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IN METRIC SPACES USING A VARIATIONAL APPROACH:

EXISTENCE, BOUNDEDNESS, AND BOUNDARY REGULARITY

LUKÁŠ MALÝ AND NAGESWARI SHANMUGALINGAM

Abstract. We employ a variational approach to study the Neumann bound-

ary value problem for the p-Laplacian on bounded smooth-enough domains
in the metric setting, and show that solutions exist and are bounded. The

boundary data considered are Borel measurable bounded functions. We also

study boundary continuity properties of the solutions. One of the key tools
utilized is the trace theorem for Newton-Sobolev functions, and another is an

analog of the De Giorgi inequality adapted to the Neumann problem.

1. Overview

Amongst the two types of boundary value problems in PDEs, Dirichlet and
Neumann problems, the Dirichlet problem is currently the most well-studied. In
the Euclidean setting, much of the research on Neumann boundary value problem
focused on the zero boundary value problem, the so-called natural boundary value.
The general Neumann boundary value problem for the p-Laplacian is the following:
find u in the appropriate Sobolev class such that

(1.1)

{
−∆p u = 0 in Ω,

−|∇u|p−2∂ηu = f on ∂Ω,

which, in its weak formulation, would mean finding u in the Sobolev class W 1,p(Ω)
such that whenever ϕ ∈W 1,p(Ω),

ˆ
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx+

ˆ
∂Ω

|∇u(ζ)|p−2ϕ(ζ)∂ηu(ζ)dHn−1(ζ) = 0,

that is,
ˆ

Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx−
ˆ
∂Ω

ϕ(ζ)f(ζ) dHn−1(ζ) = 0,
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where ∂ηu(ζ) is the directional derivative of u in the direction of the outer normal
to ∂Ω at ζ. Its variational formulation is to find u that minimizes the functional

I(u) =

ˆ
Ω

|∇u|p dx+

ˆ
∂Ω

uf dPΩ,

where |∇u| will be replaced by the (minimal p-weak) upper gradient of u in the
metric setting.

In [28] issues of existence and stability of solutions to the general Neumann
boundary value problem for a class of p-Laplace-type operators were considered.
The paper [43] gave a computational scheme for constructing solutions to the gen-
eral Neumann boundary value problem for the Laplacian in three-dimensional Eu-
clidean domains with piecewise smooth boundary. The paper [14] of Cianchi and
Maz′ya studied regularity of solutions to the Neumann boundary value problem,
for Lipschitz domains, related to the p-Laplace and more general operators, but the
Neumann data they consider is the natural boundary condition, i.e., constant zero
data. The work of Agmon, Douglis and Nirenberg [1, 2], M. Taylor [46], Cranny [15],
and the recent work of Kenig, Lin, and Shen [29], Milakis and Silvestre [40], stud-
ied regularity of solutions to the general Neumann problem for homogeneous and
rapidly oscillating elliptic PDEs for C1,α-domains in Euclidean setting. The work of
Dancer, Daners and Hauer [16] explored the behavior of solutions to the zero (nat-
ural) Neumann boundary value problem for the p-Laplacian on Euclidean domains
whose complement is a compact set, showing that solutions that have a certain
decay property at ∞ (decay to zero) have to vanish identically on the domain.

The study of the Neumann problem in non-smooth settings is currently sparse.
In the more general setting of Carnot groups, Nhieu [42] studied the existence
and uniqueness of solutions to the Neumann boundary value problem for the sub-
Laplacian operator (corresponding to p = 2) on bounded Lipschitz domains. More
explicit computations, in terms of Green’s functions, were given by Dubey, Ku-
mar, and Misra in [17]. Mixed boundary problems and homogenization for do-
mains in Heisenberg groups were considered by Tchou [47], Biroli, Tchou, and
Zhikov [8]. In the non-smooth metric setting, an analog of the Dirichlet problem
for the p-Laplacian was initiated in [33] and is currently an active area of research
(see for example [10]). In this paper, we propose an analog of the Neumann bound-
ary value problem adapted to the non-smooth setting by using the tools of calculus
of variation and ideas due to De Giorgi, Giaquinta, and Giusti.

The challenge in our situation is three-fold. First, unlike [1, 2, 46, 29, 42, 17,
47, 8], our problem is non-linear even in the Euclidean setting (p-Laplacian with
1 < p < ∞); second, lack of smoothness structure, especially at the boundary,
and so we have no notion of C1-domain in the metric setting; third, unlike in [42,
17, 47, 8], lack of the Euler–Lagrange (PDE) equation corresponding to the energy
minimization problem, since the upper gradient structure on the metric space might
not come from an inner product structure. We therefore do not have access to tools
such as the Euler–Lagrange equation nor layer potentials as used for example in
the work of Maz′ya and Poborchi [39]. Thus the results obtained in this paper
are, not surprisingly, weaker than those of [1, 2, 46, 29], but on the other hand,
they are applicable to a wider class of operators than linear elliptic operators and
are applicable to a wider range of domains even in the Euclidean setting (such as
Lipschitz domains that might perhaps not be C1-domains). We show that solutions
exist (Theorem 4.3) and are bounded at the boundary of the domain (Theorem 5.2).
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As mentioned above, the key step is to identify an analog of the De Giorgi inequality
adapted to the problem, see Theorem 5.3. Furthermore, we apply this version of
De Giorgi inequality to prove continuity of solutions for certain values of p at a.e.
boundary point as well as at every boundary point in whose neighborhood the
Neumann data does not change its sign (Theorem 7.2 and Theorem 7.12).

The paper [19] by Garćıa-Azorero, Manfredi, Peral and Rossi studied the Neu-
mann boundary value problem for the p-Laplace operator in the Euclidean setting
and showed for smooth domains with continuous boundary data that the the so-
lutions for a given data are unique up to additive constants. Their proof used the
Euler–Lagrange formulation of the problem, an approach that is not available to us
in the non-smooth setting. We obtain a weaker uniqueness property, namely that
the minimal p-weak upper gradients of the solutions are all equal, see Lemma 4.5.
However, if the metric measure space X has a Cheeger-type differential structure
(that is, a first order Taylor theorem is satisfied for Lipschitz functions with re-
spect to a vector bundle on X) such that the minimal p-weak upper gradient of
u ∈ N1,p(X) is equal to the norm of its Cheeger derivative, then we can conclude
from Lemma 4.5 that solution is, in fact, unique (up to an additive constant), taking
into consideration also that the set of solutions form a convex set. Metric spaces
endowed with such a differential structure are said to be infinitesimally Hilbertian,
see [6] and [20]. Even in some weighted Euclidean setting, we do not have this
Hilbertian property, see [34]. In infinitesimally Hilbertian spaces, one has also ac-
cess to the corresponding Euler–Lagrange equation, which enables obtaining the
uniqueness of solutions (up to an additive constant) via PDE methods.

The rest of this paper is organized as follows. We give the needed definitions
in Section 2. In Section 3 we describe the Neumann problem in the metric setting
using the language of calculus of variation, and discuss the needed tool of boundary
trace of Sobolev functions. Existence of solutions for bounded boundary data is
studied in Section 4, with Theorem 4.3 declaring the existence of solutions. A weak
analog of uniqueness of solutions is given in Lemma 4.5 in this section as well.
The focus of Section 5 is to prove that the solutions are necessarily bounded, see
Theorem 5.2. The key inequality that is an analog of the De Giorgi inequality is
also given in this section, in Theorem 5.3. In Section 6 we discuss regularity of
solutions at the boundary, and show that at boundary points where the boundary
data is non-negative the solution must necessarily be a subminimizer and hence is
upper semicontinuous there. For metric spaces with measure µ that have a strong
regularity, known as Ahlfors regularity, we show in the final section of this paper
that the solutions are continuous at boundary points where the boundary data does
not change sign (Theorem 7.2) and that the solutions are continuous at Hausdorff
co-dimension 1-almost every boundary point (Theorem 7.12).

2. Preliminaries

The triplet (X,d, µ) denotes a metric measure space. We say that µ is doubling
if there is a constant CD such that for each x ∈ X and r > 0,

0 < µ(B(z, 2r)) ≤ CD µ(B(z, r)) <∞.

Lemma 2.1 (see e.g. [10, Lemma 3.3]). There is s > 0 such that

(2.2)
µ(B(x, r))

µ(B(y,R))
≥ C

(
r

R

)s
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for all 0 < r ≤ R, y ∈ X, and x ∈ B(y,R).

Note that we can always take s to be as large as we wish. Therefore from now
onwards we assume that s > 1. We also say that µ is Ahlfors s-regular at scale
r0 > 0 if there is a constant C > 0 such that whenever x ∈ X and 0 < r < r0, we
have

1

C
rs ≤ µ(B(x, r)) ≤ C rs.

In what follows, the space L1
loc(X) consists of functions on X that are integrable

on bounded subsets of X.
A Borel function g : X → [0,∞] is an upper gradient of u : X → R ∪ {±∞} if

the following inequality holds for all (rectifiable) curves γ : [a, b] → X, (denoting
x = γ(a) and y = γ(b)),

|u(y)− u(x)| ≤
ˆ
γ

g ds

whenever u(x) and u(y) are both finite, and
´
γ
g ds =∞ otherwise. The notion of

upper gradients, first formulated in [26] (with the terminology “very weak gradi-
ents”), plays the role of |∇u| in the metric setting where no natural distributional
derivative structure exists.

Definition 2.3. The Newtonian space N1,p(X) is defined by

N1,p(X) =
{
u ∈ Lp(X) : ‖u‖N1,p(X) := ‖u‖Lp(X) + inf

g
‖g‖Lp(X) <∞

}
,

where the infimum is taken over all upper gradients g of u.

Let us point out that we assume that functions are defined everywhere, and not
just up to equivalence classes µ-almost everywhere. This is essential for the notion
of upper gradients since they are defined by a pointwise inequality.

Definition 2.4. Given a ball B = B(x, r) ⊂ X and a set E ⊂ B, the relative
p-capacity of E with respect to 2B = B(x, 2r) is given by

capp(E, 2B) := inf
u

ˆ
2B

gpu dµ,

where the infimum is over all functions u ∈ N1,p(X) for which u ≥ 1 on E and
u = 0 on X \ 2B.

It follows from [10, Proposition 6.16] that

(2.5)
µ(E)

C rp
≤ capp(E, 2B) ≤ C µ(B)

rp
.

Definition 2.6 (cf. [3]). A metric space X supports a p-Poincaré inequality with
p ∈ [1,∞) if there exist positive constants λ and C such that for all balls B ⊂ X
and all u ∈ L1

loc(X),

(2.7)

 
B

|u− uB | dµ ≤ C rad(B)

( 
λB

gp dµ

)1/p

.

Here and in the rest of the paper, fA denotes the integral mean of a function
f ∈ L0(X) over a measurable set A ⊂ X of finite positive measure, defined as

fA =

 
A

f dµ =
1

µ(A)

ˆ
A

f dµ
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whenever the integral on the right-hand side exists, not necessarily finite though.
Furthermore, given a ball B = B(x, r) ⊂ X and λ > 0, the symbol λB denotes the
inflated ball B(x, λr).

We next give an analog of the notion of sets of finite perimeter, as formulated
in [41], see [18, 5, 48] for the Euclidean setting.

Definition 2.8. A Borel set E ⊂ X is said to be of finite perimeter if there is a
sequence (uk)k∈N from N1,1(X) such that uk → χE in L1(X) and

lim inf
k→∞

ˆ
X

guk dµ <∞.

The perimeter PE(X) of E is the infimum of the above limit infima over all such
sequences (uk)k as above. Given an open set U ⊂ X, the perimeter of E in U is

PE(U) = inf

{
lim inf
k→∞

ˆ
U

guk dµ : (uk)k∈N ⊂ N1,1(U), uk → χE∩U in L1(U)

}
.

An analogous notion (using Lipschitz functions rather than functions inN1,1(X))
was proposed in [41], but the notion given there agrees with ours when the measure
on X is doubling and X supports a 1-Poincaré inequality. A direct translation of
the proof given in [41] shows that the Carathéodory extension of PE to subsets
of X is a finite Radon measure on X. In [3], Ambrosio demonstrated that if the
measure on X is doubling and supports a 1-Poincaré inequality, then the Radon
measure PE is equivalent to the co-dimension 1 Hausdorff measure restricted to the
measure-theoretic boundary ∂mE of E. Here, x ∈ ∂mE if and only if x ∈ X and

lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

Given A ⊂ X, we define its co-dimension 1 Hausdorff measure H(A) by

(2.9) H(A) = lim
δ→0+

inf

{∑
i

µ(Bi)

rad(Bi)
: Bi balls in X, rad(Bi) < δ,A ⊂

⋃
i

Bi

}
.

Thus, the results of [3] show that there is a constant C ≥ 1 such that whenever
E ⊂ X is of finite perimeter and K ⊂ X is a Borel set, we must have

1

C
H(K ∩ ∂mE) ≤ PE(K) ≤ CH(K ∩ ∂mE).

See [41, 3, 7, 5] for more on sets of finite perimeter and associated functions of
bounded variation in the metric setting. The paper [4] studies connections between
the relaxation of the co-dimension 1 Minkowski content of the boundary and the
perimeter measure.

3. Statement of the problem and standing assumptions

In this paper, 1 < p < ∞ and X is a complete metric space equipped with a
doubling measure µ supporting a p-Poincaré inequality.

Definition 3.1. Let Ω be a bounded domain (non-empty, connected open set)
in X with X \ Ω of positive measure such that Ω is also of finite perimeter with
perimeter measure PΩ. Let f : ∂Ω→ R be a bounded PΩ-measurable function with
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´
∂Ω
f dPΩ = 0. We say that a function u : Ω → R is a p-harmonic solution to the

Neumann boundary value problem with boundary data f if u ∈ N1,p(Ω) and

(3.2) I(u) :=

ˆ
Ω

gpu dµ+

ˆ
∂Ω

Tu f dPΩ ≤
ˆ

Ω

gpv dµ+

ˆ
∂Ω

Tv f dPΩ = I(v)

for every v ∈ N1,p(Ω). Here gu and gv are the minimal p-weak upper gradients of
u and v in Ω, respectively, and Tu and Tv denote the traces of u and v on ∂Ω,
respectively.

When considering the original Neumann boundary value problem (1.1), we see
that adding a constant to a solution gives us another solution. Thus, the Neumann
boundary data f has to satisfy the compatibility conditionˆ

∂Ω

f dPΩ = 0

so that the value of the functional I as defined in (3.2) is invariant with respect to
adding a constant to a solution.

Definition 3.3 (Assumptions on Ω). We will assume in this paper that here is a
constant C ≥ 1 such that for all x ∈ ∂Ω, z ∈ Ω, and 0 < r ≤ diam(Ω), we have

(3.4) µ(B(z, r) ∩ Ω) ≥ C−1µ(B(z, r)),

and

(3.5) C−1µ(B(x, r))

r
≤ PΩ(B(x, r)) ≤ Cµ(B(x, r))

r
.

We also assume that (Ω, d|Ω, µbΩ) admits a p-Poincaré inequality with dilation
factor λ = 1, where p ∈ (1,∞) is equal to the exponent in (3.2).

Under the above assumptions, we also have a Sobolev-type inequality for Ω,

(3.6) ‖u− uΩ‖Lp(Ω) ≤ C‖gu‖Lp(Ω),

where C = C(Ω, CD, p, . . .). This Sobolev-type embedding follows from classical
embedding results of [23].

The property of satisfying (3.5) will be called Ahlfors codimension 1 regularity
of PΩ.

The condition (3.4) together with condition (3.5) implies that µ(∂Ω) = 0, and
that Ω is of finite perimeter. It follows by the results of Ambrosio [3] that if X
supports a 1-Poincaré inequality, then PΩ ≈ H|∂Ω; thus the above condition (3.5)
remains valid (with a different constant C perhaps) if PΩ is replaced withH. Exam-
ples of domains satisfying the above conditions include domains with quasiminimal
boundary surfaces as studied in [30].

Domains that are sets of finite perimeter are the natural class of domains for
which the Neumann boundary value problem makes sense, as this is the largest
class of domains for which, at least in the Euclidean setting, a form of Gauss-Green
theorem holds true, see the work [13] of Chen, Torres and Ziemer (for metric space
analogs see [38]).

The assumption that λ = 1 in the p-Poincaré inequality supported by Ω is
satisfied for example if Ω is a geodesic domain, that is, for each x, y ∈ Ω there is a
curve γ ⊂ Ω with end points x, y such that the length of γ is equal to d(x, y). It then
follows from the results of [23] that the factor λ in the p-Poincaré inequality can be
chosen to equal 1 (perhaps at the expense of a larger constant C). The assumption
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that λ = 1 is a mere technicality here, assumed for the sake of simplifying the
computations; they get more complicated when λ > 1, but the results still remain
true as an interested reader can verify.

Definition 3.7 (Traces of Sobolev functions on ∂Ω). Under the standing assump-
tions on Ω given above in Definition 3.3, there is a bounded linear trace operator

T : N1,p(Ω)→ Lp̃(∂Ω)

for every p̃ < p∗, where p∗ = p(s − 1)/(s − p) if p < s, and p∗ = ∞ if p ≥ s. This
trace operator is given as follows. For u ∈ N1,p(Ω), H-almost every x ∈ ∂Ω, there
exists Tu(x) ∈ R such that

lim
r→0+

 
B(x,r)∩Ω

|u− Tu(x)| dµ = 0.

Here, s is the lower mass bound exponent from (2.2). If p > s, then we can allow
for p̃ =∞ as well, though this is not of importance to us in this paper.

Existence of such a trace operator follows from [36, Theorem 3.4]. The following
trace theorem is a specific case of the trace theorem found in [37], but for the
convenience of the reader we provide its proof here.

Proposition 3.8 (cf. [37]). Assume that Ω is a length space and that the dilation
factor λ = 1 in the Poincaré inequality (2.7). Suppose that p < s. Let p̃ ∈ (p, p∗).
Then, the trace operator T : N1,p(Ω) → Lp̃(∂Ω) is linear, bounded, and for every
0 < ε < (s− 1)(p∗ − p̃)/(p̃p∗) there is C > 0 such that T satisfies

‖Tu‖Lp̃(∂Ω∩B) ≤ C
(
r(s−1)( 1

p̃−
1
p∗ )−ε‖gu‖Lp(Ω∩B) +

PΩ(∂Ω ∩B)1/p̃

µ(Ω ∩B)
‖u‖L1(Ω∩B)

)
= C

(
r1− 1

p̃−ℵ‖gu‖Lp(Ω∩B) +
PΩ(∂Ω ∩B)1/p̃

µ(Ω ∩B)
‖u‖L1(Ω∩B)

)
for every ball B = B(z, r) with z ∈ ∂Ω, where ℵ = s( 1

p −
1
p̃ ) + ε. If µ is Ahlfors

s-regular at scale r0 > 0, then the estimates above hold with ε = 0 whenever r < r0.

Remark 3.9. The requirement that λ = 1 is not restrictive, since length spaces
supporting a p-Poincaré inequality will support such an inequality with λ = 1
(perhaps at the expense of a larger constant C), see for example [23, 10].

Proof. Let u ∈ N1,p(Ω) and fix a ball B = B(z, r) with z ∈ ∂Ω. If µ is s-regular
and ε = 0, let 0 < ε̃ < (s− 1)( 1

p̃ −
1
p∗ ) be arbitrary. Otherwise, let ε̃ = ε.

For every point x ∈ B∩∂Ω, define rx = 1
2 (r−d(x, z)) ≤ 1

2 dist({x}, ∂Ω\B). Since

Ω is a length space, we can find an arc-length parametrized curve γx : [0, lx] → Ω
such that γx(0) = z, γx(lx) = x, γx

(
(0, lx)

)
⊂ Ω, and lx ≤ (1 + δ)d(x, z), where the

constant δ = δx ∈ (0, 1) is chosen such that (1 + δ)lx < r.
Next, we will construct a finite decreasing sequence of balls whose centers lie

on γx and all the balls contain the point x and are contained in B(z, r). Let
N = Nx = dlog2(2r/rx)e. For each k = 0, 1, . . . , N , let rk = (δk+1 + 2−k)lx and let
xk = γx

(
(1− 2−k)lx

)
. Then, we define Bk = B(xk, rk).

It follows from the triangle inequality that Bk+1 ⊂ Bk ⊂ B(z, r), and x ∈ Bk
for all k = 0, 1, . . . N . For k > N , we define Bk = B(x, 2−klx) ⊂ B(x, rx). From
Defintion 3.7, we see that Tu(x) = limk→∞

ffl
Bk∩Ω

u dµ for PΩ-a.e x ∈ B ∩ ∂Ω. We
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can thus estimate the difference |uB∩Ω − Tu(x)| using the chain of balls {Bk}∞k=0.
For the sake of brevity, let ζ = (s− 1)( 1

p̃ −
1
p∗ )− ε̃, which can be simplified since

ζ = (s− 1)

(
1

p̃
− s− p
p(s− 1)

)
− ε̃ =

s− 1

p̃
− s

p
+ 1− ε̃ = 1− 1

p̃
− ℵ̃ < 1,

where ℵ̃ = s(1/p− 1/p̃) + ε̃ > 0. Then, the doubling condition and the p-Poincaré
inequality yield that

|uB∩Ω − Tu(x)| ≤ |uB∩Ω − uB0∩Ω|+
∞∑
k=1

|uBk∩Ω − uBk−1∩Ω|

≤ C
[ 

B∩Ω

|u− uB∩Ω| dµ+

∞∑
k=0

 
Bk∩Ω

|u− uBk∩Ω| dµ
]

≤ C
[
r

( 
B∩Ω

gp dµ

)1/p

+

∞∑
k=0

2−kr

( 
Bk∩Ω

gp dµ

)1/p]

≤ C
[
rζ
(
rp−pζ

 
B∩Ω

gp dµ

)1/p

+

∞∑
k=0

(2−kr)ζ
(

(2−kr)p−pζ
 
Bk∩Ω

gp dµ

)1/p]
≤ CrζM∗p−pζ,pg(x),

where M∗$,p denotes a restricted non-centered fractional maximal operator, defined
for f ∈ Lp(B ∩ Ω) by

M∗$,pf(x) = sup
x3B0

ball B0⊂B

(
rad(B0)$

 
B0∩Ω

|f |p dµ
)1/p

, x ∈ B ∩ ∂Ω,

where $ := p− pζ = s− p
p̃ (s− 1) + ε̃p > 1 as p < p̃. Boundedness of the fractional

maximal operator for $ > 1 can be proven via the standard 5-covering lemma
similarly as in [22, Lemma 6.3], whose proof however needs to be modified because
of the possible lack of Ahlfors s-regularity. In order to make the proof in [22] work
(with some straightforward modifications), one needs the following non-trivial key
estimate for an arbitrary ball D centered in Ω with D ∩ ∂Ω 6= ∅:

PΩ(5D ∩ ∂Ω) ≤ C µ(D)

rad(D)
≤ C

(
µ(D)

rad(D)$

)(s−1)/(s−$)

,

where (s− 1)/(s−$) > 1. The latter inequality is equivalent to

µ(D)
s−1
s−$−1

rad(D)$
s−1
s−$−1

=

(
µ(D)

rad(D)s

)($−1)/(s−$)

≥ C
(

µ(Ω)

diam(Ω)s

)($−1)/(s−$)

= C,
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which can be obtained from (2.2). Thus, M∗$,p : Lp(B ∩ Ω) → weak-Lp$ (B ∩ ∂Ω)

is bounded, where p$ = p s−1
s−$ = s−1

((s−1)/p̃)−ε̃ > p̃. Then,

‖uB∩Ω − Tu‖Lp̃(B∩∂Ω) ≤ Crζ‖M∗$,pg‖Lp̃(B∩∂Ω)

≤ CrζPΩ(B ∩ ∂Ω)1/p̃−1/p$‖M∗$,pg‖weak-Lp$ (B∩∂Ω)

≤ CrζPΩ(B ∩ ∂Ω)1/p̃−1/p$‖g‖Lp(B∩Ω)

≤ Cr(s−1)(1/p̃−1/p∗)−ε̃PΩ(B ∩ ∂Ω)ε̃/(s−1)‖g‖Lp(B∩Ω)(3.10)

≤ Cr(s−1)(1/p̃−1/p∗)−ε̃PΩ(∂Ω)ε̃/(s−1)‖g‖Lp(B∩Ω)

≤ Cr1−1/p̃−ℵ̃‖g‖Lp(B∩Ω) ,

where C depends among others on p̃, p∗, ℵ̃ (and hence on ε̃ > 0), and PΩ(∂Ω).
Finally, the triangle inequality yields that

‖Tu‖Lp̃(B∩∂Ω) ≤ Cr1−1/p̃−ℵ̃‖g‖Lp(B∩Ω) + ‖uB∩Ω‖Lp̃(B∩∂Ω)

≤ Cr1−1/p̃−ℵ̃‖g‖Lp(B∩Ω) + PΩ(B ∩ ∂Ω)1/p̃ ‖u‖L1(B∩∂Ω)

µ(B ∩ ∂Ω)
.

Recall that we have chosen ε̃ = ε whenever ε > 0, and hence ℵ̃ = ℵ.
Suppose now that ε = 0 < ε̃ when µ is s-regular at scale r0. Then, PΩ is (s− 1)-

regular at scale r0 in view of (3.5). If r < r0, then PΩ(B ∩ ∂Ω)ε̃/(s−1) ≤ Crε̃

in (3.10) above, which yields

‖uB∩Ω − Tu‖Lp̃(B∩∂Ω) ≤ Cr(s−1)( 1
p̃−

1
p∗ )‖g‖Lp(B∩Ω) = Cr1−1/p̃−ℵ‖g‖Lp(B∩Ω).

The rest of the computation is analogous as before. Here, ℵ = ℵ̃ − ε̃. �

From now on, for ease of notation, the trace Tu of u will also be denoted by u.
Throughout the paper C represents various constants that depend solely on the

doubling constant, constants related to the Poincaré inequality, and the constants
related to (3.4) and (3.5). The precise value of C is not of interest to us at this
time, and its value may differ in each occurrence. Given expressions a and b, we
say that a ≈ b if there is a constant C ≥ 1 such that C−1a ≤ b ≤ Ca.

4. Existence of a minimizer

The natural space to look for a minimizer of I would be W 1,p(Ω) if we worked
in the Euclidean setting. In the metric setting, we will make use of the Newtonian
space N1,p(Ω) as a suitable counterpart of the Sobolev space.

Since we aim to obtain a unique representative of a solution and adding a con-
stant to a solution yields another solution, we will make use of the following nor-
malization

N1,p
∗ (Ω) =

{
u ∈ N1,p(Ω) :

ˆ
Ω

u dx = 0

}
.

Observe that u ≡ 0 is a candidate for the infimum in the definition of I(u), (3.2).
Therefore,

inf
u∈N1,p

∗ (Ω)
I(u) ≤ 0.

To show existence of a minimizer, we need to prove that I(u) is bounded below for

u ∈ N1,p
∗ (Ω) and that the functional is sequentially lower semi-continuous. Based
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on the relation between p ∈ (1,∞) and the “upper measure dimension” s given
by (2.2), we will a priori distinguish two possible integrability conditions of the
Neumann boundary data.

Proposition 4.1. Let u ∈ N1,p
∗ (Ω) and f ∈ Lq(∂Ω), where q = 1 if p > s, and

p(s−1)
s(p−1) < q ≤ ∞ if p ≤ s. Then,

I(u) ≥ ‖gu‖pLp(Ω) − C‖gu‖Lp(Ω)‖f‖Lq(∂Ω) .

Proof. The Hölder inequality yields that

I(u) ≥
ˆ

Ω

|gu|p dµ−
ˆ
∂Ω

|uf | dPΩ ≥ ‖gu‖pLp(Ω) − ‖u‖Lq′ (∂Ω)‖f‖Lq(∂Ω) .

It follows from the (proof of the) trace theorem for N1,p functions in p-Poincaré
spaces [37, Proposition 3.20] that ‖u‖Lq′ (∂Ω) ≤ C‖gu‖Lp(Ω) provided that

´
Ω
u dµ =

0. Thus,
I(u) ≥ ‖gu‖Lp(Ω)

(
‖gu‖p−1

Lp(Ω) − C‖f‖Lq(∂Ω)

)
. �

Note that functions that are bounded and PΩ-measurable on ∂Ω are automati-
cally in Lq(∂Ω).

Corollary 4.2. There is a constant C > 0, depending on p, q, and on the norm of
the trace operator T : N1,p(Ω)→ Lq

′
(∂Ω) such that

I(u) ≥ −C‖f‖p
′

Lq(∂Ω)

for every u ∈ N1,p
∗ (Ω).

Proof. The estimate can be shown by finding the absolute minimum of the function
t 7→ tp − Ct‖f‖Lq(∂Ω), where t ≥ 0. �

Theorem 4.3. There is u ∈ N1,p
∗ (Ω) such that I = I(u).

Proof. Let I = infu∈N1,p
∗ (Ω) I(u) and let {uk}∞k=1 ⊂ N1,p

∗ (Ω) be a minimizing se-

quence, i.e., I = limk→∞ I(uk). Let gk denote the p-weak minimal upper gradi-
ents of uk, k = 1, 2, . . .. Using Proposition 4.1, we see that I(v) ≤ 0 requires that

‖gv‖Lp(Ω) ≤ C1/(p−1)‖f‖1/(p−1)
Lq(∂Ω) . Hence, the sequence {gk}∞k=1 is bounded in Lp(Ω).

Using (3.6), we obtain that {uk}∞k=1 is also bounded in Lp(Ω) since (uk)Ω = 0 by

definition of N1,p
∗ (Ω). The reflexivity of Lp(Ω) yields that there are subsequences

(which will also be denoted by {uk}∞k=1 and {gk}∞k=1) and u, g ∈ Lp(Ω) such that
uk ⇀ u and gk ⇀ g as k →∞.

By Mazur’s lemma, there are convex combinations

ũk =

N(k)∑
i=k

αk,iui and g̃k =

N(k)∑
i=k

αk,igi, k = 1, 2, . . . ,

such that ũk → u and g̃k → g in Lp(Ω). Observe that g̃k are p-weak upper
gradients of ũk (not necessarily minimal, though). By [10, Proposition 2.3], we
can modify u on a set of measure zero to obtain a good representative such that
g is its p-weak upper gradient. In what follows, we will consider u to be such a
good representative and hence u ∈ N1,p(Ω). Applying [10, Proposition 2.3 and
Corollary 6.3] and passing to a subsequence if necessary, we obtain thatˆ

Ω

gpu dµ ≤ lim inf
k→∞

ˆ
Ω

gpũk dµ,
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where gu and gũk are the minimal p-weak upper gradients of u and ũk, respectively.
Since

´
Ω
uk = 0 for every k = 1, 2, . . . and uk ⇀ u, we have that

´
Ω
u = 0. Hence,

u ∈ N1,p
∗ (Ω).

Considering that the trace operator T : N1,p(Ω) → Lq
′
(∂Ω) is linear and the

energy functional v 7→
´

Ω
gpv dµ is convex, we see that

I ≤ I(ũk) = I

(N(k)∑
i=k

αk,iui

)
≤
N(k)∑
i=k

αk,iI(ui)→ I as k →∞.

The continuity of the trace operator yields that

I ≤ I(u) =

ˆ
Ω

gpu dµ+

ˆ
∂Ω

uf dPΩ

≤ lim inf
k→∞

(ˆ
Ω

gpũk dµ+

ˆ
∂Ω

ũkf dPΩ

)
= lim inf

k→∞
I(ũk) = I. �

Lemma 4.4. The set MI = {u ∈ N1,p
∗ (Ω) : I(u) = I} of minimizers of I(·) is

norm-closed and convex.

Proof. Let λ ∈ (0, 1) and let u, v ∈MI , then w = λu+ (1− λ)v satisfies

I(w) = I(λu+ (1− λ)v) ≤ λI(u) + (1− λ)I(v) = I

due to convexity of the functional I(·). Therefore, w ∈MI .
The set MI is closed due to sequential lower semi-continuity of I(·). �

Lemma 4.5. Suppose that u, v ∈MI . Then
´
∂Ω
uf dPΩ =

´
∂Ω
vf dPΩ and gu = gv

a.e. in Ω. Furthermore, if u, v ∈MI then the functions w+, w− given by

w+ := max{u, v} −
 

Ω

max{u, v} dµ

and

w− := min{u, v} −
 

Ω

min{u, v} dµ

also belong to MI .

Proof. For any u and v as in the hypothesis, set w = u+v
2 . Then gw ≤ 1

2 [gu + gv].
By the uniform convexity of t 7→ tp on [0,∞), we know that for each δ > 0 there

exists a positive constant ε = δp(2−1 − 2−p) such that(
a+ b

2

)p
≤ ap + bp

2
− ε

whenever a, b ∈ [0,∞) with |a− b| ≥ δ.
Suppose that {x ∈ Ω : gv(x) 6= gu(x)} has positive measure. Then there is some

δ > 0 such that the measure of the set

Aδ := {x ∈ Ω : |gv(x)− gu(x)| > δ}
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is positive. Then

I(u) = I(v) ≤ I(w) ≤
ˆ

Ω

(
gu + gv

2

)p
dµ+

ˆ
∂Ω

wf dPΩ

≤
ˆ
Aδ

[
gpu + gpv

2
− ε
]
dµ+

ˆ
Ω\Aδ

gpu + gpv
2

dµ+

ˆ
∂Ω

wf dPΩ

=

ˆ
Ω

gpu + gpv
2

dµ+

ˆ
∂Ω

u+ v

2
f dPΩ − ε µ(Aδ)

≤ I(u)− ε µ(Aδ),

which is not possible. Therefore gu = gv µ-a.e. in Ω, and hence it also follows from
I(u) = I(v) that

´
∂Ω
uf dPΩ =

´
∂Ω
vf dPΩ.

To prove the last part of the lemma, it suffices to show that w0
+ = max{u, v}

and w0
− = min{u, v} are minimizers of the functional I corresponding to f . Note

that gw0
−
≤ guχ{u<v} + gvχ{u≥v} = gu and similarly gw0

+
≤ gu. Therefore

I(w0
±) ≤

ˆ
Ω

gpu dµ+

ˆ
∂Ω

w0
± f dPΩ.

Note that ˆ
∂Ω

[w0
+ + w0

−]f dPΩ =

ˆ
∂Ω

[u+ v]f dPΩ = 2

ˆ
∂Ω

uf dPΩ.

It follows that if
´
∂Ω
w0

+f dPΩ >
´
∂Ω
uf dPΩ, then

´
∂Ω
w0
−f dPΩ <

´
∂Ω
uf dPΩ,

which would violate the minimality of I(u). Therefore we must have
´
∂Ω
w0

+f dPΩ ≤´
∂Ω
uf dPΩ and similarly,

´
∂Ω
w0
−f dPΩ ≤

´
∂Ω
uf dPΩ, which in turn implies that

I(w0
±) ≤ I(u), as desired. �

Observe that in infinitesimally Hilbertian spaces, the above uniqueness of the
minimal p-weak upper gradient together with convexity of the set MI imply that
the solution of the Neumann problem is in fact unique (up to an additive constant).

5. Boundedness of solutions, at the boundary

We will use the De Giorgi method to prove that the minimizers are bounded
near the boundary of Ω. Local boundedness inside Ω follows from previously known
results on p-energy minimizers in the metric setting [33].

Let u ∈ N1,p(Ω) be a minimizer of

(5.1) I(u) =

ˆ
Ω

gpu dµ+

ˆ
∂Ω

fu dPΩ,

where f ∈ L∞(∂Ω) is a Borel function. The main goal of this section is to prove
that solutions are bounded whenever the boundary data f is bounded.

Theorem 5.2. Let Ω be a bounded domain in X satisfying the assumptions given
in Definition 3.3, and let f and u be as above. Fix R0 ∈ (0,diam Ω). Then for
each x ∈ ∂Ω and 0 < R < R0/4 we have that |u| ≤ CR on Ω ∩ B(x,R), where CR
depends on the doubling and Poincaré inequality constants, p, R, ‖u‖L1(B(x,R)∩∂Ω),
‖u‖Lp(B(x,R)∩Ω), and on ‖f‖L∞(∂Ω∩B(x,2R)) alone.

To prove the above theorem we make use of the technique developed by De
Giorgi [21]. To do so we first derive a De Giorgi type inequality associated with
the Neumann type problem considered here.
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Theorem 5.3. There is a constant C ≥ 1 such that given a minimizer u as above
on the bounded domain Ω ⊂ X, x ∈ ∂Ω, 0 < r < R ≤ R0 < diam(Ω)/10, and
k ∈ R, we haveˆ

Ω∩B(x,r)

gp(u−k)+
dµ ≤ C

(R− r)p

ˆ
Ω∩B(x,R)

(u− k)p+ dµ(5.4)

+ C

ˆ
∂Ω∩B(x,R)

|f | · (u− k)+ dPΩ.

The constant C depends solely on the doubling constant of µ, the Poincaré inequality
constants, and p.

Proof. Let x, r,R be as in the statement of the theorem, and let

(5.5) ηr,R(y) = η(y) =
(
1− dist(y,B(x, r))/(R− r)

)
+

be a Lipschitz cut-off function. For k ∈ R and ρ > 0, define

A(k, ρ) = {y ∈ B(x, ρ) ∩ Ω : u(y) > k} ∪ {y ∈ B(x, ρ) ∩ ∂Ω : T (u)(y) > k}.

Note that by our standing assumptions on ∂Ω, we automatically have µ(∂Ω) = 0,
and so integrating over A(k, ρ)∩Ω with respect to µ is the same as integrating over
A(k, ρ) with respect to µ. For the function

v = u− η · (u− k)+ =

{
(1− η)(u− k) + k in A(k,R),

u otherwise,

by the properties of upper gradient (see [10]) such as the Leibniz rule, we have

(5.6) gv ≤

{
(1− η)gu + u−k

R−rχB(x,R)\B(x,r) in A(k,R),

gu otherwise.

Since v is a candidate for the minimizer of I, we have I(u) ≤ I(v). Thus,ˆ
Ω∩B(x,R)

gpu dµ+

ˆ
∂Ω∩B(x,R)

fu dPΩ ≤
ˆ

Ω∩B(x,R)

gpv dµ+

ˆ
∂Ω∩B(x,R)

fv dPΩ.

Subtracting
´

Ω∩B(x,R)\A(k,R)
gpu dµ +

´
∂Ω∩B(x,R)

fu dPΩ from both sides of the in-

equality yields that

(5.7)

ˆ
A(k,R)

gpu dµ ≤
ˆ
A(k,R)

gpv dµ−
ˆ
∂Ω∩A(k,R)

fη · (u− k) dPΩ.

From (5.6), we obtain the almost everywhere pointwise estimate

gpv ≤ 2p
(
gpu(1− χA(k,r)) +

(u− k)p

(R− r)p

)
on A(k,R).

Plugging in this estimate into (5.7) and making the integration domain on the
left-hand side smaller, we haveˆ

A(k,r)

gpu dµ ≤ 2p
ˆ
A(k,R)\A(k,r)

gpu dµ

+
2p

(R− r)p

ˆ
A(k,R)

(u− k)p dµ−
ˆ
∂Ω∩A(k,R)

fη · (u− k) dPΩ.
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Adding 2p
´
A(k,r)

gpu dµ, and then dividing by (1 + 2p) leads to
ˆ
A(k,r)

gpu dµ ≤ θ
ˆ
A(k,R)

gpu dµ

+
θ

(R− r)p

ˆ
A(k,R)

(u− k)p dµ− 1

C

ˆ
∂Ω∩A(k,R)

fη · (u− k) dPΩ,(5.8)

where θ = 2p/(1 + 2p) ∈ (0, 1) and C = 1 + 2p ≥ 1.
Now, we can apply [21, Lemma 6.1] with (5.8) as the starting inequality to obtainˆ
A(k,r)

gpu dµ ≤
C

(R− r)p

ˆ
A(k,R)

(u− k)p dµ+ C

ˆ
∂Ω∩A(k,R)

|f | · (u− k) dPΩ,

This verifies (5.4) and completes the proof of the theorem. �

Remark 5.9. If f > 0 on B(x,R0), then the inequality (5.8) can be made simpler
by omitting the last term, viz.,ˆ

A(k,r)

gpu dµ ≤ θ
ˆ
A(k,R)

gpu dµ+
1

(R− r)p

ˆ
A(k,R)

(u− k)p dµ.

In such a case [21, Lemma 6.1] provides us with an estimateˆ
A(k,r)

gpu dµ ≤
C

(R− r)p

ˆ
A(k,R)

(u− k)p dµ,

which holds for every 0 < r < R < R0.

Lemma 5.10. Let x ∈ ∂Ω and 0 < r < R < R0 as above, and let Cf =

‖f‖1/pL∞(∂Ω∩B(x,R0)),

u(k, r) =

( 
Ω∩B(x,r)

(u− k)p+ dµ

)1/p

,

and

ψ(k,R) =

 
∂Ω∩B(x,R)

(u− k)+ dPΩ.

If N1,p
loc (Ω) ⊂ Lκploc(Ω) and the trace operator T : N1,p(Ω)→ Lκ̃p(∂Ω) is bounded for

some κ, κ̃ > 1 and 0 < ℵ < 1, then for all real numbers h, k with h < k, all positive
R, r with R/2 ≤ r < R < R0, setting α := 1− 1

κ , and β := 1− 1
κ̃p yields that

u(k, r) ≤ C
(
u(h,R)

k − h

)α(
R

R− r
u(h,R) + CfR

1−1/pψ(h,R)1/p

)
, and

ψ(k, r) ≤ C
(
ψ(h,R)

k − h

)β(
R1−ℵ

R− r
u(h,R) + CfR

1−1/p−ℵψ(h,R)1/p

)
.(5.11)

If in addition µ is Ahlfors s-regular at scale r0 > 0, then we also have

(5.12) ψ(k, r) ≤ C
(
ψ(h,R)

k − h

)β[
R

R− r
u(h,R) + CfR

1−1/pψ(h,R)1/p

]
.

We can always chose such κ, κ̃, for instance, by choosing 1 < κ < s/(s− p) and
1 < κ̃ < (s− 1)/(s− p) as in Proposition 3.8. If p is close to s then κ and κ̃ can be
chosen to be as large as we like.
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Proof. Due to self-improvement of (1, p)-Poincaré inequality, there is κ > 1 such
that Ω supports a (κp, p)-Poincaré inequality, see for example [23, 10]. Here any
choice of 1 < κ ≤ s/(s − p) works, where s is the upper mass bound exponent of
the doubling measure µ as in (2.2).

Let η̃ be the cut-off function ηr,(r+R)/2 as in (5.5). Then, the Hölder inequal-

ity and the (κp, p)-Poincaré inequality for functions in N1,p(X) vanishing on X \
B(x, (r +R)/2) yield

 
Ω∩B(x,r)

(u− k)p+ dµ ≤
(
µ(A(k, r))

µ(B(x, r))

)1−1/κ( 
Ω∩B(x,r)

(u− k)κp+ dµ

)1/κ

≤ C
(
µ(A(k, r))

µ(B(x, r))

)1−1/κ( 
Ω∩B(x,(r+R)/2)

(
η̃(u− k)+

)κp
dµ

)1/κ

≤ C
(
µ(A(k, r))

µ(B(x, r))

)1−1/κ

Rp
 

Ω∩B(x,(r+R)/2)

gpη̃(u−k)+
dµ

≤ C
(
µ(A(k, r))

µ(B(x, r))

)1−1/κ

Rp
 

Ω∩B(x,(r+R)/2)

gp(u−k)+
+

(u− k)p+
(R− r)p

dµ,

where the product rule (Leibniz rule) for (p-weak) upper gradients was used in the
last step. Estimating the integral of gp(u−k)+

via (5.4) gives

 
Ω∩B(x,r)

(u− k)p+ dµ ≤ C
(
µ(A(k, r))

µ(B(x, r))

)1−1/κ[
Rp

(R− r)p

 
Ω∩B(x,R)

(u− k)p+ dµ

+Rp−1

 
∂Ω∩B(x,R)

|f |(u− k)+ dPΩ

]
.

It follows that

(5.13) u(k, r) ≤ C
(
µ(A(k, r))

µ(B(x, r))

)κ−1
κp
(

R

R− r
u(k,R) + CfR

1−1/pψ(k,R)1/p

)
We will now show that

(
µ(A(k, r))/µ(B(x, r))

)1/p
< Cu(h,R)/(k − h) whenever

h < k. Since u ≥ k on A(k,R), we have

(k − h)pµ(A(k, r)) ≤
ˆ
A(k,r)

(u− h)p dµ ≤
ˆ
A(h,r)

(u− h)p dµ

= µ(B(x, r))u(h, r)p ≤ Cµ(B(x, r))u(h,R)p

as desired.
Using this estimate as well as the inequalities u(k,R) ≤ u(h,R) and ψ(k,R) ≤

ψ(h,R) in (5.13) yields that

(5.14) u(k, r) ≤ C
(
u(h,R)

k − h

)κ−1
κ
(

R

R− r
u(h,R) + CfR

1−1/pψ(h,R)1/p

)
.

Thus we have verified the first of the two inequalities claimed in the lemma.
Let us now establish an analogous inequality for ψ(k, r). Let κ̃ > 1 be such

that κ̃p = p̃, where p̃ is an admissible target exponent for the trace operator, see



16 L. MALÝ AND N. SHANMUGALINGAM

Proposition 3.8. It follows from the Hölder inequality that

ψ(k, r) =

 
∂Ω∩B(x,r)

(u− k)+ dPΩ

≤
( 

∂Ω∩B(x,r)

(u− k)κ̃p+ dPΩ

)1/κ̃p

·
(
PΩ(A(k, r) ∩ ∂Ω)

PΩ(B(x, r) ∩ ∂Ω)

)1−1/κ̃p

.

Then, Proposition 3.8 yields that(ˆ
∂Ω∩B(x,r)

(u− k)κ̃p+ dPΩ

)1/κ̃p

≤ Cr1−1/κ̃p−ℵ
(ˆ

Ω∩B(x,r)

gp(u−k)+
dµ

)1/p

+ CPΩ(∂Ω ∩B(x, r))1/κ̃p

 
Ω∩B(x,r)

(u− k)+ dµ.

Combining these two inequalities together with the assumption of co-dimension 1
Ahlfors regularity of PΩ results in

ψ(k, r) ≤ C
(
PΩ(A(k, r) ∩ ∂Ω)

PΩ(B(x, r) ∩ ∂Ω)

)1−1/κ̃p

(5.15)

·
(
r1−ℵµ(B(x, r))

κ̃−1
κ̃p

( 
Ω∩B(x,r)

gp(u−k)+
dµ

)1/p

+ u(k, r)

)
.

For an arbitrary h < k, we have

(k − h)PΩ(A(k, r) ∩ ∂Ω) ≤
ˆ
A(k,r)∩∂Ω

(u− h) dPΩ

≤
ˆ
A(h,r)∩∂Ω

(u− h) dPΩ ≤ PΩ(B(x, r) ∩ ∂Ω)ψ(h, r).

Applying this inequality together with (5.4) to (5.15) yields that

ψ(k, r)

≤ C
(
ψ(h, r)

k − h

) κ̃p−1
κ̃p
(
r1−ℵµ(B(x, r))

κ̃−1
κ̃p

( 
Ω∩B(x,r)

gp(u−k)+
dµ

)1/p

+ u(k, r)

)

≤ C
(
ψ(h,R)

k − h

) κ̃p−1
κ̃p
[
r1−ℵµ(B(x, r))

κ̃−1
κ̃p

(
u(k,R)

R− r
+

(Cfψ(k,R))1/p

R1/p

)
+ u(k,R)

]
≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p
[(

1 +
R1−ℵ

R− r

)
u(h,R) + CfR

1−1/p−ℵψ(h,R)1/p

]
,

where the crude estimate µ(B(x, r)) ≤ µ(Ω) was used in the last line. Since R−r ≤
R/2 ≤ R0/2, and since 0 < 1− ℵ < 1, the desired inequality for ψ follows.

If µ happens to be Ahlfors s-regular at scale r0 > 0, then a finer estimate
µ(B(x, r)) ≤ Crs is to be used above. Since ℵ = s( 1

p −
1
p̃ ) and p̃ = κ̃p, we have

r−ℵµ(B(x, r))
κ̃−1
κ̃p ≤ Crs(

1
κ̃p−

1
p )rs

κ̃−1
κ̃p = C .
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Then, it follows from the penultimate line of the estimate of ψ(k, r) above that

ψ(k, r) ≤ C
(
ψ(h,R)

k − h

) κ̃p−1
κ̃p
[
r

(
u(k,R)

R− r
+

(Cfψ(k,R))1/p

R1/p

)
+ u(k,R)

]
≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p
[(

1 +
R

R− r

)
u(h,R) + CfR

1−1/pψ(h,R)1/p

]
.

Again noting that R− r ≤ R/2, we obtain the inequality (5.12). �

We are now ready to prove the main theorem of this section. Recall that the
minimizer u necessarily belongs to L1(Ω) and its trace belongs to L1(∂Ω, PΩ). The
boundedness estimates we obtain in the proof indicate that the bound on u is
determined by its trace’s average value on the boundary of Ω with respect to the
measure PΩ as well as on the average of u on the ball, and on the bound on f on
the boundary of Ω. This is in contrast to the local boundedness estimates of [33]
for p-energy minimizers in the interior of Ω, where the bound is determined by the
average value of u alone.

Proof of Theorem 5.2. In order to prove that u is bounded from above near the
boundary, it suffices to show that for a fixed R > 0 with R < R0/4 and k0 ∈ R we
can find d ≥ 0 such that u(k0 + d,R/2) = 0, where u(k, r) is as in Lemma 5.10.

If u(k0, R) = 0, then we immediately obtain the upper bound that u ≤ k0 in
B(x,R). In what follows, suppose that u(k0, R) > 0.

Let rn = (1 + 2−n) · R/2 and kn = k0 + d(1 − 2−n), where the precise value of
d > 0 will be determined later. Setting h = kn, k = kn+1, ρ = rn, and r = rn+1 in
(5.11) yields that

u(kn+1, rn+1) ≤ C
(
u(kn, rn)

2−n−1d

)α(
1 + 2−n

2−n−1
u(kn, rn) + Cfr

1−1/p
n ψ(kn, rn)1/p

)
≤ Cf,R

2n(α+1)

dα
(
u(kn, rn)1+α + u(kn, rn)αψ(kn, rn)1/p

)
(5.16)

and analogously

(5.17) ψ(kn+1, rn+1) ≤ Cf,R
2n(β+1)

dβ
(
u(kn, rn)ψ(kn, rn)β + ψ(kn, rn)β+1/p

)
,

where Cf,R = C · (1 +CfR
1−1/p+R−ℵ+CfR

1−1/p−ℵ). By induction, we will show
that

(5.18) u(kn, rn) ≤ 2−σnu(k0, R) and ψ(kn, rn) ≤ 2−τnψ(k0, R)

for a suitable choice of positive constants σ, τ , and d. In such a case, we will have
u(k0 + d,R/2) = limn→∞ u(kn, rn) = 0. Observe that both inequalities in (5.18)
are satisfied for n = 0.
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If ψ(k0, R) = 0, then the second inequality in (5.18) is vacuously satisfied. If
ψ(k0, R) 6= 0, then (5.17) together with (5.18) lead to

ψ(kn+1, rn+1) ≤ ψ(k0, R)

2τ(n+1)
· 2τ(n+1)

ψ(k0, R)

· Cf,R
2n(β+1)

dβ

[
u(k0, R)

2σn

(
ψ(k0, R)

2τn

)β
+

(
ψ(k0, R)

2τn

)β+1/p]
≤ ψ(k0, R)

2τ(n+1)
· Cf,R
dβψ(k0, R)1−β 2τ+n(τ+β+1−τβ)

(
u(k0, R)

2σn
+
ψ(k0, R)1/p

2τn/p

)
.

Thus, if (5.18) is to be satisfied when ψ(k0, R) 6= 0, we need

(5.19) τ + β + 1− τβ − σ ≤ 0 and τ + β + 1− τβ − τ

p
≤ 0

as well as

(5.20) d ≥
(
Cf,R2τ

(
u(k0, R) + ψ(k0, R)1/p

)
ψ(k0, R)1−β

)1/β

.

Analogously, inequalities (5.16) and (5.18) provide us with the estimate

u(kn+1, rn+1) ≤ u(k0, R)

2σ(n+1)

· Cf,R
dαu(k0, R)1−α 2σ+n(σ+α+1−σα)

(
u(k0, R)

2σn
+
ψ(k0, R)1/p

2τn/p

)
.

Therefore, we need

(5.21) α+ 1− σα ≤ 0 and σ + α+ 1− σα− τ

p
≤ 0

as well as

(5.22) d ≥
(
Cf,R2σ

(
u(k0, R) + ψ(k0, R)1/p

)
u(k0, R)1−α

)1/α

.

Simplifying (5.19) and (5.21) yields

max

{
1 +

1

α
, τ(1− β) + 1 + β

}
≤ σ ≤

τ
p − (1 + α)

1− α
and τ ≥ β + 1

β + 1
p − 1

.

Recall that α = 1− 1
κ and β = 1− 1

κ̃p , where κ > 1 is chosen such that N1,p(Ω) ⊂
Lκp(Ω) while κ̃ > 1 is chosen such that the trace operator maps N1,p(Ω) into
Lκ̃p(∂Ω). Choosing

τ ≥ max

{
2κ̃p− 1

κ̃− 1
, p(κ− 1),

2p+ 2κ− 1− 1/κ̃

κ− 1/κ̃

}
will allow us to find σ so that both (5.19) and (5.21) are fulfilled, which will then
enable us to use (5.20) and (5.22) to find a sufficiently big value of d.

For such a constant d, we have

0 = u
(
k0 + d,

R

2

)
=

( 
Ω∩B(x,R/2)

(u− k0 − d)p+ dµ

)1/p

,

which shows that u ≤ k0 + d µ-a.e. in B(x,R/2). Analogously, we have the trace
Tu ≤ k0 + d PΩ-a.e. in ∂Ω ∩ B(x,R/2). Running the argument once more with
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u and f replaced by −u and −f , respectively, we obtain that u ∈ L∞(ΩR) and
Tu ∈ L∞(∂Ω), where ΩR = {z ∈ Ω : dist(z, ∂Ω) < R/2}.

Letting k0 = 0 yields the desired conclusion. �

6. Further boundary regularity

In PDE literature, the part of the boundary where the Neumann data f vanishes
is called the natural boundary. If x ∈ ∂Ω and r > 0 such that f = 0 on ∂Ω∩B(x, r),
then ˆ

Ω∩B(x,r)

gpu dµ ≤
ˆ

Ω∩B(x,r)

gpu+ϕ dµ

for every ϕ ∈ N1,p(X) with compact support in B(x, r), i.e., u is p-harmonic in
Ω ∪ (∂Ω ∩B(x, r)). Thus, given our standing assumptions on Ω, the results of [33]
apply to u on B(x, r)∩Ω, to yield that u is locally Hölder continuous in B(x, r)∩Ω.
We have so far no boundary Hölder continuity of u at other parts of ∂Ω. In the
Euclidean setting, we know from the work of [1, 2, 29, 46] that if Ω is a bounded
Euclidean domain of class C1, and the boundary data f is Hölder continuous, then
u is Hölder continuous at ∂Ω. On the other hand, we obtain partial regularity
results for u near sets of positivity of f (and correspondingly, sets of negativity of
f) in this section using the results from [31, 32, 10] on nonlinear potential theory
on metric measure spaces. These will allow us to prove continuity of u up to the
boundary on open subsets of positivity (or negativity) of f for values of p close to
1 or close to s in Section 7.

Definition 6.1. Let (Y, dY , µY ) be a metric measure space. A function v on an
open set A ⊂ Y is a p-subminimizer ifˆ

A

gpv dµY ≤
ˆ
A

gpv+ϕ dµY

for every non-positive ϕ ∈ N1,p(Y ) that is compactly supported in A.

The notion of subminimizers in the metric setting is extensively studied; a non-
exhaustive listing of papers about subminimizers in the metric setting is [45, 31, 32,
9, 12, 11]. The book [10] contains a nice discussion of nonlinear potential theory in
metric setting.

It is known that if µY is doubling, Y is complete, and supports a p-Poincaré
inequality, then subminimizers are p-finely continuous in A (see [12] or [10, The-
orem 11.38]) and are upper semicontinuous in A (see [31] or [10, Theorem 8.22]).
Recall that a function is p-finely continuous at z ∈ A if it is continuous with respect
to the p-fine topology on Y . Here, a set U ⊂ Y is p-finely open if Y \ U is p-finely
thin at each x ∈ U , that is,

(6.2)

ˆ 1

0

(
capp(B(x, ρ) \ U,B(x, 2ρ))

capp(B(x, ρ), B(x, 2ρ))

)1/(p−1)
dρ

ρ
<∞.

Here, for E ⊂ B(x, ρ), the quantity capp(E,B(x, 2ρ)) is the relative variational
p-capacity of E with respect to B(x, 2ρ) as given in Definition 2.4; see [10, Sec-
tion 11.6].

Proposition 6.3. Let x ∈ ∂Ω and r > 0 such that f ≥ 0 on B(x, r)∩ ∂Ω. Then u
is a p-subminimizer on B(x, r) ∩ Ω, and hence is upper semicontinuous at x, that
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is,

u(x) ≥ lim sup
B(x,r)∩Ω3y→x

u(y),

and u is p-finely continuous in B(x, r) ∩ Ω.

Proof. From our standing hypothesis that Ω supports a p-Poincaré inequality and
that the restriction of µ to Ω satisfies (3.4), we know that Ω, equipped with the
inherited metric and the restriction of µ to Ω is doubling and supports a p-Poincaré
inequality. Hence the results regarding p-subharmonic functions mentioned above
would yield the desired conclusions regarding u provided we demonstrate that u is
a p-subminimizer on B(x, r) ∩ Ω.

To this end, let ϕ ∈ N1,p(Ω) be a non-positive function such that ϕ = 0 on
Ω \B(x, r). With u+ ϕ as a competitor, we know that I(u) ≤ I(u+ ϕ), that is,ˆ

Ω

gpu dµ+

ˆ
∂Ω

uf dPΩ ≤
ˆ

Ω

gpu+ϕ dµ+

ˆ
∂Ω

(u+ ϕ)f dPΩ.

It follows from gu = gu+ϕ µ-a.e. in Ω \B(x, r) and from µ(∂Ω) = 0 thatˆ
B(x,r)∩Ω

gpu dµ ≤
ˆ
B(x,r)∩Ω

gpu+ϕ dµ+

ˆ
∂Ω∩B(x,r)

ϕf dPΩ.

Because f ≥ 0 on ∂Ω ∩B(x, r) and ϕ ≤ 0 there, it follows thatˆ
B(x,r)∩Ω

gpu dµ ≤
ˆ
B(x,r)∩Ω

gpu+ϕ dµ

as desired. �

We next show that if u is constant in a neighborhood of a point in the boundary,
then that point belongs to the natural boundary (that is, f vanishes in a relative
neighborhood of that point).

Proposition 6.4. Let u be a p-harmonic solution to the Neumann boundary value
problem on Ω with continuous boundary data f , and if x ∈ ∂Ω and r > 0 such that
u is constant on B(x, r) ∩ Ω, then f = 0 on B(x, r/2).

Proof. It suffices to show that for each such x and r > 0 we have f(x) = 0.
Suppose that f(x) > 0 (by replacing f with −f and u with −u if necessary). Then
for sufficiently small r > 0 we have in addition to u being constant on B(x, r) ∩ Ω
that f > 0 on B(x, r) ∩ ∂Ω.

Let the constant value of u on B(x, r) ∩ Ω be M . For k ∈ R with k < M , with
the choice of v = u− ηr/2,r(u− k)+ as in (5.6) that

M

ˆ
∂Ω∩B(x,r)

f dPΩ =

ˆ
Ω∩B(x,r)

gpu dµ+

ˆ
∂Ω∩B(x,r)

uf dµ

≤
ˆ

Ω∩B(x,r)

gpv dµ+

ˆ
∂Ω∩B(x,r)

vf dPΩ.

Since gv ≤ (1− η)gu−k + 2
r (u− k)+ = 2

r (u− k)+ on B(x, r) \B(x, r/2) µ-a.e., it
follows thatˆ

∂Ω∩B(x,r)

M f dPΩ ≤
2p

rp
(M − k)pµ(B(x, r) \B(x, r/2)) +

ˆ
∂Ω∩B(x,r)

vf dPΩ.
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Thus ˆ
∂Ω∩B(x,r)

(M − v)f dPΩ ≤
2p(M − k)p

rp
µ([B(x, r) \B(x, r/2)] ∩ Ω)

≤ 2p

rp
µ(B(x, r))(M − k)p.

Since v ≤M , and as limk→M−
M−v
M−k = 1 on B(x, r/2) ∩ ∂Ω, we have

ˆ
∂Ω∩B(x,r/2)

M − v
M − k

f dPΩ ≤
2p(M − k)p−1

rp
µ([B(x, r) \B(x, r/2)] ∩ Ω)

≤ 2p

rp
µ(B(x, r))(M − k)p−1,

and letting k →M− we obtain

0 ≤
ˆ
∂Ω∩B(x,r/2)

f dPΩ ≤ 0.

Here, we used the fact that p > 1. �

As a consequence of the above proposition, we know that if the boundary data
f is not constant (equivalently, not the zero function), then u is not constant on
Ω. This agrees with our intuitive understanding of the boundary data f controlling
the “outer normal derivative” of u at ∂Ω — if the derivative cannot vanish on the
boundary, then the function cannot be constant. This is in spite of the fact that
we do not have analogous differential equation in the metric setting.

7. Boundary continuity for p close to 1 or the natural dimension s
when µ is Ahlfors s-regular at small scales

In this section we need the strong version (5.12). We therefore assume from now
on that µ is Ahlfors s-regular at scale r0 > 0.

Recall that the exponents α and β used in Section 5 to prove boundedness of the
solution u depend on p and the exponent s from (2.2). When p is close to either 1
or s, then it is possible to find values of α and β such that

(7.1) α+
1

p
− 1 > 0 and β +

1

p
− 1 > 0.

The above conditions are satisfied whenever p2 − sp + s > 0. In particular, they
allow for all p > 1 if the dimension s < 4. In this section we will show that when p
satisfies (7.1), the function u is continuous up to the boundary of Ω.

Theorem 7.2. Suppose that µ is Ahlfors s-regular at scale r0 > 0. Under the
standard assumptions on Ω and µ, if f : ∂Ω → R is a bounded Borel measurable
function on ∂Ω, x ∈ ∂Ω, and r0 > 0 such that f ≥ 0 on B(x, r0) ∩ ∂Ω or f ≤ 0 on
B(x, r0) ∩ ∂Ω, then u is continuous at x relative to Ω.

Proof. Without loss of generality we may assume that f ≤ 0 on ∂Ω ∩B(x, r0), for
if f ≥ 0 at each point in ∂Ω∩B(x, r0) then we apply the following analysis to −u,
which is a solution for the boundary data −f .

Suppose that u is not continuous at x. For R > 0 we set

M(R) := sup
y∈B(x,R)∩Ω

u(y) and m(R) := inf
y∈B(x,R)∩Ω

u(y).
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Then by assumption we have that limR→0+ M(R) =:M > limR→0+ m(r) =:m.
For 0 < R < min{1, r0}, k0 ∈ R with k0 < M(R), and for n ∈ N we set

rn = (1 + 2−n)R/2 and kn = k0 + d(1− 2−n), where we want to choose d > 0 such
that we have u ≤ k0 + d on B(x,R/2) ∩ Ω. In other words, we repeat the proof of
boundedness of u, but now we modify the choice of d by modifying (5.18). As in
Lemma 5.10, we set

u(k, r) =

( 
Ω∩B(x,r)

(u− k)p+ dµ

)1/p

and ψ(k,R) =

 
∂Ω∩B(x,R)

(u− k)+ dPΩ.

Suppose that k0 ∈ R such that

µ(A(k0, R))

µ(B(x,R) ∩ Ω)
≤ 1

(4D)p
,

then we wish to show that there exist σ, τ > 0 such that for each n ∈ N,

(7.3) u(kn, rn) ≤ 2−σn(M(R)− k0)

4D
and ψ(kn, rn) ≤ 2−τn(M(R)− k0).

Here in the above, we just replaced 4C[1 + Cf ] with C, and we remind the reader
that we are not particularly concerned with the precise value of the constants C as
long as they are independent of R. This holds when n = 0. Suppose we know that
the above holds for some non-negative integer n. Observe that by Theorem 5.2 we
have |M(R)| <∞ and |m(R)| <∞. By (5.11) of Lemma 5.10 we have

u(kn+1, rn+1) ≤ C
[
u(kn, rn)

kn+1 − kn

]α [
rn

rn − rn+1
u(kn, rn) + r1−1/p

n ψ(kn, rn)1/p

]
≤ C

[
2−n(σ−1)(M(R)− k0)

4Dd

]α [
(M(R)− k0)

4D 2n(σ−1)
+
R1−1/p(M(R)− k0)1/p

2τn/p

]
and by (5.12),

ψ(kn+1, rn+1) ≤ C
[
ψ(kn, rn)

kn+1 − kn

]β [
rn

rn − rn+1
u(kn, rn) + r1−1/p

n ψ(kn, rn)1/p

]
≤ C

[
2−n(τ−1)(M(R)− k0)

d

]β [
(M(R)− k0)

4D 2n(σ−1)
+
R1−1/p(M(R)− k0)1/p

2τn/p

]
.

Therefore (7.3) would hold for n+ 1 if we can ensure that

C

[
2−n(σ−1)(M(R)− k0)

4Dd

]α [
(M(R)− k0)

4D 2n(σ−1)
+
R1−1/p(M(R)− k0)1/p

2τn/p

]
≤ 2−σ(n+1)(M(R)− k0)

4D
,

and

C

[
2−n(τ−1)(M(R)− k0)

d

]β [
(M(R)− k0)

4D 2n(σ−1)
+
R1−1/p(M(R)− k0)1/p

2τn/p

]
≤ 2−τ(n+1)(M(R)− k0).



NEUMANN PROBLEM FOR p-LAPLACE EQUATION IN METRIC SPACES 23

The above two inequalities are satisfied if we can guarantee that

σ ≥ α+ 1

α
,

τ ≥ p[σ(1− α) + α],

τ ≥ β

β + 1
p − 1

,

τ ≤ σ − (1 + β)

1− β
,

d ≥ max{C1/α, C1/β} (M(R)− k0)

4D
,(7.4)

d ≥ C1/α
[
(M(R)− k0)α+ 1

p−1R1−1/p(4D)1−α
]1/α

,

d ≥ C1/β
[
(M(R)− k0)β+ 1

p−1R1−1/p
]1/β

.

In the above, we choose D > 1 such that

D ≥ max{C1/α, C1/β}.

Given the assumptions (7.1) on p, the above are guaranteed by the choices of σ, τ ,
and d such that

max

{
α+ 1

α
, 1 + β +

β(1− β)

β + 1
p − 1

,
1 + β

1− p(1− α)(1− β)

}
= σ,

max

{
β

β + 1
p − 1

, p[σ − (σ − 1)α]

}
≤ τ ≤ σ − (1 + β)

1− β
,(7.5)

and it suffices to choose d as follows:

max

{
(M(R)− k0)

4
, C
[
R1−1/p(M(R)− k0)α+ 1

p−1
]1/α

,

C
[
R1−1/p(M(R)− k0)β+ 1

p−1
]1/β }

= d.(7.6)

The above choice of τ is possible because of the assumptions (7.1) on p. Thus given
k0 < M(R) we have the above choice of d, σ, and τ such that, by letting n → ∞
in (7.3), we can conclude that u ≤ k0 + d on B(x,R/2) ∩ Ω.

We only consider 0 < R < max{1, r0} for which

0 < M −m ≤M(R)−m(R) ≤ 2(M −m).

Finally, for ν ∈ N set κν = M(R)− 2−ν−1(M(R)−m(R)). By Proposition 6.3,
u is lower semicontinuous at x, and so m = Tu(x). Furthermore, by this propo-
sition we have that u is finely continuous at x, and so by (6.2) together with [10,

Proposition 6.16] (see (2.5)), limR→0+
µ(A(κν ,R))
µ(B(x,R)∩Ω) = 0 for sufficiently large ν. Fix

such ν ≥ 3 and we further restrict R for which

µ(A(κν , r))

µ(B(x, r) ∩ Ω)
≤ 1

(4D)p



24 L. MALÝ AND N. SHANMUGALINGAM

whenever 0 < r ≤ R. Then by the above, with κν playing the role of k0, we have
M(R)− κν = 2−(ν+1)(M(R)−m(R)), and so

M(R/2)−m(R/2) ≤ κν −m(R/2) + d ≤ κν −m(R) + d

= [1− 2−(ν+1)](M(R)−m(R)) + d.

We further restrict R so that

(7.7) λ1 := 1− 2−(ν+1) +
CR(1−1/p)/α2−(ν+1)α̂

(M −m)1−α̂ < 1

and

(7.8) λ2 := 1− 2−(ν+1) +
CR(1−1/p)/β2−(ν+1)β̂

(M −m)1−β̂
< 1.

Here,

α̂ =

[
α+

1

p
− 1

]
/α < 1, β̂ =

[
β +

1

p
− 1

]
/β < 1.

If d = 1
4 (M(R)− κν), then we see by the choice of ν ≥ 3 as outlined above that

M(R/2)−m(R/2) ≤ [1− 2−(ν+1)](M(R)−m(R)) +
2−(ν+1)

4
(M(R)−m(R))

≤ [1− 2−(ν+2)](M(R)−m(R)).(7.9)

If d = C
[
R1−1/p(M(R)− k0)α+ 1

p−1
]1/α

, then by the restriction (7.7) we have from

M(R)−m(R) ≈M −m that

M(R/2)−m(R/2) ≤ [1− 2−(ν+1)](M(R)−m(R))

+
CR(1−1/p)/α2−(ν+1)α̂

(M −m)1−α̂ (M(R)−m(R))

≤ λ1(M(R)−m(R)).(7.10)

If d = C
[
R1−1/p(M(R)− k0)β+ 1

p−1
]1/β

, then similarly we obtain

(7.11) M(R/2)−m(R/2) ≤ λ2(M(R)−m(R)).

Combining (7.9), (7.10), and (7.11), setting

λ = max{1− 2−(ν+2), λ1, λ2},

and noting that 0 < λ < 1, we obtain in all three cases that for all small R > 0,

M(R/2)−m(R/2) ≤ λ(M(R)−m(R)).

An iterated application of the above tells us that

M(r)−m(r) ≤ 21+θ0
( r
R

)θ0
[M −m]

for all 0 < r < R, where θ0 = log2(1/λ). It follows that u must have θ0-Hölder
continuous decay to Tu(x) at x, which contradicts our assumption that u is not
continuous at x.

Thus we conclude that u must be continuous at x from Ω, that is,

lim
Ω3y→x

u(y) = Tu(x).
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This holds for each x ∈ ∂Ω ∩B(y, r) on which f does not change sign. Since Tu is
the trace of u on ∂Ω, it follows that u is continuous at x relative to Ω. �

Note that the above proof does not permit us to conclude that u must be Hölder
continuous at the boundary point x. From the work of [15, 29] we know that in
the Euclidean setting, with Ω a bounded smooth domain, u is Hölder continuous
at the boundary. As far as we know, this remains open in the metric setting.

The above proof does not permit us to draw any conclusions at boundary points
where f changes sign. On the other hand, an analysis of the proof above shows
that if there is some ξ ∈ [m(R),M(R)] for which

lim
r→0+

 
B(x,r)∩Ω

|u− ξ| dµ = 0,

then when limr→0+ M(r) = M > m = limr→0+ m(r), we must have either

lim
r→0+

µ({u > (m+M)/2} ∩B(x, r) ∩ Ω)

µ(B(x, r) ∩ Ω)
= 0

or

lim
r→0+

µ({u < (m+M)/2} ∩B(x, r) ∩ Ω)

µ(B(x, r) ∩ Ω)
= 0.

By considering u in the first case and −u in the second case, for sufficiently large
ν, with κν = M(R)− 2−(ν+1)[M(R)−m(R)]

we have

lim
r→0+

µ(A(κν , r))

µ(B(x, r) ∩ Ω)
= 0,

and so the proof of Theorem 7.2 will show that u has to be continuous at x. Note
that here we will obtain that ξ = Tu(x). By the definition of the trace function
Tu, we have

lim
r→0+

 
B(x,r)∩Ω

|u− Tu(x)| dµ = 0 for H-a.e. x ∈ ∂Ω.

Thus, we have the following theorem.

Theorem 7.12. Under the standard assumptions on Ω and µ, if f : ∂Ω→ R is a
bounded Borel measurable function on ∂Ω, then for H-almost every x ∈ ∂Ω, u is
continuous at x relative to Ω.
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26 L. MALÝ AND N. SHANMUGALINGAM
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