proof Theorem 1.2: comparison principle and uniqueness

In this section we complete the proof of Theorem 1.2. More precisely, we establish the following
comparison principle.

Lemma 5.1. Let Q, b and p as in the statement of Theorem 1.2. Assume uy andug € L ((0,T) x
0) are distributional solutions (in the sense of Definition 3.3) of the initial-boundary value prob-
lem (1.2) corresponding to the initial and boundary data u; € L®(Q), g € LT ") and uy €
L>(Q), gy € L>('7), respectively. If uy > Uy and G, > G, then

puy > pug  a.e.in (0,T) x Q. (5.1)
Note that the uniqueness of pu, where u is a distributional solution of the initial-boundary
value problem (1.2), immediately follows from the above result.
Proof of Lemma 5.1. Let us define the function
w? uw>0
0 wu<O.

In what follows, we shall prove that the identity p B(ug — u1) = 0 holds almost everywhere,
whence the comparison principle follows. To see this, we proceed as described below. First, we
point out that, since the equation at the first line of (1.2) is linear, then ug —u is a distributional
solution of the initial boundary value problem with data ws — 1, g5 — g;. In particular, for every
1 € C2([0,T) x R?) we have

T T
/ / p(uz—1ur ) (Orto+b-V) dadt = / / [Te(pusb)—Tr(purb)] ¥ dHOdt— | (0, -)po(Ts—71) da
0 Q 0 o0 Q

(5.2)
and
Tr(pugb) = g, Tr(pb), Tr(puib) =g, Tr(pb) onT'. (5.3)
Note that (5.2) implies that
T
/ / p(uz — 1) (D +b- V) dedt = 0, Yo € C2((0,T) x Q). (5.4)
0o Jo
By using [19, Lemma 5.10] (renormalization property inside the domain), we get
T
/ / p Blus —u) (b +b- Vo) dedt =0, Vo e CX((0,T) x Q). (5.5)
o Jo

We next apply Lemma 3.1 to the function B(uz — 1) to infer that there are bounded functions
Tr(pB(ug — u1)b) and (pB(uz — u1))o such that, for every ¢ € C2°([0,T) x R?), we have

T T
[ [ pbtwa—un) @50y dst = [ [ o blua—un) o at-tae— [ 6(0.)(p Bluz—un))o do.
0o Ja o Joa Q
(5.6)
We recall (5.2) and we apply Lemma 2.2 (trace renormalization property) with w = ug—uq, h = 3,

B = (p,pb), A = R and A’ = (0,T) x Q. We recall that the vector field P is defined by setting
P := (p, pb) and we get

(p Blus —u1))o = —Tr(B(us — uy) P, 0N) _ | o2 = ) Tr(P,0A’)
{0}xe Tr(P, dA)

{0} xQ

{0}xQ

-p (/)o (uzp— UI>> Po

= 0, since uy > Uy
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and

Tr((ug — u1)p, 6A’)‘

Telo Blan A N ‘ _ 5 (0.7)x09 | P.oN
r(p Bluz — u1)b) = Tr(B(uz — u1)p ) (0.T)x59 5 (P, ON) r( ) (0.7)x 0
’ (0,T)x 8
_ 5 ( Tr(p(uz —u1)b)
By recalling (5.3) and the inequality g; > ga, we conclude that
Tr(p B(uz — u1)b) =0 on I~
and, since B > 0, that ~
Tr(p B(ug —u1)b) >0 onT. (5.8)

We now choose a test function v € C°(R?) in such a way that v = 1 on the bounded set Q2. Note
that
Ov+b-Vv=0 on (0,T) x Q. (5.9)

Next we choose a sequence of functions x, € C2°([0,+00)) that satisfy
1 )
Xn=1on [0,8], xn =0on [+ —,+00), x; <0,

and we define
Un(t, 7)== xu(t)v(x), (t,7) € [0,T) x R%.

Note that 1 is smooth, non-negative and compactly supported in [0,7) x R%. By combining the
identities (5.6), (5.7) and the inequality (5.8), we get

0< / / us — u1) [0 (xXnv) + b+ V(xnv)] dadt

T
= / / vp B(ug —uy)x,, dedt —|—/ / Xnp Blug —u1) (8w + b - Vv) dadt
0o Jo 0o Jo

T
(29 / / vp Xl Blug —uy) dadt.
o Jo

Passing to the limit as n — +o0o0 and noting that x/, = —dr as n — oo in the sense of distributions
and recalling that v = 1 on €2 we obtain

[ #6980~ u) (i) <0,
Q
Since the above inequality is true for arbitrary ¢ € [0, T], we can conclude that
p B(uy —uy) = 0, for almost every (¢, ) = puy > pug, for almost every (¢, ). (5.10)

This concludes the proof of Lemma 5.1. O

6 Stability and space continuity properties

In this section, we discuss some qualitative properties of solutions of the initial-boundary value
problem (1.2). First, we establish Theorem 6.1, which establishes (weak) stability of solutions
with respect to perturbations in the vector fields and the data. Theorem 6.2 implies that, under
stronger hypotheses, we can establish strong stability. Finally, Theorem 6.3 establishes space
continuity properties.
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Theorem 6.1. Let T > 0 and let @ C R be an open and bounded set with C? boundary. Assume
that

bn,b € BV((0,T) x ;RY) N L>®((0,T) x Q;RY), pnsp € BV((0,T) x Q)N L¥([0,T) x Q)

satisfy
Op + div(bp) =0,
in the sense of distributions on (0,T) x Q. Assume furthermore that
0 < pn,p < C and ||bpllco is uniformly bounded, (6.2)
(b'rupn) T (ba p) Strongly in Ll((O>T) X Q;Rd+1)7 (63)
Pro —— po strongly in L*(Q), (6.4)
n— oo
Tr(ppbn) —— Tr(pb) strongly in L*(T), (6.5)
n—oo

Let u, € L=((0,T) x Q) be a distributional solution (in the sense of Definition 3.3) of the initial-
boundary value problem

Ot(pntn) + div(ppunb,) =0 in (0,T) x Q
Up, = Tp, att=0 (6.6)
Uy =Gy, on ',

and u € L*=((0,T) x Q) be a distributional solution of the equation

O(pu) + div(pub) =0 in (0,T) x Q

u=1 att =0 (6.7)
U=y onI'~.
If up, @ € L*(Q) and g,,,g € L>(T) satisfy
Ty — T weak-* in L>=(S), (6.8)
G, — g weak-* in L>(T), (6.9)
then
Pty — pu weak-* in L>((0,T) x Q) (6.10)
and
Tr(pptinbn) = Tr(pub) weak-* in L>=(T). (6.11)

Note that in the statement of the above theorem g,, and g are functions defined on the whole
T', although the values of p,,u,, and pu are only determined by their values on I',, and I'",
respectively.

Proof. We proceed according to the following steps.

STEP 1: we apply Theorem 1.2 and we infer that the function p,u, satisfying (6.6) is unique.
Also, without loss of generality, we can redefine the function w, on the set {p, = 0} in such a
way that u, satisfies the maximum principle (1.3). Owing to (6.11), the sequences |[Ty,||L~ and
|, are both uniformly bounded and by the maximum principle so is ||ty,||Le. Also, by
combining (3.3) and (6.2) we infer that the sequence | Tr(pnbnun)|loo is also uniformly bounded.
We conclude that, up to subsequences (which we do not label to simplify the notation), we have

U, — 71 weak-* in L>((0,T) x Q),

: (6.12)
Tr(ppunby) = 12 weak-* in L*°(T")

13



for some r; € L>((0,T) x Q) and ro € L>°(T"). By using (3.1) and (3.2), we get that

T
/ / pri(0ip+b-Vo) dedt =0, Vo e CZ((0,T) x Q), (6.13)
o Ja

and
T T

/ / pr1(0pp + bVY) dxdt :/ / rotp dHI " dt — / (0, )po @ dz, Vb € C°([0,T) x R?).
0 Q 0 o0

Q

(6.14)
From Lemma 3.1, it also follows that
ro = Tr(prib). (6.15)
Assume for the time being that we have established the equality
ro = gIr(pb), onI, (6.16)

then by recalling (6.15) and the uniqueness part in Theorem 1.2 we conclude that r; = pu and
ro = Tr(pbu). Owing to (6.12), this concludes the proof of the theorem.
STEP 2: we establish (6.16). First, we decompose Tr(pmtmby,) as

Tr(pnunbn) = Tr(pnunbn)1lp- + Tr(pnunbn)1p+ + Tr(pnunbn)lro

B (6.17)
= gnTr(pnbn)IF; + Tr(pnunbn)lrt + Tr(pnunbn)lro,

where I';, I';7 and T'? are defined as in (3.6). By using Lemma 2.2 (trace renormalization), one
could actually prove that the last term in the above expression is actually 0. This is actually
not needed here. Indeed, it suffices to recall (6.5) and Lemma 4.2 and point out that by combin-
ing (4.17) and (4.18) we get

11“9,, — 1po — 1p — 1. (618)

Next, we recall that the sequence || Tr(pnunby,)| Lo is uniformly bounded owing to the uniform
bounds on ||pn||r~ and ||u,|| L. By recalling (6.9), we conclude that

T Tr(puba) 1y = §Tr(pb)(1pf + 1p/) weak-* in L(T). (6.19)

By recalling that I" C I'% we get that Tr(pb)1r = 0. We now pass to the weak star limit in (6.17)
and using (4.17), (4.18), (6.12), (6.9) and (6.19) we get

T2 = gTr(pb)1p- + 72 (1r+ + 1F’) + T2 (11‘0 —1p = 1F">7 (6.20)
which owing to the properties
rni’=0, I ni¥=0, IT"NI"=9¢
implies (6.16). This concludes the proof Theorem 6.1. O

Theorem 6.2. Under the same assumptions as in Theorem 6.1, if we furthermore assume that

U — W strongly in L*(Q), (6.21)
n—oo

G, — g strongly in L*(T"), (6.22)
n—o0

then we get
Pty — pu strongly in L*((0,T) x Q),
n—o0

. (6.23)
Tr(prunby,) —— Tr(pub) strongly in L™ (T).
n—oo
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Proof. First, we point out that the first equation in (6.11) implies that
Prttm—pu weakly in L*((0,T) x Q). (6.24)

Next, by using Lemma 2.2 (trace-renormalization property), we get that p,,u2 and pu? satisfy (in
the sense of distributions)

Ot (pnu2) + div(ppu2b,) =0 in (0,T) x

u2 =2 att =0
uZ = §% onI,,
and
9y (pu?) + div(pu?b) =0 in (0,T) x Q
u? = u? att=20
u? = g2 onT~,

respectively. Also, by combinig (6.8),(6.9), (6.21) and (6.22), we get that

72 w2 weak-* in L>(Q), 72 = g% weak-* in L°°(T)

and by applying Theorem 6.1 to p,,u2, we conclude that
pmu’, = pu? weak-* in L>((0,T) x Q)
and that
Tr(pnulby,) = Tr(pu?b) weak-* in L>°(T). (6.25)
Since the sequence ||py, ||z is uniformly bounded, then by recalling (6.3) we get
p2uZ, 5 p*u? weak-* in L°°((0,T) x Q)
and hence
p2uz —p?u? weakly in L2((0,T) x ). (6.26)

By combining (6.24) and (6.26) we get that p2,u2, — pu strongly in L%((0,T) x Q) and this
implies the first convergence in (6.23).

Next, we establish the second convergence in L?((0,T) x €2). Since T is a set of finite measure,
from (6.11) and (6.25) we can infer that

Tr(pnitnby,) — Tr(pub) weakly in L*(T),

L T (6.27)
Tr(ppusby) — Tr(pu”b) weakly in L°(T).

By using the uniform bounds for || Tr(p,by)|leo, we infer from the L! convergence of Tr(p,b,) to
Tr(pb) that
Tr(ppbn) — Tr(pb) strongly in L*(T). (6.28)
n— oo

Next, we apply Lemma 2.2 (trace renormalization property) and we get that

() = [P 1,2 = T T
n“Yn¥n Tr(pnbn) nvn n“nn nvn
and )
Tr(pubd)
2 _ 2 _ 2
T (put)]? = | | (o] = Ty To(ob).
From (6.27) and (6.28), we can then conclude that
[Tr(pptinbn)]? — [Tr(pub)]? weakly in L*(T), (6.29)
and by recalling (6.27) the second convergence in (6.23) follows. O
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Finally, we establish space-continuity properties of the vector field (pu, pub) similar to those
established in [11, 16].

Theorem 6.3. Under the same assumptions as in Theorem 1.2, let P be the vector field P :=
(p,pb), u be a distributional solution of (1.2) and {X,}rer C R? be a family of graphs as in
Definition 2.3. Also, fix ro € I and let vo,7, : (0,T) x D — R be defined by

’yo(t;xla T 7md71) = T]:'i(uP7 (OvT) X E’r‘o)(twrlv' o axdfl,f(xla T 7xd71) - 7"0),

. (6.30)
7T(taxl7"' 7xd71) =Tr (U/Pa (O;T) X ZT)(t;xla"' 7xd717f(m1,"' ,xd,]_) —’I").

Then 7y, — 7o strongly in L*((0,T) x D) asr — rg.

The proof of the above result follows the same strategy as the proof of [16, Proposition 3.5]
and is therefore omitted.

7 Applications to the Keyfitz and Kranzer system

In this section, we consider the initial-boundary value problem for the Keyfitz and Kranzer sys-
tem [24] of conservation laws in several space dimensions, namely

d
KU+ 0., (f{IUNU) =0 in (0,T) x ©

i=1
U=U, att =0 (7.1)
U=U, on .

Note that, in general, we cannot expect that the boundary datum is pointwise attained on the
whole boundary I'. We come back to this point in the following.

We follow the same approach as in [2, 6, 12, 20] and we formally split the equation at the first
line of (7.1) as the coupling between a scalar conservation law and a linear transport equation.
More precisely, we set F' := (f!,---, f%) and we point out that the modulus p := |U| formally
solves the initial-boundary value problem

Op +div(F(p)p) =0 in (0,T) x 2
p = |Up att=20 (7.2)
p=|Us onT.

We follow [10, 15, 28] and we extend notion of entropy admissible solution (see [25]) to initial
boundary value problems.

Definition 7.1. A function p € L*>((0,T) x Q)N BV ((0,T) x Q) is an entropy solution of (7.2)
if for all k € R,

/OT/Q {\P(taf) — k| Opp +sgn(p — k)[F(p) — F(k)] - W} dudt

T
+ [ =k w0 de= [ [ san(Uhl(t.2) = ) () = (b 6 dade >0,

for any positive test function ¢ € C([0,T) x R4 RY). In the above expression T(p) denotes the
trace of the function p on the boundary I' and 7 is the outward pointing, unit normal vector to T.

Existence and uniqueness results for entropy admissible solutions of the above systems were
obtained by Bardos, le Roux and Nédélec [10] by extending the analysis by Kruzkov to initial-
boundary value problems (see also [15, 28] for a more recent discussion). Note, however, that one

16



cannot expect that the boundary value |Uy| is pointwise attained on the whole boundary T', see
again [10, 15, 28] for a more extended discussion.

Next, we introduce the equation for the angular part of the solution of (7.1). We recall that,
if |Uy| and |Up| are of bounded variation, then so is p and hence the trace of F(p)p on I is well
defined. As usual, we denote it by T'(F(p)p). In particular, we can introduce the set

I~ :={(t,z) eT: T(F(p)p) 7 <0},

where as usual 77 denotes the outward pointing, unit normal vector to I'. We consider the vector
0 = (61, - ,0n) and we impose

O¢(pf) + div(F(p)pd) =0 in (0,T) x Q

Uy
0= — att=0 7.3
00 (7.3)
9=—2 on '™,
|Us|

where the ratios Uy/|Ug| and U, /|U,| are defined to be an arbitrary unit vector when |Up| = 0
and |Uy| = 0, respectively. Note that the product U = 6p formally satisfies the equation at the
first line of (7.1). We now extend the notion of renormalized entropy solution given in [2, 6, 20]
to initial-boundary value problems.

Definition 7.2. A renormalized entropy solution of (7.1) is a function U € L*=((0,T) x Q;RY)
such that U = pf, where

o p=|U| and p is an entropy admissible solution of (7.2).
o 0= (61,...,0n) is a distributional solution, in the sense of Definition 3.3, of (7.3).

Some remarks are here in order. First, we can repeat the proof of [19, Proposition 5.7] and
conclude that, under fairly general assumptions, any renormalized entropy solution is an entropy
solution. More precisely, let us fix a renormalized entropy solution U and an entropy-entropy flux
pair (1, Q), namely a couple of functions n : RN — R, @ : RY — R? such that

VnDfi=VQ! foreveryi=1,...,d.

Assume that
LreR: (1Y) = = () (r) = 0} = 0.

By arguing as in [19] we conclude that, if n is convex, then

T
/ / n(U)0s¢ + Q(U) - Vo dadt > 0
0 Q

for every entropy-entropy flux pair (n, Q) and for every nonnegative test function ¢ € C°((0,T) x
Second, we point out that, as the Bardos, le Roux and Nédélec [10] solutions of scalar initial-
boundary value problems, renormalized entropy solutions of the Keyfitz and Kranzer system do
not, in general pointwise attain the boundary datum Uy on the whole boundary T'.
We now state our well-posedness result.

Theorem 7.3. Assume ) is a bounded open set with C? boundary. Also, assume that Uy €
L>®(;RN) and U, € L>=(T;RY) satisfy |Ug| € BV (Q), |Uy| € BV(T'). Then there is a unique
renormalized entropy solution of (7.1) that satisfies U € L>((0,T) x ;RY).

Proof. We first establish existence, next uniqueness.
EXISTENCE: first, we point out that the results in [10, 15, 28] imply that there is an entropy
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admissible solution of (7.2) satisfying p € L*°((0,T) x Q)N BV ((0,T) x Q). Also, p satisfies the
maximum principle, namely

0. < p < max {[|Uollz~ [T~} (7.4)

For every j = 1,..., N we consider the initial-boundary value problem

Oi(pb;) + div(F(p)pb;) =0 in (0,T) x Q

Uy
0-:7j att:O 75
J |(9]0| ( )
0, = 24 onI'™,
T U

where Up; and Uy, is the j-th component of Uy and Uy, respectively. The existence of a distribu-
tional solution 6; follows from the existence part in Theorem 1.2.

We now set U := pf, where 0 = (01, ...,60x). To conclude the existence part we are left to show
that |[U| = p. To this end, we point out that, by combining [19, Lemma 5.10] (renormalization
property inside the domain) with Theorem 2.2 (trace renormalization property) and by arguing
as in § 5, we conclude that, for every j =1,..., N, 9? is a distributional solution, in the sense of
Definition 3.3, of the initial-boundary value problem

9:(p03) + div(F(p)pf7) =0 in (0,T) x Q

Us;
= |U0|2 attzO
bQ‘
_ J _
0= A onI~.

By adding from 1 to N, we conclude that |§]? is a distributional solution of

0 (pl0]?) + div(F'(p)pl6|?) =0 in (0,T) x ©
9]‘ =1 att =20
=1 onI'~.

By recalling the equation at the first line of (7.2) we infer that |#|?> = 1 is a solution of the above
initial-boundary value problem. By the uniqueness part of Theorem 1.2, we then deduce that
p|0]? = p and this concludes the proof of the existence part.

UNIQUENESS: assume U; and U, are two renormalized entropy solutions, in the sense of Defini-
tion 7.2, of the initial-boundary value problem (7.1). Then p; := |U;| and p2 := |Us| are two
entropy admissible solutions of the initial-boundary value problem (7.2) and hence p; = ps. By
applying the uniqueness part of Theorem 1.2 to the initial-boundary value problem (7.5), for every
j=1,..., N, we can then conclude that U; = Us. U
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