
MAGNETIC BV FUNCTIONS AND THE

BOURGAIN-BREZIS-MIRONESCU FORMULA

ANDREA PINAMONTI, MARCO SQUASSINA, AND EUGENIO VECCHI

Abstract. We prove a general magnetic Bourgain-Brezis-Mironescu formula which extends the
one obtained in [37] in the Hilbert case setting. In particular, after developing a rather complete
theory of magnetic bounded variation functions, we prove the validity of the formula in this class.
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1. Introduction

The celebrated Bourgain-Brezis-Mironescu formula, (BBM) in short, appeared for the first time
in [8,9], and provided a new characterization for functions in the Sobolev space W 1,p(Ω), with p ≥ 1
and for Ω ⊂ RN being a smooth bounded domain. To this aim, the authors of [8, 9] perform a
careful study of the limit properties of the Gagliardo semi-norm defined for the fractional Sobolev
spaces W s,p(Ω) with 0 < s < 1. In particular, they considered the limit as s ↗ 1. To be more
precise, for any W 1,p(Ω) it holds

(BBM) lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+ps
dxdy = Qp,N

∫
Ω
|∇u|pdx,

where Qp,N is defined by

(1.1) Qp,N =
1

p

∫
SN−1

|ω · h|pdHN−1(h),

where SN−1 ⊂ RN denotes the unit sphere and ω is an arbitrary unit vector of RN . This also
allows to get the stability of (variational) eigenvalues for the fractional p-Laplacian operator as
s ↗ 1, see [10]. We recall that characterizations similar to (BBM) when s ↘ 0 were obtained
in [30,31].
In the following years, a huge effort in trying to extend the results proved in [8] has been made. One
of the first extension was achieved by Nguyen in [32], where he provided a new characterization
for functions in W 1,p(RN ). As we already mentioned, the (BBM)-formula proved in [8] covered
the case of Ω ⊂ RN being a smooth and bounded domain, therefore it was quite natural to try to
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relax the assumptions on the open set Ω ⊂ RN : this kind of problem was recently addressed in [25]
and [26], where Leoni and Spector were able to provide a generalization of the (BBM)-formula to
any open set Ω ⊂ RN . The interest resulted from [8] led also to related new characterizations of
Sobolev spaces in non-Euclidean contexts like the Heisenberg group (see [7, 18]).

One of the most challenging problems left open in [8] was to provide similar characterizations
for functions of bounded variation. A positive answer to this question has been given by Davila
in [20] and by Ponce in [34]. They completed the picture by showing that,

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− u(y)|
|x− y|N+s

dxdy = Q1,N |Du|(Ω),

for every bounded Lipschitz set Ω ⊂ RN and every u ∈ BV (Ω). We also recall that the extension
to any open set proved in [25,26] concerns BV functions as well, see also [35].
In order to try to give a more complete overview of the subject, we have to mention that, parallel
to the fractional theory of Sobolev spaces, there exists a quite developed theory of fractional s-
perimeters (e.g. [16]), and also in this framework there have been several contributions concerning
their analysis in the limits s↗ 1 and s↘ 0 (see e.g. [2, 17,22,23,28,29]).
Very recently the results we have mentioned have been discovered to have interesting applications
in image processing, see for instance [12–15]. One of the latest generalizations of (BBM) appeared

very recently in [37] in the context of magnetic Sobolev spaces W 1,2
A (Ω). In fact, an important role

in the study of particles which interact with a magnetic field B = ∇×A, A : R3 → R3, is assumed
by another extension of the Laplacian, namely the magnetic Laplacian (∇− iA)2 (see [6, 27, 36]),
yielding to nonlinear Schrödinger equations like

(1.2) − (∇− iA)2u+ u = f(u),

which have been extensively studied (see e.g. [5] and references therein), where (∇− iA)2 is defined
in weak sense as the differential of the integral functional

(1.3) W 1,2
A (Ω) 3 u 7→

∫
Ω
|∇u− iA(x)u|2dx.

If A : RN → RN is a smooth function and s ∈ (0, 1), a non-local magnetic counterpart of (1.2), i.e.

(−∆)sAu(x) = c(N, s) lim
ε↘0

∫
Bcε(x)

u(x)− ei(x−y)·A(x+y
2 )u(y)

|x− y|N+2s
dy, lim

s↗1

c(N, s)

1− s
=

4NΓ(N/2)

2πN/2
,

was introduced in [19, 24] for complex-valued functions. We point out that (−∆)sA coincides with
the usual fractional Laplacian for A = 0. The motivations for the introduction of this operator are
carefully described in [19,24] and fall into the framework of the general theory of Lévy processes. It
is thus natural wondering about the consistency of the norms associated with the above fractional
magnetic operator in the singular limit s↗ 1, with the energy functional (1.3). We point out that
the case s↗ 0 has been studied in [33].

The aim of this paper is to continue the study of the validity of a magnetic counterpart of
(BBM), extending the results of [37] to arbitrary magnetic fractional Sobolev spaces and to
magnetic BV functions. We refer the reader to Sections 2 and 3 for the definitions. On the other
hand, while for p ≥ 1 the spaces W 1,p

A (Ω) have a wide background, to the best of our knowledge no

notion of magnetic bounded variations space containing W 1,1
A (Ω) seems to be previously available

in the literature.

As already recalled, this indeed holds for the Hilbert case p = 2, as stated in the following
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Theorem (M. Squassina, B. Volzone [37]). Let Ω ⊂ RN be an open and bounded set with Lipschitz

boundary and let A ∈ C2(Ω̄,RN ). Then, for every u ∈W 1,2
A (Ω), we have

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|2

|x− y|N+2s
dxdy = Q2,N

∫
Ω
|∇u− iA(x)u|2dx,

where Q2,N is the positive constant defined in (1.1) with p = 2.

The goal of this paper is twofold: first we aim to extend this formula to the case of general
magnetic spaces W 1,p

A for p ≥ 1, and secondly we introduce a suitable notion of magnetic bounded
variation |Du|A(Ω) and we prove that a (BBM)− formula holds also in that case.

In order to state the main result we need to introduce some notation: let p ≥ 1 be fixed and let
us consider the normed space (CN , | · |p), with

(1.4) |z|p := (|(<z1, . . . ,<zN )|p + |(=z1, . . . ,=zN )|p)1/p ,

where | · | is the Euclidean norm of RN and <a,=a denote the real and imaginary parts of a ∈ C
respectively. Notice that |z|p = |z| whenever z ∈ RN , which makes our next statements consistent
with the case A = 0 and u being a real valued function [8, 11,20,34].

Theorem 1.1 (General magnetic Bourgain-Brezis-Mironescu limit). Let A : RN → RN be of class
C2. Then, for any bounded extension domain Ω ⊂ RN

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|1

|x− y|N+s
dxdy = Q1,N |Du|A(Ω),

for all u ∈ BVA(Ω), where Qp,N is defined in (1.1). Furthermore, for any p ≥ 1 and any Lipschitz

bounded domain Ω ⊂ RN

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|pp

|x− y|N+ps
dxdy = Qp,N

∫
Ω
|∇u− iA(x)u|pp dx,

for all u ∈W 1,p
A (Ω).

We refer to Definition 3.11 for a precise explanation of extension domain. We stress that the
definitions of both the magnetic Sobolev spaces W 1,p

A (Ω) and of the magnetic BV spaces BVA(Ω)
made in Sections 2 and 3 are consistent, in the case of zero magnetic potential A, with the
classical spaces W 1,p(Ω) and BV (Ω), respectively. Moreover, it holds |Du|A(Ω) = |Du|(Ω), so
that Theorem 1.1 is consistent with the classical formulas of [8, 20,34].
In particular, in the spirit of [11], as a byproduct of Theorem 1.1, if Ω ⊂ RN is a smooth bounded
domain, A : RN → RN is of class C2 and we have

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|pp

|x− y|N+ps
dxdy = 0, u ∈W 1,p

A (Ω),

then we get {
∇<u = −=uA,
∇=u = <uA,

namely the direction of ∇<u,∇=u is that of the magnetic potential A. In the particular case
A = 0, consistently with the results of [11], this implies that u is a constant function.
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We finally notice that for a Borel set E ⊂ Ω, denoting Ec = Ω \ E, the quantity

Ps(E;A) : =
1

2

∫
E

∫
E

|1− ei(x−y)·A(x+y
2 )|1

|x− y|N+s
dxdy +

1

2

∫
E

∫
Ec

1

|x− y|N+s
dxdy

+
1

2

∫
Ec

∫
E

|ei(x−y)·A(x+y
2 )|1

|x− y|N+s
dxdy,

plays the rǒle of a nonlocal s-perimeter of E depending on A, which reduces for A = 0 to the
classical notion of fractional s-perimeter of E in Ω

Ps(E) =

∫
E

∫
Ec

1

|x− y|N+s
dxdy.

Then, the main result Theorem 1.1 reads as

lim
s↗1

(1− s)Ps(E,A) = Q1,N |D1E |A(Ω).

The structure of the paper is as follows. In Section 2 we introduce magnetic Sobolev spaces
W 1,p
A (Ω). In Section 3 we define the magnetic BV space BVA(Ω) and we prove that several

classical results for BV functions hold also for functions belonging to BVA(Ω). In particular, we
prove a structure result (Lemma 3.6), a result about the extension to RN for Lipschitz domains
(Lemma 3.12), the semi-continuity of the variation (Lemma 3.7), a magnetic counterpart of the
classical Anzellotti-Giaquinta approximation Theorem (Lemma 3.10) and, finally, a compactness
result (Lemma 3.14). In Sections 4, 5 and 6 we finally prove Theorem 1.1.

2. Magnetic Sobolev spaces

In order to avoid confusion with the different uses of the symbol v · w, we define

v · w :=

N∑
i=1

(<vi + i=vi)(<wi + i=wi), if v, w ∈ CN .

Let Ω be an open set of RN . For any p ≥ 1 we denote by Lp(Ω,C) the Lebesgue space of complex
valued functions u : Ω→ C such that

‖u‖Lp(Ω) =

(∫
Ω
|u(x)|ppdx

)1/p

<∞,

where | · |p is as in (1.4). For a locally bounded function A : RN → RN , we consider the semi-norm

[u]
W 1,p
A (Ω)

:=
(∫

Ω
|∇u− iA(x)u|ppdx

)1/p
,

and define W 1,p
A (Ω) as the space of functions u ∈ Lp(Ω,C) such that [u]

W 1,p
A (Ω)

<∞ with norm

‖u‖
W 1,p
A (Ω)

:=
(
‖u‖pLp(Ω) + [u]p

W 1,p
A (Ω)

)1/p
.

The space W 1,p
0,A(Ω) will denote the closure of the space C∞c (Ω) in W 1,p

A (Ω). For any s ∈ (0, 1) and
p ≥ 1, the magnetic Gagliardo semi-norm is defined as

[u]W s,p
A (Ω) :=

(∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|pp

|x− y|N+ps
dxdy

)1/p
.
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We denote by W s,p
A (Ω) the space of functions u ∈ Lp(Ω,C) such that [u]W s,p

A (Ω) <∞ normed with

‖u‖W s,p
A (Ω) :=

(
‖u‖pLp(Ω) + [u]p

W s,p
A (Ω)

)1/p
.

For A = 0 this is consistent with the usual space W s,p(Ω) with norm ‖ · ‖W s,p(Ω).

3. Magnetic BV spaces

In this section we introduce a suitable notion of magnetic bounded variation functions. Let Ω be
an open set of RN . We recall that a real-valued function u ∈ L1(Ω) is of bounded variation, and
we shall write u ∈ BV (Ω), if

|Du|(Ω) = sup

{∫
Ω
u(x)divϕ(x)dx | ϕ ∈ C∞c (Ω,RN ), ‖ϕ‖L∞(Ω) ≤ 1

}
<∞.

The space BV (Ω) is endowed with the norm

‖u‖BV (Ω) := ‖u‖L1(Ω) + |Du|(Ω).

The space of complex-valued bounded variation functions BV (Ω,C) is defined as the class of Borel
functions u : Ω→ C such that <u,=u ∈ BV (Ω). The C-total variation of u is defined by

|Du|(Ω) := |D<u|(Ω) + |D=u|(Ω).

More generally, it is possible to define a notion of variation for functions u : Ω→ E where Ω ⊂ RN
is an open set and (E, d) is a locally compact metric space. We refer the interested reader to [1].

We are now ready to define the magnetic BV functions.

Definition 3.1 (A−bounded variation functions). Let Ω ⊂ RN be an open set and A : RN → RN
a locally bounded function. A function u ∈ L1(Ω,C) is said to be of A-bounded variation and we
write u ∈ BVA(Ω), if

|Du|A(Ω) := C1,A,u(Ω) + C2,A,u(Ω) <∞,
where we have set

C1,A,u(Ω) := sup

{∫
Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x)dx | ϕ ∈ C∞c (Ω,RN ), ‖ϕ‖L∞(Ω) ≤ 1

}
,

C2,A,u(Ω) := sup

{∫
Ω
=u(x)divϕ(x) +A(x) · ϕ(x)<u(x)dx | ϕ ∈ C∞c (Ω,RN ), ‖ϕ‖L∞(Ω) ≤ 1

}
.

A function u ∈ L1
loc(Ω,C) is said to be of locally A-bounded variation and we write u ∈ BVA,loc(Ω),

provided that it holds

|Du|A(U) <∞, for every open set U b Ω.

We stress that for A ≡ 0, the previous definition is consistent with the one of BV (Ω). In order to
justify our definition, we will collect in the following some properties of the space BVA(Ω). These
properties are the natural generalization to the magnetic setting of the classical theory [3, 21,38].

Lemma 3.2 (Extension of |Du|A|). Let Ω ⊂ RN be an open and bounded set, A : RN → RN
locally bounded and u ∈ BVA(Ω). Let E ⊂ Ω be a Borel set then

|Du|A(E) := inf{C1,A,u(U) | E ⊂ U, U ⊂ Ω open}+ inf{C2,A,u(U) | E ⊂ U, U ⊂ Ω open}

extends |Du|A(·) to a Radon measure in Ω. For any open set U ⊂ Ω, C1,A,u(U) and C2,A,u(U) are
defined requiring the test functions to be supported in U and |Du|A(∅) := 0.
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Proof. We note that
ν1(E) := inf{C1,A,u(U) | E ⊂ U, U ⊂ Ω open}

is the variation measure associated with

ϕ 7→
∫

Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x) dx,

and by [21, Theorem 1.38] it is a Radon measure. The same argument applies to

ν2(E) := inf{C2,A,u(U) | E ⊂ U, U ⊂ Ω open}
and the thesis follows. �

Lemma 3.3 (Local inclusion of Sobolev functions). Let Ω ⊂ RN be an open set. Let A : RN → RN
be locally bounded. Then

W 1,1
loc (Ω) ⊂ BVA,loc(Ω).

Proof. Let u ∈W 1,1
loc (Ω), U b Ω open and consider ϕ ∈ C∞c (U,RN ) with ‖ϕ‖L∞(U) ≤ 1. Then∫

U
<u(x) divϕ(x)−A(x) · ϕ(x)=u(x) dx+

∫
U
=u(x) divϕ(x) +A(x) · ϕ(x)<u(x) dx

= −
∫
U

(∇<u(x) +A(x)=u(x)) · ϕ(x) dx−
∫
U

(∇=u(x)−A(x)<u(x)) · ϕ(x) dx

≤
∫
Ū
|∇<u(x) +A(x)=u(x)| dx+

∫
Ū
|∇=u(x)−A(x)<u(x)| dx

≤
∫
Ū
|∇<u(x)| dx+

∫
Ū
|∇=u(x)| dx+ ‖A‖L∞(Ū)

(∫
Ū

(|<u(x)|+ |=u(x)|) dx
)
<∞,

which, taking the supremum over ϕ, concludes the proof. �

Next we prove that for W 1,1
A (Ω) functions the magnetic bounded variation semi-norm |Du|A(Ω)

boils down to the usual local magnetic semi-norm.

Lemma 3.4 (BVA norm on W 1,1
A ). Let Ω ⊂ RN be an open set. Let A : RN → RN be locally

bounded. Assume that u ∈W 1,1
A (Ω). Then u ∈ BVA(Ω) and it holds

|Du|A(Ω) =

∫
Ω
|∇u− iA(x)u|1dx.

Furthermore, if u ∈ BVA(Ω) ∩ C∞(Ω), then u ∈W 1,1
A (Ω).

Proof. If u ∈W 1,1
A (Ω), then we have

∇<u+A=u ∈ L1(Ω), ∇=u−A<u ∈ L1(Ω).

For every ϕ ∈ C∞c (Ω,RN ) with ‖ϕ‖L∞(Ω) ≤ 1, we have∣∣∣∣∫
Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x)dx

∣∣∣∣
=

∣∣∣∣∫
Ω
∇<u(x) · ϕ(x) +A(x) · ϕ(x)=u(x)dx

∣∣∣∣ ≤ ∫
Ω
|∇<u+A=u|dx,

as well as ∣∣∣∣∫
Ω
=u(x)divϕ(x) +A(x) · ϕ(x)<u(x)dx

∣∣∣∣
=

∣∣∣∣∫
Ω
∇=u(x) · ϕ(x)−A(x) · ϕ(x)<u(x)dx

∣∣∣∣ ≤ ∫
Ω
|∇=u−A<u|dx,
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which, taking the supremum over ϕ, proves u ∈ BVA(Ω,C) and

|Du|A(Ω) ≤
∫

Ω
|∇u− iA(x)u|1dx.(3.1)

Defining now f, g ∈ L∞(Ω,RN ) by setting

f(x) :=

{
− ∇<u(x)+A(x)=u(x)
|∇<u(x)+A(x)=u(x)| , if x ∈ Ω and ∇<u(x) +A(x)=u(x) 6= 0,

0, otherwise,

and

g(x) :=

{
− ∇=u(x)−A(x)<u(x)
|∇=u(x)−A(x)<u(x)| , if x ∈ Ω and ∇=u(x)−A(x)<u(x) 6= 0,

0, otherwise,

we have that ‖f‖∞, ‖g‖∞ ≤ 1. By a standard approximation result, there exist two sequences
{ϕn}n∈N, {ψn}n∈N ⊂ C∞c (Ω,RN ) such that ϕn → f and ψn → g pointwise as n → ∞, with
‖ϕn‖L∞(Ω), ‖ψn‖L∞(Ω) ≤ 1 for all n ∈ N. By definition of C1,A,u(Ω), after integration by parts, it
follows that, for every n ≥ 1,

C1,A,u(Ω) ≥ −
N∑
i=1

∫
Ω

(
∂xi<u(x) +A(i)(x)=u(x)

)
ϕ(i)
n (x)dx.

By the Dominated Convergence Theorem and the definition of f , letting n→∞ we obtain

C1,A,u(Ω) ≥
∫

Ω
|∇<u(x) +A(x)=u(x)|dx.

Similarly, using the sequence {ψn}n∈N and arguing in a similar fashion yields

C2,A,u(Ω) ≥
∫

Ω
|∇=u(x)−A(x)<u(x)|dx,

which, on account of (1.4), proves the opposite of inequality (3.1), concluding the proof of the first
statement. If u ∈ BVA(Ω)∩C∞(Ω), fix a compact set K ⊂ Ω with nonempty interior and consider

f̃ := fχint(K), g̃ := gχint(K).

Then, as above, one can find two sequences {ϕn}n∈N,{ψn}n∈N ⊂ C∞c (int(K),RN ) such that ϕn → f
and ψn → g pointwise and ‖ϕn‖L∞(int(K)), ‖ψn‖L∞(int(K)) ≤ 1, for all n ∈ N. Then, we have

C1,A,u(Ω) ≥
∫

Ω
<u(x)divϕn(x)−A(x) · ϕn(x)=u(x)dx

=

∫
K
<u(x)divϕn(x)−A(x) · ϕn(x)=u(x)dx

= −
N∑
i=1

∫
K

(
∂xi<u(x) +A(i)(x)=u(x)

)
ϕ(i)
n (x)dx.

Since u ∈ C∞(Ω), we have ∇<u+A=u ∈ L1(K). Thus, by the dominated convergence theorem,

C1,A,u(Ω) ≥
∫
K
|∇<u(x) +A(x)=u(x)|dx.

The conclusion follows using an exhaustive sequence of compacts via monotone convergence. �

We endow the space BVA(Ω,C) with the following norm:

‖u‖BVA(Ω) := ‖u‖L1(Ω) + |Du|A(Ω).
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Lemma 3.5 (Norm equivalence). Let Ω ⊂ RN be an open and bounded set. Let A : RN → RN be
locally bounded. Then u ∈ BVA(Ω) if and only if u ∈ BV (Ω). Moreover, for every u ∈ BVA(Ω),
there exists a positive constant K = K(A,Ω) such that

K−1‖u‖BV (Ω) ≤ ‖u‖BVA(Ω) ≤ K‖u‖BV (Ω).

Proof. Denoting by supϕ the supremum over functions ϕ ∈ C∞c (Ω,RN ) with ‖ϕ‖L∞(Ω) ≤ 1, we get

|Du|(Ω) = |<u|(Ω) + |=u|(Ω) = sup
ϕ

∫
Ω
<u(x) divϕ(x) dx+ sup

ϕ

∫
Ω
=u(x) divϕ(x) dx

= sup
ϕ

∫
Ω
<u(x) divϕ(x)−A(x) · ϕ(x) =u(x) +A(x) · ϕ(x) =u dx

+ sup
ϕ

∫
Ω
=u(x) divϕ(x) +A(x) · ϕ(x) <u(x)−A(x) · ϕ(x) <u(x) dx

≤ sup
ϕ

∫
Ω
<u(x) divϕ(x)−A(x) · ϕ(x)=u(x) dx+ sup

ϕ

∫
Ω
A(x) · ϕ(x) =u(x) dx

+ sup
ϕ

∫
Ω
=u(x) divϕ(x) +A(x) · ϕ(x) <u(x) dx+ sup

ϕ

∫
Ω
A(x) · (−ϕ)(x) <u(x) dx

≤ C1,A,u(Ω) + C2,A,u(Ω) + ‖A‖L∞(Ω)‖u‖L1(Ω).

Therefore, we have that

‖u‖BV (Ω) ≤ (1 + ‖A‖L∞(Ω))‖u‖BVA(Ω).

For the second inequality, we have

C1,A,u(Ω) ≤ sup
ϕ

∫
Ω
<u(x) divϕ(x) dx+ sup

ϕ

∫
Ω
A(x) · (−ϕ)(x) =u(x) dx

≤ |D<u|(Ω) + ‖A‖L∞(Ω)

∫
Ω
|=u|dx,

and similarly for C2,A,u(Ω). Therefore, we conclude

‖u‖BVA(Ω) ≤ (1 + ‖A‖L∞(Ω))‖u‖BV (Ω).

Calling K := (1 + ‖A‖L∞(Ω)), concludes the proof. �

Lemma 3.6 (Structure Theorem for BVA functions). Let Ω ⊂ RN be an open and bounded set,
A : RN → RN locally bounded and u ∈ BVA(Ω). There exists a unique R2N -valued finite Radon
measure µA,u = (µ1,A,u, µ2,A,u) such that∫

Ω
u(x)divϕ(x) + iA(x) · ϕ(x)u(x) dx =

∫
Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x) dx

+ i

∫
Ω
=u(x)divϕ(x) +A(x) · ϕ(x)<u(x) dx

=

∫
Ω
ϕ(x) · d(µ1,A,u + iµ2,A,u)(x),

for every ϕ ∈ C∞c (Ω,RN ) and

|Du|A(Ω) = |µ1,A,u|(Ω) + |µ2,A,u|(Ω).

Proof. Of course, we have∣∣∣∣∫
Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x) dx

∣∣∣∣ ≤ C1,A,u(Ω)‖ϕ‖L∞(Ω), ∀ϕ ∈ C∞c (Ω,RN ).
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Then, a standard application of the Hahn-Banach theorem yields the existence of a linear and
continuous extension L of the functional Ψ : C∞c (Ω,RN )→ R

〈Ψ, ϕ〉 =

∫
Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x) dx

to the normed space (Cc(Ω,RN ), ‖ · ‖L∞(Ω)) such that

‖L‖ = ‖Ψ‖ = C1,A,u(Ω).

On the other hand, by the Riesz representation Theorem (cf. [3, Corollary 1.55]) there exists a
unique RN -valued finite Radon measure µ1,A,u with

L(ϕ) =

∫
Ω
ϕ(x) · dµ1,A,u(x), ∀ϕ ∈ Cc(Ω,RN ),

and such that |µ1,A,u|(Ω) = ‖L‖. Thus |µ1,A,u|(Ω) = C1,A,u(Ω). The same argument can be
repeated verbatim for the functional

ϕ 7→
∫

Ω
=u(x)divϕ(x) +A(x) · ϕ(x)<u(x) dx,

which concludes the proof. �

Lemma 3.7 (Lower semicontinuity of |Du|A(Ω)). Let A : RN → RN be locally bounded. Let
Ω ⊂ RN be an open set and {uk}k∈N ⊂ BVA(Ω) a sequence converging locally in L1(Ω) to a
function u. Then

lim inf
k→∞

|Duk|A(Ω) ≥ |Du|A(Ω).

Proof. Fix ϕ ∈ C∞c (Ω,RN ) with ‖ϕ‖L∞(Ω) ≤ 1. By the definitions of Ci,A,uk(Ω), we have

C1,A,uk(Ω) ≥
∫

Ω
<uk(x)divϕ(x)−A(x) · ϕ(x)=uk(x)dx,

C2,A,uk(Ω) ≥
∫

Ω
=uk(x)divϕ(x) +A(x) · ϕ(x)<uk(x)dx.

By the convergence of {uk}k∈N in L1
loc(Ω,C) to u, we get

lim inf
k→∞

C1,A,uk(Ω) ≥
∫

Ω
<u(x)divϕ(x)−A(x) · ϕ(x)=u(x)dx,

lim inf
k→∞

C2,A,uk(Ω) ≥
∫

Ω
=u(x)divϕ(x) +A(x) · ϕ(x)<u(x)dx.

The assertion follows by the definition of |Du|A(Ω) and the arbitrariness of such functions ϕ. �

Lemma 3.8. The space (BVA(Ω), ‖ · ‖BVA(Ω)) is a real Banach space.

Proof. It is readily seen that ‖ · ‖BVA(Ω) is a norm (to this aim, it is enough to check that the map
u 7→ |Du|A(Ω) defines a semi-norm over BVA(Ω), which is left to the reader). Let us prove that
the space is complete. Let {un}n∈N ⊂ BVA(Ω) be a Cauchy sequence, namely for every ε > 0
there exists n0 ∈ N such that∫

Ω
|un − uk|1dx+ |D(un − uk)|A(Ω) < ε, ∀n, k ≥ n0.

In particular, {un}n∈N is a Cauchy sequence in the Banach space (L1(Ω), ‖ · ‖L1(Ω)), which implies

that there exists u ∈ L1(Ω) with ‖un − u‖L1(Ω) → 0, as n→∞. Therefore, in light of Lemma 3.7,
we get

|D(u− uk)|A(Ω) ≤ lim inf
n
|D(un − uk)|A(Ω) ≤ ε, ∀ k ≥ n0,
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namely |D(un − u)|A(Ω)→ 0, as n→∞, which concludes the proof. �

Lemma 3.9 (Multiplication by Lipschitz functions). Let Ω ⊂ RN be an open set. Let A : RN →
RN be locally bounded and u ∈ BVA,loc(Ω). Then for every locally Lipschitz ψ : Ω→ R the function
uψ ∈ BVA,loc(Ω) and

µ1,A,ψu = ψµ1,A,u −<u · ∇ψLN ,
µ2,A,ψu = ψµ2,A,u −=u · ∇ψLN

where LN denotes the N−dimensional Lebesgue measure.

Proof. Consider U b Ω open and let ϕ ∈ C∞c (U,RN ) be such that ‖ϕ‖L∞(U) ≤ 1. By Rademacher’s
theorem we have ψdivϕ = div(ψϕ)− ϕ · ∇ψ a.e. in U . Therefore, up to smoothing ψ, we get∫

U
<(uψ)(x) divϕ(x)−A(x) · ϕ(x)=(uψ)(x)dx

=

∫
U
ψ(x)<u(x)divϕ(x)−A(x) · ϕ(x)ψ(x)=u(x)dx

=

∫
U
<u(x)div(ψϕ)(x)−A(x) · ϕ(x)ψ(x)=u(x)dx−

∫
U
<u(x)ϕ(x) · ∇ψ(x)dx

≤ C1,A,u(U)‖ψ‖L∞(U) + Lip(ψ)‖u‖L1(U).

A similar estimate holds for the second term, proving uψ ∈ BVA,loc(Ω). By Lemma 3.6, we have∫
Ω
ϕ(x) · dµ1,A,uψ

=

∫
Ω
ψ(x)<u(x)divϕ(x)−A(x) · ϕ(x)ψ(x)=u(x)

=

∫
Ω
<u(x)div(ψϕ)(x)−A(x) · ϕ(x)ψ(x)=u(x)dx−

∫
Ω
<u(x)ϕ(x) · ∇ψ(x)dx

=

∫
Ω
ϕ(x)ψ(x)dµ1,A,u −

∫
Ω
<u(x)ϕ(x) · ∇ψ(x)dx.

and the thesis follows. A similar argument holds also for µ2,A,uψ, and this concludes the proof. �

Let η ∈ C∞0 (RN ) be a radial nonnegative function with
∫
RN η(x)dx = 1 and supp(η) ⊂ B1(0).

Given ε > 0 and u ∈ L1(Ω;C), extended to zero out of Ω, we define the usual regularization

uε(x) :=
1

εN

∫
RN

η

(
x− y
ε

)
u(y)dy =

1

εN

∫
B(x,ε)

η

(
x− y
ε

)
u(y)dy.(3.2)

Next we have the magnetic counterpart of the classic Anzellotti-Giaquinta Theorem [4].

Lemma 3.10 (Approximation with smooth functions). Suppose that A : RN → RN is locally
Lipschitz. Let Ω ⊂ RN be an open and bounded set and let u ∈ BVA(Ω). Then there exists a
sequence {uk}k∈N ⊂ C∞(Ω,C) such that

lim
k→∞

∫
Ω
|uk − u|1 dx = 0 and lim

k→∞
|Duk|A(Ω) = |Du|A(Ω).

Proof. We follow closely the proof of [21, Theorem 5.3]. In light of the semicontinuity property
(Lemma 3.7), it is enough to prove that, for every ε > 0, there exists a function vε ∈ C∞(Ω) such
that

(3.3)

∫
Ω
|u− vε|1dx < ε, and |Dvε|A(Ω) < |Du|A(Ω) + ε.
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Let {Ωj}j∈N be a sequence of domains defined, for m ∈ N, as follows

Ωj :=

{
x ∈ Ω | dist(x, ∂Ω) >

1

m+ j

}
∩B(0, k +m), j ∈ N,

where B(0, k +m) denotes the open ball of center 0 and radius k +m.
Since |Du|A is a Radon measure, given ε > 0 we can choose m ∈ N so large that

(3.4) |Du|A(Ω \ Ω0) < ε.

We want to stress that the sequence of open domains {Ωj} is built in such a way that

Ωj ⊂ Ωj+1 ⊂ Ω, for any j ∈ N, and

∞⋃
j=0

Ωj = Ω.

We now define another sequence of open domains {Uj}j∈N, by setting

U0 := Ω0, Uj := Ωj+1 \ Ωj−1, for j ≥ 1.

By standard results, there exists a partition of unity related to the covering {Uj}j∈N, which means
that there exists {fj}j∈N ∈ C∞c (Uj) such that 0 ≤ fj ≤ 1 for every j ≥ 0 and

∑∞
j=0 fj = 1 on Ω.

We stress that the last property, in particular, implies that

(3.5)
∞∑
j=0

∇fj = 0, on Ω.

Recalling the definition of the norm | · |1 given by (1.4), and the classical properties of the convo-
lution, we easily get that for every j ≥ 0 there exists 0 < εj < ε such that

(3.6)



supp
(
(fju)εj

)
⊂ Uj ,∫

Ω

∣∣(fju)εj − fju
∣∣
1
dx < ε 2−(j+1),∫

Ω

∣∣(u∇fj)εj − u∇fj∣∣1 dx < ε 2−(j+1).

We can now define vε :=
∑∞

j=0(ufj)εj . Since the sum is locally finite, we have that vε ∈ C∞(Ω,C),

and that u =
∑∞

j=0 ufj pointwise. Let us start considering the real part of the linear functional

C∞c (Ω) 3 ϕ 7→
∫

Ω
vε(x)divϕ(x) + iA(x) · ϕ(x) vε(x) dx.

We have∫
Ω
<vε(x)divϕ(x)−A(x) · ϕ(x)=vε(x) dx

=
∞∑
j=0

∫
Ω

(
(<ufj) ∗ ηεj

)
(x)divϕ(x)−

∞∑
j=0

∫
Ω
A(x) · ϕ(x)

(
(=ufj) ∗ ηεj

)
(x) dx =: I − II.
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Now

I =
∞∑
j=0

1

εNj

∫
Ω

∫
Ω
<u(y)fj(y)η

(
x− y
εj

)
divϕ(x) dydx =

∞∑
j=0

∫
Ω
<u(y)fj(y)div(ϕ ∗ ηεj )(y) dy

=

∞∑
j=0

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y) dy −

∞∑
j=0

∫
Ω
<u(y)∇fj(y) · (ϕ ∗ ηεj )(y) dy

=

∞∑
j=0

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y) dy −

∞∑
j=0

∫
Ω

[(
(<u∇fj) ∗ ηεj

)
(y)−<u(y)∇fj(y)

]
· ϕ(y) dy

=: I ′ − I ′′,

where in the last equality we used (3.5). For II, we have

II =
∞∑
j=0

∫
Ω
A(x) · ϕ(x)

[
1

εNj

∫
Ω
=u(y)fj(y)η

(
x− y
εj

)
dy

]
dx

=

∞∑
j=0

1

εNj

∫
Ω

∫
Ω
A(y) · ϕ(x)=u(y)fj(y)η

(
x− y
εj

)
dxdy

+

∞∑
j=0

1

εNj

∫
Ω

∫
Ω

(A(x)−A(y)) · ϕ(x)=u(y)fj(y)η

(
x− y
εj

)
dxdy

=

∞∑
j=0

∫
Ω
A(y) ·

(
fj(ϕ ∗ ηεj )

)
(y)=u(y) dy

+
∞∑
j=0

1

εNj

∫
Ω

∫
Ω

(A(x)−A(y)) · ϕ(x)=u(y)fj(y)η

(
x− y
εj

)
dxdy.

Denoting fj(ϕ∗ηεj ) :=
(
fj(ϕ1 ∗ ηεj ), . . . , fj(ϕn ∗ ηεj )

)
, we note that |fj(ϕ∗ηεj )| ≤ 1 for any j ≥ 0,

whenever ‖ϕ‖L∞(Ω) ≤ 1. We also stress that |I ′′| < ε, because of (3.6). Therefore,

(3.7)

∣∣∣ ∫
Ω
<vε(x)divϕ(x)−A(x) · ϕ(x)=vε(x) dx

∣∣∣
≤

∣∣∣∣∣∣
∞∑
j=0

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y)−A(y) ·

(
fj(ϕ ∗ ηεj )

)
(y)=u(y) dy

∣∣∣∣∣∣
+

∞∑
j=0

∣∣∣∣∣ 1

εNj

∫
Ω

∫
Ω

(A(x)−A(y)) · ϕ(x)=u(y)fj(y)η

(
x− y
εj

)
dxdy

∣∣∣∣∣+ ε.

Now, ∣∣∣∣∣∣
∞∑
j=0

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y)−A(y) ·

(
fj(ϕ ∗ ηεj )

)
(y)=u(y) dy

∣∣∣∣∣∣
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can be treated as in [21, Theorem 2, Section 5.2.2.]. Indeed, recalling that by construction every
point x ∈ Ω belongs to at most three of the sets Uj , we have∣∣∣ ∞∑

j=0

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y)−A(y) ·

(
fj(ϕ ∗ ηεj )

)
(y)=u(y) dy

∣∣∣
=
∣∣∣ ∫

Ω
<u(y)div (f0 (ϕ ∗ ηε0)) (y)−A(y) · (f0(ϕ ∗ ηε0)) (y)=u(y) dy

+
∞∑
j=1

∫
Ω
<u(y)div

(
fj (ϕ ∗ ηεj )

)
(y)−A(y) ·

(
fj(ϕ ∗ ηεj )

)
(y)=u(y) dy

∣∣∣
≤ C1,A,u(Ω) +

∞∑
j=1

C1,A,u(Uj) ≤ C1,A,u(Ω) + 3C1,A,u(Ω \ Ω0)

≤ C1,A,u(Ω) + 3 ε,

where the last inequality follows from (3.4). It remains to estimate

∞∑
j=0

∣∣∣∣∣ 1

εNj

∫
Ω

∫
Ω

(A(x)−A(y)) · ϕ(x)=u(y)fj(y)η

(
x− y
εj

)
dxdy

∣∣∣∣∣ =:
∞∑
j=0

|IIIj |.

Recalling that A is locally Lipschitz, ‖ϕ‖L∞(Ω) ≤ 1 and that supp(η) ⊂ B1(0), we have

∞∑
j=0

|IIIj | ≤ Lip(A,Ω)ε

∫
RN

η(z)dz

∫
Ω

∞∑
j=0

fj(y)|=u(y)| dy

= εLip(A,Ω) ‖=(u)‖L1(Ω) =: C ε.

Going back to (3.7), taking the supremum over ϕ and by the arbitrariness of ε > 0 we get precisely
(3.3) for the real part. An analogous argument provides (3.3) also for the imaginary part and this
concludes the proof. �

Definition 3.11 (Extension domains). Let A : RN → RN be a locally bounded function. Let
Ω ⊂ RN be an open set. We say that Ω is an extension domain if its boundary ∂Ω is bounded and
for any open set W ⊃ Ω, there exists a linear and continuous extension operator E : BVA(Ω) →
BVA(RN ) such that

Eu = 0, for almost every x ∈ RN \W, and |DEu|A(∂Ω) = 0,

for every u ∈ BVA(Ω).

Lemma 3.12 (Lipschitz extension domains). Let Ω ⊂ RN be an open bounded set with Lipschitz
boundary and A : RN → RN locally Lipschitz. Then Ω is an extension domain.

Proof. Given an arbitrary open set W ⊃ Ω, by virtue of [3, Proposition 3.21] there exists a linear
and continuous extension operator E0 : BV (Ω,R)→ BV (RN ,R), such that

E0u = 0, for almost every x ∈ RN \W, and |DE0u|(∂Ω) = 0,

for all u ∈ BV (Ω). Given u ∈ BVA(Ω), we have from Lemma 3.5 that u ∈ BV (Ω), which means
that both <u and =u are elements of BV (Ω,R). Let us define

Eu := E0<u+ iE0=u, u ∈ BVA(Ω).

Then |DE0<u|(∂Ω) = |DE0=u|(∂Ω) = 0 and there exists a positive constant CW depending on
W and Ω with

‖E0<u‖BV (RN ) ≤ CW ‖<u‖BV (Ω), ‖E0=u‖BV (RN ) ≤ CW ‖=u‖BV (Ω).
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Taking into account Lemma 3.5, we have that

‖Eu‖BVA(RN ) = C1,A,Eu(RN ) + C2,A,Eu(RN ) + ‖E0<u‖L1(RN ) + ‖E0=u‖L1(RN )

≤ |DE0<u|(RN ) + ‖A‖L∞(W )‖E0=u‖L1(RN ) + ‖E0<u‖L1(RN ) + ‖E0=u‖L1(RN )

+ |DE0=u|(RN ) + ‖A‖L∞(W )‖E0<u‖L1(RN )+

≤ (1 + ‖A‖L∞(W ))(‖E0<u‖BV (RN ) + ‖E0=u‖BV (RN ))

≤ (1 + ‖A‖L∞(W ))CW (‖<u‖BV (Ω) + ‖=u‖BV (Ω))

= (1 + ‖A‖L∞(W ))CW ‖u‖BV (Ω)

≤ (1 + ‖A‖L∞(W ))CWK‖u‖BVA(Ω).

Therefore, there exists C = C(A,Ω,W ) > 0 such that

‖Eu‖BVA(RN ) ≤ C‖u‖BVA(Ω), for all u ∈ BVA(Ω).

We have to prove that |DEu|A(∂Ω) = 0. We have

|DEu|A(∂Ω) := inf{C1,A,Eu(U) | ∂Ω ⊂ U, U open}+ inf{C2,A,Eu(U) | ∂Ω ⊂ U open}.

Then, for arbitrary U,U ′, U ′′ open with ∂Ω ⊂ U ⊂ U ′ ⊂ U ′′ ⊂W , we have

|DEu|A(∂Ω) ≤ |DEu|A(U) ≤ |DE0<u|(U) + |DE0=u|(U) + ‖A‖L∞(W )‖Eu‖L1(U)

≤ |DE0<u|(U) + |DE0=u|(U ′) + ‖A‖L∞(W )‖Eu‖L1(U ′′).

Taking the infimum over U and recalling that |DE0<u|(∂Ω) = 0 yields

|DEu|A(∂Ω) ≤ |DE0=u|(U ′) + ‖A‖L∞(W )‖Eu‖L1(U ′′).

Taking the infimum over U ′ and recalling that |DE0=u|(∂Ω) = 0 yields

|DEu|A(∂Ω) ≤ ‖A‖L∞(W )‖Eu‖L1(U ′′).

Finally, taking as U ′′ a sequence {U ′′j }j∈N of open sets such that ∂Ω ⊂ U ′′j ⊂W and with LN (U ′′j )→
0 as j →∞, we conclude that |DEu|A(∂Ω) = 0. �

Lemma 3.13 (Convolution). Assume that A : RN → RN is locally Lipschitz. Suppose U ⊂ RN is
an open set with U b Ω and let u ∈ BVA(Ω). Then, for every sufficiently small ε > 0, there holds

|Duε|A(U) ≤ |Du|A(Ω) + εLip(A,Ω)‖u‖L1(Ω).
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Proof. Fix ϕ ∈ C1
c (U,RN ) with ‖ϕ‖L∞(U) ≤ 1. Choose δ > 0 such that {x ∈ RN | d(x, U) < δ} ⊂ Ω.

Then we have ‖ϕε‖L∞(Ω) ≤ 1 and supp(ϕε) ⊂ {x ∈ RN | d(x, U) < δ} for all small ε > 0. Then∫
U
<uε(x)divϕ(x)−A(x) · ϕ(x)=uε(x)dx

=

∫
Ω

(<u)ε (x)divϕ(x)−A(x) · ϕ(x) (=u)ε (x)dx

=

∫
Ω
<u(x)(divϕ)ε(x)− (A(x) · ϕ(x))ε=u(x)dx

=

∫
Ω
<u(x)divϕε(x)−A(x) · ϕε(x)=u(x)dx

−
∫

Ω

1

εN

∫
RN

η

(
x− y
ε

)
(A(y)−A(x)) · ϕ(y)dy=u(x)dx

≤
∫

Ω
<u(x)divϕε(x)−A(x) · ϕε(x)=u(x)dx

+

∫
Ω

1

εN

∫
B(x,ε)

η

(
x− y
ε

)
|A(y)−A(x)| dy |=u(x)| dx

≤ C1,A,u(Ω) + εLip(A,Ω)‖u‖L1(Ω).

Similarly, for every ϕ ∈ C1
c (U,RN ) with ‖ϕ‖L∞(U) ≤ 1, we get∫

U
=uε(x)divϕ(x) +A(x) · ϕ(x)<uε(x)dx ≤ C2,A,u(Ω) + εLip(A,Ω)‖u‖L1(Ω).

By the definition of |Du|A(Ω) and taking the supremum over all ϕ we get the assertion. �

Lemma 3.14 (Compactness for BVA(Ω) functions). Assume that Ω ⊂ RN is a bounded domain
with Lipschitz boundary and that A : RN → RN is locally bounded. Let {uk}k∈N be a bounded
sequence in BVA(Ω). Then, up to a subsequence, it converges strongly in L1(Ω) to some function
u ∈ BVA(Ω).

Proof. By the approximation Lemma 3.10, for any k ∈ N there is vk ∈ BVA(Ω)∩C∞(Ω) such that

(3.8)

∫
Ω
|uk − vk|1dx <

1

k
, sup

k∈N
|Dvk|A(Ω) = C,

for some C > 0. In particular, we have∫
Ω
|vk|1dx ≤

∫
Ω
|uk − vk|1dx+

∫
Ω
|uk|1dx ≤ C ′ + 1, C ′ := sup

k∈N
‖uk‖L1(Ω).

Now, Lemma 3.4 yields vk ∈W 1,1
A (Ω) and∫

Ω
|∇vk − iAvk|1dx = |Dvk|A(Ω).

Therefore, we obtain∫
Ω
|∇vk|1dx ≤

∫
Ω
|∇vk − iAvk|1dx+ C1

∫
Ω
|Avk|1dx

≤ |Dvk|A(Ω) + C1‖A‖L∞(Ω)‖vk‖L1(Ω) ≤ C ′′,

for some C ′′ > 0. Hence we infer that {vk}k∈N is a bounded sequence in W 1,1(Ω). Since ∂Ω is
smooth, from Rellich compact embedding theorem there exists a subsequence {vkj}j∈N of {vk}k∈N
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and w ∈ L1(Ω) such that vkj → w in L1(Ω). Then from (3.8) we get ukj → w in L1(Ω). By the
semi-continuity Lemma 3.7 we obtain

|Dw|A(Ω) ≤ lim inf
kj
|Dvkj |A(Ω) ≤ C,

which shows that w ∈ BVA(Ω) and concludes the proof. �

4. Proof of the main result

We now state two results that will be proven in the next section. In the following Qp,N is as in
definition (1.1).

Theorem 4.1 (BVA-case). Let Ω ⊂ RN be an open bounded set with Lipschitz boundary and
A : RN → RN of class C2. Let u ∈ BVA(Ω) and consider a sequence {ρm}m∈N of non-negative
radial functions with

(4.1) lim
m→∞

∫ ∞
0

ρm(r)rN−1dr = 1,

and such that, for every δ > 0,

(4.2) lim
m→∞

∫ ∞
δ

ρm(r)rN−1dr = 0.

Then, we have

lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy = Q1,N |Du|A(Ω).

Theorem 4.2 (W 1,p
A (Ω) case). Let Ω ⊂ RN be an open bounded set with Lipschitz boundary and

A ∈ C2(RN ,RN ). Let p ≥ 1, u ∈W 1,p
A (Ω) and {ρm}m∈N as in Theorem 4.1. Then, we have

lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|pp
|x− y|p

ρm(x− y)dxdy = pQp,N

∫
Ω
|∇u− iAu|ppdx.

Remark 4.3. In the notation of Theorem 4.1, assuming (4.1) and (4.2) automatically implies that

lim
m→∞

∫ δ

0
ρm(r)rN−1+βdr = 0, for every β > 0 and for every δ > 0.

In fact, fixed δ > 0, taking an arbitrary 0 < τ < δ, we have∫ δ

0
ρm(r)rN−1+βdr =

∫ τ

0
ρm(r)rN−1+βdr +

∫ δ

τ
ρm(r)rN−1+βdr

≤ τβ
∫ τ

0
ρm(r)rN−1dr + δβ

∫ ∞
τ

ρm(r)rN−1dr ≤ Cτβ + δβ
∫ ∞
τ

ρm(r)rN−1dr,

from which the assertion follows by letting m→∞ first, using (4.2), and finally letting τ ↘ 0.

• Proof of the main result (Theorem 1.1) completed. Let rΩ denote the diameter of Ω.
Then we consider a function ψ ∈ C∞c (RN ), ψ(x) = ψ0(|x|) with ψ0(t) = 1 for t < rΩ and ψ0(t) = 0
for t > 2rΩ. Then ψ0(|x − y|) = 1, for every x, y ∈ Ω. Let {sm}m∈N ⊂ (0, 1) with sm ↗ 1. For a
p ≥ 1 consider the sequence of radial functions in L1(RN )

(4.3) ρm(|x|) :=
p(1− sm)

|x|N+psm−pψ0(|x|), x ∈ RN , m ∈ N.
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Notice that both conditions (4.1) and (4.2) hold, since

lim
m→∞

∫ rΩ

0
ρm(r)rN−1dr = lim

m→∞
p(1− sm)

∫ rΩ

0
r−psm+p−1dr = lim

m→∞
r
p(1−sm)
Ω = 1,

and

lim
m→∞

∫ 2rΩ

rΩ

ρm(r)rN−1dr = lim
m→∞

p(1− sm)

∫ 2rΩ

rΩ

ψ0(r)

rpsm+1−pdr ≤ C lim
m→∞

1− sm = 0.

In a similar fashion, for any δ > 0, there holds

lim
m→∞

∫ ∞
δ

ρm(r)rN−1dr ≤ C lim
m→∞

p(1− sm)

∫ 2rΩ

δ

1

tpsm+1−pdt = 0.

Then Theorem 1.1 follows directly from Theorems 4.1 and 4.2 using ρm as in (4.3). �
We first need the following

Lemma 4.4. Let p ≥ 1. Then, for every v ∈ CN it holds

lim
m→∞

∫
RN

∣∣∣∣v · h|h|
∣∣∣∣p
p

ρm(h)dh = pQp,N |v|pp.(4.4)

Proof. First of all we observe that, due to symmetry reasons, Qp,N is independent of the choice

of the direction ω ∈ SN−1. We prove that (4.4) easily follows assuming (4.4) with v ∈ RN . Let
v = (v1, . . . , vN ) ∈ CN and h = (h1, . . . , hN ) ∈ RN . Then∣∣∣∣v · h|h|

∣∣∣∣p
p

=

∣∣∣∣∣∣
N∑
j=1

vj
hj
|h|

∣∣∣∣∣∣
p

p

=

∣∣∣∣∣∣
N∑
j=1

<vj
hj
|h|

+ i

N∑
j=1

=vj
hj
|h|

∣∣∣∣∣∣
p

p

(4.5)

=

∣∣∣∣∣∣
N∑
j=1

<vj
hj
|h|

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣
N∑
j=1

=vj
hj
|h|

∣∣∣∣∣∣
p

=

∣∣∣∣<v · h|h|
∣∣∣∣p +

∣∣∣∣=v · h|h|
∣∣∣∣p ,

where we denoted by <v = (<v1, . . . ,<vN ) and =v = (=v1, . . . ,=vN ). Using (4.5) we get

lim
m→∞

∫
RN

∣∣∣∣v · h|h|
∣∣∣∣p
p

ρm(h)dh = lim
m→∞

∫
RN

∣∣∣∣<v · h|h|
∣∣∣∣p ρm(h)dh+ lim

m→∞

∫
RN

∣∣∣∣=v · h|h|
∣∣∣∣p ρm(h)dh

= pQp,N (|<v|p + |=v|p) = pQp,N |v|pp.

In order to prove (4.4) with v ∈ RN , we apply co-area formula, a change of variable and (4.1),
getting

lim
m→∞

∫
RN

∣∣∣∣v · h|h|
∣∣∣∣p ρm(h)dh = lim

m→∞

∫ ∞
0

∫
{|h|=R}

∣∣∣∣v · h|h|
∣∣∣∣p ρm(h)dHN−1(h)dR

= lim
m→∞

∫ ∞
0

ρm(R)RN−1dR

∫
SN−1

|v · h|p dHN−1(h)

= |v|p
∫
SN−1

∣∣∣∣ v|v| · h
∣∣∣∣p dHN−1(h) = |v|p

∫
SN−1

|ω · h|p dHN−1(h) = pQp,N |v|p,

for an arbitrarily fixed ω ∈ SN−1. This concludes the proof. �

Let now {ρm}m∈N be as in Theorem 4.1. The following is the main result for smooth functions.
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Proposition 4.5 (Smooth case). Let Ω ⊂ RN be a bounded set and A ∈ C2(RN ,RN ). Then

lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|pp
|x− y|p

ρm(x− y)dxdy = pQp,N

∫
Ω
|∇u− iAu|ppdx,

for every u ∈ C2(Ω̄,C) and for every p ≥ 1. In particular, if p = 1 then

lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy = Q1,N |Du|A(Ω).(4.6)

Proof. Let p ≥ 1. If we set ϕ(y) := ei(x−y)·A(x+y
2

)u(y), since

∇yϕ(y) = ei(x−y)·A(x+y
2

)
(
∇yu(y)− iA

(x+ y

2

)
u(y) +

i

2
u(y)(x− y) · ∇yA

(x+ y

2

))
,

if x, y ∈ Ω, since u,A ∈ C2(Ω̄), by Taylor’s formula we get (for y ∈ B(x, ρ) ⊂ Ω)

u(x)− ei(x−y)·A(x+y
2

)u(y)

|x− y|
=
ϕ(x)− ϕ(y)

|x− y|
= (∇u(x)− iA(x)u(x)) · x− y

|x− y|
+O(|x− y|).

Then, taking into account (ii) of Lemma 5.1 below, applied with T (x) := ∇u(x) − iA(x)u(x) we
get ∣∣∣u(x)− ei(x−y)·A(x+y

2
)u(y)

|x− y|

∣∣∣p
p

=
∣∣∣(∇u(x)− iA(x)u(x)) · x− y

|x− y|

∣∣∣p
p

+O(|x− y|).

For x ∈ Ω, if we set Rx = dist(x, ∂Ω), then we get for some positive constant C

Ψm(x) :=

∫
Ω

∣∣∣ |u(x)− ei(x−y)·A(x+y
2

)u(y)|pp − |(∇u(x)− iA(x)u(x)) · (x− y)|pp
|x− y|p

ρm(x− y)
∣∣∣dy

=

∫
B(x,Rx)

∣∣∣∣∣∣u(x)− ei(x−y)·A(x+y
2

)u(y)

|x− y|

∣∣∣p
p
−
∣∣∣(∇u(x)− iA(x)u(x)) · x− y

|x− y|

∣∣∣p
p

∣∣∣ρm(x− y)dy

+

∫
Ω\B(x,Rx)

∣∣∣∣∣∣u(x)− ei(x−y)·A(x+y
2

)u(y)

|x− y|

∣∣∣p
p
−
∣∣∣(∇u(x)− iA(x)u(x)) · x− y

|x− y|

∣∣∣p
p

∣∣∣ρm(x− y)dy

≤ C
∫
B(x,Rx)

|x− y|ρm(x− y)dy + C

∫
Ω\B(x,Rx)

ρm(x− y)dy

≤ C
∫ Rx

0
ρm(r)rNdr + C

∫ ∞
Rx

ρm(r)rN−1dr,

where to handle the second integral we used that∣∣∣∣∣∣u(x)− ei(x−y)·A(x+y
2

)u(y)

|x− y|

∣∣∣p
p
−
∣∣∣(∇u(x)− iA(x)u(x)) · x− y

|x− y|

∣∣∣p
p

∣∣∣ ≤ C, for all x, y ∈ Ω.

Letting m→∞ and recalling (4.2) and Remark 4.3 we get Ψm(x)→ 0 for every x ∈ Ω. Since

|Ψm(x)| ≤ C
∫

Ω
ρm(x− y)dy ≤ C

∫ ∞
0

ρm(r)rN−1dr ≤ C,

the Dominated Convergence Theorem yields Ψm → 0 in L1(Ω) as m → ∞. Then, to get the
assertion, it is sufficient to prove that

lim
m→∞

∫
Ω

∫
Ω

|(∇u(x)− iA(x)u(x)) · (x− y)|pp
|x− y|p

ρm(x− y)dydx = pQp,N

∫
Ω
|∇u− iAu|ppdx.
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Fixed x ∈ Ω, by virtue of formula (4.4), we can write

pQp,N |∇u(x)− iA(x)u(x)|pp = lim
m→∞

∫
RN

∣∣∣(∇u(x)− iA(x)u(x)) · h
|h|

∣∣∣p
p
ρm(h)dh

= lim
m→∞

∫
Ω

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dy

+ lim
m→∞

∫
RN\Ω

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dy.

To conclude the proof it suffices to prove that

lim
m→∞

∫
Ω

∫
RN\Ω

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx = 0.

For every λ > 0, we denote

Ωλ := {x ∈ Ω | dist(x, ∂Ω) > λ},
and M := ‖∇u− iAu‖pL∞(Ω). Then we obtain∫

Ω

∫
RN\Ω

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx

=

∫
Ω

∫
(RN\Ω)∩B(x,λ)

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx

+

∫
Ω

∫
(RN\Ω)∩B(x,λ)c

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx

=

∫
Ω\Ωλ

∫
(RN\Ω)∩B(x,λ)

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx

+

∫
Ω

∫
(RN\Ω)∩B(x,λ)c

∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣p
p
ρm(x− y)dydx

≤M
∫

Ω\Ωλ

∫
(RN\Ω)∩B(x,λ)

ρm(x− y)dxdy +M

∫
Ω

∫
(RN\Ω)∩B(x,λ)c

ρm(x− y)dydx

≤M |Ω \ Ωλ|
∫
{|h|≤λ}

ρm(h)dh+M |Ω|
∫
{|h|>λ}

ρm(h)dh,

the assertion follows by letting m→∞, recalling formula (4.2), and finally letting λ→ 0. If p = 1
the thesis follows recalling Lemma 3.4. �

5. Proof of Theorem 4.2

We state in the following a few elementary inequalities concerning the norm introduced in (1.4).

Lemma 5.1. The following properties of | · |p are true:

(i) Let m = N or m = 1. There exists a positive constant C = C(p,N) such that |z · w|p ≤
C |z|p|w|p, for all z ∈ Cm, w ∈ CN .

(ii) If T : RN → CN is a C1 function, there exists a positive constant C such that∣∣∣∣∣∣T (x) · x− y
|x− y|

+O(|x− y|)
∣∣∣p
p
−
∣∣∣T (x) · x− y

|x− y|

∣∣∣p
p

∣∣∣ ≤ C|x− y|,
for all x, y ∈ Ω, where O(|x− y|) denotes any continuous function R : R2N → C such that
|R(x, y)|p|x− y|−1 is bounded in Ω× Ω.
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Proof. To prove (i) we proceed as follows: let z ∈ CN ,

|z · w|pp =
∣∣∣ N∑
j=1

zjwj

∣∣∣p
p

=
(∣∣∣ N∑

j=1

<zj<wj −=zj=wj + i
(
<zj=wj + =zj<wj

)∣∣∣
p

)p
=
∣∣∣ N∑
j=1

<zj<wj −=zj=wj
∣∣∣p +

∣∣∣ N∑
j=1

<zj=wj + =zj<wj
∣∣∣p

≤ C(p)
(∣∣∣ N∑

j=1

<zj<wj
∣∣∣p +

∣∣∣ N∑
j=1

=zj=wj
∣∣∣p +

∣∣∣ N∑
j=1

<zj=wj
∣∣∣p +

∣∣∣ N∑
j=1

=zj<wj
∣∣∣p)

≤ C(p) (|<z|p|<w|p + |=z|p|=w|p + |<z|p|=w|p + |=z|p|<w|p)
= C |z|pp |w|pp.

The case m = 1, i.e. z ∈ C, works in a similar way.
To prove (ii), it is sufficient to combine the inequality |bp − ap| ≤M(ap−1 + bp−1)|b− a| for

a :=

∣∣∣∣T (x) · x− y
|x− y|

+O(|x− y|)
∣∣∣∣
p

, b :=

∣∣∣∣T (x) · x− y
|x− y|

∣∣∣∣
p

,

with the triangular inequality∣∣∣∣∣
∣∣∣∣T (x) · x− y

|x− y|
+O(|x− y|)

∣∣∣∣
p

−
∣∣∣∣T (x) · x− y

|x− y|

∣∣∣∣
p

∣∣∣∣∣ ≤ |O(|x− y|)|p ≤ C|x− y|,

taking into account that a, b are bounded in Ω. �

We start with the following lemma.

Lemma 5.2. Let A : RN → RN be locally bounded. Then, for any compact V ⊂ RN with Ω b V ,
there exists C = C(A, V ) > 0 such that∫

Rn
|u(y + h)− eih·A(y+h

2 )u(y)|ppdy ≤ C|h|p‖u‖
p

W 1,p
A (Rn)

,

for all u ∈W 1,p
A (RN ) such that u = 0 on V c and any h ∈ RN with |h| ≤ 1.

Proof. Assume first that u ∈ C∞0 (RN ) with u = 0 on V c. Fix y, h ∈ RN and define

ϕ(t) := ei(1−t)h·A(y+h
2 )u(y + th), t ∈ [0, 1].

Then we have u(y + h)− eih·A(y+h
2 )u(y) =

∫ 1
0 ϕ
′(t)dt, and since

ϕ′(t) = ei(1−t)h·A
(
y+h

2

)
h ·
(
∇yu(y + th)− iA

(
y +

h

2

)
u(y + th)

)
,

by Hölder inequality and recalling that |ei(1−t)h·A
(
y+h

2

)
|p ≤ 2 we get

|u(y + h)− eih·A(y+h
2 )u(y)|pp ≤ 2|h|p

∫ 1

0

∣∣∣∇yu(y + th)− iA
(
y +

h

2

)
u(y + th)

∣∣∣p
p
dt.
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Therefore, integrating with respect to y over RN and using Fubini’s Theorem, we get∫
RN
|u(y + h)− eih·A(y+h

2 )u(y)|ppdy ≤ 2|h|p
∫ 1

0
dt

∫
Rn

∣∣∣∇yu(y + th)− iA
(
y +

h

2

)
u(y + th)

∣∣∣p
p
dy

= 2|h|p
∫ 1

0
dt

∫
RN

∣∣∣∇zu(z)− iA
(
z +

1− 2t

2
h
)
u(z)

∣∣∣p
p
dz

≤ C|h|p
∫
Rn
|∇zu(z)− iA (z)u(z)|ppdz

+ C|h|p
∫
V

∣∣∣A(z +
1− 2t

2
h
)
−A(z)

∣∣∣p
p
|u(z)|ppdz.

Then, since A is bounded on the set V , we have for some constant C > 0∫
RN
|u(y + h)− eih·A(y+h

2 )u(y)|ppdy ≤ C|h|p
(∫

RN
|∇zu(z)− iA (z)u(z)|ppdz +

∫
Rn
|u(z)|ppdz

)
= C|h|p‖u‖p

W 1,p
A (RN )

.

When dealing with a general u we can argue by a density argument [27, Theorem 7.22]. �

Lemma 5.3. Let A : RN → RN be locally bounded. Let u ∈W 1,p
A (Ω) and ρ ∈ L1(RN ) with ρ ≥ 0.

Then ∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|pp

|x− y|p
ρ(x− y) dxdy ≤ C‖ρ‖L1‖u‖p

W 1,p
A (Ω)

where C depends only on Ω and A.

Proof. Let V ⊂ RN be a fixed compact set with Ω b V . Given u ∈ W 1,p
A (Ω), there exists

ũ ∈ W 1,p
A (RN ) with ũ = u on Ω and ũ = 0 on V c (see e.g. [37, Lemma 2.2]). By Lemma 5.2, we

obtain

(5.1)

∫
RN
|ũ(y + h)− eih·A(y+h

2 )ũ(y)|ppdy ≤ C|h|p‖ũ‖
p

W 1,p
A (RN )

≤ C|h|p‖u‖p
W 1,p
A (Ω)

,

for some positive constant C depending on Ω and A. Then, in light of (5.1), we get∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2 )u(y)|pp

|x− y|p
ρ(x− y) dxdy ≤

∫
RN

∫
RN

ρ(h)
|ũ(y + h)− eih·A(y+h

2 )ũ(y)|pp
|h|p

dydh

=

∫
RN

ρ(h)

|h|p
(∫

RN
|ũ(y + h)− eih·A(y+h

2 )ũ(y)|ppdy
)
dh

≤ C‖ρ‖L1‖u‖p
W 1,p
A (Ω)

,

concluding the proof. �

We can now conclude the proof of Theorem 4.2. Setting

F um(x, y) :=
u(x)− ei(x−y)·A(x+y

2 )u(y)

|x− y|
ρ1/p
m (x− y), x, y ∈ Ω, m ∈ N,

by virtue of Lemma 5.3, for all u, v ∈W 1,p
A (Ω), we have (recall that ρm fulfills condition (4.1))∣∣‖F um‖Lp(Ω×Ω) − ‖F vm‖Lp(Ω×Ω)

∣∣ ≤ ‖F um − F vm‖Lp(Ω×Ω) ≤ C‖u− v‖W 1,p
A (Ω)

,

for some C > 0 depending on Ω and A. This allows to prove the assertion for functions u ∈ C2(Ω̄)

since for every u ∈W 1,p
A (Ω) there is a sequence {uj}j∈N ⊂ C∞(Ω) such that ‖uj − u‖W 1,p

A (Ω)
→ 0.

Therefore, the assertion follows by Proposition 4.5.



22 A. PINAMONTI, M. SQUASSINA, AND E. VECCHI

6. Proof of Theorem 4.1

We first state a technical lemma.

Lemma 6.1. Let Ω ⊂ RN be open and bounded and A ∈ C2(RN ,RN ) and R > 0. For x, y ∈ Ω let

ψ(z) := ei(x−y)·A(x+y
2

+z), z ∈ B(0, R).

Then there exist positive constants D1 = D1(A,Ω) and D2 = D2(A,Ω, R) such that

|ψ(z)− ψ(0)|1 ≤D1 |z| |x− y|+D2|z|2 |x− y| ,(6.1)

for every z ∈ B(0, R). Moreover, lim supR→0D2 <∞.

Proof. Recalling (1.4), we can prove (6.1) separately for the real part <ψ and the imaginary part
=ψ. To simplify the notation, for fixed x, y ∈ Ω, let us denote

ϑ(z) := (x− y) ·A
(
x+ y

2
+ z

)
, z ∈ B(0, R).

Therefore,

ψ(z) = <ψ(z) + i=ψ(z) = cos(ϑ(z)) + i sin(ϑ(z)), z ∈ B(0, R).

We start considering first the real part <ψ. By Taylor’s formula with Lagrange’s rest, we have

<ψ(z)−<ψ(0) = ∇<ψ(0) · z +
1

2
∇2<ψ(t̄z)z · z,(6.2)

for some t̄ ∈ [0, 1], where ∇2<ψ stands for the Hessian matrix of <ψ. A simple computation gives

∂zj<ψ(z) = − sin(ϑ(z)) ∂zjϑ(z) = − sin(ϑ(z))

N∑
k=1

(xk − yk)∂zjA(k)

(
x+ y

2
+ z

)
,

for every j = 1, . . . , N . Therefore, we have

∇<ψ(0) = − sin
(

(x− y) ·A
(x+ y

2

))
(x− y)∇A

(
x+ y

2

)
,(6.3)

where ∇A denotes the Jacobian matrix of A. Another quite simple computation yields

(6.4)

(
∇2<ψ(z)

)
h,j

= −

[
cos(ϑ(z))

(
(x− y) · ∂zhA

(x+ y

2
+ z
))(

(x− y) · ∂zjA
(x+ y

2
+ z
))

+ sin(ϑ(z))(x− y) · ∂zh∂zjA
(x+ y

2
+ z
)]
,

for every i, j = 1, . . . , N . Now, using (6.2) and (6.3) we get

|<ψ(z)−<ψ(0)| ≤
∣∣∣∣∇A(x+ y

2

)∣∣∣∣ |z||x− y|+ 1

2
|z|2|∇2<ψ(tz)|, for some t ∈ [0, 1].(6.5)

On the other hand, by (6.4) we get

|∇2<ψ(tz)| ≤ |x− y|

(
C|x− y|

∣∣∣∣∇A(x+ y

2
+ tz

)∣∣∣∣2 +

N∑
k=1

∣∣∣∣∇2A(k)

(
x+ y

2
+ tz

)∣∣∣∣
)
.

Therefore, (6.1) for <ψ follows taking

D1 := sup
x,y∈Ω

∣∣∣∇A(x+ y

2

)∣∣∣ <∞
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and

D2 :=
1

2
sup
x,y∈Ω

z∈B(0,R)

N∑
k=1

∣∣∣∇2A(k)

(
x+ y

2
+ tz

) ∣∣∣+ C|x− y|
∣∣∣∇A(x+ y

2
+ tz

) ∣∣∣2 <∞.
The fact that lim supR→0D2 < ∞ follows observing that D2 decreases as R decreases. Since a
similar argument holds for =ψ, we get the assertion. �

Lemma 6.2. Let Ω ⊂ RN be an open set and A ∈ C2(RN ,RN ). Let u ∈ L1(Ω). Denote by uε its
regularization as defined in (3.2). Define

Ωr := {x ∈ Ω | d(x, ∂Ω) > r}, ∀r > 0.

Then, for all r > 0 and ε ∈ (0, r) there holds∫
Ωr

∫
Ωr

|uε(x)− ei(x−y)·A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dxdy

≤
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy

+
1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz.

and

lim
ε→0

lim
m→∞

1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz = 0.

Proof. Let us extend u to the whole of RN by zero. To simplify the notation, let us still denote by
u its extension. By definition,

uε(x)− ei(x−y)·A(x+y
2

)uε(y) =
1

εN

∫
RN

η
(z
ε

)
(u(x− z)− ei(x−y)·A(x+y

2
)u(y − z))dz

=
1

εN

∫
B(0,ε)

η
(z
ε

)
(u(x− z)− ei(x−y)·A(x+y

2
)u(y − z))dz.

Thus, for every ε ∈ (0, r), there holds

∫
Ωr

∫
Ωr

∣∣∣uε(x)− ei(x−y)·A(x+y
2

)uε(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdy

≤ 1

εN

∫
Ωr

∫
Ωr

∫
B(0,ε)

η
(z
ε

) ∣∣∣u(x− z)− ei(x−y)·A(x+y
2

)u(y − z)
∣∣∣
1

|x− y|
ρm(x− y)dzdxdy

≤ 1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣u(x)− ei(x−y)·A(x+y
2

+z)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz ≤ I + II,
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where

I : =
1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣u(x)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz

=

∫
Ω

∫
Ω

∣∣∣u(x)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdy

and

II :=
1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz.

Define ψ(z) := ei(x−y)·A(x+y
2

+z). Then |ψ(z)|1 ≤ 2 for all z ∈ B(0, ε) and by Lemma 6.1

|ψ(z)− ψ(0)|1 ≤ D1 |z| |x− y|+D2|z|2 |x− y| ∀x, y ∈ Ω, z ∈ B(0, ε),

for some D1 = D1(A,Ω) and D2 = D2(A,Ω, ε) which is bounded as ε↘ 0. Therefore,

II ≤ D1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω
|u(y)|1 |z| ρm(x− y)dxdydz+

+
D2

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω
|u(y)|1 |z|

2ρm(x− y)dxdydz.

We have

D2

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω
|u(y)|1 |z|

2ρm(x− y)dxdydz

≤ D2

εN

∫
B(0,ε)

η
(z
ε

)
|z|2dz

∫
Ω
|u(y)|1

(∫
Ω
ρm(x− y)dx

)
dy ≤ 2D2|SN−1|‖u‖L1(Ω)ε

2,

since
∫

Ω ρm(x− y)dx ≤ |SN−1|
∫∞

0 ρm(r)rN−1dr ≤ 2|SN−1|, in view of (4.1). Analogously, we have

D1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω
|u(y)|1 |z| ρm(x− y)dxdydz ≤ 2D1|SN−1|‖u‖L1(Ω)ε,

Hence, we conclude that

lim
ε→0

lim
m→∞

II = 0,

and the thesis follows. �

Lemma 6.3. Let Ω ⊂ RN be an open and bounded set. Denote by xyt := tx+(1−t)y with t ∈ [0, 1]
the linear combination of x, y ∈ Ω. There exists a positive constant C = C(N,Ω, A) such that∫

Ω

∫
Ω

∫ 1

0

∣∣∣∣(ei(1−t)(x−y)·A(x+y
2 ) − 1

) x− y
|x− y|

·
(
∇yu(xyt)− iA

(
x+ y

2

)
u(xyt)

)∣∣∣∣
1

ρm(x− y)dtdxdy

≤ C‖u‖BVA(W )

(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr
)
,

for every open set W c Ω and for every u ∈ C2(RN ,C) such that u = 0 on W c.

Proof. It is readily seen that there exists a positive constant C = C(A,Ω) such that

(6.6)
∣∣∣ei(1−t)(x−y)·A(x+y

2 ) − 1
∣∣∣
1
≤ C|x− y|, for all x, y ∈ Ω and all t ∈ [0, 1].
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Then, by (i) of Lemma 5.1 with p = 1 and by (6.6), we have∫
Ω

∫
Ω

∫ 1

0

∣∣∣∣(ei(1−t)(x−y)·A(x+y
2 ) − 1

) x− y
|x− y|

·
(
∇yu(xyt)− iA

(
x+ y

2

)
u(xyt)

)∣∣∣∣
1

ρm(x− y)dtdxdy

≤ C
∫

Ω

∫
Ω

∫ 1

0

∣∣∣ei(1−t)(x−y)·A(x+y
2 ) − 1

∣∣∣
1

∣∣∣∇yu(xyt)− iA

(
x+ y

2

)
u(xyt)

∣∣∣
1
ρm(x− y)dtdxdy

≤ C
∫

Ω

∫
Ω

∫ 1

0
|x− y|ρm(x− y)

∣∣∣∇yu(xyt)− iA

(
x+ y

2

)
u(xyt)

∣∣∣
1
dtdxdy ≤ I + II

where we have set

I := C

∫
Ω

∫
Ω

∫ 1

0
|x− y|ρm(x− y)

∣∣∣∇yu(xyt)− iA (xyt)u(xyt)
∣∣∣
1
dtdxdy,

II := C

∫
Ω

∫
Ω

∫ 1

0
|x− y|ρm(x− y)

∣∣∣A(x+ y

2

)
−A(xyt)

∣∣∣ |u(xyt)|1 dtdxdy

for some positive constant C = C(A,Ω). Then we get

I ≤ C
∫

Ω

(∫
B(y,1)∩Ω

|x− y|ρm(x− y)

(∫ 1

0

∣∣∣∇yu(xyt)− iA (xyt)u(xyt)
∣∣∣
1
dt

)
dx

)
dy

+ C

∫
Ω

(∫
B(y,1)c∩Ω

ρm(x− y)

(∫ 1

0

∣∣∣∇yu(xyt)− iA (xyt)u(xyt)
∣∣∣
1
dt

)
dx

)
dy

≤ C
∫
RN

(∫
B(0,1)

|z|ρm(z)

(∫ 1

0

∣∣∣∇yu(y + tz)− iA (y + tz)u(y + tz)
∣∣∣
1
dt

)
dz

)
dy

+ C

∫
RN

(∫
B(0,1)c

ρm(z)

(∫ 1

0

∣∣∣∇yu(y + tz)− iA (y + tz)u(y + tz)
∣∣∣
1
dt

)
dz

)
dy

≤ C
∫
B(0,1)

|z|ρm(z)

(∫
RN

∫ 1

0

∣∣∣∇yu(y + tz)− iA (y + tz)u(y + tz)
∣∣∣
1
dtdy

)
dz

+ C

∫
B(0,1)c

ρm(z)

(∫
RN

∫ 1

0

∣∣∣∇yu(y + tz)− iA (y + tz)u(y + tz)
∣∣∣
1
dtdy

)
dz

≤ C
(∫

W

∣∣∣∇yu(z)− iA (z)u(z)
∣∣∣
1
dz

)(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr
)
,

where in the last inequality we used∫
RN

∫ 1

0

∣∣∣∇yu(y + tz)− iA (y + tz)u(y + tz)
∣∣∣
1
dtdy =

∫
RN

∣∣∣∇yu(z)− iA (z)u(z)
∣∣∣
1
dz

as well as ∫
W

∣∣∣∇yu(z)− iA (z)u(z)
∣∣∣
1
dz =

∫
RN

∣∣∣∇yu(z)− iA (z)u(z)
∣∣∣
1
dz.

On the other hand, denoting by Conv(Ω) the convex hull of Ω, and arguing in a similar fashion,
one obtains

II ≤ C‖A‖L∞(Conv(Ω))

(∫
W

∣∣∣u(z)
∣∣∣
1
dz

)(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr
)

≤ C
(∫

W

∣∣∣u(z)
∣∣∣
1
dz

)(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr
)
,
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for some positive constant C = C(A,Ω). The desired assertion finally follows by combining the
above inequalities and then using Lemma 3.4. �

The following lemma is an adaptation to our case of [20, Lemma 3] and [34, Lemma 5.2].

Lemma 6.4. Let A : RN → RN be locally Lipschitz and Ω ⊂ RN be an open and bounded set.
Then there exists a positive constant C = C(Ω, A) such that for all r,m > 0, W c Ω (i.e. Ω is
compactly contained in W ) and u ∈ BVA(Ω), denoting by u ∈ BVA(RN ) an extension of u to RN
such that u = 0 in W c, the following inequality holds∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy

≤ Q1,N |Du|A(E′r)

∫ r

0
ρm(s)sN−1ds+

Lip(A,E′r)‖u‖L1(W )

2

∫ r

0
sNρm(s)ds

+ C‖u‖BVA(W ′)

(∫ 1

0
sNρm(s)ds+

∫ ∞
1

sN−1ρm(s)ds
)

+
C‖u‖L1(W )

r

∫ ∞
r

sN−1ρm(s)ds,

where Er := Ω +B(0, r), W ′ (resp. E′r) is any bounded open set with W ′ cW (resp. E′r c Er).

Proof. For any ε ∈ (0, r), let uε be as in formula (3.2) for u : RN → C. By a change of variables,
Fubini’s Theorem and Lemma 5.1, we have∫

Ω

∫
Ω

|uε(x)− ei(x−y)·A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dxdy

≤
∫

Ω

(∫
Ω∩B(y,r)

|uε(x)− ei(x−y)·A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dx
)
dy +

C‖u‖L1(W )

r

∫
B(0,r)c

ρm(h)dh,

where C = C(N) > 0. Let us now define ψ(t) := ei(1−t)(x−y)·A(x+y
2 )uε(tx + (1 − t)y), t ∈ [0, 1].

Then

uε(x)− ei(x−y)·A(x+y
2 )uε(y) = ψ(1)− ψ(0) =

∫ 1

0
ψ′(t)dt,

and since

ψ′(t) = ei(1−t)(x−y)·A(x+y
2 )(x− y) ·

(
∇yuε(tx+ (1− t)y)− iA

(x+ y

2

)
uε(tx+ (1− t)y)

)
,

we have ∫
Ω

(∫
Ω∩B(y,r)

|uε(x)− ei(x−y)·A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dx
)
dy ≤ I + II,

where we have set

I :=

∫
Ω

(∫
Ω∩B(y,r)

∫ 1

0

∣∣∣∣ x− y|x− y|
·
(
∇yuε(xyt)− iA

(
x+ y

2

)
uε(xyt)

)∣∣∣∣
1

ρm(x− y)dtdx
)
dy

II :=
∣∣∣ ∫

Ω

∫
Ω∩B(y,r)

∫ 1

0

∣∣∣∣ei(1−t)(x−y)·A(x+y
2 ) x− y
|x− y|

·
(
∇yuε(xyt)− iA

(
x+ y

2

)
uε(xyt)

)∣∣∣∣
1

ρm(x− y)dtdxdy

−
∫

Ω

∫
Ω∩B(y,r)

∫ 1

0

∣∣∣∣ x− y|x− y|
·
(
∇yuε(xyt)− iA

(
x+ y

2

)
uε(xyt)

)∣∣∣∣
1

ρm(x− y)dtdxdy
∣∣∣.
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Let Wε := {x ∈ RN : d(x,W ) < ε}, we have uε = 0 on W c
ε and by Lemmas 6.3 and 3.13

(6.7)

II ≤ C‖uε‖BVA(Wε)

(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr

)
≤ C

(
‖u‖BVA(W ′) + εLip(A,W ′)‖u‖L1(W ′)

)(∫ 1

0
rNρm(r)dr +

∫ ∞
1

rN−1ρm(r)dr

)
,

for an arbitrary open set W ′ c W and for some positive constant C = C(N,Ω, A). On the other
hand, we have

I ≤
∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(∇yuε(y + th)− iA

(
y +

h

2

)
uε(y + th)

)
· h
|h|

∣∣∣∣
1

ρm(h)dydtdh

≤
∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(∇yuε(y + th)− iA (y + th)uε(y + th)) · h
|h|

∣∣∣∣
1

ρm(h)dydtdh

+

∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(iA

(
y +

h

2

)
uε(y + th)− iA (y + th)uε(y + th)

)
· h
|h|

∣∣∣∣
1

ρm(h)dydtdh

≤
∫
B(0,r)

∫
Er

∣∣∣∣(∇yuε(z)− iA (z)uε(z)) ·
h

|h|

∣∣∣∣
1

ρm(h)dzdh

+

∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(A(y +
h

2

)
−A (y + th)

)
· h
|h|

∣∣∣∣
1

|uε(y + th)|1 ρm(h)dydtdh

≤
∫ r

0

∫
Er

(∫
SN−1

|(∇yuε(z)− iA (z)uε(z)) · w|1 dH
N−1(w)

)
sN−1ρm(s)dzds

+

∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(A(y +
h

2

)
−A (y + th)

)
· h
|h|

∣∣∣∣
1

|uε(y + th)|1 ρm(h)dydtdh.

Taking into account that (see the final lines of the proof of Lemma 4.4)∫
SN−1

|ξ · w|1 dH
N−1(w) = Q1,N |ξ|1, for any ξ ∈ CN ,

we obtain that

I ≤ Q1,N

∫ r

0

∫
Er

|∇yuε(z)− iA (z)uε(z)|1 s
N−1ρm(s)dsdz

+

∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(A(y +
h

2

)
−A (y + th)

)
· h
|h|

∣∣∣∣
1

|uε(y + th)|1 ρm(h)dydtdh.

Whence, taking into account Lemma 3.4 and Lemma 3.13, we finally get

I ≤ Q1,N

(∫
Er

|∇yuε(z)− iA (z)uε(z)|1 dz
) ∫ r

0
ρm(s)sN−1ds(6.8)

+

∫
B(0,r)

∫ 1

0

∫
Ω

∣∣∣∣(A(y +
h

2

)
−A (y + th)

)
· h
|h|

∣∣∣∣
1

|uε(y + th)|1 ρm(h)dydtdh

≤ Q1,N

(
|Du|A(E′r)

∫
B(0,r)

ρm(h)dh+ εLip(A,E′r)‖u‖L1(E′r)

)

+
Lip(A,E′r)‖u‖L1(W )

2

∫
B(0,r)

|h|ρm(h)dh,
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where in the last inequality we used Lemma 3.13. Putting together (6.8) and (6.7) we get

∫
Ω

∫
Ω

|uε(x)− ei(x−y)A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dxdy

≤ Q1,N

(
|Du|A(E′r)

∫ r

0
ρm(s)sN−1ds+ εLip(A,E′r)‖u‖L1(E′r)

)
+

Lip(A,E′r)‖u‖L1(W )

2

∫ r

0
sNρm(s)ds

+ C
(
‖u‖BVA(W ′) + εLip(A,W ′)‖u‖L1(W ′)

)(∫ 1

0
sNρm(s)ds+

∫ ∞
1

sN−1ρm(s)ds

)
+
C‖u‖L1(W )

r

∫ ∞
r

sN−1ρm(s)ds.

The conclusion follows letting ε→ 0+. �

• Proof of Theorem 4.1 concluded. Fix r > 0, W c Ω and let u = Eu ∈ BVA(RN ) be an
extension of u such that u = 0 in W c and |Du|A(∂Ω) = 0, according to Lemma 3.12. Using Lemma
6.2 and Lemma 6.4 for every 0 < ε < r we have

∫
Ωr∩B(0,1/r)

∫
Ωr∩B(0,1/r)

|uε(x)− ei(x−y)·A(x+y
2

)uε(y)|1
|x− y|

ρm(x− y)dxdy

≤
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy

+
1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz

≤ Q1,N |Du|A(E′r)

∫ r

0
ρm(s)sN−1ds+

Lip(A,E′r)‖u‖L1(W )

2

∫ r

0
sNρm(s)ds

+ C‖u‖BVA(W ′)

(∫ 1

0
sNρm(s)ds+

∫ ∞
1

sN−1ρm(s)ds
)

+
C‖u‖L1(W )

r

∫ ∞
r

sN−1ρm(s)ds

+
1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz.

Letting m→∞, using (4.6), (4.1) and (4.2) we get

Q1,N |Duε|A(Ωr ∩B(0, 1/r)) ≤ lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy

+ lim
m→∞

1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz

≤ Q1,N |Du|A(E′r)

+ lim
m→∞

1

εN

∫
B(0,ε)

η
(z
ε

)∫
Ω

∫
Ω

∣∣∣ei(x−y)·A(x+y
2

+z)u(y)− ei(x−y)·A(x+y
2

)u(y)
∣∣∣
1

|x− y|
ρm(x− y)dxdydz.
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Letting ε→ 0+, using the lower semi-continuity of the total variation and Lemma 6.2 we have

Q1,N |Du|A(Ωr ∩B(0, 1/r)) ≤ lim
m→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|1
|x− y|

ρm(x− y)dxdy

≤ Q1,N |Du|A(E′r),

the assertion follows letting r ↘ 0 and observing that

lim
r→0+

|Du|A(Ωr ∩B(0, 1/r)) = lim
r→0+

|Du|A(E′r) = |Du|A(Ω).

Indeed, since |Du|A(·) is a Radon measure, then by inner regularity

lim
r→0+

|Du|A(Ωr ∩B(0, 1/r)) = |Du|A(Ω),

and by outer regularity

lim
r→0+

|Du|A(E′r) = |Du|A(Ω) = |Du|A(Ω).

This concludes the proof. �
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