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Abstract. We analyze the asymptotic behavior of a variational model for

damaged elastic materials. This model depends on two small parameters, which
govern the width of the damaged regions and the minimum elasticity constant

attained in the damaged regions. When these parameters tend to zero, we find
that the corresponding functionals Γ-converge to a functional related to frac-

ture mechanics. The corresponding problem is brittle or cohesive, depending

on the asymptotic ratio of the two parameters.

1. Introduction. In damage models for linearly elastic materials the elasticity
tensor depends continuously and monotonically on an internal variable v. This is a
function defined on the reference configuration Ω ⊂ Rn with values in the interval
[0, 1]. We assume that v = 1 corresponds to the original elastic material, while
v = 0 represents the totally damaged material, with vanishing elasticity tensor. In
the regions where v is very small, the displacement gradient ∇u of the solution u
of a stationary elastic problem can be very large, so we expect that u develops a
jump discontinuity when v tends to zero.

To study this problem in a definite setting, we consider a damage model depend-
ing on a small parameter ε, and investigate the behavior of the displacement uε
and of the internal variable vε as ε→ 0. We assume that the model forces damage
concentration, so that vε → 1 in L1(Ω). We assume also that min vε → 0. In other
words, there are regions with smaller and smaller volume where the elasticity tensor
tends to zero. It is possible that ∇uε becomes larger and larger in these regions
and that uε converges in L1(Ω) to some function u that exhibits jump discontinu-
ities along sets of codimension one. We expect that u can be considered as the
displacement obtained in some fracture model.

In this paper we consider this problem in the simplest situation: the antiplane
case for a homogeneous and isotropic material. Then the displacement u is scalar,
and the elasticity tensor reduces to a single constant. We also assume that the
material remains isotropic during the damage process, so that the internal variable
v can be chosen equal to the elasticity coefficient of the damaged material, up to a
multiplicative constant.

The stored elastic energy corresponding to the displacement u and to the internal
variable v is then given by ∫

Ω

v|∇u|2dx.
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The energy dissipated by the damage process has the form∫
Ω

φε(v)dx,

where φε : [0, 1]→ R is strictly decreasing and satisfies φε(1) = 0. The total energy
for the damage model is then∫

Ω

v|∇u|2dx+

∫
Ω

φε(v)dx.

To force damage concentration as ε → 0 we assume that φε = 1
εψ for some

strictly decreasing function ψ : [0, 1]→ R satisfying ψ(1) = 0. In the limit as ε→ 0
this leads to the condition v = 1 Ln-a.e. in Ω. Under this assumption the total
energy is ∫

Ω

v|∇u|2dx+
1

ε

∫
Ω

ψ(v)dx. (1)

It is reasonable to require that neighboring points are similarly damaged. For
this reason we assume that the internal variable v satisfies an inequality like

|∇v| ≤ aε Ln-a.e. on Ω, (2)

for a certain constant aε. In this paper we develop the case aε = 1/ε. The arguments
for our proofs show that, in this case, the damaged regions {vε < 1

2} tend to
concentrate around sets of codimension one, on strips whose width is proportional
to ε.

Finally, we suppose that the material is never totally damaged. This leads to the
condition

ηε ≤ v ≤ 1, (3)

where ηε is a positive constant. We assume that ηε/ε→ α, with α ∈ [0,∞].
In this model a solution of the stationary damage problem is a minimizer of (1),

with suitable boundary conditions, under the constraints (2) and (3). Of course,
lower order terms should be added to (1) if external volume forces are present. To
study the asymptotic behavior of these minimizers as ε → 0 we fix two sequences
εk > 0 and ηk > 0, with εk → 0 and ηk → 0, and we determine the Γ-limit in
L1(Ω)×L1(Ω) of the sequence of functionals defined by

Fk(u, v) :=

∫
Ω

v|∇u|2dx+
1

εk

∫
Ω

ψ(v)dx

if u ∈ H1(Ω) and v satisfies the the constraints

ηk ≤ v ≤ 1 and |∇v| ≤ 1

εk
Ln-a.e. on Ω, (4)

and by Fk(u, v) := +∞ if these conditions are not satisfied. We assume that
ηk/εk → α, with α ∈ [0,∞]. Moreover we assume that Ω is a bounded open set
with Lipschitz boundary and that ψ satisfies a very mild technical condition, which
is fulfilled in the standard examples ψ(z) = 1− zβ , with β > 0.

The Γ-limit depends on α. Its domain is contained in the spaces GSBV 2(Ω),
SBV 2(Ω), or H1(Ω), depending on the value of α. For the definition of the first two
spaces we refer to 7 in Section 2, which contains also a short account on the notation
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used for free discontinuity problems. To describe the Γ-limit when 0 < α < ∞ we
introduce the functional Φα : L1(Ω) 7→ [0,+∞] defined as follows:

Φα(u) :=


∫

Ω

|∇u|2dx+ aHn−1(Ju) + bα

∫
Ju

|[u]|dHn−1 if u ∈ SBV 2(Ω),

+∞ otherwise,

where

a := 2

∫ 1

0

ψ(s)ds and bα := 2(αψ(0))1/2.

In the limiting cases α = 0 and α =∞ we define

Φ0(u) :=


∫

Ω

|∇u|2dx+ aHn−1(Ju) if u ∈ GSBV 2(Ω) ∩ L1(Ω),

+∞ otherwise,

Φ∞(u) :=


∫

Ω

|∇u|2dx if u ∈ H1(Ω),

+∞ otherwise.

First we prove the following theorem (see Theorem 3.1).

Theorem 1.1. The Γ-limit of (Fk) in L1(Ω)×L1(Ω) is given by

Fα(u, v) :=

{
Φα(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.

For α = 0 the limit functional is used to determine stationary solutions in some
brittle fracture models (see [7]). For 0 < α < ∞ the limit functional is related to
fracture models with a cohesive zone. It is also used in the study of plastic slips (see
[4]). For α = ∞ the limit functional corresponds to an elasticity problem without
cracks.

In the case α = 0 our result is similar to the approximation of Φ0 obtained in [6]
(see also [5]) by means of the functionals

Gε(u, v) =

∫
Ω

(v2 + ηε)|∇u|2dx+ ε

∫
Ω

|∇v|2dx+
1

4ε

∫
Ω

(v − 1)2dx. (5)

In our result the integral term ε
∫

Ω
|∇v|2dx is replaced by the constraint |∇v| ≤ 1/ε.

To our knowledge, no result has been proved for (5) in the case 0 < α <∞. In [4]
the functional Φα, with 0 < α <∞, has been obtained as Γ-limit of the sequence

Gε(u, v) =

∫
Ω

(v2+ηε)|∇u|2dx+aε

∫
Ω

|∇v|2dx+
a

4ε

∫
Ω

(v−1)2dx+bα

∫
Ω

(v−1)2|∇u|dx.

In a future work [16] the results of the present paper will be extended to other
variants of the Ambrosio-Tortorelli approximation.

Theorem 1.1 enables us to prove the following result about the convergence of
minimizers of some variational problems involving the functionals Fk and Fα (see
Theorem 7.1).

Theorem 1.2. Let q > 1. For every k, let (uk, vk) be a minimizer of the functional∫
Ω

v|∇u|2dx+
1

εk

∫
Ω

ψ(v)dx+

∫
Ω

|u− g|qdx (6)
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with the constraints (4). Then vk → 1 in L1(Ω) and a subsequence of (uk) converges
in Lq(Ω) to a minimizer u of the following limit problem:

min
u∈SBV 2(Ω)

(∫
Ω

|∇u|2dx+ aHn−1(Ju) + bα

∫
Ju

|[u]|dHn−1 +

∫
Ω

|u− g|qdx
)
,

if 0 < α < ∞; whereas in the extreme cases α = 0 and α = ∞ the limit problems
are

min
u∈GSBV 2(Ω)

(∫
Ω

|∇u|2dx+ aHn−1(Ju) +

∫
Ω

|u− g|qdx
)
,

min
u∈H1(Ω)

(∫
Ω

|∇u|2dx+

∫
Ω

|u− g|qdx
)
,

respectively. Moreover for 0 ≤ α ≤ ∞ the minimum values of (6) with the con-
straints 4 tend to the minimum value of the limit problem.

The paper is composed of seven sections. After a brief introduction, in Section
2 we fix the notation for functions with bounded variation. In Section 3 we state
the Γ-convergence result, which is proved in Sections 4, 5, and 6. In particular in
Section 4 we face the one-dimensional problem in the cases α = 0, 0 < α <∞, and
α =∞; in Section 5 we prove the Γ-lim inf inequality in the n-dimensional case by
a slicing argument, whereas in Section 6 we prove the Γ-lim sup inequality through
the construction of a recovery sequence. Finally we deal with the convergence of
minimizers in Section 7.

2. Notation and preliminaries. Let n ≥ 1 be a fixed integer. The Lebesgue
measure and the k-dimensional Hausdorff measure in Rn are denoted by Ln and
Hk. For the general properties of the Hausdorff measure we refer to [13] and [12].

The open ball of Rn with centre x and radius r is indicated by B(x, r) or Br(x);
if x = 0, we write also Br in place of Br(0). The Lebesgue measure of the unit
ball of Rn is denoted by ωn. Moreover let d(x,E) be the Euclidean distance of the
point x from the set E ⊂ Rn, let diam(E) be the diameter of E, and let E4F be
the symmetric difference of E and F . The symbols ∨ and ∧ denote the maximum
and the minimum operators respectively.

For the general theory of BV -functions we refer to [3], [13], [14] and [12]; here
we just recall the notation and some results we use in the sequel.

Let Ω be an open subset of Rn. For every u ∈ BV (Ω) the distributional gradient
Du, the one-sided approximate limits u+ and u−, the approximate differential ∇u
and the jump set Ju are defined in [3, Sections 3.1, 3.6]. Moreover the jump function
u+ − u− is denoted by [u].

The jump set Ju is countably Hn−1-rectifiable according to [3, Definition 2.57].
Moreover there exists a Borel function ν : Ju → Sn−1 such that the vector ν is
normal to Ju in the sense that, if M is a C1-manifold of dimension n−1, then ν(x) is
normal to M forHn−1-a.e. x ∈M∩Ju. In particular the triplet (u+(x), u−(x), ν(x))
is uniquely determined up to a change of sign of ν(x) and a simultaneous interchange
between u+(x) and u−(x).

If u ∈ BV (Ω) then

Du = Dau+Dju+Dcu,

where Dau is absolutely continuous and Dju+Dcu is singular with respect to the
Lebesgue measure; in particular Dju denotes the jump derivative of u and

Dju = (u+ − u−)νHn−1bJu,
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whereas Dcu is the Cantor part of the derivative of u (see [3, Section 3.9]). In
particular the approximate differential ∇u coincides with the density of Dau.

The spaces SBV (Ω), GBV (Ω), GSBV (Ω) are defined as in [3]. We recall that a
GBV -function is weakly approximately differentiable Ln-a.e. in Ω (see [3, Definition
4.31, Theorem 4.34]). Since an approximately differentiable function u is also weakly
approximately differentiable and the approximate differential coincides with the
weak approximate differential Ln-a.e. in Ω, we also denote the weak approximate
differential by ∇u.

Let p ∈ ]1,+∞[; let us define

SBV p(Ω) :=
{
u ∈ SBV (Ω) : ∇u ∈ Lp(Ω,Rn) and Hn−1(Ju) < +∞

}
,

GSBV p(Ω) :=
{
u ∈ GSBV (Ω) : ∇u ∈ Lp(Ω,Rn) and Hn−1(Ju) < +∞

}
.

(7)

In the case Ω ⊂ R, if u ∈ SBV 2(Ω), then u ∈ H1(Ω \Ju). Conversely, if Ω ⊂ R and
there exists a finite set F such that u ∈ H1(Ω\F ), then u ∈ SBV 2(Ω) and Ju ⊂ F .

Finally for the Γ-convergence theory we refer to [11].

3. The Γ-convergence result. Let Ω be a bounded open subset of Rn and let
εk > 0, εk → 0. We shall study the Γ-limit in L1(Ω)×L1(Ω) of the sequence of
functionals Fk : L1(Ω)×L1(Ω)→ [0,+∞] defined by

Fk(u, v) :=


∫

Ω

v |∇u|2 dx+
1

εk

∫
Ω

ψ(v)dx if (u, v) ∈ H1(Ω)×Vk,

+∞ otherwise,
(8)

where

ψ ∈ C1([0, 1]) is strictly decreasing with ψ(1) = 0, (9)

Vk :=

{
v ∈W 1,∞(Ω) : ηk ≤ v ≤ 1, |∇v| ≤ 1

εk
Ln-a.e. in Ω

}
, (10)

with ηk ≥ 0, ηk → 0. We assume that for every c ≥ 0

the equation s2ψ′(s) = −c has a finite number of solutions. (11)

We assume that the limit
α := lim

k→∞

ηk
εk

(12)

exists. For 0 < α <∞ let Φα : L1(Ω) 7→ [0,+∞] is defined by

Φα(u) :=


∫

Ω

|∇u|2dx+ aHn−1(Ju) + bα

∫
Ju

|[u]|dHn−1 if u ∈ SBV 2(Ω),

+∞ otherwise,
(13)

where

a := 2

∫ 1

0

ψ(s)ds and bα := 2(αψ(0))
1
2 . (14)

In the limiting cases α = 0 and α =∞ we define

Φ0(u) :=


∫

Ω

|∇u|2dx+ aHn−1(Ju) if u ∈ GSBV 2(Ω) ∩ L1(Ω),

+∞ otherwise,
(15)

Φ∞(u) :=


∫

Ω

|∇u|2dx if u ∈ H1(Ω),

+∞ otherwise.

We are now in a position to state the main result of the section.
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Theorem 3.1. Assume (8)-(12) and assume that Ω has Lipschitz boundary. The
Γ-limit of (Fk) in L1(Ω)×L1(Ω) exists and is given by

Fα(u, v) :=

{
Φα(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(16)

Theorem 3.1 is an immediate consequence of the estimates for the functionals

F ′α := Γ- lim inf
k→∞

Fk and F ′′α := Γ- lim sup
k→∞

Fk (17)

contained in the following results.

Theorem 3.2. Assume (8)-(12). Let (u, v) ∈ L1(Ω)×L1(Ω) be such that F ′α(u, v) <
+∞. Then v = 1 Ln-a.e. in Ω, u ∈ GSBV 2(Ω) ∩ L1(Ω), and

Φα(u) ≤ F ′α(u, 1). (18)

Theorem 3.3. Assume (8)-(12) and assume that Ω has Lipschitz boundary. Let
u ∈ GSBV 2(Ω) ∩ L1(Ω). Then the following estimate holds

F ′′α (u, 1) ≤ Φα(u). (19)

Theorem 3.3 will be proved in Sections 4 and 6. Theorem 3.2 can be obtained as a
consequence of the following proposition that will be proved in Sections 4 and 5.

Proposition 1. Assume (8)-(12). Let (uk, vk) be a sequence in L1(Ω)×L1(Ω) such
that

(uk, vk)→ (u, v) in L1(Ω)×L1(Ω), (20)

(Fk(uk, vk)) is bounded. (21)

Then u ∈ GSBV 2(Ω) ∩ L1(Ω), v = 1 Ln-a.e. in Ω, and∫
Ω

|∇u|2dx ≤ lim inf
k→∞

∫
Ω

vk|∇uk|2dx, (22)

aHn−1(Ju) ≤ lim inf
k→∞

1

εk

∫
Ω

ψ(vk)dx, (23)

Φα(u) ≤ lim inf
k→∞

∫
Ω

[
vk|∇uk|2 +

1

εk
ψ(vk)

]
dx. (24)

Remark 1. Estimates (22) and (23) cannot be deduced from (24), so that they
require a direct proof.

Let us show that Proposition 1 implies Theorem 3.2.

Proof of Theorem 3.2. If F ′α(u, v) < +∞, there exists a sequence (uk, vk) such that
(uk, vk)→ (u, v) in L1(Ω)×L1(Ω) and

lim inf
k→∞

Fk(uk, vk) = F ′α(u, v).

Passing to a subsequence, not relabeled, we can assume that Fk(uk, vk)→ F ′α(u, v),
so that (21) holds. By Proposition 1 we have that u ∈ GSBV 2(Ω) ∩ L1(Ω), v = 1
Ln-a.e. in Ω, and (18) follows from (24).

Remark 2. The hypothesis of Lipschitz boundary for Ω is used only to state the
estimate from above in the case n > 1. Indeed, in the proof of that estimate we
shall use a local reflection argument and the approximation Theorem 6.1 which is
proved under this hypothesis.
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In the case n = 1 the functional Φα used to express the Γ-limit Fα is finite only
on the space SBV 2(Ω). This is stated in the following proposition which will be
proved at the end of Section 4. Note that the last statements of Section 2 imply
SBV 2(Ω) ⊂ L∞(Ω) in the one-dimensional case.

Proposition 2. Let Ω ⊂ R be a bounded open set. Then Φ0(u) < +∞ if and only
if u ∈ SBV 2(Ω).

Remark 3. Let us note that, if n > 1, then the inequality Fα(u, 1) < +∞ does not
imply u ∈ BV (Ω) nor u ∈ L2(Ω). Indeed, let Ω be a bounded open set in Rn and
consider a sequence of pairwise disjoint balls Bri(xi), contained in Ω, with centres
xi and radii ri := 2−i. Moreover assume that also the balls B3ri(xi) are contained
in Ω and pairwise disjoint. Let u ∈ L1(Ω) be defined by

u(x) :=

{
ai if x ∈ Bri(xi),
0 otherwise,

(25)

where ai := 2(n−1)i. Clearly u ∈ L1(Ω) \ L2(Ω). Moreover u belongs to GSBV (Ω)
but does not to BV (Ω) since

|Dju|(Ω) =

+∞∑
i=1

airi
n−1 = +∞.

Let σ ≥ 2, εk := 2−nk, and ηk := εσk ; this implies α = 0. Let us show that

F ′α(u, 1) < +∞. To this aim let us consider δk := 2nk(1−σ) and let us define uk as ai
inBri−δk(xi), 0 out ofBri+δk(xi), and with constant slope inBri+δk(xi)\Bri−δk(xi),
for i ≤ k; we set uk := 0 otherwise. Let vk be defined as ηk in Bri+δk(xi) \
Bri−δk(xi), with constant slope in (Bri+δk+εk(1−ηk)(xi)\Bri+δk(xi))∪ (Bri−δk(xi)\
Bri−δk−εk(1−ηk)(xi)), for i ≤ k, and as 1 otherwise. Note that (uk, vk) ∈ H1(Ω)×Vk
and (uk, vk)→ (u, 1) in L1(Ω)×L1(Ω). A direct computation shows that

lim inf
k→∞

Fk(uk, vk) < +∞,

so that Fα(u, 1) < +∞.

4. Proof of the Γ-convergence result in the case n = 1.

Proof of Proposition 1. It is sufficient to prove the statement when Ω is an interval,
since the left-hand sides of (22), (23) and (24) are σ-additive with respect to Ω,
whereas the right-hand sides are σ-superadditive. Therefore we can assume Ω =
]0, 1[.

Let (uk, vk) be a sequence satisfying (20) and (21) with bounding constant c.
Note that ψ(vk) → 0 in L1(Ω) by (8) and (21); as ψ(vk) → ψ(v) in L1(Ω) we
deduce v = 1 L1-a.e. on Ω.

Proof of (22). It is not restrictive to assume that the lower limit in the right-hand
side of (22) is actually a limit. Let us divide the proof into two steps.

(a) Since vk is a Lipschitz function, the set

Bk = {x ∈ Ω : vk(x) > 1/2}

is relatively open in Ω. By Chebyshev inequality we get

ψ(1/2)L1(Bck) ≤
∫ 1

0

ψ(vk)dx,
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so that (8) and (21) imply

L1(Bck)→ 0. (26)

We write

Bk =
⋃

1≤j≤Nk

Ikj ∪
⋃
j>Nk

Jkj , (27)

where Ik1 , . . . , I
k
Nk

are the connected components of Bk such that L1(Ikj ) ≥ εk/4,

whereas Jkj are the connected components satisfying the opposite inequality. Let

akj and bkj be the end points of the interval Ikj . By changing the numeration, we

may assume that 0 ≤ ak1 ≤ bk1 < ak2 < bk2 < · · · < akNk ≤ bkNk ≤ 1. Moreover we set

bk0 := 0 and akNk+1 := 1.

By definition vk ≤ 1/2 on Bck; moreover vk ≤ 3/4 on each Jkj , since at least one

end point belongs to Bck, the length of Jkj is less than εk/4, and |∇vk| ≤ 1/εk L1-a.e.

in Ω by (8), (9), and (21). Then vk ≤ 3/4 in [bkj , a
k
j+1] for j = 0, . . . , Nk. From this

estimate and from (21) it follows that∑
j>Nk

L1(Jkj ) ≤ εkc

C1
, (28)

where C1 := ψ(3/4).
Let us show that (Nk) is bounded. To this aim we choose a point rj in each

interval [bkj−1, a
k
j ]. We have vk ≤ 7/8 in ]rj − εk

8 , rj + εk
8 [, since vk(rj) ≤ 3/4 and

|∇vk| ≤ 1/εk L1-a.e. in Ω. Then

1

εk

∫ rj+
εk
8

rj−
εk
8

ψ(vk)dx ≥ C2,

where C2 := 1/4ψ(7/8). We note that the intervals ]rj − εk
8 , rj + εk

8 [ are pairwise

disjoint, since L1(Ikj ) ≥ εk/4. By summing on the index j we find

C2(Nk + 1) ≤ c.
This shows that (Nk) is a bounded sequence of integers. Up to subsequences, we can
assume Nk = N for a certain N ; by compactness we can also assume the existence
of the limits

lim
k→∞

bkj =: bj and lim
k→∞

akj =: aj , (29)

with 0 = b0 ≤ a1 ≤ b1 ≤ · · · ≤ aN ≤ bN ≤ aN+1 = 1. Now, by (26) and (28) we
have

N∑
j=0

(akj+1 − bkj ) = L1(Bck) +
∑
j>N

L1(Jkj )→ 0; (30)

it follows that bj = aj+1, for j = 0, . . . , N . Let 0 = x0 < x1 < · · · < xm = 1 be an
increasing enumeration of the set {b0, . . . , bN}.

Let σ > 0 be such that xi−1 + σ < xi − σ for i = 1, . . . ,m. For large values of
k we have akj , bkj /∈ [xi−1 + σ, xi − σ]. Using (30) and (29), we can deduce that for
every k and every i there exists j such that

[xi−1 + σ, xi − σ] ⊂ ]akj , b
k
j [;

therefore vk > 1/2 in [xi−1 + σ, xi − σ], for i = 1, . . . ,m. By (8) and (21) we find∫ xi−σ

xi−1+σ

|∇uk|2dx ≤ 2c, (31)
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i.e., (∇uk) is bounded in L2(xi−1 + σ, xi − σ), for i = 1, . . . ,m.

(b) Using the Poincaré-Wirtinger Inequality, we deduce from (20) and (31) that
(uk) is bounded in H1(]xi−1 + σ, xi − σ[). This ensures that u ∈ H1(xi−1+σ, xi−σ)
and that uk ⇀ u weakly in H1(xi−1 + σ, xi − σ).

By the Severini-Egorov Theorem for every µ > 0 there exists a measurable set
Aµ ⊂ [xi−1 + σ, xi − σ], with L1(Aµ) < µ, such that, up to a subsequence, vk → 1
uniformly in [xi−1 + σ, xi − σ] \ Aµ. Then, fixed δ > 0, we have vk > 1 − δ in
[xi−1 +σ, xi−σ]\Aµ for large k. By the weak lower semicontinuity of the L2-norm,
we have

(1− δ)
∫

[xi−1+σ,xi−σ]\Aµ
|∇u|2dx ≤ lim inf

k→∞

∫ xi−σ

xi−1+σ

vk|∇uk|2dx.

We pass to the limit first as δ → 0 and then as µ → 0; adding on the index i we
find

m∑
i=1

∫ xi−σ

xi−1+σ

|∇u|2dx ≤ lim inf
k→∞

m∑
i=1

∫ xi−σ

xi−1+σ

vk|∇uk|2dx. (32)

As σ → 0, from (21) we obtain u ∈ H1(xi−1, xi) for i = 1, . . . ,m. Inequality (22)
follows.

Proof of (23). If u is continuous in a certain xi, then u ∈ H1(xi−1, xi+1) and we
can remove xi from the list. Therefore it is not restrictive to assume that every xi
is a jump point for u, for i = 1, . . . ,m− 1, so that H0(Ju) = m− 1. Fix σ > 0 such
that 2σ < xi − xi−1 for every i and let

δik = min{vk(x) : x ∈ [xi − σ
2 , xi + σ

2 ]}.

Let us prove that δik → 0 as k →∞; by contradiction, we suppose that there exists
a subsequence of (δik), not relabeled, and a constant K > 0 such that δik > K for
every k, i.e., vk > K > 0 in [xi − σ

2 , xi + σ
2 ]. By repeating the argument used

in steps (a) and (b) we find that u ∈ H1(xi − σ
2 , xi + σ

2 ) and this contradicts the
assumption that xi is a jump point.

Now let tik be a minimum point for vk in [xi − σ
2 , xi + σ

2 ]. For large value of k

we have [tik − εk(1 − δik), tik + εk(1 − δik)] ⊂ ]xi − σ, xi + σ[. Since vk(tik) = δik and
|∇vk| ≤ 1/εk L1-a.e. in Ω, it follows that vk ≤ 1

εk
|x− tik|+ δik. Since ψ is decreasing

we deduce

2

∫ 1

δik

ψ(s)ds =
1

εk

∫ tik+εk(1−δik)

tik−εk(1−δik)

ψ
( |x− tik|

εk
+ δik

)
dx ≤ 1

εk

∫ xi+σ

xi−σ
ψ(vk)dx;

adding with respect to i and passing to the lower limit we obtain (23).

Proof of (24). In the case α = 0 inequality (24) is obtained by adding (22) and
(23).

Let α > 0. Up to subsequences, we have uk → u L1-a.e. on Ω; we write Ju =
{x1 . . . xm−1}, where 0 = x0 < x1 < · · · < xm−1 < xm = 1, and we choose σ > 0,
with 2σ < xi − xi−1, such that

uk(xi−σ)→ u(xi−σ) and uk(xi−1 +σ)→ u(xi−1 +σ) for i = 1, . . . ,m. (33)

We want to estimate from below the integrals

Iik :=

∫ xi+σ

xi−σ
vk(∇uk)2dx+

1

εk

∫ xi+σ

xi−σ
ψ(vk)dx. (34)
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To this aim fix 1 ≤ i ≤ m− 1 and for k large we define

Wk := {w ∈ H1(xi − σ, xi + σ), w(xi − σ) = uk(xi − σ), w(xi + σ) = uk(xi + σ)},

Zk := {z ∈W 1,∞(xi−σ, xi+σ), ηk ≤ z ≤ 1, |∇z| ≤ 1/εk L1-a.e. on ]xi−σ, xi+σ[},

Hk(w, z) :=

∫ xi+σ

xi−σ
z|∇w|2dx+

1

εk

∫ xi+σ

xi−σ
ψ(z)dx, for (w, z) ∈Wk×Zk,

hk(z) := min
w∈Wk

Hk(w, z).

By elementary computation we find that this minimum is achieved and that

hk(z) =
βk

2∫ xi+σ

xi−σ

1

z
dx

+
1

εk

∫ xi+σ

xi−σ
ψ(z)dx, (35)

where

βk := |uk(xi + σ)− uk(xi − σ)|. (36)

Let zk be a minimum point for hk in Zk. It follows from the definition of hk and
from (34) that

hk(zk) ≤ Iik. (37)

We note that hk is invariant with respect to symmetric rearrangements of z (see
[2], [9], [13], [15], [17]), therefore we can assume that zk is symmetric with respect
to xi and nondecreasing on [xi, xi + σ[. Now we want to prove that zk is piecewise
affine.

First of all, by monotonicity and continuity, the sets

Ak := {zk = ηk} ∩ [xi, xi + σ[ and Bk := {zk = 1} ∩ [xi, xi + σ[

are closed intervals of [xi, xi + σ[. Let us define

Ck := {ηk < zk < 1, |∇zk| < 1/εk} ∩ [xi, xi + σ[,

Uj,k := {ηk + 1
j < zk < 1− 1

j } ∩ [xi, xi + σ[, Ej,k = {|∇zk| < 1
εk
− 1

j } ∩ Uj,k,

so that Ck is the union of the sets Ej,k for j ∈ N. For every j, Uj,k is open
in [xi, xi + σ[ and Ej,k is measurable. Suppose L1(Ck) > 0 and fix j such that
L1(Ej,k) > 0; let ϕ be a Lipschitz function such that

{ϕ 6= 0} ⊂ Uj,k and |∇ϕ| ≤ 1Ej,k L1-a.e. on R; (38)

then zk + tϕ ∈ Zk for t small enough. So 0 is a a minimizer for the function
t 7→ hk(zk + tϕ) and, imposing that 0 is a critical point, we find∫

Uj,k

[
λk
z2
k

+
ψ′(zk)

εk

]
ϕdx = 0, (39)

where λk := β2
k

(
2
∫ xi+σ
xi

1
zk
dx
)−2

.

Let us prove that

λk
z2
k

+
ψ′(zk)

εk
= 0 L1-a.e. on Ej,k, (40)

arguing by contradiction. Let

E+
j,k := Ej,k ∩

{
λk
z2
k

+
ψ′(zk)

εk
> 0

}
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and suppose L1(E+
j,k) > 0. By the continuity of zk and ψ′ and by the Lebesgue

Differentiation Theorem there exist x0 ∈ E+
j,k and δ > 0 such that

[x0 − δ, x0 + δ] ⊂ Uj,k ∩
{
λk
z2
k

+
ψ′(zk)

εk
> 0

}
and L1

(
Ej,k ∩ [x0 − δ, x0 + δ]

)
> 0.

Now let y be such that

L1
(
Ej,k ∩ [x0 − δ, y]

)
= L1

(
Ej,k ∩ [y, x0 + δ]

)
,

and let

θ(x) := L1
(
Ej,k ∩ [x0 − δ, y] ∩ [x0 − δ, x]

)
− L1

(
Ej,k ∩ [x0 − δ, x] ∩ [y, x0 + δ]

)
,

for x ∈ [xi, xi + σ[. In particular θ is a Lipschitz function satisfying (38), so that
(39) implies ∫ x0+δ

x0−δ

[
λk
z2
k

+
ψ′(zk)

εk

]
θdx = 0; (41)

since θ ≥ 0, θ(y) > 0, and λk
z2k

+ ψ′(zk)
εk

> 0 in [x0 − δ, x0 + δ] the integral in (41) is

positive and we get a contradiction. This concludes the proof of (40).
From (40) it follows that zk maps Ck into the set of solutions of the equation

s2ψ′(s) = −λkεk, where λkεk is infinitesimal since (λk) is bounded. Then, assump-
tion (11) implies that zk takes only a finite number of different values on Ck and,
by monotonicity and continuity, Ck is a finite union of intervals. It follows that
[xi, xi + σ[ can be written as union of a finite number of intervals, where either zk
is constant or ∇zk = 1/εk.

We now estimate from below hk(zk). In order to simplify the computation, we
suppose that zk assumes a unique value ξk in Ck, ηk < ξk < 1, so that Ck is
an interval. Let αk := L1(Ak) and γk := L1(Ck); since ∇zk = 1/εk in [xi, xi +
σ[\(Ak ∪Bk ∪Ck), the measure of [xi, xi + σ[\(Ak ∪Bk ∪Ck) is −εkηk + εk so that
L1(Bk) = σ − γk − αk + εkηk − εk.

By (35) we get

hk(zk) =
βk

2

2αk
1−ηk
ηk

+ 2γk
1−ξk
ξk

+ ζk
+ 2αk

ψ(ηk)

εk
+ 2γk

ψ(ξk)

εk
+ κk

≥ βk
2

2 1−ηk
ηk

(αk + γk) + ζk
+ 2(αk + γk)

ψ(ξk)

εk
+ κk,

where ζk = 2σ + 2εkηk − 2εk − 2εk log ηk and κk = 2
∫ 1

ηk
ψ(s)ds.

The map

t 7→ βk
2

t+ ζk
+
ηk
εk

ψ(ξk)

1− ηk
t+ κk

can be estimated differently in the cases α =∞ and 0 < α <∞.
If α =∞, by (21), (34), and (37) we find

β2
k

ζk
≤ hk(zk) ≤ Iik ≤ c.

By (33), this implies, as k →∞,

(u(xi + σ)− u(xi − σ))2

2σ
≤ c.
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As σ → 0, we obtain |[u(xi)]| = 0; this contradicts our assumption that xi is a jump
point and proves that H0(Ju) = 0, so that u ∈ H1(Ω) and (24) follows from (22).

If 0 < α <∞ we have

2βk

(
ψ(ξk)

1− ηk
ηk
εk

) 1
2

− ψ(ξk)

1− ηk
ηk
εk
ζk + κk ≤ hk(zk) ≤ Iik,

then taking k →∞ and summing on the index i we get

m−1∑
i=1

2

[
(αψ(0))

1
2 |u(xi + σ)− u(xi − σ)| − αψ(0)σ +

∫ 1

0

ψ(s)ds

]

≤
m−1∑
i=1

lim inf
k→∞

∫ xi+σ

xi−σ

[
vk(∇uk)2dx+

ψ(vk)

εk

]
dx. (42)

By adding (32) and (42), as σ → 0, we obtain (24).

Proof of Theorem 3.3. By Proposition 2 it is sufficient to take u ∈ SBV 2(Ω). We
are going to construct a recovery sequence converging to (u, 1) in L1(Ω)×L1(Ω).

The case α =∞ is trivial since the right-hand side of (19) is finite if and only if
u ∈ H1(Ω) and in this case it is sufficient to choose the recovery sequence identically
equal to (u, 1).

Now we suppose α < ∞. In order to simplify the discussion we assume u has
only one jump point x. Let (δαk ) be an infinitesimal sequence and let

Ak := [x− δαk , x+ δαk ] and Bk := [x− δαk − εk(1− ηk), x+ δαk + εk(1− ηk)];

moreover let us define vk by ηk in Ak, by 1 out of Bk, and connecting linearly in
Bk \Ak; finally let us define uk by u out of Ak and linking linearly in Ak.

Then (uk, vk) ∈ H1(Ω)×Vk and (uk, vk)→ (u, 1) in L1(Ω)×L1(Ω). We have

lim
k

∫
Ω\Ak

(
vk|∇uk|2 +

1

εk
ψ(vk)

)
dx =

∫
Ω

|∇u|2dx+ 2

∫ 1

0

ψ(s)ds,

∫
Ak

(
vk|∇uk|2 +

1

εk
ψ(vk)

)
dx =

ηk
2δαk

(u(x+ δαk )− u(x− δαk ))2 + 2ψ(ηk)
δαk
εk
. (43)

If α = 0 we take δ0
k such that ηk/δ

0
k → 0 and δ0

k/εk → 0; by this choice the integral

in (43) converges to 0. Whereas if 0 < α < ∞ we define δαk := 1
2 ( α
ψ(0) )

1
2 |[u(x)]|εk

and the integral in (43) tends to bα|[u(x)]|.

We conclude this section by proving Proposition 2 on the effective domain of the
Γ-limit in dimension one.

Proof of Proposition 2. Let u ∈ GSBV 2(Ω) ∩ L1(Ω). Since Ju is a finite set it is
sufficient to prove that u ∈ H1(Ω \ Ju). Let M > 0 and let uM be the truncated
function uM := (−M ∨ u) ∧ M . From uM ∈ GSBV 2(Ω) ∩ L∞(Ω) we deduce
uM ∈ SBV 2(Ω). This fact implies uM ∈ H1(Ω \Ju) since JuM ⊂ Ju. The sequence
(uM ) is bounded in H1(Ω \ Ju) and uM → u in L1(Ω), therefore we conclude
u ∈ H1(Ω \ Ju).
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5. Proof of the estimate from below in the case n > 1. In this section we
use the slicing argument to prove the estimate from below (18) when n > 1. For
every ξ ∈ Sn−1 we define

Πξ :=
{
y ∈ Rn : y · ξ = 0

}
and Ωξy :=

{
t ∈ R : y + tξ ∈ Ω

}
,

for every y ∈ Πξ. For every u : Ω 7→ R we define uξy : Ωξy 7→ R by

uξy(t) := u(y + tξ).

For the main properties of slicing we refer to [3, Section 3.11]. We collect here only
few properties used in this section.

If (uk) is a sequence in L1(Ω) such that uk → u in L1(Ω) then for every ξ ∈ Sn−1

there exists a subsequence (ukj ) such that, for Hn−1-a.e. y ∈ Πξ,

(ukj )
ξ
y → uξy in L1(Ωξy).

If u ∈ BV (Ω), then for every ξ ∈ Sn−1 the following properties hold:∫
Ju

|νu · ξ|dHn−1(y) =

∫
Πξ
H0((Ju)ξy)dHn−1(y), (44)∫

Ju

|νu · ξ||[u]|dHn−1(y) =

∫
Πξ

[ ∫
(Ju)ξy

|[u]ξy|dH0(t)

]
dHn−1(y), (45)

for Hn−1-a.e. y ∈ Πξ we have |∇(uξy)| = |(∇u)ξy · ξ| ≤ |(∇u)ξy| L1-a.e. on Ωξy. (46)

Moreover for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Πξ we have

(Ju)ξy = Juξy and |[u]ξy| = |[uξy]| on Ωξy. (47)

We also make use of the fine properties of GBV -functions collected in [3, Theorem
4.34].

As we have already seen in Section 4, in order to obtain the Γ-lim inf inequality
it is sufficient to prove Proposition 1.

Proof of Proposition 1. Let (uk, vk) be a sequence satisfying (20) and (21) with
bounding constant c; as in the one-dimensional case we can deduce that v = 1 Ln-
a.e. in Ω. In the first part of the proof we assume that (uk) is bounded in L∞(Ω)
and we want to prove u ∈ SBV 2(Ω) in this case.

Proof of (22) in the bounded case. Given ξ ∈ Sn−1, we extract a subsequence
(ur, vr) of (uk, vk) such that

((ur)
ξ
y, (vr)

ξ
y)→ (uξy, 1) in L1(Ωξy)×L1(Ωξy) for Hn−1-a.e. y ∈ Πξ (48)

and

lim
r→∞

∫
Ω

vr |∇ur · ξ|2 dx = lim inf
k→∞

∫
Ω

vk |∇uk · ξ|2 dx. (49)

Let 0 < κ < 1; by the Fubini Theorem and (46) we can write∫
Πξ

[ ∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
ψ(vr)

ξ
y

)
dt

]
dHn−1(y)

≤
∫

Ω

(
vr |∇ur|2 +

κ

εr
ψ(vr)

)
dx ≤ c,

where the last inequality follows from (21). From the Fatou Lemma it follows that∫
Πξ

lim inf
r→∞

[ ∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
ψ(vr)

ξ
y

)
dt

]
dHn−1(y) ≤ c;
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then for Hn−1-a.e. y ∈ Πξ

lim inf
r→∞

∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
ψ(vr)

ξ
y

)
dt < +∞. (50)

Let Fy,r be the one-dimensional functional on the set Ωξy, defined by

Fy,r(w, z) :=


∫

Ωξy

z |∇w|2 dt+
1

εr

∫
Ωξy

ϕ(z)dt if (w, z) ∈ H1(Ωξy)×Vy,r,

+∞ otherwise,
(51)

where ϕ := κψ and

Vy,r :=

{
z ∈W 1,∞(Ωξy) : ηr ≤ z ≤ 1, |∇z| ≤ 1

εr
L1-a.e. in Ωξy

}
. (52)

The corresponding Γ-lim inf will be denoted by F ′y,α.

For 0 < α <∞ let Φy,α : L1(Ωξy) 7→ [0,+∞] be defined by

Φy,α(w) :=


∫

Ωξy\Jw
|∇w|2dx+ aH0(Jw) + βα

∫
Jw

|[w]|dH0 if w ∈ SBV 2(Ωξy)

+∞ otherwise,

where a is as in (14) and βα := 2(αϕ(0))1/2. In the limiting cases α = 0 and α =∞
we define

Φy,0(w) :=


∫

Ωξy\Jw
|∇w|2dx+ aH0(Jw) if w ∈ SBV 2(Ωξy) ∩ L1(Ωξy)

+∞ otherwise,

Φy,∞(w) :=


∫

Ωξy\Jw
|∇w|2dx if w ∈ H1(Ωξy)

+∞ otherwise.

Thanks to (46) we have |∇((vr)
ξ
y)| ≤ 1/εr L1-a.e. in Ωξy and then

Fy,r((ur)
ξ
y, (vr)

ξ
y) =

∫
Ωξy

(vr)
ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 dt+

κ

εr

∫
Ωξy

ψ(vr)
ξ
ydt.

By (50), for Hn−1-a.e. y ∈ Πξ we can find a subsequence (um, vm) of (ur, vr)
such that

lim
m→∞

∫
Ωξy

(
(vm)ξy

∣∣∇((um)ξy)
∣∣2 +

κ

εm
ψ(vm)

ξ
y

)
dt

= lim inf
r→∞

∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
ψ(vr)

ξ
y

)
dt < +∞, (53)

so that (48) and (53) in particular imply

F ′y,α(uξy, 1) ≤ lim
m→∞

Fy,m((um)ξy, (vm)ξy) < +∞,

for Hn−1-a.e. y ∈ Πξ. Applying Theorem 3.2 in the case n = 1 (and Proposition 2)
we obtain that uξy ∈ SBV 2(Ωξy),

Φy,α(uξy) ≤ F ′y,α(uξy, 1), (54)

and that (22) is true for ((um)ξy, (vm)ξy).
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Now let us prove that u ∈ SBV (Ω). Let M < +∞ be such that ||um||L∞(Ω) ≤M
for every m. Then decomposing the derivative of uξy (see [3, Section 3.9]) we get

|D(uξy)|(Ωξy) =

∫
Ωξy\J

u
ξ
y

|∇(uξy)|dt+
∑
J
u
ξ
y

|[uξy]|

≤L1(Ωξy) +

∫
Ωξy\J

u
ξ
y

|∇(uξy)|2dt+ 2MH0(Juξy ) ≤ A[1 + F ′y,α(uξy, 1)],

where in the last inequality A := diam(Ω) + 1 + 2M
a and we have used (54). Since

(ur) does not depend on y, we can integrate on the projection Πξ(Ω) of Ω on Πξ

and we obtain ∫
Πξ(Ω)

|D(uξy)|(Ωξy)dHn−1(y)

≤ AHn−1(Πξ(Ω)) +A

∫
Πξ

lim inf
r→∞

Fy,r((ur)
ξ
y, (vr)

ξ
y)dHn−1(y)

≤ AHn−1(Πξ(Ω)) +Ac < +∞.

By taking ξ = e1, . . . , en, the elements of the canonical basis of Rn, we get u ∈
BV (Ω) by [3, Remark 3.104]; since uξy ∈ SBV 2(Ωξy), we obtain also u ∈ SBV (Ω)
by [3, Theorem 3.108].

From (22) applied to ((um)ξy, (vm)ξy) and from (53) it follows that∫
Ωξy\J

u
ξ
y

|∇(uξy)|2dt ≤ lim inf
r→∞

∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
(ψ(vr)

ξ
y)

)
dt,

for Hn−1-a.e. y ∈ Πξ. Integrating on Πξ and applying the Fatou Lemma we get∫
Πξ

[ ∫
Ωξy\J

u
ξ
y

|∇(uξy)|2dt
]
dHn−1(y)

≤ lim inf
r→∞

∫
Πξ

[ ∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

κ

εr
(ψ(vr)

ξ
y)

)
dt

]
dHn−1(y)

≤ lim inf
k→∞

∫
Πξ

[ ∫
Ωξy

(vk)ξy
∣∣∇((uk)ξy)

∣∣2 dt]dHn−1(y) + κ c,

where the last inequality follows from (21) and (49). We observe that (uk, vk) does
not depend on κ; as κ→ 0 in the previous inequality we find∫

Ω

|∇u · ξ|2dx ≤ lim inf
k→∞

∫
Ω

vk |∇uk · ξ|2 dx, (55)

using (46) and the Fubini Theorem. By taking ξ = e1, . . . , en and summing the
results we obtain (22).

Proof of (23) in the bounded case. Given ξ ∈ Sn−1, the first subsequence (ur, vr)
of (uk, vk) is now chosen so that (48) holds and (49) is replaced by

lim
r→∞

∫
Πξ

[ ∫
Ωξy

1

εr
(ψ(vr)

ξ
y)dt

]
dHn−1(y) = lim inf

k→∞

∫
Πξ

[ ∫
Ωξy

1

εk
(ψ(vk)ξy)dt

]
dHn−1(y).

(56)
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Let 0 < κ < 1; by the Fubini Theorem and the Fatou Lemma we find∫
Πξ

lim inf
r→∞

[ ∫
Ωξy

(
κ (vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt

]
dHn−1(y) ≤ c

and this implies, for Hn−1-a.e. y ∈ Πξ,

lim inf
r→∞

∫
Ωξy

(
κ (vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt < +∞.

It follows that for Hn−1-a.e. y ∈ Πξ there exists a subsequence (um, vm) of (ur, vr)
such that

lim
m→∞

∫
Ωξy

(
κ (vm)ξy

∣∣∇((um)ξy)
∣∣2 +

1

εm
(ψ(vm)ξy)

)
dt

= lim inf
r→∞

∫
Ωξy

(
κ (vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt < +∞. (57)

Let us consider the one-dimensional functional Fy,r defined in (51), where ϕ is
now set equal to ψ and Vy,r is as in (52).

By (48) and (57) the sequence Fy,m((κ1/2um)ξy, (vm)ξy) is bounded, so that Theo-

rem 3.2 in the case n = 1 implies that inequality (23) holds for ((κ1/2um)ξy, (vm)ξy);
using formula (57) we get

aH0(Juξy ) ≤ lim inf
r→∞

∫
Ωξy

(
κ (vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt.

Let us observe that (ur) does not depend on y. Then we can integrate on Πξ both
sides of the previous inequality and apply the Fatou Lemma

a

∫
Πξ
H0(Juξy )dHn−1(y)

≤ lim inf
r→∞

∫
Πξ

[ ∫
Ωξy

(
κ (vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt

]
dHn−1(y)

≤ lim inf
k→∞

∫
Πξ

[ ∫
Ωξy

1

εk
(ψ(vk)ξy)dt

]
dHn−1(y) + κ c,

by (21) and (56). As κ→ 0, using (44) and (47) we find

a

∫
Ju

|νu · ξ|dHn−1 ≤ lim inf
k→∞

1

εk

∫
Ω

ψ(vk)dx ≤ c. (58)

Applying (58) with ξ = e1, . . . , en we get Hn−1(Ju) < +∞. Since we have already
proved that u ∈ SBV (Ω), we deduce from (21) and (22) that u ∈ SBV 2(Ω).

In order to obtain (23) we use a particular case of the localization method de-
veloped in [8, Theorem 2.3.1]. First we note that (58) holds also for an open set
A ⊂ Ω, hence

a

∫
Ju∩A

|νu · ξ|dHn−1 ≤ lim inf
k→∞

1

εk

∫
A

ψ(vk)dx. (59)

Since νu is a Borel function with values in Sn−1, there exists a sequence (ωj) of
simple functions with values in Sn−1 converging to νu pointwise Hn−1-a.e. in Ju.
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We can write ωj = ξ1
j 1B1

j
+· · ·+ξmjj 1

B
mj
j

, where ξij are unit vectors and B1
j , . . . , B

mj
j

is a Borel partition of Ju. By the Dominated Convergence Theorem we have

lim
j→∞

mj∑
i=1

∫
Bij

|νu · ξij |dHn−1 = Hn−1(Ju). (60)

For every j we can find A1
j , . . . , A

mj
j a family of pairwise disjoint open subsets of Ω

such that Hn−1((Aij ∩ Ju)4Bij) ≤ 1/(jmj). Then (60) holds with Bij replaced by

Ju ∩Aij . Since by (59)

a

mj∑
i=1

∫
Ju∩Aij

|νu · ξij |dHn−1 ≤ lim inf
k→∞

1

εk

∫
Ω

ψ(vk)dx,

we obtain (23) as j →∞.

Proof of (24) in the bounded case. If α = 0 inequality (24) can be obtained by
adding (22) and (23).

When α = ∞ by Theorem 3.2 in the case n = 1 we get uξy ∈ H1(Ωξy) for every

ξ and for Hn−1-a.e. y ∈ Πξ. Since u ∈ SBV 2(Ω), this implies u ∈ H1(Ω) by [3,
Theorem 3.108], therefore (24) follows from (22).

Let now 0 < α < ∞. Given ξ ∈ Sn−1, we choose a subsequence (ur, vr) of
(uk, vk) such that (48) holds and

lim
r→∞

∫
Πξ

[ ∫
Ωξy

(
(vr)

ξ
y

∣∣∇(ur)
ξ
y

∣∣2 +
1

εr
(ψ(vr)

ξ
y)

)
dt

]
dHn−1(y)

= lim inf
k→∞

∫
Πξ

[ ∫
Ωξy

(
(vk)ξy

∣∣∇(uk)ξy
∣∣2 +

1

εk
(ψ(vk)ξy)

)
dt

]
dHn−1(y).

By (46), using the Fubini Theorem and the Fatou Lemma we get∫
Πξ

lim inf
r→∞

[ ∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt

]
dHn−1(y) ≤ c

and then for Hn−1-a.e. y ∈ Πξ we have

lim inf
r→∞

∫
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt < +∞.

Let Fy,r be the one-dimensional functional defined in (51), where ϕ := ψ and
Vy,r is as in (52). For Hn−1-a.e. y ∈ Πξ we can find a subsequence (um, vm) of
(ur, vr) such that

lim
m→∞

∫
Ωξy

(
(vm)ξy

∣∣∇((um)ξy)
∣∣2 +

1

εm
(ψ(vm)ξy)

)
dt

= lim inf
r→∞

∫
Ωξy

(
vr
ξ
y

∣∣∇(ur
ξ
y)
∣∣2 +

1

εr
(ψ(vr)

ξ
y)

)
dt < +∞; (61)

then Theorem 3.2 in the case n = 1 implies

Φy,α(uξy) ≤ lim inf
r→∞

Fy,r((ur)
ξ
y, (vr)

ξ
y).



18 GIANNI DAL MASO AND FLAVIANA IURLANO

Let us observe that (ur) does not depend on y; integrating on Πξ both sides of the
previous inequality and applying the Fatou Lemma we get∫

Πξ
Φy,α(uξy)dHn−1(y)

≤ lim inf
k→∞

∫
Πξ

[ ∫
Ωξy

(
(vk)ξy

∣∣∇((uk)ξy)
∣∣2 +

1

εk
(ψ(vk)ξy)

)
dt

]
dHn−1(y). (62)

We now apply the localization method to the measure µ = LnbΩ + Hn−1bJu
instead of Hn−1bJu. Since (62) holds with an open set A ⊂ Ω in place of Ω, by
(44)-(47) and by the Fubini Theorem we get∫

A

[
|∇u · ξ|21Ω\Ju + |νu · ξ|(a+ bα|[u]|)1Ju

]
dµ

≤ lim inf
k→∞

∫
A

[
vk|∇uk · ξ|2 +

1

εk
ψ(vk)

]
dx. (63)

Let us define ω := νu on Ju, ω := ∇u/|∇u| on {∇u 6= 0}\Ju, and ω := e1 elsewhere.
Since ω is a µ-measurable function with values in Sn−1, there exists a sequence (ωj)
of simple functions with values in Sn−1, converging to ω µ-a.e. in Ω. We can write
ωj = ξ1

j 1B1
j

+ · · ·+ ξ
mj
j 1

B
mj
j

, where ξij are unit vectors and B1
j , . . . , B

mj
j is a Borel

partition of Ω. By the Dominated Convergence Theorem we have

lim
j→∞

mj∑
i=1

∫
Bij

[
|∇u · ξij |21Ω\Ju + |νu · ξij |(a+ bα|[u]|)1Ju

]
dµ = Φα(u). (64)

For every j we can find a family A1
j , . . . , A

mj
j of pairwise disjoint open subsets of Ω

such that µ(Aij4Bij) ≤ 1/(jmj). Then (64) holds with Bij replaced by Aij . By (63)
we find

mj∑
i=1

∫
Aij

[
|∇u · ξij |21Ω\Ju + |νu · ξij |(a+ bα|[u]|)1Ju

]
dµ

≤ lim inf
k→∞

∫
Ω

[
vk|∇uk|2 +

1

εk
ψ(vk)

]
dx

and we obtain (24) as j →∞.

The general case. We now remove the assumption that (uk) is bounded in L∞(Ω).
Let us fix M > 0 and let us consider the sequence of truncated functions uMk =
(−M ∨ u) ∧M . We have that uMk → uM in L1(Ω), vk → 1 in L1(Ω), and by (21)

Fk(uMk , vk) ≤ Fk(uk, vk) ≤ c.

From the proof in the bounded case it follows that uM ∈ SBV 2(Ω) and that∫
Ω

|∇uM |2dx ≤ lim inf
k→∞

∫
Ω

vk|∇uk|2dx, (65)

aHn−1(JuM ) ≤ lim inf
k→∞

1

εk

∫
Ω

ψ(vk)dx. (66)

This implies u ∈ GSBV (Ω). As |∇uM | = |∇u|1{|u|≤M} by Theorem [3, Theorem
4.34], using the Monotone Convergence Theorem we obtain∫

Ω

|∇u|2dx = lim
M→∞

∫
Ω

|∇uM |2dx,
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which together with (65) proves (22). Moreover, taking M → ∞ in (66) we find
(23). Therefore u ∈ GSBV 2(Ω).

Let us prove now (24). When α = 0, this inequality can be obtained by adding
(22) and (23).

Assume α =∞. In this case we prove that u ∈ H1(Ω). The proof in the bounded
case, applied to (uMk , vk), gives uM ∈ H1(Ω) and by (65) we have that the sequence
(∇uM ) is bounded in L2(Ω,Rn); using the Poincaré-Wirtinger Inequality and the
fact that uM → u in L1(Ω) we obtain u ∈ H1(Ω). Inequality (24) follows from (22).

Let 0 < α <∞. The proof in the bounded case, applied to (uMk , vk), gives

Φα(uM ) ≤ lim inf
k→∞

∫
Ω

[
vk|∇uk|2 +

1

εk
ψ(vk)

]
dx ≤ c. (67)

Since uM ∈ SBV 2(Ω), inequality (67) gives |DuM |(Ω) ≤ Ln(Ω) + cmax(1, 1/bα)
for every M > 0. From uM → u in L1(Ω), we conclude that u ∈ BV (Ω) and
uM ⇀ u weakly* in BV (Ω). Using the Closure Theorem for SBV [3, Theorem
4.7], we deduce from (67) that u ∈ SBV 2(Ω). Estimate (67), as M →∞, leads to
(24).

6. Proof of the estimate from above in the case n > 1. Now our purpose
is to prove the Γ-lim sup inequality. In order to work with more regular functions
and jump sets, we first introduce an approximation result. The following theorem
is a small modification of a theorem due to Cortesani and Toader (see [10, Theorem
3.1]).

Theorem 6.1. Let Q ⊂ Rn be an open cube, let 1 < p ≤ 2, and let u ∈ SBV p(Q)∩
L∞(Q). Then for every ε > 0 there exist a function v ∈ SBV p(Q) and a set
S = ∪mi=1Si, with Si closed and pairwise disjoint (n− 1)-simplexes contained in Q,
such that

(a) Hn−1(S \ Jv) = 0;
(b) v ∈W k,∞(Q \ S) for every k;
(c) ||v − u||L1(Q) < ε;
(d) ||∇v −∇u||Lp(Q,Rn) < ε;

(e) Hn−1(Jv) < Hn−1(Ju) + ε;

(f)

∫
Jv

|[v]|dHn−1 <

∫
Ju

|[u]|dHn−1 + ε.

Proof. Using [10, Theorem 3.1] and [10, Remark 3.5] we can find a function w ∈
SBV p(Q) and a set T = ∪mi=1Ti, not necessarily contained in Q, with Ti closed
and pairwise disjoint (n − 1)-simplexes, such that conditions (a)-(f) hold for w in
place of v and T ∩Q in place of S. Since T ∩Q is a polyhedron, we can adapt the
arguments in [10, Remark 3.5] to obtain a function v and a set S ⊂ Q satisfying
conditions (a)-(f).

Now we can prove the estimate from above of the Γ-limit.

Proof of Theorem 3.3. Let u ∈ GSBV 2(Ω)∩L1(Ω). We have to construct a recov-
ery sequence (uk, vk) converging to (u, 1) in L1(Ω)×L1(Ω).

The case α =∞ is trivial since the right-hand side in (19) is finite if and only if
u ∈ H1(Ω), and in this case it is sufficient to define (uk, vk) := (u, 1).
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Let α < ∞. We consider first the case u ∈ L∞(Ω), so that u belongs to
SBV 2(Ω)∩L∞(Ω). It is enough to prove (19) for a cube Q and for a function u sat-
isfying properties (a) and (b) of Theorem 6.1. Indeed, if Ω is an arbitrary bounded
open set Ω with Lipschitz boundary and u ∈ SBV 2(Ω) ∩ L∞(Ω), then a local re-
flection argument provides an extension of u to a function ũ ∈ SBV 2(Q) ∩ L∞(Q)
such that Hn−1(Jũ ∩ ∂Ω) = 0. Through this paragraph we shall write explicitly
the domain of the integrals in the functionals (8), (13), (15), (16), and (17). By
Theorem 6.1 for every k we can find a function wk ∈ SBV 2(Q) satisfying properties
(a)-(f). Assuming that (19) holds for wk, we have F ′′α,Q(wk, 1) ≤ Φα,Q(wk). Then

by the lower semicontinuity of F ′′α,Q we obtain

F ′′α,Q(ũ, 1) ≤ lim sup
k→∞

Φα,Q(wk)

≤ lim sup
k→∞

[
Φα,Q(ũ) +

1

k2
+

2

k
||∇ũ||L2(Q,Rn) +

a+ bα
k

]
= Φα,Q(ũ). (68)

Let us check that this implies F ′′α,Ω(u, 1) ≤ Φα,Ω(u). By Theorem 3.2 and inequality

(68) we have

Fα,Q(ũ, 1) = Φα,Ω(u) + Φα,Q\Ω(ũ),

Φα,Ω(u) ≤ F ′α,Ω(u, 1), Φα,Q\Ω(ũ) ≤ F ′
α,Q\Ω(ũ), (69)

so that

Fα,Q(ũ, 1) ≤ F ′α,Ω(u, 1) + F ′
α,Q\Ω(ũ). (70)

Moreover [11, Proposition 6.17] implies

F ′′α,Ω(u, 1) + F ′
α,Q\Ω(ũ) ≤ Fα,Q(ũ, 1);

this estimate together with (69) and (70) gives F ′′α,Ω(u, 1) = Φα,Ω(u).

Therefore, in the rest of the proof we assume that Ω = Q, u ∈ SBV 2(Ω)∩L∞(Ω),
and that properties (a) and (b) of Theorem 6.1 hold for u. Finally, in order to
simplify the computation, we suppose that S is a unique (n− 1)-simplex and that
S ⊂ {xn = 0}. We write a point x ∈ Rn as x = (x, xn) ∈ Rn−1×R and we orient
Ju so that νu = (0, 1). Let

Ω± :=
{
x ∈ Ω : ±xn > 0

}
and let L be the maximum between the Lipschitz constants of u in Ω+ and Ω−.

If 0 < α < ∞ we define δαk (x) := 1
2εk( α

ψ(0) )1/2|[u(x, 0)]| for x = (x, xn) ∈ Ω;

whereas for α = 0 we define δ0
k as any sequence of constant functions such that

ηk/δ
0
k → 0 and δ0

k/εk → 0. Note that δαk is a Lipschitz function since u+ and u−

are; moreover in the case 0 < α < ∞, δαk (x) = 0 for (x, 0) ∈ ∂S, where ∂S is the
boundary of S in the relative topology of Rn−1×{0}.
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Bk

B'k

Ak

Ak
S

!k

"k(1-#k)

B'k

A'kA'k

Figure 1. The geometry for α = 0.

We define

Ak :=

{
x ∈ Rn : (x, 0) ∈ S, |xn| < δαk (x)

}
,

Bk :=

{
x ∈ Rn : (x, 0) ∈ S, δαk (x) ≤ |xn| ≤ δαk (x) +

εk(1− ηk)

ck,α

}
,

A′k :=

{
x ∈ Rn : (x, 0) /∈ S, d(x, ∂S) < δαk (x)

}
,

B′k :=

{
x ∈ Rn : (x, 0) /∈ S, δαk (x) ≤ d(x, ∂S) ≤ δαk (x) +

εk(1− ηk)

ck,α

}
,

where d(x, S) is the distance from the point x to the set S and ck,α := 1 for α = 0,

whereas ck,α := 1− εk( α
ψ(0) )1/2L for 0 < α <∞ (see Figures 1 and 2). For k large

we have that the closure of Ak ∪Bk ∪A′k ∪B′k is contained in Ω.

Bk

B'k
Ak

Ak S

!k"#k|[u]|

"#k(1-$k)

B'k

Figure 2. The geometry for 0 < α <∞.

Let

uk(x, xn) :=


xn + δαk

2δαk
(u(x, δαk )− u(x,−δαk )) + u(x,−δαk ) if x ∈ Ak,

u(x) if x ∈ Ω \ (Ak ∪A′k).
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Here and henceforth δαk denotes δαk (x). Let us verify that uk ∈ W 1,∞(Ω \ A′k). If
x = (x, xn) ∈ Ak, we have

|Dnuk(x, xn)|

=

∣∣∣∣u(x, δαk )− u(x,−δαk )

2δαk

∣∣∣∣
=

∣∣∣∣u(x, δαk )− u+(x, 0)

2δαk
+
u+(x, 0)− u−(x, 0)

2δαk
+
u−(x, 0)− u(x,−δαk )

2δαk

∣∣∣∣
≤ L+

|[u(x, 0)]|
2δαk

, (71)

where the last inequality follows from the Lipschitz continuity of u on Ω±. Using
the previous estimate we also obtain

|Djuk(x, xn)|

≤
∣∣∣∣xnδαk Djδ

α
k

u(x, δαk )− u(x,−δαk )

2δαk

∣∣∣∣+

∣∣∣∣Dju(x,−δαk )−Dnu(x,−δαk )Djδ
α
k

∣∣∣∣
+

∣∣∣∣Dju(x, δαk ) +Dnu(x, δαk )Djδ
α
k −Dju(x,−δαk ) +Dnu(x,−δαk )Djδ

α
k

∣∣∣∣
≤ Djδ

α
k

( |[u(x, 0)]|
2δαk

+ 4L
)

+ 3L, (72)

for j = 1, . . . , n− 1 and for every (x, xn) ∈ Ak.
By the definition of δαk and the boundedness of u, the quotient |[u(x, 0)]|/δαk is

bounded uniformly with respect to x; since Djδ
α
k ≤ ( α

ψ(0) )1/2Lεk, we deduce from

(71) and (72) that uk ∈ W 1,∞(Ω \ A′k), so that in the case 0 < α < ∞ we obtain
uk ∈ W 1,∞(Ω). In the case α = 0 inequalities (71) and (72) imply that uk is
Lipschitz continuous in {x ∈ Ω : (x, 0) ∈ S}, with Lipschitz constant (M/δ0

k)+3nL,
where M := ||u||L∞(Ω).

To prove that uk is Lipschitz continuous in Ω \A′k we will show that

|uk(x)− uk(y)| ≤
(4M

δ0
k

+ 12nL
)

(|x− y|+ |xn − yn|) for x, y ∈ Ω \A′k. (73)

Let x, y ∈ Ak ∪Bk ∪B′k. It is enough to prove (73) when xn and yn have the same
sign. Indeed, if (x, 0) ∈ S we can write

|uk(x)− uk(y)| ≤ |uk(x, xn)− uk(x, yn)|+ |uk(x, yn)− uk(y, yn)| (74)

and the estimate for the first term in the right-hand side comes from the Lipschitz
continuity of uk in {x ∈ Ω : (x, 0) ∈ S}. If (x, 0) /∈ S and (y, 0) /∈ S, then

|uk(x)− uk(y)| = |u(x)− u(y)| ≤ |u(x, xn)− u(x, yn)|+ |u(x, yn)− u(y, yn)|.

Since the segment with end points (x, xn) and (x, yn) is contained in Ω\S, the first
term in the right-hand side is estimated by L|xn − yn|, whereas the second term is
estimated by L|x− y| due to the Lipschitz continuity of u in Ω±.

Therefore, it is enough to prove (73) when xn > 0 and yn > 0. If yn > δ0
k,

then we can write (74) and the right-hand side reduces to |uk(x, xn)− uk(x, yn)|+
|u(x, yn)− u(y, yn)|. The second term is estimated by L as before. If (x, 0) ∈ S the
first term is estimated using the Lipschitz continuity of uk in {x ∈ Ω : (x, 0) ∈ S}.
If (x, 0) /∈ S, the first term can be written as |u(x, xn)−u(x, yn)|, which is estimated
by L|xn − yn|, since x, y ∈ Ω+.
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It remains to consider the case 0 < xn < δ0
k and 0 < yn < δ0

k. If (x, 0), (y, 0) ∈ S
then x, y ∈ Ak and the estimate has already been proved. If (x, 0), (y, 0) /∈ S then
|uk(x)− uk(y)| = |u(x)− u(y)|, which can be estimated by the Lipschitz continuity
of u in Ω+. Assume now (x, 0) /∈ S and (y, 0) ∈ S. Let (z, 0) be an element of ∂S
in the segment of end points x and y, and let z := (z, δ0

k). Then

|uk(x)−uk(y)| ≤ |u(x)−u(z)|+|uk(z)−uk(y)| ≤
(M
δ0
k

+3nL
)

(|x−z|+|z−y|). (75)

We have

|x− z|+ |z − y| ≤ |x− z|+ |xn − δ0
k|+ |z − y|+ |yn − δ0

k|
= |x− z|+ |z − y|+ 2|xn − δ0

k|+ |xn − yn|; (76)

since x /∈ A′k we obtain

(δ0
k)2 ≤ |(x, xn)− (z, 0)|2 ≤ |x− z|2 + x2

n,

so that we can estimate (δ0
k − xn)2 as follows

(δ0
k − xn)2 ≤ (δ0

k)2 − x2
n ≤ |x− z|2. (77)

Inequality (73) follows from (75), (76), (77), and from |x − z| + |z − y| = |x − y|.
This concludes the proof of the Lipschitz continuity of uk in Ω \ A′k. We are now
in a position to apply the McShane Theorem, so that there exists a function, still
denoted uk, that extends uk to A′k and has the same Lipschitz constant as uk, i.e.,

|uk(x)− uk(y)| ≤
(4M

δ0
k

+ 12nL
)

(|x− y|+ |xn − yn|) for x, y ∈ Ω. (78)

Let us define

vk(x) :=



ηk if x ∈ Ak ∪A′k,
ηk +

ck,α
εk

(|xn| − δαk ) if x ∈ Bk,

ηk +
ck,α
εk

(d(x, ∂S)− δαk ) if x ∈ B′k,

1 otherwise.

Then uk → u in L1(Ω), ηk ≤ vk ≤ 1 Ln-a.e. in Ω and vk → 1 in L1(Ω); moreover
vk ∈ W 1,∞(Ω) and |∇vk| ≤ 1/εk Ln-a.e. in Ω by the choice of the constant ck,α.
The sequence Fk(uk, vk) can be written now as

Fk(uk, vk) =

∫
Ak

ηk|∇uk|2dx+

∫
A′k

ηk|∇uk|2dx+

∫
Ω\(Ak∪A′k)

vk|∇u|2dx

+
1

εk

∫
Ak

ψ(ηk)dx+
1

εk

∫
Bk

ψ(vk)dx+
1

εk

∫
A′k∪B

′
K

ψ(vk)dx. (79)

Let us study each term in the previous expression. Let us start with the first one.
Using (71) and (72) we obtain that there exists a constant K1 such that∫

Ak

ηk|∇uk|2dx =

∫
Ak

ηk(Dnuk)2dx+

n−1∑
j=1

∫
Ak

ηk(Djuk)2dx

≤
∫
Ju

ηk
(u(x, δαk )− u(x,−δαk ))2

2δαk
dHn−1 +K1ηk;
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if α = 0 the right-hand side of the previous inequality tends to 0, since u ∈ L∞(Ω)
and ηk/δ

0
k → 0; if 0 < α <∞, by the Dominated Convergence Theorem it tends to

bα
2

∫
Ju

|[u]|dHn−1.

Let us consider the second term in (79) in the case α = 0, when A′k 6= Ø. By
(78) we get ∫

A′k

ηk|∇uk|2dx ≤ K2
ηk

(δ0
k)2
Ln(A′k) +K3ηk,

where K2 and K3 are constants. First we note that A′k ⊂ (∂S)δ0k , where (∂S)δ0k :=

{x ∈ Rn : d(x, ∂S) < δ0
k}. From a well-known result about the Minkowski content,

(see, for instance, [3, Theorem 2.106]), we can write

Ln(A′k) ≤ O((δ0
k)2),

so that the second term in (79) tends to 0.
The third term in (79) is estimated by∫

Ω\(Ak∪A′k)

|∇u|2vkdx ≤
∫

Ω

|∇u|2dx.

The fourth term in (79) is given by

1

εk

∫
Ak

ψ(ηk)dx =
ψ(ηk)

εk

∫
Ju

2δαk dHn−1.

It tends to 0 if α = 0, whereas in the case 0 < α <∞ it tends to

bα
2

∫
Ju

|[u]|dHn−1.

As for the fifth term in (79), we get

1

εk

∫
Bk

ψ(vk)dx =
2

εk

∫
Ju

[ ∫ εk
1−ηk
ck,α

0

ψ(ηk +
ck,α
εk

xn)dxn

]
dHn−1

=
2

ck,α

(∫ 1−ηk

0

ψ(xn)dxn

)
Hn−1(Ju)

and this term tends to aHn−1(Ju).
Finally, the last term in (79) can be estimated by

1

εk

∫
A′k∪B

′
k

ψ(vk)dx ≤ 1

εk
ψ(ηk)Ln(A′k ∪B′k);

arguing as above we obtain

Ln(A′k ∪B′k) ≤ O((δαk + εk
1− ηk
ck,α

)2),

so that the last term in (79) tends to 0. Estimate (19) follows.
In the general case when u /∈ L∞(Ω), estimate (19) follows from the previous

step applied to the truncated function uM , from the lower semicontinuity of F ′′α
and from the fact that Φα(uM ) ≤ Φα(u).
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7. Convergence of minimizers. The most important result of the paper is the
following theorem on the convergence of minimizers of some variational problems
involving the functionals Fk and Fα.

Theorem 7.1. Let q > 1; let (εk) and (ηk) be infinitesimal sequences of positive
numbers with α := limk ηk/εk. Let Vk be as in (9), let ψ ∈ C1([0, 1]) be a strictly
decreasing function satisfying (11), and let g ∈ Lq(Ω). For every k, let (uk, vk) ∈
H1(Ω)×Vk be a minimizer of the problem

min
(u,v)∈H1(Ω)×Vk

(∫
Ω

v|∇u|2dx+
1

εk

∫
Ω

ψ(v)dx+

∫
Ω

|u− g|qdx
)
. (80)

Then vk → 1 in L1(Ω) and a subsequence of (uk) converges in Lq(Ω) to a minimizer
u of the following limit problem:

min
u∈SBV 2(Ω)

(∫
Ω

|∇u|2dx+ aHn−1(Ju) + bα

∫
Ju

|[u]|dHn−1 +

∫
Ω

|u− g|qdx
)
,

if 0 < α < ∞; whereas in the extreme cases α = 0 and α = ∞ the limit problems
are

min
u∈GSBV 2(Ω)

(∫
Ω

|∇u|2dx+ aHn−1(Ju) +

∫
Ω

|u− g|qdx
)
,

min
u∈H1(Ω)

(∫
Ω

|∇u|2dx+

∫
Ω

|u− g|qdx
)
,

respectively. Moreover for 0 ≤ α ≤ ∞ the minimum values of (80) tend to the
minimum value of the limit problem.

Remark 4. If g ∈ L∞(Ω), the limit problem for α = 0 can be formulated in
SBV 2(Ω) ∩ L∞(Ω), since the functionals considered in these problems decrease by
truncation with constants larger than ||g||L∞(Ω). As a consequence of Proposition

2, when n = 1 the limit problem in the case α = 0 can be formulated in SBV 2(Ω)
even if g /∈ L∞(Ω).

Remark 5. In Theorem 7.1 we assume ηk > 0 only to guarantee the existence of
a minimum point for Gk. In the case ηk ≥ 0, the thesis of Theorem 7.1 continues
to hold if (uk, vk) is a sequence which satisfies

lim
k→∞

Gk(uk, vk)− inf
Lq(Ω)×L1(Ω)

Gk = 0.

The proof is essentially the same.

To prove Theorem 7.1 we shall consider the functionals Fq,k : Lq(Ω)×L1(Ω) →
[0,+∞] defined by

Fq,k(u, v) := Fk|Lq(Ω)×L1(Ω),

where the functionals (Fk) are defined in (8).
The first step in the proof of Theorem 7.1 is the following lemma.

Lemma 7.2. Under the hypotheses of Theorem 7.1, the functionals Fq,k Γ-converge
in Lq(Ω)×L1(Ω) to the functional Fq,α := Fα|Lq(Ω)×L1(Ω), where Fα is defined in
(16).

Proof. Let F ′q,α and F ′′q,α be the Γ-lim inf and the Γ-lim sup of Fq,k in Lq(Ω)×L1(Ω)

and let (u, v) ∈ Lq(Ω)×L1(Ω).
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Proof of the estimate from below.
The Γ-lim inf inequality follows from F ′q,α ≥ F ′α (see, for instance, [11, Proposition
6.3]) and from Theorem 3.1.

Proof of the estimate from above.
Let u ∈ GSBV 2(Ω) ∩ Lq(Ω) with Fα(u, 1) < +∞.

First we suppose u ∈ L∞(Ω). Theorem 3.3 ensures the existence of a sequence
(uk, vk) ∈ H1(Ω)×Vk(Ω) such that (uk, vk)→ (u, 1) in L1(Ω)×L1(Ω) and

lim
k→∞

Fk(uk, vk) = Fα(u, 1).

The Γ-lim sup inequality follows from this equality, from the convergence of the
truncated functions uMk → u in Lq(Ω) with M := ||u||L∞(Ω), and from the fact that

Fq,k(uMk , vk) ≤ Fk(uk, vk).
In the general case when u /∈ L∞(Ω) the Γ-lim sup inequality follows from the

previous step applied to the truncated function uM , from the lower semicontinuity
of F ′′q,α and from the fact that Fα(uM , 1) ≤ Fα(u, 1).

In order to obtain Theorem 7.1 we also need a compactness result, whose proof
makes use of the following theorem, due to Alberti, Bouchitté, and Seppecher (see
[1]). For every set F ⊂ L1(Ω) we define Fξy := {uξy : u ∈ F} for every ξ ∈ Sn−1 and

for every y ∈ Πξ.

Theorem 7.3. Let F be an equibounded subset of L∞(Ω). Assume that there exist
n linearly independent unit vectors ξ which satisfy the following property: for every
δ > 0 there exists an equibounded subset Fδ of L∞(Ω) such that F lies in a δ-
neighborhood of Fδ with respect to the L1(Ω) distance and (Fδ)ξy is pre-compact in

L1(Ωξy) for Hn−1-a.e. y ∈ Ω. Then F is pre-compact in L1(Ω).

The compactness result is given by the following theorem.

Theorem 7.4. Let (uk, vk) be a sequence in L1(Ω)×L1(Ω) such that (uk) is bounded
in L1(Ω) and

lim inf
k→∞

Fk(uk, vk) < +∞.

Then there exists a subsequence (uj , vj) of (uk, vk) and a function u ∈ GSBV (Ω)∩
L1(Ω) such that uj → u Ln-a.e. on Ω and vj → 1 in L1(Ω).

Proof. We can suppose, up to subsequences, that there exists a constant M < +∞
such that

Fk(uk, vk) ≤M.

This implies in particular that vk → 1 in L1(Ω). We divide the proof into three
steps.

The bounded case for n = 1. Let n = 1 and let (uk) be bounded in L∞(Ω). It is
not restrictive to assume Ω = ]0, 1[; if this is not the case we prove the statement
for each connected component and then we use a diagonal argument.

Repeating step (a) of the proof of Theorem 3.2 in the case n = 1, we can find
m+1 points 0 = x0 < · · · < xm = 1 such that ∇uk is bounded in L2(xi+µ, xi+1−µ)
uniformly with respect to k, µ > 0, and i = 0, . . . ,m−1. This implies by assumption
that uk is bounded in H1(xi + µ, xi+1 − µ) uniformly with respect to k, µ, and i.
For every µ > 0, we can find a subsequence of (uk), not relabeled, that converges in
L2(xi +µ, xi+1−µ), for i = 0, . . . ,m− 1. Then by a diagonal argument we extract
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a further subsequence (uj) of (uk) that converges in L1(Ω) to some u ∈ L∞(Ω).
From this convergence and from Proposition 1 we also deduce u ∈ SBV 2(Ω).

The bounded case for n > 1. Let n > 1 and let (uk) be bounded in L∞(Ω).
Let ξ ∈ Rn be a unit vector and let Vy,k, Fy,k be defined as in (52), (51). Moreover

we set

Ak := {y ∈ Πξ : Fy,k((uk)ξy, (vk)ξy) ≤ L},
where L is a fixed constant, so that by the Chebyshev inequality we obtain

Hn−1((Ak)c) ≤ M

L
.

Let δ > 0; we can choose L so that diam(Ω)cM/L < δ, with c := supk ||uk||L∞ . Let
us define

(wk)ξy(t) :=

{
(uk)ξy if y ∈ Ak,
0 otherwise

and let wk(y + tξ) := (wk)ξy(t), for y ∈ Πξ and t ∈ Ωξy. Then

||wk − uk||L1(Ω) ≤ c diam(Ω)Hn−1((Ak)c) < δ.

Let F := (uk) and Fδ := (wk), then F lies in a δ-neighborhood of Fδ with respect
to the L1(Ω) distance; moreover Fδ is pre-compact by the first part of the proof.
From Theorem 7.3, we deduce the existence of a function u ∈ L∞(Ω) and of a
subsequence (uj , vj) of (uk, vk) such that (uj , vj) → (u, 1) in L1(Ω)×L1(Ω) and
||u||L∞(Ω) ≤ c. Since

F ′α(u, 1) ≤ lim
j→∞

Fj(uj , vj) ≤M,

by Theorem 3.1 we conclude u ∈ GSBV 2(Ω)∩L∞(Ω), i.e., u ∈ SBV 2(Ω)∩L∞(Ω).

The general case. For every µ ∈ N we can consider uµk := (−µ ∨ uk) ∧ µ, then

Fk(uµk , vk) ≤ Fk(uk, vk)

and by the first part of the proof there exists a subsequence (uµj ) of (uµk) and a

function uµ ∈ SBV 2(Ω) ∩ L∞(Ω), with ||uµ||L∞(Ω) ≤ µ, such that uµj → uµ in

L1(Ω) and Ln-a.e. in Ω. This implies that the complement of the set

A :=
{
x ∈ Ω : (uµj (x)) converges for every µ ∈ N

}
is negligible. Let us observe that(

uµ(x)
)λ

= lim
j→∞

(
uµj (x)

)λ
= lim
j→∞

uλj (x) = uλ(x) for every µ > λ. (81)

We claim that the subset of A

E :=
{
x ∈ A : |uλ(x)| = λ for every λ ∈ N

}
has measure zero. Indeed, for every λ ∈ N and ε > 0 we have

Ln(E) ≤ Ln
({
|uλj | > λ− ε

})
≤ 1

λ− ε

∫
Ω

|uj |dx ≤
c

λ− ε
for j large enough, where c is the bounding constant of (uj) in L1(Ω); as ε→ 0 and
λ → ∞ we obtain Ln(E) = 0. Let now x ∈ A \ E, so that there exists λ ∈ N with
|uλ(x)| < λ; this condition, together with equalities (81) gives uµ(x) = uλ(x) for
every µ > λ.
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Let us define for Ln-a.e. x ∈ Ω

u(x) := lim
λ→∞

uλ(x),

then by (81) uλ coincides with the truncated function uλ Ln-a.e. in Ω. This implies
that uj → u Ln-a.e. in Ω; since (uλ) is contained in SBV (Ω) we deduce that
u ∈ GSBV (Ω). Finally, since uλj is uniformly bounded in L1(Ω) with respect to λ

and j, we also conclude that u ∈ L1(Ω).

In the following lemma we compute the Γ-limit of the functionals introduced in
(80).

Lemma 7.5. Let 1 ≤ q < +∞ and let g ∈ Lq(Ω). Let us consider the sequence of
functionals (Gk) defined by

Gk(u, v) := Fk(u, v) +

∫
Ω

|u− g|qdx, (82)

where u, v ∈ L1(Ω) and Fk is as in (8). Then (Gk) Γ-converges in L1(Ω)×L1(Ω)
to the functional Gα : L1(Ω)×L1(Ω)→ [0,+∞] defined by

Gα(u, v) := Fα(u, v) +

∫
Ω

|u− g|qdx.

Proof. Let G′α and G
′′

α be the Γ-lim inf and the Γ-lim sup of Gk in L1(Ω)×L1(Ω).
First we observe that the functional H : L1(Ω)×L1(Ω)→ [0,+∞] defined by

H(u, v) :=

∫
Ω

|u− g|qdx

is lower semicontinuous.
In the case q = 1 the functional H is continuous; since (Fk) Γ-converges to Fα

by Theorem 3.1, we can apply [11, Proposition 6.21] about the sum of Γ-limits to
conclude that Gk Γ-converges to Fα +H.

Let q > 1. Since H is not continuous, we need a different argument. To this aim
we introduce G′′q,α, the Γ-lim sup of Gk in Lq(Ω)×L1(Ω).

If (u, v) ∈ (L1(Ω) \ Lq(Ω))×L1(Ω) we obtain by [11, Proposition 6.17]

+∞ = Fα(u, v) +H(u, v) ≤ G′α(u, v);

let now (u, v) ∈ Lq(Ω)×L1(Ω). By [11, Proposition 6.3, 6.17, and 6.21], by Theorem
3.1, and by Lemma 7.2 we can deduce that

Fα(u, v) +H(u, v) ≤ G′α(u, v) ≤G′′α(u, v) ≤ G′′q,α(u, v) = Fq,α(u, v) +H(u, v)

= Fα(u, v) +H(u, v),

so that the functionals Gk Γ-converge to the functional Gα.

We are now in a position to prove Theorem 7.1.

Proof of Theorem 7.1. We fix k and prove that each functional Gk, defined in (82),
attains its minimum. Let (uj , vj) be a sequence such that

lim
j→∞

Gk(uj , vj) = inf
Lq(Ω)×L1(Ω)

Gk.

Since (Gk(uj , vj)) is bounded, from the definition of Gk we deduce (uj , vj) ∈
H1(Ω)×Vk. In particular (uj) is bounded in Lq(Ω) and (∇uj) is bounded in
L2(Ω,Rn); this implies that (uj) is bounded in H1(Ω). Then we can find a function
u ∈ H1(Ω) ∩ Lq(Ω) and a subsequence of (uj), not relabeled, such that uj ⇀ u
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weakly in H1(Ω) and Ln-a.e. in Ω. From the boundedness of (vj) in W 1,∞(Ω)
we can deduce the existence of a function v ∈ W 1,∞(Ω), with ηk ≤ v ≤ 1 and
|∇v| ≤ 1/εk Ln-a.e. on Ω, and of a subsequence of (vj), not relabeled, such that
vj → v in L1(Ω) and Ln-a.e. in Ω. By [8, Theorem 2.3.1] and by the Fatou lemma,
this implies that the estimates∫

Ω

|∇u|2vdx ≤ lim inf
j→∞

∫
Ω

|∇uj |2vjdx,
∫

Ω

|u− g|qdx ≤ lim inf
j→∞

∫
Ω

|uj − g|qdx (83)

hold, so that we obtain

Gk(u, v) ≤ lim
j→∞

Gk(uj , vj) = inf
Lq(Ω)×L1(Ω)

Gk.

This shows that the infimum of Gk is achieved.
Let now (uk, vk) be a minimizer of Gk, which obviously belongs to H1(Ω)×Vk.

Since the sequence (Fk(uk, vk)) is bounded, by the Compactness Theorem 7.4 there
exists a function u ∈ GSBV (Ω)∩Lq(Ω) and a subsequence of (uk, vk), not relabeled,
such that uk → u Ln-a.e. in Ω and vk → 1 in L1(Ω). Let us prove that uk → u in
L1(Ω). By the the Dominated Convergence Theorem we get

∫
Ω
|uk − u|1Bckdx→ 0,

where Bk :=
{
|uk − u| > 1

}
; moreover using the Hölder inequality we obtain∫

Bk

|uk−u|dx ≤
(
||uk−g||Lq(Ω)+||u−g||Lq(Ω)

)
Ln(Bk)1− 1

q ≤ 2||g||Lq(Ω)Ln(Bk)1− 1
q ,

where the last inequality follows from the estimateGk(uk, vk) ≤ Gk(0, 1) = ||g||qLq(Ω)

and from (83). Since uk → u in measure we conclude that Ln(Bk) → 0 and the
convergence uk → u in L1(Ω) follows.

By the Γ-convergence of Gk to Gα (Lemma 7.5) and by a general property of
Γ-convergence (see [11, Corollary 7.20]), we find that (u, 1) is a minimizer for Gα,
so that u ∈ GSBV 2(Ω) ∩ Lq(Ω). Moreover we have the convergence of minimum
values and the convergence of minimizer in L1(Ω)×L1(Ω).

Let us prove now that uk → u in Lq(Ω), up to subsequences. Since

Fα(u, 1) +

∫
Ω

|u− g|qdx = lim
k→∞

(
Fk(uk, vk) +

∫
Ω

|uk − g|qdx
)
,

Fα(u, 1) ≤ lim inf
k→∞

Fk(uk, vk), and

∫
Ω

|u− g|qdx ≤ lim inf
k→∞

∫
Ω

|uk − g|qdx,

we obtain ∫
Ω

|u− g|qdx = lim
k→∞

∫
Ω

|uk − g|qdx. (84)

This fact, together with the Ln-a.e. convergence in Ω of uk − g to u − g, implies
that uk → u in Lq(Ω) by the Generalized Dominated Convergence Theorem.
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