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1. BASIC COMPUTATIONS

For an immersed hypersurface M ⊂ Rn+1, we call A and H respectively its second
fundamental form and its mean curvature.

Let Mt = ϕ(M, t) be the mean curvature flow (MCF) of a n–dimensional compact hy-
persurface in Rn+1 (or in a flat Riemannian manifold T), defined by the smooth family
of immersions ϕ : M × [0, T )→ Rn+1 which satisfies ∂tϕ = H.

It is well known that if a bounded convex set Ω ⊂ Rn+1 contains ϕ(M, 0) then all the
flow Mt stays inside Ω for every t ∈ [0, T ). Hence, if we embed isometrically such an Ω
in a flat compact Riemannian manifold, we can consider the flow Mt as if it “lives” in T.

Suppose that we have a positive smooth solution of ut = −∆u in Ω × [0, C] and
Mt ⊂ Ω ⊂ Rn+1. The generalization of Huisken’s monotonicity formula by Hamilton
read (see [4, 5, 6])

d

dt

[√
2(C − t)

∫
M

u dµt

]
= −

√
2(C − t)

∫
M

u |H +∇⊥ log u|2 dµt(1.1)

−
√

2(C − t)
∫
M

(
∇⊥∇⊥u− |∇

⊥u|2

u
+

u

2(C − t)

)
dµt

in the time interval [0,min{C, T}), where ∇⊥ denotes the covariant derivative along
the normal direction and dµt is the canonical measure on M associated to the metric
induced by the immersion at time t.

Suppose that we have a positive smooth solution of ut = −∆u in T × [0, C] with T a
flat compact Riemannian manifold without boundary. Then, we have (see [9])
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d

dt

∫
T

u log u dx =

∫
T

|∇u|2

u
dx

d

dt

∫
T

|∇u|2

u
dx = 2

∫
T

u |Hess log u|2 dx

d

dt

∫
T

(
(C − t) |∇u|

2

u
− u log u− (n+ 1)u

2
log [4π(C − t)]− u(n+ 1)

)
dx(1.2)

=

∫
T

(
2(C − t)u |Hess log u|2 − 2

|∇u|2

u
+

(n+ 1)u

2(C − t)

)
dx

=

∫
T

(
2(C − t)u

∣∣∣Hessij log u+
δij

2(C − t)

∣∣∣2 − 2u∆ log u− 2
|∇u|2

u

)
dx

= 2(C − t)
∫

T

u
∣∣∣Hessij log u+

δij
2(C − t)

∣∣∣2 dx ,
in [0,min{C, T}).

2. PERELMAN’S TYPE ENTROPIES FOR MCF

Definition 2.1. Given a flat (n+ 1)–dimensional Riemannian manifold T and a smooth
immersed hypersurface ϕ : M → T, we consider the Huisken’s integral

H(ϕ,T, τ, u) =
√

4πτ

∫
M

u dµ

and the Perelman’s entropy

W(T, τ, u) =

∫
T

(
τ
|∇u|2

u
− u log u− (n+ 1)u

2
log [4πτ ]− u(n+ 1)

)
dx

for τ > 0 and u : T→ R smooth and positive.
We define the combinedHW–entropy as follows,

HW(ϕ,T, τ, u) =H(ϕ,T, τ, u)− 2W(T, τ, u)

=
√

4πτ

∫
M

u dµ−
∫

T

(
2τ
|∇u|2

u
− 2u log u− u(n+ 1) log [4πτ ]− 2u(n+ 1)

)
dx .

Remark 2.2. The Perelman’s functional W shares the following important properties,
see [8],

• Suppose that KT(·, p, τ) is the positive heat kernel at some point p ∈ T and time
τ > 0, for the manifold T, thenW(T, τ,KT(·, p, τ)) ≤ 0. Moreover,W(Rn+1, τ,KRn+1(·, p, τ)) =
0.
• Defining

θ(T, τ) = inf∫
T u dx = 1, u ∈ C∞(T)

W(T, τ, u) ,

we have θ(T, τ) ≤ 0 for every T and τ > 0, and limτ→0+ θ(T, τ) = 0.
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• We have limτ→0W(T, τ,KT(·, p, τ)) = 0.

Definition 2.3. Let ϕ : M → Rn+1 be a smooth, compact, immersed hypersurface.
Given τ > 0, we consider the family Fτ of smooth positive functions u : Rn+1 → R such
that

∫
Rn+1 u dx = 1 and there exists a smooth positive solution of the problem{

vt = −∆v in Rn+1 × [0, τ) ,

v(x, 0) = u(x) for every x ∈ Rn+1 .

Then, we define the following quantity

σ(ϕ, τ) = sup
u∈Fτ
HW(ϕ,Rn+1, τ, u) .

Remark 2.4. The heat kernel K(·, p, τ) of Rn+1 at time τ > 0 and point p ∈ Rn+1 clearly

belongs to the family Fτ , we recall that KRn+1(x, p, τ) = e−
|x−p|2

4τ

(4πτ)
n+1

2
.

Proposition 2.5. The quantity σ(ϕ, τ) is positive and precisely, for every p ∈ Rn+1 and τ > 0,

σ(ϕ, τ) ≥
√

4πτ

∫
M

e−
|x−p|2

4τ

(4πτ)
n+1

2

dµ(x) =

∫
M

e−
|x−p|2

4τ

(4πτ)
n
2

dµ(x) > 0 ,

which is the quantity of the “classical” Huisken’s monotonicity formula. Hence,

σ(ϕ, τ) ≥ sup
p∈Rn+1

∫
M

e−
|x−p|2

4τ

(4πτ)
n
2

dµ(x) > 0 .

Proof. By the previous remark, for every p ∈ Rn+1 and τ > 0, the heat kernelKRn+1(·, p, τ)
belongs to the familyFτ , moreover, my Remark 2.2 it satisfiesW(Rn+1, τ,KRn+1(·, p, τ)) =

0, hence, σ(ϕ, τ) ≥ HW(ϕ,Rn+1, τ,KRn+1(·, p, τ)) =
√

4πτ
∫
M
KRn+1(·, p, τ) dµ(x). �

Before going on we work out some properties of the functions u ∈ Fτ .
We recall the integrated version of Li–Yau Harnack inequality (see [7]).

Proposition 2.6 (Li–Yau integral Harnack inequality in Rn+1). Let u : Rn+1 × (0, T )→ R
be a smooth positive solution of heat equation, then for every 0 < t ≤ s < T we have

u(x, t) ≤ u(y, s)
(s
t

)(n+1)/2

e
|x−y|2
4(s−t) .

Since the functions v : Rn+1×[0, τ)→ R associated to any u ∈ Fτ are positive solutions
of the backward heat equation, such inequality read, for 0 ≤ s ≤ t < τ ,

(2.1) v(x, t) ≤ v(y, s)

(
τ − s
τ − t

)(n+1)/2

e
|x−y|2
4(t−s) .

This estimates, together with the uniqueness theorem for positive solution of the heat
equation (see again [7]), implies that the function u = v(·, 0) is obtained by convolution
of the function v(·, t) with the forward heat kernel at time t > 0. This fact implies that
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the condition
∫
Rn+1 v(x, t) dx = 1 holds for every t ∈ [0, τ), and that every derivative of

every function v is bounded in the strip [0, τ − ε], for every ε > 0.
Another important property is the generalization by Hamilton of differential Li–Yau

Harnack inequality in [4].

Proposition 2.7 (Hamilton’s matrix Harnack inequality in Rn+1). Let u : Rn+1× (0, T )→
R be a smooth positive solution of heat equation such that u, |∇u|, |∇2u| are bounded in space
by some constant C(t) > 0, depending only on t (C(t) is possibly unbounded as t→ 0).
Then, the quadratic matrix

Hij = ∇2
iju−

∇iu∇ju

u
+
u

2t
δij

is non negative definite for every x ∈ Rn and t > 0.

Remark 2.8. In the compact setting the growth hypothesis on u and its derivatives is
obviously not needed.

As the functions w(x, s) = v(x, τ − s) : Rn+1 × (0, τ) → R, are positive solutions of
heat equation on (0, τ) satisfying the hypothesis of this proposition, by the previous
discussion, we get

∇2
ijw −

∇iw∇jw

w
+
w

2s
δij ≥ 0 ,

which in terms of v becomes, as t = τ − s,

(2.2) ∇2
ijv −

∇iv∇jv

v
+

v

2(τ − t)
δij ≥ 0 .

Finally, the last result we need is the fact that formula (1.2) holds for the positive
functions v, even if Rn+1 is not compact. This is another consequence of Li–Yau Harnack
inequality, in particular of the exponential estimate (2.1), see the paper [8] and references
therein for details ([2] in particular).

By formulas (1.1) and (1.2), it follows then if ϕ : M × [0, T ) → Rn+1 is the MCF of a
compact hypersurface M and u ∈ Fτ with associate positive solution v of the backward
heat equation, we have

d

dt
HW (ϕ(·, t),Rn+1, τ − t, v(·, t))

(2.3)

≤ −
√

4π(τ − t)
∫
M

v |H +∇⊥ log v|2 dµt − 4(τ − t)
∫
Rn+1

v
∣∣∣Hessij log v +

δij
2(τ − t)

∣∣∣2 dx
which is clearly negative in the time interval [0,min{τ, T}).

Proposition 2.9. For every compact M , immersion ϕ : M → Rn+1 and τ > 0, the quantity
σ(ϕ, τ) is finite.
Moreover, the sup in Definition 2.3 is actually a maximum which is obtained by some positive
function uτ ∈ Fτ .
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Proof. Let ui : Rn+1 → R be a sequence of smooth positive functions in Fτ such that
HW(ϕ,Rn+1, τ, ui)↗ σ(ϕ, τ).
We know that ui = vi(·, t) ∗ KRn+1(·, 0, t) where KRn+1 is the heat kernel at time t < τ .
By the uniform integrability, one gets compactness of vi(·, t) dx in the weak∗–topology
of measures and using a diagonal procedure, we can assume this holds for a sequence
of times tj → 0. Now, by Harnack estimates and the uniqueness theorem for positive
solutions, we have a smooth non negative limit function vτ : Rn+1 × [0, τ) satisfying
the backward heat equation, which, by maximum principle, it has to be positive or
identically zero, hence, the sequence ui converges to uτ = vτ (·, 0) in L1

loc(Rn+1) and
C∞loc(Rn+1).
It is now standard to see that theW functional is lower semicontinuous with respect to
the L1

loc–convergence and, since the functions ui converge uniformly on compact subset
of Rn+1, also theH term is continuous, thusHW(ϕ,Rn+1, τ, uτ ) = σ(ϕ, τ).
Clearly, the function uτ cannot be zero, otherwise this quantity would be zero also,
hence, the function vτ is positive everywhere, moreover it satisfies 0 ≤

∫
Rn+1 uτ dx ≤ 1.

The last point to check is that
∫
Rn+1 uτ dx = 1, hence uτ ∈ Fτ and we are done. This can

be seen noticing that for any λ > 1 we have

HW(ϕ,Rn+1, τ, λuτ ) = λHW(ϕ,Rn+1, τ, uτ ) + 2λ log λ

∫
Rn+1

uτ dx ≥ λσ(ϕ, τ) > σ(ϕ, τ) .

Hence, if
∫
Rn+1 uτ dx < 1 choosing ũ = u(

∫
Rn+1 uτ dx)−1, which belongs to the family Fτ ,

we would get a contradiction. �

Proposition 2.10 (Rescaling Invariance). For every λ > 0 we have

σ(λϕ, λ2τ) = σ(ϕ, τ) .

Proof. Let u ∈ Fτ with associate solution of backward heat equation v : Rn+1×[0, τ)→ R
and consider the rescaled function ũ(y) = u(y/λ)λ−(n+1).
It is easy to see that∫

Rn+1

ũ(y) dy = λ−(n+1)

∫
Rn+1

u(y/λ) dy =

∫
Rn+1

u(x) dx = 1

with the change of variable x = λ−(n+1)y, moreover the function ṽ(y, s) = v(y/λ, s/λ2)λ−(n+1)

is a positive solution of the backward heat equation on the time interval λ2τ , hence
ũ ∈ Fλ2τ .
It is now a straightforward computation to see thatHW(λϕ,Rn+1, λ2τ, ũ) = HW(ϕ,Rn+1, τ, u)
for every smooth immersion of a compact hypersurface ϕ : M → Rn+1, the statement
clearly follows. �

Proposition 2.11 (Monotonicity and Differentiability). Along a MCF, ϕ : M × [0, T ) →
Rn+1, if τ(t) = C−t for some constant C > 0, the quantity σ(ϕt, τ) is monotone non increasing
in the time interval [0,min{C, T}), hence it is differentiable almost everywhere.
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Moreover, letting fτ = − log uτ , where τ = C− t and uτ is one of maximizer of Proposition 2.9,
we have for almost every t ∈ [0,min{C, T}),

(2.4)
d

dt
σ(ϕ, τ) ≤ −

√
4πτ

∫
M

e−fτ
∣∣H−∇⊥fτ ∣∣2 dµt − 4τ

∫
Rn+1

e−fτ
∣∣∣∣Hessijfτ −

δij
2τ

∣∣∣∣2 dx
or, since this inequality has to be intended in distributional sense, for every 0 ≤ r < t < T ,

σ(ϕr, τ(r))− σ(ϕt, τ(t)) ≥
∫ t

r

√
4πτ

∫
M

e−fτ
∣∣H−∇⊥fτ ∣∣2 dµs ds(2.5)

+ 4

∫ t

r

τ

∫
Rn+1

e−fτ
∣∣∣∣Hessijfτ −

δij
2τ

∣∣∣∣2 dx ds .
Proof. Fix some time t ∈ [0,min{C, T}) and let ui be a sequence of functions in Fτ such
that HW(ϕ(·, t),Rn+1, τ, ui)↗ σ(ϕ(·, t), τ). By definition, there exist a family of positive
solutions vi : Rn+1 × [0, C − t) of the backward heat equation such that vi(x, 0) = ui(x).
Being the functions ui smooth, we can extend such solutions of the backward heat equa-
tions on Rn+1 to the time interval [−t, C − t], simply solving backward the heat equation
with initial data ui, notice that they remain positive by the strong maximum principle. It
is easy to see then that defining uεi (x) = vi(x,−ε) for ε ∈ (0, t], every function uεi belongs
to the family Fτ+ε. Hence, by inequality (2.3)

σ(ϕt−ε, τ + ε)−HW (ϕt,Rn+1, τ, ui) ≥ HW(ϕt−ε,Rn+1, τ + ε, uεi )−HW(ϕt,Rn+1, τ, ui)

=

∫ 0

−ε

√
4πτ

∫
M

vi |H +∇⊥ log vi|2 dµs ds

+ 4

∫ 0

−ε
τ

∫
Rn+1

vi

∣∣∣Hessij log vi +
δij
2τ

∣∣∣2 dx ds
and passing to the limit

σ(ϕt−ε, τ + ε)− σ(ϕt, τ) ≥
∫ 0

−ε

√
4πτ

∫
M

vi |H +∇⊥ log vi|2 dµs ds

+ 4

∫ 0

−ε
τ

∫
Rn+1

vi

∣∣∣Hessij log vi +
δij
2τ

∣∣∣2 dx ds ≥ 0 ,

which gives the monotonicity of σ(ϕ, τ).
The last assertion is standard, using Hamilton’s trick (see [3]) to exchange the sup and

derivative operations. �

Remark 2.12. Notice that the quantity σ can be defined also for any n–dimensional count-
ably rectifiable subset S of Rn+1, by substituting in the definition ofHW the term

∫
M
u dµ

with
∫
S
u dHn, where Hn is the n–dimensional Hausdorff measure (possibly counting

multiplicities). If then S is the support of a rectifiable varifold, with finite Area, mov-
ing by mean curvature according to Brakke’s definition (see [1]), Huisken–Hamilton’s
monotonicity formula (1.1) holds, hence, also this proposition.



SOME ENTROPIES FOR MEAN CURVATURE FLOW 7

Definition 2.13. We define, in the same hypothesis, for τ = C − t with C ≤ T ,

Σ(C) = lim
t→C−

σ(ϕt, τ) ,

and Σ = Σ(T ).

By Proposition 2.5, Σ ≥ supp∈Rn+1 Θ(p), where this latter quantity is defined as

Θ(p) = lim
t→T−

1

[4π(T − t)]n2

∫
M

e−
|x−p|2
4(T−t) dµ(x) ,

the existence of this limit for every p ∈ Rn+1 is a consequence of Huisken’s monotonicity
formula.

3. OTHER ENTROPIES

Definition 3.1. Let ϕ : M → Rn+1 be a smooth, compact, immersed hypersurface.

• Given τ > 0, we consider the family Fτ of smooth positive functions u : Rn+1 →
R such that

∫
Rn+1 u dx = 1 and there exists a smooth positive solution of the

problem {
vt = −∆v in Rn+1 × [0, τ) ,

v(x, 0) = u(x) for every x ∈ Rn+1 .

Then, we define the following quantity

σH(ϕ, τ) = sup
u∈Fτ
H(ϕ,Rn+1, τ, u) .

• Given τ > 0, we consider the subfamily Kτ of Fτ of the heat kernels of Rn+1 at
time τ > 0, that is, Kτ = {KRn+1(·, p, τ) | p ∈ Rn+1}.
Then, we define the following quantity

σK(ϕ, τ) = sup
p∈Rn+1

HW(ϕ,Rn+1, τ,KRn+1(·, p, τ))

= sup
p∈Rn+1

H(ϕ,Rn+1, τ,KRn+1(·, p, τ)) .

• Given a flat Riemannian manifold T, a Riemannian covering map I : Rn+1 → T
and τ > 0, we consider the immersion ϕ̃ = I ◦ ϕ : M → T and we define the
family FT,τ of smooth positive functions u : T → R such that

∫
T
u dx = 1 and

there exists a smooth positive solution of the problem{
vt = −∆v in T× [0, τ)

v(x, 0) = u(x) for every x ∈ T .

Then, we define the following quantity

σT(ϕ, τ) = sup
u∈FT,τ

HW(ϕ̃,T, τ, u) .
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• Given an open bounded convex set with smooth boundary Ω ⊂ Rn+1 such that
ϕ(M) ⊂ Ω, we define the familyFΩ,τ of smooth positive functions u : Ω→ R such
that

∫
Ω
u dx = 1, ∂u/∂ν = 0 on ∂Ω and there exists a smooth positive solution of

the problem 
vt = −∆v in Ω× [0, τ)

v(x, 0) = u(x) for every x ∈ Ω
∂v
∂ν

= 0 in ∂Ω× [0, τ) .

Then, we define the following quantity

σΩ(ϕ, τ) = sup
u∈FΩ,τ

HW(ϕ,Rn+1, τ, u) .

Remark 3.2. All these quantities are well defined, finite, positive and monotonically de-
creasing if ϕt moves by mean curvature.
For σT and σΩ, we can use again as a test function in order to show their positivity, the
relative heat kernel at time τ > 0 but the analysis is more delicate, see the paper by Lei
Ni [8]. It can also be shown that

lim inf
τ→0

sup
FT,τ

(−2W) = −2 lim sup
τ→0

inf
FT,τ

W ≥ 0 ,

lim inf
τ→0

sup
FΩ,τ

(−2W) = −2 lim sup
τ→0

inf
FΩ,τ

W ≥ 0 .
(3.1)
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