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Abstract. A technique based on duality to obtain H1 or other Sobolev regularity results for
solutions of convex variational problems is presented. This technique, first developed in order
to study the regularity of the pressure in the variational formulation of the Incompressible Euler
equation, has been recently re-employed in Mean Field Games. Here, it is shown how to apply
it to classical problems in relation with degenerate elliptic PDEs of p-Laplace type. This allows
to recover many classical results via a different point of view, and to have inspiration for new
ones. The applications include, among others, variational models for traffic congestion and more
general minimization problems under divergence constraints, but the most interesting results are
obtained in dynamical problems such as Mean Field Games with density constraints or density
penalizations.
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1. Introduction

This paper presents a technique to obtain Sobolev regularity results for solutions of convex
variational problems (or of the corresponding Euler-Lagrange equations) using their optimal-
ity and, more precisely, using duality techniques. The main object of the paper are pairs of
optimization problems in duality, such as

min

{∫
H(v) : ∇ · v = f

}
and min

{∫
fu+

∫
H∗(∇u)

}
.

These two problems have been written as two minimization problems (while usually the dual
of a min is a max), just for simplicity, and the sum of the two minimal values is 0. The
Euler-Lagrange equation of the second problem is

∇ · (∇H∗(∇u)) = f,

and the optimal v in the first problem is given by v = ∇H∗(∇u) (when H∗ ∈ C1, of course).
The method that we will analyze strongly recalls the Nirenberg’s method of incremental ratios,

where H1 estimates on some quantities V = G(∇u) are obtained by proving L2 estimates on the
increment Vδ − V (where Vδ := V (·+ δ)). The standard procedure is to test both the equation
satisfied by u and that satisfied by uδ against uδ − u. A crucial tool is to dispose of a function
G : Rd → Rd such that the following inequality is satisfied for all w0, w1 ∈ Rd:

(1.1) (∇H∗(w0)−∇H∗(w1)) · (w0 − w1) ≥ c|G(w0)−G(w1)|2.

In these notes the idea is similar, but not based on the equation. We will “test” the optimality
of u in the second problem using the fact that v = ∇H∗(∇u) must be optimal in the first one,
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the fact that the sum of the two minimal values is 0, and using a translation uδ in the second
problem, estimating how much uδ is not optimal. The key observation is that, if

h 7→ g(δ) :=

∫
fuδ +

∫
H∗(∇uδ)

is smooth, then, by optimality of u, we must necessarily have g(δ)− g(0) ≤ C|δ|2. This means
that the smoothness of g automatically gives information on how much uδ is not optimal. The
structural assumption on H will now based on a different inequality than (1.1), and more
precisely on

(1.2) H(v) +H∗(w) ≥ v · w + c|F (v)−G(w)|2.

Note that (1.1) is a quantified improvement of the monotonicity of∇H, while (1.2) is a quantified
improvement of the generalized Young inequality H(v) + H∗(w) ≥ v · w (the two inequalities
are in some sense one the integrated version of the other, which explains why they look often
similar, at least in homogeneous cases). However, writing (1.2) does not require differentiability
of H∗.

Most of the computations will be similar to what is usually done in elliptic PDEs by using
(1.1) and incremental ratios, but the point of view is slightly different. In particular, we do
not really need to write and use the PDE, which could allow to deal with more degenerate or
singular problems where it would not be clear if (or in which sense) the solutions solves a PDE.

This is indeed the framework where this technique arose, and more precisely in time-dependent
problems coming from fluid mechanics. In [14], Brenier introduced a convex relaxed variational
formulation to deal with Arnold’s interpretation of the incompressible Euler equation for inviscid
fluids as a geodesic equation in the group of measure-preserving diffeomorphisms. An important
question in such a model was the regularity of the pressure field p that appeared as a Lagrange
multiplier and solved a dual problem. By some very refined estimates, using comparison between
smooth and almost-optimal pressures in the dual problem, and optimal incompressible evolutions

in the primal, Brenier managed to prove a bound on
∫ 1

0

∫
Ω |∇p|, thus obtaining BV (in space)

regularity for p (an exponent 2 is lost in some estimates, which explains why we do not finally
obtain H1). One of the key ingredient of the estimate was the quantified almost-optimality
of translations; another one was an inequality of the form (1.2) applied to a quadratic term
appearing in the kinetic energy. The result was later improved by Ambrosio and Figalli, [2]
who obtained L2 in time estimates on the BV norm, but the stategy was essentially the same
(the result confirmed indeed a first conjecture formally evoked by Brenier in [14]). Using p ∈
L2([0, 1];BV (Ω)), which implies in particular that p is a function (and not only a measure, or a
more singular distribution), the same authors also managed in [3] to give a rigorous meaning to
the fact that almost every particle moves following the equation x′′(t) = ∇p(t, x(t)), which was
unattainable before.

We can dare to say that the fact that the techniques developed in [14, 2] were actually a very
general approach to the question of regularity was not clear at that time, and indeed they have
not been re-employed for long. They re-apparead in the framework of Mean Field Games (MFG),
a theory introduced by Lasri and Lions where the goal is to find equilibrium configurations in
the movement of a continuum of players, whose choices are influenced by the density of the
other players. These problems admit a fluid mechanics formulation which is variational in some
interesting cases, and amounts to a convex minimization whose dual plays an important role in
the theory. When the model prescribes a density constraint (see [17]) the situation is somewhat
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similar to that of incompressible fluid mechanics and indeed requires similar techniques. The
success of the duality method for the regularity in the case of MFG is due to the reason we
evoked above. Indeed, the PDEs which describe the optimal configuration, which is also an
equilibrium in a suitable sense, are a combination of a Hamilton-Jacobi solved in an a.e. sense
and a transport equation solved in distributional sense, and are difficult to exploit; on the
contrary, the minimization problem and its dual are well-known. Moreover, it was important, in
order to give a rigorous meaning to the equilibrium condition, to improve the regularity of the
pressure p and for this the same kind of results as in [3] were necessary: this means that a very
small improvement in the regularity was seeked, and that the one provided by this method was
enough (with no need for a bootstrap argument proving higher differentiability, for instance).

Later, it has been investigated whether duality methods can give interesting results in simpler
Mean Field Games, where for instance density constraints are replaced by density penalizations
(see [26]). Finally, these notes present the applications of this method to more classical vari-
ational problems and PDEs, in particular the (p-)Laplace equation, or other very degenerate
PDEs arising from traffic models (as in [5, 10, 11, 18]).

Before entering in details about the structure and the content of these notes, it is useful to
compare the notions we use to more classical notion about Bregman distances. First, let us recall
the definition of Bregman distance associated to a (smooth and strictly convex, for simplicity)
convex function H: we define

dH(x, y) := H(x)− (H(y) +∇H(y) · (x− y)).

This value (asymmetric in x and y) is strictly positive unless x = y, and comparable to |x− y|2
if the Hessian of H is bounded from below and above (just by using a simple Taylor expansion).
It measures a sort of distance between x and y, more adapted than other quantities in problems
involving H. It is useful to observe that we have

H(v) +H∗(w)− v · w = dH(v,∇H∗(w)) = dH∗(∇H(v), w),

which means that (1.2) is an assumption on lower bounds of the Bregman distance dH . Moreover,
it is interesting to compare the strategy and the content of these notes with a recent paper by
Burger, [16], which, among other results, proves and uses a statement that roughly sounds as
“consider a convex minimization problem involving a parameter f and a convex cost H; then,
given two different values of the parameter, say f0 and f1, we compare the two corresponding
optimal solutions x0 and x1, and we can estimante dH(x0, x1) in terms of some distances between
f0 and f1”. If we consider the minimization problem min

{∫
fu+

∫
H∗(∇u)

}
on a torus, the

only parameter is the function f and it is clear that translating f into fδ, has the effect of
translating in the same way the solution u into uδ. An estimate of ||uδ−u|| in terms of ||fδ−f ||
(for suitable norms or distances) exactly means deducing the regularity of u from that of f !

Moreover, there is another advantage in the procedure presented in [16] (which, on the con-
trary, does not explicitly present applications to regularity issues in variational problems):
boundary conditions could be part of the parameter, and hence could be modified. Indeed,
in the study presented in these notes one should always use uδ as a competitor in the same mini-
mization problem as u, which means that cut-off functions have to be used to avoid modifying the
boundary data. Thus, results are local when a boundary is actually present. In time-dependent
problems such as in MFG, the initial datum ρ0 is prescribed, and most results do not extend to
t = 0 (even extending them up to t = T is not trivial, but it is done in some particular cases
in [26]); on the contrary, one could think that, translating in space the initial datum ρ0 and
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obtaining a translation of the original solution, could give, under some assumptions on ρ0 and
using the technique of [16], interesting regularity results up to t = 0.

The present paper wants to introduce the reader to this technique for regularity based on
convex duality. It is based on some short lecture notes for master students, and keeps some
features of pedagogical notes rathen than a research article. Indeed, most of the results it
presents are not new, and only the point of view is slightly different to what usually considered.
After this introduction, Section 2 sets the basis of convex duality in the formulation we need,
and provides the corresponding proofs. Proofs are detailed, as they follow a path which is not
always considered as standard, and is based on a technique developed for instance in [8]. The
duality result is presented for both Neumann and Dirichlet boundary conditions. Then, Section
3 is the core of the paper, as it introduces the main strategy, details the role of the inequality
(1.2), provides examples of functions H which satisfy it, and gives application to several classical
results in degenerate PDEs. In particular, at the end of Section 3 two more advanced results
are presented: they are matter of recent studies, where non-trivial estimates would be necessary
to handle cut-off and lower order terms; on the contrary, global estimates on the torus can be
easily obtained in some lines. As all the results of this section, they are not specifically related
to duality methods and could be obtained in other ways; however, we believe that some of them
are easier to “see” via duality methods. In particular this is the case for new estimate about
the p-Laplacian, which was truly inspired by the duality approach: we can say that without this
approach it would have not been easy to remark that such an estimate was possible, even if later
[13] has presented full details with local estimates via a different method. Section 4 presents
two more complicated variants of the theory, in order to handle bounded domains (and prove
interior regularity) or variable coefficients: the goal is to convince the reader that this theory
can be adapted to these more difficult frameworks. Finally, Section 5 comes back to the original
motivation, i.e. time-dependent problems, and gives a brief and informal presentation of the
role of duality in the regularity for MFG and incompressible fluid mechanics.

2. Convex duality

Given a Banach space X and a function H : X → R ∪ {+∞}, let us recall the definition of
H∗, Legendre transform of H, defined on the dual space X ′

H∗(w) = sup
v∈X
〈w, v〉 −H(v).

We will use reflexive spaces for simplicity; in this case it is clear that H∗∗ is also defined on X.
We recall the important result stating that, if H : X → R is convex and l.s.c., then H∗∗ = H.
For the main facts about conjugate convex functions, see for instance [15, 19].

Finally, we also recall the formula for the Legendre transform of H(v) = 1
q |v|

q, defined on Rd,
where we get H∗(w) = 1

p |w|
p, where p and q are conjugate exponents, i.e q = p′ = p/(p − 1),

characterized by 1
p + 1

q = 1.

Now, consider a bounded connected domain Ω which could be either a subset of Rd or the
torus Td. Let us also consider a function H : Ω×Rd → R which is convex in the second variable

(Hyp1) v 7→ H(x, v) is convex for every x

and satisfying the following uniform bounds:

(Hyp2)
c0

q
|v|q − h0(x) ≤ H(x, v) ≤ c1

q
|v|q + h1(x),
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where h0, h1 are L1 functions on Ω, c0, c1 > 0 are given finite constants, and q ∈ (1,+∞) is
a given exponent. For functions of this form, when we write H∗(x,w) we mean the Legendre
transform in the second variable, i.e. H∗(x,w) = supv w · v − H(x, v). It is useful to see that
Assumption (Hyp2), which gives a growth of order q on H, implies the same, but of order
p = q′ = p/(p− 1), as far as H∗ is intended.

In these notes, we will consider calculus of variations problem of the form

(2.1) min

{∫
Ω
H(x, v(x))dx : ∇ · v = f

}
.

Before giving rigorous results, we want to show how to build the dual problem of (2.1), with
an informal derivation. This can be done in the following way: the constraint ∇ · v = f can be
written, in weak form, as −

∫
v · ∇u =

∫
fu for every u (let us be sloppy about the regularity

of the test functions now). This means that we can rewrite the above problem in the min-max
form

min

{∫
H(x, v) + sup

u
−
∫
fu−

∫
v · ∇u

}
.

Indeed, the last sup is 0 if the constraint is satisfied and +∞ if not. Now, we have a min-max
problem and the dual problem can be obtained just by inverting inf and sup. In this case we get

sup

{
−
∫
fu+ inf

v

∫
H(x, v)−

∫
v · ∇u

}
.

Since infv
∫
H(x, v)−

∫
v ·∇u = − supv

∫
∇u·v−

∫
H(x, v) =

∫
H∗(x,∇u), the problem becomes

(2.2) sup

{
−
∫
fu−

∫
H∗(x,∇u)

}
.

In the following, we will see precise statements about the duality between the two problems,
and also provide a variant for the case of Dirichlet conditions. The duality proof, based on the
above convex analysis tools, is essentially inspired to the method used in [8] . Other proofs
are obviously possible, using for instance Flenchel-Rockafellar’s duality result (see Chapter 1 in
[15]).

Before going on with duality, we want to provide a statement which guarantees that problems
such as (2.1) have a finite value (i.e., under which condition on f there exists at least an
admissible v giving a finite value in (2.1)). The reader may note how this proof itself is derived
from a sort of duality between (2.1) and (2.2).

We consider the space W 1,p(Ω), with its dual (W 1,p)′, and the space (W 1,p)′�(Ω) ⊂ (W 1,p)′(Ω)
composed by those f such that 〈f, 1〉 = 0 (i.e. those f with zero mean). (W 1,p)′�(Ω) will be
endowed with the same dual norm as (W 1,p)′(Ω). In case of no ambiguity, we will omit the
domain Ω and just write (W 1,p)′� and (W 1,p)′.

Note that for every v ∈ Lq(Ω;Rd), the distribution ∇ · v, defined through

〈∇ · v, φ〉 := −
∫

Ω
v · ∇φ

naturally belongs to (W 1,p)′�(Ω). This will be by the way the definition that we will use of the
divergence operator (in weak form), and it includes a natural Neumann boundary condition on
∂Ω. However, consider that we will often use Ω to be the torus, which gets rid of many boundary
issues.



6 F. SANTAMBROGIO

Lemma 2.1. Given f ∈ (W 1,p)′�(Ω) there exists v ∈ Lq(Ω;Rd) such that f = ∇· v and ||v||Lq ≤
C||f ||(W 1,p)′, where C is a universal constant (depending on Ω, p and d, but not on f).

Proof. Consider the classical minimization problem

min

{
1

p

∫
Ω
|∇φ|pdx+ 〈f, φ〉 : φ ∈W 1,p(Ω)

}
.

It is easy to prove that this problem admits a solution, as the minimization can be restricted
to the set of functions in W 1,p with zero mean (and apply a Poincaré-Wirtinger inequality to
prove a bound on minimizing sequences). This solution φ satisfies

−
∫

Ω
(∇φ)p−1 · ∇ψ = 〈f, ψ〉

for all ψ ∈ W 1,p(Ω) (pay attention to the notation: for every vector v we denote by wα the
vector with modulus equal to |w|α, and same direction as w, i.e. wα := |w|α−1w). This exactly
means ∇ · v = f for v = (∇φ)p−1. Moreover, testing against φ, we get

||v||qLq =

∫
Ω
|v|q =

∫
Ω
|∇φ|p = −〈f, φ〉 ≤ ||f ||(W 1,p)′ ||φ||W 1,p

≤ C||f ||(W 1,p)′ ||∇φ||Lp = C||f ||(W 1,p)′ ||v||
q−1
Lq ,

which gives the desired bound on ||v||Lq . �

2.1. Neumann boundary conditions. We will prove the following duality result.

Theorem 2.2. Suppose that Ω is smooth enough and that H satisfies Hyp1 and Hyp2. Then,
for any f ∈ (W 1,p)′�(Ω), we have

min

{∫
Ω
H(x, v(x))dx : v ∈ Lq(Ω;Rd),∇ · v = f

}
= max

{
−
∫

Ω
H∗(x,∇u(x))dx− 〈f, u〉 : u ∈W 1,p(Ω)

}
Proof. We will define a function F : (W 1,p)′ → R in the following way

F(h) := min

{∫
Ω
H(x, v(x))dx : v ∈ Lq(Ω;Rd),∇ · v = f + h

}
.

Note that if h /∈ (W 1,p)′� ⊂ (W 1,p)′, then F(h) = +∞, as there is no v ∈ Lq with∇·v = f+h. On
the other hand, if h ∈ (W 1,p)′�, then F(h) is well-defined and real-valued since

∫
ΩH(x, v(x))dx

is comparable to the Lq norm, and we can use Lemma 2.1.
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We now compute F∗ : W 1,p → R:

F∗(u) = sup
h
〈h, u〉 − F(h)

= sup
h,v :∇·v=f+h

〈h, u〉 −
∫

Ω
H(x, v(x))dx

= sup
h,v :∇·v=f+h

〈h+ f, u〉 − 〈f, u〉 −
∫

Ω
H(x, v(x))dx

= sup
v
−〈f, u〉 −

∫
Ω
H(x, v(x))dx−

∫
(v · ∇u)dx

= −〈f, u〉+

∫
Ω
H∗(x,−∇u(x))dx.

Now we want to use the fact that F∗∗(0) = sup−F∗. Note that sup−F∗ = +∞ if f /∈ (W 1,p)′�,
as it is possible to add an arbitrary constant to u, without changing the gradient term, and letting
the term −〈f, u〉 tend to −∞. On the other hand, if f ∈ (W 1,p)′�, then in the above optimization
problem we can impose that u is of zero mean.

By taking the sup on −u instead of u we also have

F∗∗(0) = sup
u
−〈f, u〉 −

∫
Ω
H∗(x,∇u(x))dx = − inf

u
〈f, u〉+

∫
Ω
H∗(x,∇u(x))dx.

Finally, if we prove that F is convex and l.s.c., then we also have F∗∗(0) = F(0), which proves
the claim.

Convexity of F is easy. We just need to take h0, h1 ∈ (W 1,p)′�(Ω) and set ht := (1− t)h0 + th1.
Let v0, v1 be optimal in the definition of F(h0) and F(h1), i.e.

∫
H(x, vi(x))dx = F(hi) and

∇ · vi = f + hi. Let vt := (1− t)v0 + tv1. Of course we have ∇ · vt = f + ht and, by convexity of
H(x, ·) we have

F(ht) ≤
∫
H(x, vt(x))dx ≤ (1−t)

∫
H(x, v0(x))dx+t

∫
H(x, v1(x))dx = (1−t)F(h0)+tF(h1),

and the convexity is proven.
For the semicontinuity, we take a sequence hn → h in (W 1,p)′. We can suppose that F(hn) ≤

C < +∞ otherwise there is nothing to prove. In particular, hn ∈ (W 1,p)′�(Ω). Take the
corresponding optimal vector fields vn ∈ Lq, i.e.

∫
H(x, vn(x))dx = F(hn). We can extract a

subsequence such that limk F(hnk) = lim infnF(hn). Moreover, from the bound on H we can
see that the Lq norm of vn is bounded in terms of the values of F(hn), which are themselves
bounded by assumption. Hence, up to an extra subsequence extraction, we can assume vnk ⇀ v.
Obviously we have∇·v = f+h and, by semicontinuity of the integral functional v 7→

∫
H(x, v)dx,

we get

F(h) ≤
∫
H(x, v(x))dx ≤ lim inf

k

∫
H(x, vnk(x))dx = lim

k
F(pnk) = lim inf

n
F(hn),

which gives the desired result. �

The duality result that we proved will be used in the rest of these notes written in the following
form

(2.3) min{A(v)}+ min{B(u)} = 0,
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where A is defined on Lq(Ω;Rd) and B on W 1,p(Ω) via

A(v) :=

{∫
ΩH(x, v(x))dx if ∇ · v = f,

+∞ otherwise,

and

B(u) =

∫
Ω
H∗(x,∇u(x))dx+ 〈f, u〉.

2.2. Dirichlet boundary conditions. We also want to provide a variant of Theorem 2.2 in
the case where the values of u are prescribed on ∂Ω. In this case, besides the space W 1,p and its
dual (W 1,p)′, we also need to consider the space X(∂Ω) defined as those elements π of (W 1,p)′

such that 〈π, u〉 = 0 for all u ∈ W 1,p
0 (Ω) (in practice, these are the elements of (W 1,p)′ which

are concentrated on the boundary ∂Ω).
We first note the following fact: for every f ∈ (W 1,p)′ there exists π ∈ X(∂Ω) such that

(2.4) f + π ∈ (W 1,p)′�, ||π||(W 1,p)′ ≤ C||f ||(W 1,p)′ .

This can be done explicitly whenever Ω is smooth enough, by taking

〈π, φ〉 := −
∫
∂Ω φdH

d−1

Hd−1(∂Ω)
〈f, 1〉

(this require the use of the trace operator, and Hd−1(∂Ω) < +∞). Otherwise, we can do it by
using the Hahn-Banach Theorem (see for instance the first chapter in [15]) in the following way:

there exists an element π ∈ (W 1,p)′ with the following properties 〈π, φ〉 = 0 for every φ ∈W 1,p
0 ,

〈π, 1〉 = −〈f, 1〉 and ||π||(W 1,p)′ ≤ |〈f, 1〉|/||1||W 1,p (not that we only use 1 /∈W 1,p
0 , which is true

for every domain Ω).
This, together with Lemma 2.1, guarantees finiteness of the minimum in the left hand-side of

the following statement.

Theorem 2.3. Suppose that Ω is smooth enough and that H satisfies Hyp1 and Hyp2. Then,
for any f ∈ (W 1,p)′(Ω) and ū ∈W 1,p(Ω), we have

(2.5) min

{∫
Ω
H(x, v(x))dx+ 〈π, ū〉 : v ∈ Lq(Ω;Rd), π ∈ X(∂Ω),∇ · v = f + π

}
= max

{
−
∫

Ω
H∗(x,∇u(x))dx− 〈f, u〉 : u ∈W 1,p(Ω), u− ū ∈W 1,p

0 (Ω)

}
Proof. The proof will be very similar to that of Theorem 2.2. We define

F(h) := min

{∫
Ω
H(x, v(x))dx+ 〈π, ū〉 : v ∈ Lq(Ω;Rd), π ∈ X(∂Ω),∇ · v = f + h+ π

}
.



REGULARITY VIA DUALITY 9

We now compute F∗ : W 1,p → R:

F∗(u) = sup
h
〈h, u〉 − F(h)

= sup
h,v,π :∇·v=f+h+π

〈h, u〉 −
∫

Ω
H(x, v(x))dx− 〈π, ū〉

= sup
h,v,π :∇·v=f+h

〈h+ f + π, u〉 − 〈f, u〉 −
∫

Ω
H(x, v(x))dx− 〈π, u+ ū〉

= sup
v,π
−〈f, u〉 −

∫
Ω
H(x, v(x))dx−

∫
(v · ∇u)dx− 〈π, u+ ū〉

= sup
π
−〈f, u〉+

∫
Ω
H∗(x,−∇u(x))dx− 〈π, u+ ū〉

=

{
−〈f, u〉+

∫
ΩH

∗(x,−∇u(x))dx if u+ ū ∈W 1,p
0 (Ω),

+∞ if not.

Again, we will conclude by using F∗∗(0) = sup−F∗ and taking the sup on −u instead of u.
We need to prove that F is convex and l.s.c.
Convexity of F follows the same scheme as in Theorem 2.2. Take h0, h1 ∈ (W 1,p)′(Ω) and

define ht := (1− t)h0 + th1. Let (v0, π0) and (v1, π1) be optimal in the definition of F(h0) and
F(h1) and use vt := (1− t)v0 + tv1, πt := (1− t)π0 + tπ1.

For the semicontinuity, we take a sequence hn → h in (W 1,p)′, with the corresponding optimal
(vn, πn). We may suppose that hn is bounded in (W 1,p)′ and that F(hn) is also bounded.

We observe that we have

〈πn, ū〉 = −〈f + hn, ū〉 −
∫
vn · ∇ū dx ≥ −C − C||vn||Lq

(where we used the bound on ||hn||(W 1,p)′) and

c0

p
||vn||qLq − C ≤

∫
H(x, vn(x))dx.

This allows to give a bound on ||vn||Lq in terms of F(hn). Once we have a bound on vn, the
bound on πn comes from the constraint ∇ · vn = f + hn + πn.

The proof can be completed as in Theorem 2.2. �

Remark 2.1. In the case ū = 0 (i.e. with homogeneous Dirichlet conditions), Problem (2.5)
becomes easier, as π does not appear in the functional: in this case we just need to minimize∫
H(x, v(x))dx among vector fields with ∇ · v = f inside Ω (i.e.

∫
v · ∇φ = −

∫
φf for every

φ ∈W 1,p
0 (Ω)).

3. Regularity via duality

In this section we will use the relation (2.3) to produce Sobolev regularity results for solutions
of the minimization problems minA or minB.

We will start by describing the general strategy. We consider a function H : Rd → R, and we
suppose that an inequality of the following form is true

(Hyp3) H(v) +H∗(w) ≥ v · w + c|F (v)−G(w)|2
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for some given functions F,G : Rd → Rd. This is an improvement of the Young inequality
H(v) + H∗(w) ≥ v · w (which is just a consequence of the definition of H∗). Of course this
is always true taking F = G = 0, but the interesting cases are the ones where F and G are
non-trivial.

To simplify the computations, we will suppose that Ω is the flat d-dimensional torus Td (and
we will omit the indication of the domain). We start from the following observations, that we
collect in a lemma. For the sake of the notations, we call v̂ and û the minimizers (or some
minimizers, in case there is no uniqueness) of A and B, respectively, and we denote by ûδ the
function ûδ(x) := û(x+ δ). We define a function g : Rd → R given by1

g(δ) :=

∫
f(x)û(x+ δ)dx−

∫
f(x)û(x)dx.

Lemma 3.1. Suppose H satisfies Hyp1, 2, 3 and let v̂ and û be optimal. Then

(1) F (v̂) = G(∇û).
(2) c

∫
|G(∇ûδ)−G(∇û)|2dx ≤ g(δ).

(3) If g(δ) = O(|δ|2), then G(∇û) ∈ H1.
(4) If g is C1,1, then g(δ) = O(|δ|2) and G(∇û) ∈ H1.
(5) If f ∈W 1,q(Ω), then g ∈ C1,1 and hence G(∇û) ∈ H1

Proof. First, we compute for arbitrary v and u admissible in the primal and dual problems (i.e.
we need ∇ · v = f), the sum A(v) +B(u):

A(v)+B(u) =

∫
(H(v)+H∗(∇u)+fu)dx =

∫
(H(v)+H∗(∇u)−v·∇u)dx ≥ c

∫
|F (v)−G(∇u)|2dx.

If we take v = v̂ and u = û, then A(v) = minA, B(u) = minB and A(v) + B(u) = 0. Hence,
we deduce F (v̂) = G(∇û), i.e. the Part (1) in the statement.

Now, let us fix v = v̂ but u = ûδ. We obtain

c

∫
|G(∇û)−G(∇ûδ)|2dx = c

∫
|F (v̂)−G(∇ûδ)|2dx ≤ A(v̂) +B(ûδ) = B(ûδ)−B(û).

In computing B(ûδ)−B(û), we see that the terms
∫
H∗(∇ûδ) and

∫
H∗(∇û) are equal, as one

can see from an easy change-of-variable x 7→ x+ δ. Hence,

B(ûδ)−B(û) =

∫
fûδ −

∫
fû = g(δ),

which gives part (2).
Part (3) of the statement is an easy consequence of classical characterization of Sobolev spaces.

Part (4) comes from the optimality of û, which means that g(0) = 0 and g(δ) ≥ 0 for all δ. This
implies, as soon as g ∈ C1,1, ∇g(0) = 0 and g(δ) = O(|δ|2).

For Part (5), we first differentiate g(δ), thus getting

∇g(δ) =

∫
f(x)∇û(x+ δ)dx.

Note that this provides the first-order optimalty condition for û: using δ = 0, we get

(3.1) 0 = ∇g(0) =

∫
f(x)∇û(x)dx.

1From now on, f ∈ (W 1,p)′� will actually be function, typically in Lq or even in W 1,q, and we will write terms
of the form 〈f, u〉 in the form of integrals.



REGULARITY VIA DUALITY 11

If we want to differentiate once more, we use the regularity assumption on f : we write∫
f(x)∇û(x+ δ)dx =

∫
f(x− δ)∇û(x)dx

and then

D2g(δ) = −
∫
∇f(x− δ)⊗∇û(x)dx.

Note that û naturally belongs to W 1,p, hence the integral above. Morover, we obtain |D2g| ≤
||∇f ||Lq ||∇û||Lp , and g ∈ C1,1. �

Unfortunately, the last assumption (f ∈ W 1,q) is quite restrictive, but we want to provide a
case where it is reasonable to use it. Before this, let us find interesting cases of functions H and
H∗ for which we can provide non-trivial functions F and G.

3.1. Pointwise vector inequalities. The first interesting case is the quadratic case. Take
H(v) = 1

2 |v|
2 with H∗(w) = 1

2 |w|
2. In this case we have easily

H(v) +H∗(w) =
1

2
|v|2 +

1

2
|w|2 = v · w +

1

2
|v − w|2.

Hence, one can take F (v) = v and G(w) = w.
Then, we pass to another interesting case, the case of other powers. Take H(v) = 1

q |v|
q with

H∗(w) = 1
p |w|

p. We claim that in this case we can take F (v) = vq/2 and G(w) = wp/2 (remember

the notation for powers of vectors).

Lemma 3.2. For any v, w ∈ Rd we have

1

q
|v|q +

1

p
|w|p ≥ v · w +

1

2 max{p, q}
|vq/2 − wp/2|2.

Proof. First we write a = vq/2 and b = wp/2 and we express the inequality in terms of a, b.
Hence we try to prove 1

q |a|
2 + 1

p |b|
2 ≥ a2/q · b2/p + 1

2 max{p,q} |a − b|
2. In this way the inequality

is homogeneous, as it is of order 2 in all its terms (remember 1/p + 1/q = 1). Then we notice
that we can also write the expression in terms of |a|, |b| and cos θ, where θ is the angle between

a and b (which is the same as the one between v = a2/q and w = b2/p). Hence, we want to prove

1

q
|a|2 +

1

q
|b|2 ≥ cos θ

(
|a|2/q|b|2/p − 1

max{p, q}
|a||b|

)
+

1

2 max{p, q}
(|a|2 + |b|2).

Since this depends linearly in cos θ, it is enough to prove the inequality in the two limit cases
cos θ = ±1. For simplicity, due to the simmetry in p and q of the claim, we suppose p ≥ 2 ≥ q.
We start from the case cos θ = 1, i.e. b = ta, with t ≥ 0 (the case a = 0 is trivial). In this case
the l.h.s. of the inequality becomes

|a|2(
1

q
+

1

p
t2) = |a|2(

1

q
+

1

p
(1 + (t− 1))2) = |a|2(1 +

2

p
(t− 1) +

1

p
(t− 1)2) ≥ |a|2(t2/p +

1

p
(t− 1)2),

where we used the concavity of t 7→ t2/p, which provides 1 + 2
p(t− 1) ≥ t2/p. This inequality is

even stronger than the one we wanted to prove, as we get a factor 1/p instead of 1/(2p) in the
r.h.s..
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The factor 1/(2p) appears in the case cos θ = −1, i.e. b = −ta, t ≥ 0 (we do not claim that
this coefficient is optimal, anyway). In this case we start from the r.h.s.

|a|2(
1

2p
(1 + t)2 − t2/p) ≤ |a|2 1

2p
(1 + t)2 ≤ |a|2 2

2p
(1 + t2) ≤ |a|2(

1

q
+

1

p
t2),

which gives the claim. �

Remark 3.1. The above inequality replaces, in this duality-based approach, the usual vector
inequality that PDE methods require to handle equations involving ∆p, i.e.

(3.2) (wp−1
0 − wp−1

1 ) · (w0 − w1) ≥ c|wp/20 − wp/21 |
2,

which is an improved version of the monotonicity of the gradient of w 7→ 1
p |w|

p. Note that the

proof of Lemma 3.2 is quite short, if compared to some classical proofs of (3.2) (see for instance
[25]). However, alternative proofs for (3.2) are also possible, as in the appendix of [12].

We finish with a general consideration, the case where H is uniformly convex, in the sense
that D2H is uniformly bounded from below (which also implies H∗ ∈ C1). In this case we have

Lemma 3.3. If D2H ≥ λI for λ > 0, we have

H(v) +H∗(w) ≥ v · w +
λ

2
|v −∇H∗(w)|2.

Proof. Just consider

(3.3) H∗(w) = max
v

v · w −H(v) = ∇H∗(w) · w −H(∇H∗(w)),

where we used the fact that the optimal v is characterized by w = ∇H(v), which can be turned
into ∇H∗(w) = v. Then, we use

(3.4) H(v) ≥ H(v0) +∇H(v0) · (v − v0) +
λ

2
|v − v0|2,

which is just a consequence of second-order Taylor expansion, for any v0. Choosing v0 =
∇H∗(w), using ∇H(v0) = ∇H(∇H∗(w)) = w, and summing up (3.3) and (3.4) we get

H(v)+H∗(w) ≥ ∇H∗(w) ·w−H(∇H∗(w))+H(∇H∗(w))+w ·(v−∇H∗(w))+
λ

2
|v−∇H∗(w)|2,

which is the claim. �

Lemma 3.3 shows that Hyp(3) is typical of uniformly convex functions, while Lemma 3.2
shows that some variants exist form more degenerate convex functions.

3.2. Very degenerate PDEs. Consider for instance the case H(v) = |v| + 1
q |v|

q. In this

case, we can use F (v) = vq/2 and G(w) = (w − 1)
p/2
+ (again, we use this weird notation: the

vector (w − 1)
p/2
+ is the vector with norm equal to (|w| − 1)

p/2
+ and same direction as w, i.e.

G(w) = (|w| − 1)
p/2
+ w/|w|). Indeed, we have

H∗(w) = sup
v

v · w − |v| − 1

q
|v|q =

1

p
(|w| − 1)p+

and

H(v) +H∗(w) = |v|+ 1

q
|v|q +

1

p
(|w| − 1)p+ ≥ |v|+ v · (w − 1)+ + c|vq/2 − (w − 1)

p/2
+ |2.
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We only need to prove |v|+ v · (w − 1)+ ≥ v · w. This can be done by writing

|v|+ v · (w − 1)+ = |v|(1 + (|w| − 1)+ cos θ).

If |w| ≥ 1 then we go on with

|v|(1 + (|w| − 1)+ cos θ) ≥ |v| cos θ(1 + (|w| − 1)+) = |v| cos θ|w| = v · w.
If |w| ≤ 1 then we simply use

|v|(1 + (|w| − 1)+ cos θ) = |v| ≥ v · w.
As a consequence we get the following result2:

Proposition 3.4. Let H be given by H(v) = |v| + 1
q |v|

q and H∗(w) = 1
p(|w| − 1)p+. Suppose

that Ω is the flat torus and f ∈W 1,q(Ω). Let v̂ is a solution of minA and û a solution of minB

(equivalently, suppose that û solves ∇ · ((∇û− 1)p−1
+ ) = f). Then v̂q/2 = (∇û− 1)

p/2
+ ∈ H1.

This result is the same proven in [11], where it was approached with PDE methods. The

equation ∇ · ((∇u− 1)p−1
+ ) = f , which can be written,

∇ · ((|∇u| − 1)p−1
+

∇u
|∇u|

) = f,

is very degenerate in the sense that the coefficient
(|∇u|−1)p−1

+

|∇u| vanishes on the whole set where

|∇u| ≤ 1.
This equation and these minimization problems arise in traffic congestion (see [5, 18, 11])

and the choice of the function H is very natural: we need a superlinear function of the form
H(v) = |v|h(|v|), with h ≥ 1). This automatically implies the degeneracy of H∗.

3.3. The Laplacian case: ∆u = f . The case of the Poisson equation ∆u = f , corresponding
to the minimization of

∫
1
2 |∇u|

2 + fu, and hence to H(v) = 1
2 |v|

2 and H∗(w) = 1
2 |w|

2, deserves
special attention. It is possible to treat this case by the same techniques as in the degenerate
case above, but the result is disappointing. Indeed, from these techniques we just obtain f ∈
H1 ⇒ ∇u ∈ H1, while it is well-known that f ∈ L2 should be enough for the same result.
However, with some more attention it is also possible to treat the L2 case.

Proposition 3.5. Suppose that Ω is the flat torus and ∆u = f ∈ L2(Ω). Then ∇u ∈ H1.

Proof. We use the variational framework we presented before, with H(v) = 1
2 |v|

2. We have

(3.5)
1

2
||∇uδ −∇u||2L2 ≤ g(δ).

Now, set ωt := sup{||∇uδ −∇u||L2 : |δ| ≤ t}. From (3.5) we have

ω2
t ≤ sup

δ:|δ|≤t
2g(δ) ≤ 2t sup

δ:|δ|≤t
|∇g(δ)|.

From ∇g(δ) = ∇g(δ) − ∇g(0) =
∫
f(∇uδ − ∇u) we deduce |∇g(δ)| ≤ ||f ||L2 ||∇uδ − ∇u||L2 ≤

||f ||L2ωt, hence ω2
t ≤ 2t||f ||L2ωt, which implies ωt ≤ 2t||f ||L2 and hence ∇u ∈ H1. �

2For the rest of Section 3 we will stop using v̂ and û to denote the optimal solutions of the primal and dual
problems, as we do not need to explicitly compare them to arbitrary competitors v and u.
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It is important to note that, in the framework of duality-based regularity, the main tool
to prove ∇u ∈ H1 would be the C1,1 behavior of δ 7→ g(δ); for this to be true, the natural
assumption would be f ∈ W 1,q (when H∗ has growth of exponent p, which implies u ∈ W 1,p).
This means that the result of proposition 3.5 is in some sense more difficult, as it requires a step
further, if one wants ∇u ∈ H1 using only f ∈ L2. Compare this to standard PDE methods: the
typical strategy requires integrating by parts a term such as −

∫
∇f · ∇u, getting

∫
f∆u, which

is almost automatical, and then estimating via Cauchy-Schwartz inequalities and absorbing
the second order terms in the left hand side. We can infer a peculiarity of the duality-based
method presented in these notes: if on the one hand it gives satisfactory results even for very
degenerate cost functions (here, H∗) once the data (here, f) are smooth enough, on the other
hand improving the results for non-smooth data is harder even in the case where H∗ is purely
quadratic. This means that in this last case (f non smooth and H∗ quadratic) one needs an
extra non-trivial step; yet, once we learn how to do it, we can replicate it in non-quadratic cases.
This is what will be done in the next sections of the paper, and can give unexpected results
(which are definitely provable without duality, but not easy to guess a priori).

3.4. The p−Laplacian case: ∆pu = f . If we look at the case H(v) = 1
q |v|

q, we have H∗(w) =
1
p |w|

p and the solutions of ∆pu = f (where ∆pu := ∇ · ((∇u)p−1)) are the minimizers of∫
1
p |∇u|

p + fu. Classical references on the p-Laplacian regularity question are, for instance,

[7, 25, 21, 24].
From the consideration of the previous sections we easily obtain the following.

Proposition 3.6. Suppose that Ω is the flat torus and ∆pu = f ∈W 1,q(Ω). Then (∇u)p/2 ∈ H1.

This result is quite classical (in the case f = 0 it dates back to Uhlenbeck, [30], for the general
case one can look at [25] and for other generalizations to [24]). Yet, it is not very satisfactory,
since if we set p = q = 2 we get the result ∆u ∈ H1 ⇒ ∇u ∈ H1 which, as we said, is very
disappointing.

This is why we also look at the following other classical result. We recall, before stating it,
the clasical notion of fractional Sobolev spaces (see, for instance, [1]), with a simplified definition
which works in the case of the flat torus.

Definition 3.1. When Ω = Td, fix R > 0, 1 < p < +∞ and 0 < s < 1; then, the space W s,p(Ω)
is defined as

W s,p(Ω) =

{
u ∈ Lp(Ω) : [u]ps,p :=

∫
B(0,R)

||uδ − u||pLp
|δ|d+sp

dδ < +∞

}
and its norm is given by ||u||Lp + [u]s,p. The space Hs is defined as W s,2.

Note that an inequality of the form ||uδ − u||Lp ≤ C|δ|s implies u ∈W r,p for every r < s.
We can now give a duality-based proof of another classical result (see [28]).

Proposition 3.7. Suppose that Ω is the flat torus and ∆pu = f ∈ Lq(Ω), with p > 2.Then

||(∇uδ)p/2 − (∇u)p/2||L2 ≤ C|δ|q/2, which implies in particular (∇u)p/2 ∈ Hs for s < q/2 < 1.

Proof. We use the same strategy as in Proposition 3.5. For simplicity, we set V := (∇u)p/2. As
in Proposition 3.5, we set ωt := supδ:|δ|≤t ||Vδ − V ||L2 . We have ||Vδ − V ||2L2 ≤ Cg(δ), which
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implies
ω2
t ≤ Ct sup

δ:|δ|≤t
|∇g(δ)−∇g(0)| ≤ Ct||f ||Lq sup

δ:|δ|≤t
||∇uδ −∇u||Lp .

From the α-Hölder behavior of the vector map w 7→ wα in Rd (see Lemma 3.8 below), with
α = 2/p < 1, we deduce, using ∇u = V α,

||∇uδ −∇u||pLp =

∫
|∇uδ −∇u|pdx ≤ C

∫
|Vδ − V |2dx = C||Vδ − V ||2L2 .

Hence, we have

ω2
t ≤ Ct||f ||Lqω

2/p
t ,

which implies

ω
2/q
t ≤ Ct||f ||Lq ,

i.e. the claim. �

Lemma 3.8. For 0 < α < 1, the map w 7→ wα is α-Hölder continuous in Rd.
Proof. Let a, b ∈ Rd. We write

|aα − bα| =
∣∣∣∣|a|α a|a| − |a|α b|b| + |a|α b

|b|
− |b|α b

|b|

∣∣∣∣ ≤ |a|α ∣∣∣∣ a|a| − b

|b|

∣∣∣∣+ ||a|α − |b|α| .

For the second term in the r.h.s., we use the α-Hölder behaviour of t 7→ tα in R+ and get

||a|α − |b|α| ≤ ||a| − |b||α ≤ |a− b|α.
For the first term in the r.h.s., we use the inequality∣∣∣∣ a|a| − b

|b|

∣∣∣∣ =

∣∣∣∣ a|a| − b

|a|
+

b

|a|
− b

|b|

∣∣∣∣ ≤ |a− b||a|
+ |b| ||b| − |a||

|a||b|
≤ 2
|a− b|
|a|

and get

|a|α
∣∣∣∣ a|a| − b

|b|

∣∣∣∣ ≤ 2|a|α−1|a− b|.

If we choose a to be such |a| ≥ |b| (which is possible w.l.o.g.), we have 2|a| ≥ |a− b| and hence
2α−1|a|α−1 ≤ |a− b|α−1, i.e. 2|a|α−1|a− b| ≤ 22−α|a− b|α.

Summing up, we have
|aα − bα| ≤ (22−α + 1)|a− b|α. �

Remark 3.2. The constant 22−α + 1 that we found in the proof of Lemma 3.8 is not optimal:
in [9] the same result is proven with constant 21−α, which is indeed optimal.

Remark 3.3. Note that the result of Proposition 3.7 is also classical, and quite sharp. Indeed,
one can informally consider the following example. Take u(x) ≈ |x|r as x ≈ 0 (and then multiply
times a cut-off function out of 0). In this case we have

∇u(x) ≈ |x|r−1, (∇u(x))p−1 ≈ |x|(r−1)(p−1), f(x) := ∆pu(x) ≈ |x|(r−1)(p−1)−1.

Hence, f ∈ Lq if and only if ((r − 1)(p − 1) − 1)q > −d, i.e. (r − 1)p − q > −d. On the
other hand, the fractional Sobolev regularity can be observed by considering that “differentiating
s times” means subtracting s from the exponent, hence

(∇u(x))p/2 ≈ |x|p(r−1)/2 ⇒ (∇u)p/2 ∈ Hs ⇔ |x|p(r−1)/2−s ∈ L2 ⇔ p(r − 1)− 2s > −d.
If we want this last condition to be true for arbitrary s < q/2, then it amounts to p(r−1)−q > −d,
which is the same condition as above.
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3.5. Sharp H1 regularity of (∇u)p/2 in the p-Laplace equation ∆pu = f . We already saw
the very classical result of Proposition 3.6 which states that the solution of ∆pu = f satisfies

(∇u)p/2 ∈ H1 as soon as f ∈ W 1,q. In the same spirit of the observation we did in Section 3.3,
we can say that this result is far from being optimal, as it is not coherent with what we know in
the limit case p = 2, where the sharp assumption to prove ∇u ∈ H1 is f ∈ L2, and not f ∈ H1.

Indeed, in [13] a new result is presented: the same H1 regularity is true, under a fractional
regularity assumption on f , which is supposed to be W s,q, for s > (p − 2)/p (with counterex-
amples, of the same type of those of our Remark 3.3, for s < (p − 2)/p). Up to the fact that
the limit case s = (p − 2)/p is not studied in [13], this assumption is coherent with the case
p = 2, as in this case we get exactly the classical L2 assumption on f . The result in [13] is
local, and obtained via more classical methods from elliptic PDE techniques. Yet, it can also
be obtained, at least in the global case on Ω = Td, via duality methods. Actually, the proof via
duality method that we present here was the first to be found, but was not easy to adapt to
local regularity. The considerations that we did at the end of Section 3.3 should clarify to the
reader in which sense the duality method allows more easily to guess the valdity of this result.

Proposition 3.9. Suppose that Ω is the flat torus and ∆pu = f ∈ W s,q(Ω) for s > (p − 2)/p

and p > 2. Then (∇u)p/2 ∈ H1.

Proof. Set V := (∇u)p/2. Using the same strategy that the reader knows well now we can say

||Vδ − V ||2L2 ≤ C
(∫

fuδ −
∫
fu

)
.

We use ∫
fuδ −

∫
fu =

∫ 1

0
dt

∫
f∇u(x+ tδ) · δ dx,

which can also be written as∫
fuδ −

∫
fu =

∫ 1

0
dt

∫
f (∇u(x+ tδ)−∇u(x)) · δ dx

=

∫ 1

0
dt

∫
(f(x)− f(x− tδ))∇u(x) · δ dx,

thanks to
∫
f∇u = 0 (which is the first-order optimality condition of u, see (3.1)), and then∫

fuδ −
∫
fu =

∫ 1

0
dt

∫ 1

0
dτ

∫
∇f(x− tτδ) · δ ∇u(x) · δ dx.

This allows to estimate, for arbitrary 0 < r < 1:∫
fuδ −

∫
fu ≤ |δ|2||∇u||W r,p ||∇f(· − tτδ)||(W r,p)′ .

In the estimate above we used an easy translation invariance to replace ||∇f(· − tτδ)||(W r,p)′

with a constant term ||∇f ||(W r,p)′ .

Using Lemma 3.10 below, with g(z) = z2/p (which is C0,α for α = 2/p) and u = g ◦ V , we get

||∇u||W r,p ≤ C||V ||2/p
H1
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provided r < 2/p. This provides

||Vδ − V ||2L2

|δ|2
≤ C||G||2/p

H1 ||∇f ||(W r,p)′ .

The supremum over δ ∈ Rd \ {0} in the left hand side gives exactly ||V ||2H1 , a term which
also appears on the right-hand side but with a smaller exponent. Hence the above estimate
provides a uniform bound on ||V ||H1 (note that, in order to give a rigorous proof, one should
first approximate so as to guarantee that V is actually H1 and provide an a priori estimate on
its norm, which is possible by approximating f with W 1,q functions, for instance) in terms of
||∇f ||(W r,p)′ We then use

||∇f ||(W r,p)′ ≤ C||f ||W 1−r,q ,

an estimate which sounds natural if we think of (W r,p) ≈ W−r,q (see the Appendix of [13]
for a precise proof via interpolation arguments; alternative proofs can be obtained via Fourier
transform in the case p = 2, or by solving fractional Laplace equations and using regularity
estimates for the corresponding solutions) and prove the claim as soon as f ∈ W s,q for an
exponent s of the form s = 1− r, r < 2/p, which is our assumption. �

Lemma 3.10. Consider a map g ∈ C0,α(Rd;Rd) and a Sobolev function V ∈ W 1,p0(Ω;Rd).
Then g ◦ V ∈W r,p1 provided αp1 = p0 and r < α; moreover we have

[g ◦ V ]r,p1 ≤ C||∇V ||αLp0 ,

for a constant C depending on d, s, α and on the Hölder constant of g.

Proof. We recall the formula

[u]pr,p :=

∫
B(0,R)

||uδ − u||pLp
|δ|d+rp

dδ.

We use

|(g ◦ V )δ − g ◦ V | ≤ C|Vδ − V |α,
which implies

||(g ◦ V )δ − g ◦ V ||p1Lp1 ≤ C||Vδ − V ||
αp1
Lαp1 .

Using V ∈W 1,p0 we also have

||Vδ − V ||Lp0 ≤ C|δ|||∇V ||Lp0 ,

which provides, when αp1 = p0,

(3.6) [g ◦ V ]p1r,p1 ≤ C||∇V ||
p0
Lp0

∫
B(0,R)

|δ|p0
|δ|d+rp

dδ.

The result is proven once we note that the integral∫
B(0,R)

|δ|p0
|δ|d+rp1

dδ

converges as soon as p0 = αp1 > rp1 (i.e. r < α). Taking the p1-th root on both sides of (3.6)
we get the desired estimate. �
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3.6. Anisotropic orthotropic equations. Consider the case where H∗(w) =
∑

iH
∗
i (wi), for

some convex functions of one variable Hi. Note that this is the case for H∗(w) = 1
2 |w|

2 but not

for H∗(w) = 1
p |w|

p; on the contrary, H∗(w) =
∑

i
1
p |wi|

p is of this form. PDEs and variational

problems involving these functions arise, for instance, in traffic congestion, when taking limits of
problems on networks: the corresponding equations are not isotropic and “remember” the shape
of the network (and this precise structure is obtained in the case of a Manhattan metric, i.e. of
a cartesian lattice network; see [4, 10, 20] for details about these problems). Their difficulty is
due to the fact that degeneracies sum up: if 1

p |w|
p is only degenerate at w = 0, the Hessian of

H∗(w) =
∑

i
1
p |wi|

p is singular at every point w where at least one component wi vanishes. This

especially creates difficulty when studying Lipschitz bounds for the solutionu, as the degeneracy
set becomes unbounded. For Sobolev regularity this is less important, but difficulties arise when,
for instance, one considers H∗(w) =

∑
i

1
pi
|wi|pi , for different exponents pi.

We will consider the following framework:

H∗(w) =
∑
i

h∗i (wi), with each hi satifsying (Hyp2) for an exponent qi.

We will avoid dependence on x for simplicity and suppose that for each i there are two functions
fi, gi : R→ R such that

hi(t) + h∗i (s) ≥ ts+ c|fi(t)− gi(s)|2.
Then we have the following

Proposition 3.11. Let u be a solution of the PDE

∇ · (∇H∗(∇u)) = f

on the flat torus Ω = Td, and suppose that f is a Sobolev function such that, for each i, we have
∂if ∈ Lqi, with qi = p′i. Let V : Ω→ Rd be the function defined via Vi = gi(∂iu).

Then V ∈ H1(Ω).

Proof. From the definitions of V , H∗ and gi, applying the standard strategy of this section and
the computations of Proposition 3.9, we easily get

(3.7) ||Vδ − V ||2L2 ≤ C
(∫

fûδ −
∫
fu

)
= C

∫ 1

0
dt

∫ 1

0
dτ

∫
∇f(x− tτδ) · δ ∇û(x) · δ dx.

In order to prove V ∈ H1 it is enough to prove ||Vδ − V ||2L2 ≤ C|δ|2 for those vectors h parallel
to one of the coordinate axes. When selecting one such a vector, say h = λei with |λ| = |δ|, then
we can estimate the right hand side in (3.7) using the integrabilities of ∂iu and ∂if and obtain

||Vδ − V ||2L2 ≤ C|δ|2||∇f(· − tτδ) · ei||Lp′i ||∇û · ei||Lpi ,

which allows to conclude. �

Remark 3.4. In the anistropic orthotropic p-Laplacian case, i.e. H∗(w) =
∑

i
1
pi
|wi|pi (corre-

sponding to H(v) =
∑

i
1
qi
|wi|qi for qi = p′i), the above Proposition easily allows to prove

(∂iu)pi/2 ∈ H1(Ω) for every i.

As we already said in the introduction, it is important to stress that the above result does not
require any assumptions on the anisotropy, i.e. it works for arbitrary exponents pi, even very
far from each other. This is due to the global character of this estimate, which is much easier



REGULARITY VIA DUALITY 19

to get that local estimates (which are the object of [12]), and not on the approach by dualiity,
which is just a quick way of presenting the result.

4. Non–spatially-homogeneous cases: the effects
of the boundary or of space-dependance

The attentive reader has for sure observed that the analysis of the previous sections is strongly
simplified by the fact that we have

(4.1)

∫
H∗(∇ûδ)dx =

∫
H∗(∇û)dx,

which is a consequence of an easy change of variables x 7→ x + δ. Not only this is due to the
absence of explicit dependance on x (the equation is autonomous), but also to the fact that there
are no boundary issues. Indeed, even when there is no dependence on x, we cannot say that all
the points are the same for a PDE, or for the solution of a PDE, when some of the points are
closer to the boundary than others. In practice, the use of a translation ûδ raises some difficulty
if we don’t have the equality (4.1), which could be due to the presence of the boundary, or to
space heterogeneity.

In this section we will see how to adapt the analysis we presented so far to handle these
difficulties. First we will analyze the case of a bounded domain, with boundary, where to study
local regularity, and then a case where some coefficients depend on x.

4.1. Variant – Local regularity. We provide here a result concerning local Sobolev regularity.
As the result is local, boundary conditions should not be very important. Yet, we need anyway to
fix a variational problem and consider its dual, which requires to choose the boundary conditions
we use. We will use Dirichlet boundary conditions, but the analysis can be adapted to the case
of Neumann conditions. This is, by the way, one of the reasons why we introduced duality for
the Dirichlet case.

We will only provide the following result, in the easiest case p = 2.

Theorem 4.1. Let H,H∗, F and G satisfy Hyp1, 2, 3 with p = 2. Suppose f ∈ H1. Suppose
also H∗ ∈ C1,1 and G ∈ C0,1. Suppose ∇ · (∇H∗(∇û)) = f in Ω. Then, G(∇û) ∈ H1

loc(Ω).

Proof. The condition ∇ · ∇(H∗(∇û)) = f is equivalent to the fact that û is solution of

min

{∫
Ω
H∗(∇u)dx+

∫
Ω
fu dx : u ∈W 1,p(Ω), u− ū ∈W 1,p

0 (Ω)

}
,

for ū = û (i.e. û minimizes under its own optimality conditions). We will also use the dual
problem presented in Theorem 2.3. We set A(v, π) :=

∫
H(v) + 〈π, ū〉 with the constraint

∇·v = f+π. As usual, we sum A(v, π)+B(u) and we get A(v, π)+B(u) =
∫

(H(v)+H∗(∇u)−
v · ∇u)dx ≥ c

∫
|F (v)−G(∇u)|2dx.

The strategy is the same: use the optimal v and π together with a translation of u. Yet, in
order not to have boundary problems, we need to use a cut-off function η ∈ C∞c (Ω) and define

ûδ(x) = û(x+ δη(x))

(note that this does not change the boundary value ū). In this case it is no longer true that
g̃(δ) :=

∫
H∗(∇ûδ)dx equals

∫
H∗(∇û)dx. If this term is not constant as a function of δ,
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then we need to prove that it is a C1,1. To do this, and to avoid differentiating ∇û, we use a
change-of-variable. Set y = x+ δη(x). We have ∇(ûδ)(x) = (∇û)(y)(I + δ ⊗∇η(x)), hence

g̃(δ) =

∫
Ω
H∗(∇ûδ)dx =

∫
Ω
H∗
(
∇û(y) + (∇û(y) · δ)∇η(x)

) 1

1 + δ · ∇η(x)
dy,

where x = X(δ, y) is a function of δ and y obtained by inverting x 7→ x + δη(x); we also used
det(I + δ ⊗ ∇η(x)) = 1 + δ · ∇η(x). The function X is C∞ by the implicit function theorem,
and all the other ingredient of the above integral are at least C1,1 in δ. This proves that g̃
is C1,1. The regularity of the term g(δ) =

∫
fûδ should also be considered. Differentiating

once we get ∇g(δ) =
∫
f(x)∇û(x+ δη(x))η(x)dx. To differentiate once more, we use the same

change-of-variable, thus getting

∇g(δ) =

∫
f(X(δ, y))∇û(y)η(X(δ, y))

1

1 + h · ∇η(x)
dy.

From y = X(δ, y) + δη(X(δ, y)) we get a formula for DδX(δ, y), i.e.

0 = DδX(δ, y) + η(X(δ, y))I + δ ⊗∇η(η(X(δ, y))DδX(δ, y).

This allows to differentiate once more the function g and proves g ∈ C1,1.
Finally, we come back to the duality estimate. What we can easily get is

c||G(∇(ûδ))−G(∇û)||2L2 ≤ g(δ) + g̃(δ) = O(|δ|2).

The problem is that G(∇(ûδ)) is not the translation of G(∇û)! Yet, it is almost true. Indeed,
if we put the subscript δ every time that we compose with x+ δη(x), we have

∇(ûδ) = (∇û)δ + δ · (∇û)δη.

Since G is supposed to be Lipschitz continuous, then

|G(∇(ûδ))−G((∇û)δ)| ≤ C|δ||∇û|δη.
Hence, we have

||G((∇û)δ)−G(∇û)||L2 ≤ ||G(∇(ûδ))−G(∇û)||L2 + C|δ|||∇û||L2 ,

which is enough to show that this increment is of order |δ|, since û ∈ H1 (this depends on the
fact that H∗ is quadratic). Hence, as in Lemma 3.1 (4), we get G(∇û) ∈ H1. �

The reader can see that the above method for local regularity required some structure on the
function H and H∗: it could be adapted under suitable growth condition, but cannot easily
handle the case studied in [12] (and in our Section 3.6), where the functional has anisotropic
growth.

4.2. Variant – Dependence on x. The duality theory has been presented in the case where H
and H∗ could also depend on x, while for the moment regularity results have only be presented
under the assumption that they not. In this section, we will see how to handle the following
particular case, corresponding to the minimization problem

(4.2) min

{
1

p

∫
Ω
a(x)|∇u(x)|pdx+

∫
Ω
f(x)u(x)dx : u ∈W 1,p(Ω)

}
.

We will use Ω = Td to avoid cumulating difficulties (boundary issues and dependence on x)
and we will omit the indication of the domain. Note that the PDE corresponding to the above
minimization problem is ∇ · (a(x)(∇u)p−1) = f .
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First, we need to compute the transform of w 7→ H∗(w) := a
p |w|

p. Set b = a1/(p−1). It is easy

to obtain H(v) = 1
bq |v|

q. Also, we can check (just by scaling the inequality of Lemma 3.2), that

we have

1

bq
|v|q +

bp−1

p
|w|p ≥ v · w + bp−1

∣∣∣∣∣wp/2 − vq/2

bp/2

∣∣∣∣∣
2

.

In particular, if we suppose that a(x) is bounded from below by a positive constant, and we set

H∗(x,w) = a(x)
p |w|

p then we get

H(x, v) +H∗(x,w) ≥ v · w + c|F (x, v)−G(w)|2

where G(w) = wp/2.
We can now prove the following theorem.

Theorem 4.2. Suppose f ∈ W 1,q and a ∈ Lip, a ≥ a0, and let û be the minimizer of (4.2).

Then V := (∇û)p/2 ∈ H1.

Proof. Our usual computations show that

c||Vδ − V ||2L2 ≤ g(δ) + g̃(δ),

where g(δ) =
∫
fûδ −

∫
fû and g̃(δ) =

∫ a(x)
p |∇ûδ|

p −
∫ a(x)

p |∇û|
p. With our assumptions,

g ∈ C1,1. As for g̃(δ), we write∫
a(x)

p
|∇ûδ|p =

∫
a(x− δ)

p
|∇û|p

and hence

∇g̃(δ) =

∫
∇a(x− δ)

p
|∇û|p =

∫
∇a(x)

p
|∇ûδ|p.

Hence,

|∇g̃(δ)−∇g̃(0)| ≤
∫
|∇a(x)|

p
||∇ûδ|p − |∇û|p| ≤ C

∫
||Gδ|2−|G|2| ≤ C||Vδ−V ||L2 ||Gδ +G||L2 .

Here we used the L∞ bound on |∇a|. Then, from the lower bound on a, we also know G ∈ L2,
hence we get |∇g̃(δ)−∇g̃(0)| ≤ C||Vδ − V ||L2 .

Now, we define as usual ωt := supδ:|δ|≤t ||Vδ − V ||L2 and we get

ω2
t ≤ C sup

δ:|δ|≤t
g(δ) + g̃(δ) ≤ Ct sup

δ:|δ|≤t
|∇g(δ) +∇g̃(δ)|

= Ct sup
δ:|δ|≤t

|∇g(δ)−∇g(0) +∇g̃(δ)−∇g̃(0)| ≤ Ct2 + Ctωt,

which allows to deduce ωt ≤ Ct and hence V ∈ H1. �

We also provide the following theorem, which is also interesting for p = 2.

Theorem 4.3. Suppose p ≥ 2, f ∈ Lq and a ∈ Lip, a ≥ a0, and let û be the minimizer of (4.2).

Then V := (∇û)p/2 satisfies ||Vδ − V ||L2 ≤ C|δ|q/2. In particular, V ∈ H1 when p = 2 and
V ∈ Hs for all s < q/2 when p > 2.
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Proof. The only difference with the previous case is that we cannot say that g is C1,1 but we
should stick to the computation of ∇g. We use as usual

|∇g(δ)−∇g(0)| ≤ ||f ||Lq ||∇ûδ −∇û||Lp .
As we are forced to let the norm ||∇ûδ −∇û||Lp appear, we will use it also in g̃. Indeed, we can
observe that we can estimate

|∇g̃(δ)−∇g̃(0)| ≤
∫
|∇a(x)|

p
||∇ûδ|p − |∇û|p| ≤ C

∫
(|∇ûδ|p−1 + |∇û|p−1)|∇ûδ −∇û|

≤ C||(∇û)p−1||Lq ||∇ûδ −∇û||Lp .

We then use ||(∇û)p−1||Lq = ||∇û||p−1
Lp and conclude

|∇g̃(δ)−∇g̃(0)| ≤ C||∇ûδ −∇û||Lp .
This gives, defining ωt as usual,

ωt ≤ Ct sup
δ:|δ|≤t

|∇g(δ)−∇g(0) +∇g̃(δ)−∇g̃(0)| ≤ Ct sup
δ:|δ|≤t

||∇ûδ −∇û||Lp

and hence
ω2
t ≤ Ctω

2/p
t

as in Proposition 3.7. �

5. Time-dependent problems

The technique that we saw in the previous sections to prove Sobolev regularity provides in
general classical results, through a slightly different point of view than the usual PDE-based
tools. Yet, it has the advantage that it requires only the optimality, with no need to write a
PDE, and could be useful in some very degenerate or non-smooth cases. As we underlined in
the introduction, the first use (to the best of our knowledge) of duality-based methods to prove
regularity was in [14], in the study of variational models for the incompressible Euler Equation.
This has been later adapted in [17] to density-constrained Mean Field Games.

In this last section we only want to give an idea of where these estimates could be really
useful, concentrating, without entering into details, on the case of an easier MFG. This takes
the following form

Consider the following minimization problem

min

{
A(ρ, v) :=

∫ T

0

∫
Ω

(
1

2
ρt|vt|2 +H(ρt)

)
+

∫
Ω

ΨρT

}
among pairs (ρ, v) such that ∂tρ+∇·(ρv) = 0, with given ρ0, where H is a given convex function.

Note that this problem is convex in the variables (ρ,E := ρv) (while it is not convex in
(ρ, v)) and it recalls the Benamou-Brenier formulation for optimal transport ([6]). Moreover, in
these variables, it exactly corresponds to a problem with constraints on the divergence (indeed,
∂tρ+∇ · E is the space-time divergence of (ρ,E)).

As all convex minimization problem, minA admits a dual problem, formally obtained by
interchanging inf and sup in

min
ρ,v

{
A(ρ, v) + sup

φ

∫ T

0

∫
Ω

(ρ∂tφ+∇φ · ρv) +

∫
Ω
φ0ρ0 −

∫
Ω
φTρT

}
.
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We get

sup

{
−B(φ, p) :=

∫
Ω
φ0ρ0 −

∫ T

0

∫
Ω
H∗(p+) : φT ≤ Ψ, −∂tφ+

1

2
|∇φ|2 = p

}
,

where H∗ is the Legendre transform of H (the positive part is due to the constraint ρ ≥ 0).
Note that the problem could be written in terms of φ only (as p depends on φ), but in this way
there is more simmetry with the primal problem, as in both case we have two variables ((ρ, v)
or (φ, p)), with a PDE constraint.

Now, we can do our usual computation taking arbitrary (ρ, v) and (φ, p) admissible in the
primal and dual problem. Compute

(5.1) A(ρ, v) + B(φ, p) =

∫
Ω

(Ψ− φT )ρT +

∫ T

0

∫
Ω

(H(ρ) +H∗(p+)− pρ) +
1

2

∫ T

0

∫
Ω
ρ|v +∇φ|2.

Notice (H(ρ) +H∗(p+)− pρ) ≥ λ
2 |ρ− (H ′)−1(p+)|2 where λ = inf H ′′ (with equality if and only

if ρ = (H ′)−1(p+) and ρp = ρp+). Suppose λ > 0.
Supposing for simplicity Ω = Td to be the flat torus, using

A(ρ, v) + B(φ, p) ≥ c
∫ T

0

∫
Ω
|ρ− (H ′)−1(p+)|2

we can deduce, with the same technique as in the rest of the paper, ρ ∈ H1 (we can get both
regularity in space and local in time, see [26] for an improvement up to t = T ). By the way,
using the last term in (5.1), we can also get

∫∫
ρ|D2φ|2 <∞.

It is important to observe that this is just formal, as the computation in (5.1) would require
smooth functions (φ, p) (indeed, (ρ, v) solves the equation in distributional sense, and maximizers
(φ, p) could not be regular enough; in some particular MFG it is not even evident that they do
exist), but this can be fixed using pairs (φε, pε) which are not optimal but optimal up to an
error ε > 0. This is a very powerful feature of the duality method (see [26] or directly [14]).

The above computation is important as it gives regularity for ρ, but this implies regularity
for p+ = H ′(ρ), and p = p+ on {ρ > 0} (i.e. on the set where there is actually some mass).
The function p appears in the Hamilton-Jacobi equation −∂tφ + 1

2 |∇φ|
2 = p. Indeed, the

solution (ρ, v) represents the motion of a population ρ, where each individual follows the velocity
v = −∇φ, and φ is the value function of the control problem

(5.2) min

{∫ T

0

(
|x′(t)|2

2
+ p(t, x(t))

)
dt+ Ψ(x(T ))

}
.

This explains the name mean-field games: we look for a global motion configuration, where each
individual chooses his trajectory by optimizing a criterion where p (and hence ρ) appears, i.e.
where the criterion depends, through a sort of mean-field effect, on the choice of the others.
The mathematical difficulty is that we need to integrate p over a trajectoriy, i.e. a neglible set,
which requires a little bit of regularity.

The situation is even more complicated when we try to study the case where the density
penalization H(ρ) is replaced by the constraint ρ ≤ 1. If we look at the variational problem

min

{∫ T

0

∫
Ω

1

2
ρt|vt|2 +

∫
Ω

ΨρT : ρ ≤ 1

}
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we can compute the dual

sup

{∫
Ω
φ0ρ0 −

∫ T

0

∫
Ω
p+ : φT ≤ Ψ, −∂tφ+

1

2
|∇φ|2 = p

}
.

Note that here p is a pressure arising from the incompressibility constraint ρ ≤ 1 (at the
optimum we will have p = 0 on {ρ < 1} and p ≥ 0 on {ρ = 1}), but finally acts as a price, in the
sense that every agent pays in (5.2) a cost p(x) when passying through a saturated point x with
ρ(x) = 1. Again, in order to give a meaning to (5.2) we need a bit of regularity. The situation
is much trickier, since a priori p, which only appears with linear growth in the dual problem, is
only supposed to be a measure. The same kind of duality arguments as above, with some loss
of exponents due to the linear behavior, allow [17] to get

p ∈ L2
loc((0, T );BV (Ω)),

which is the same result as the one obtained in [2] for the incompressible Euler equation.
To finish this very informal section, we also try to give an idea of how the incompressible

Euler equation can fit this framework. The easiest way is to look at the Eulerian-Lagrangian
framework of [14] and [3], which is a multi-phasic formulation: consider a family of densities ρα,
each following a continuity equation ∂tρα + ∇ · (ραvα) = 0, with given ρα at times t = 0 and
t = 1. Each ρα represents the density of a particle (or of a phase) with label α. Then impose
the global incompressibility constraint

∫
ρα(t, x) dα = 1 for every (t, x), and minimize the total

kinetic energy:

min

{∫
dα

∫ T

0
dt

∫
Ω

1

2
ρα(t, x)|vα(t, x)|2dx :

∫
ρα dα = 1 for every (t, x)

∂tρα +∇ · (ραvα) = 0 for every α

}
.

This provides a similar structure, where the penalization +H(ρ) or the constraint ρ ≤ 1 are
replaced with a multiphasic constaint on

∫
ρα dα, and allows to perform a similar analysis which

was, as we said, the starting point for the method presented in these notes.
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