SOME ENTROPIES FOR MEAN CURVATURE FLOW
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1. BAsic COMPUTATIONS

For an immersed hypersurface M C R"*!, we call A and H respectively its second
fundamental form and its mean curvature.

Let M; = (M, t) be the mean curvature flow (MCF) of a n—-dimensional compact hy-
persurface in R"*! (or in a flat Riemannian manifold T), defined by the smooth family
of immersions ¢ : M x [0,7) — R™" which satisfies 9, = H.

It is well known that if a bounded convex set Q C R"™! contains (M, 0) then all the
flow M, stays inside €2 for every ¢t € [0, 7). Hence, if we embed isometrically such an (2
in a flat compact Riemannian manifold, we can consider the flow 1/, as if it “lives” in T.

Suppose that we have a positive smooth solution of u; = —Au in Q x [0,C] and
M; C Q C R""'. The generalization of Huisken’s monotonicity formula by Hamilton
read (see [4, 5, 6])

) 5 [VACD [ ] =~ VEC=1) [ ultt+ 9 oguf du
_m/ (vaLu_ VZouP | w )dm
M u

2(C —1t)
in the time interval [0, min{C,T}), where V+ denotes the covariant derivative along
the normal direction and dy; is the canonical measure on M associated to the metric
induced by the immersion at time ¢.
Suppose that we have a positive smooth solution of u; = —Auin T x [0,C] with T a
flat compact Riemannian manifold without boundary. Then, we have (see [9])
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in [0, min{C, T}).

2. PERELMAN’S TYPE ENTROPIES FOR MCF

Definition 2.1. Given a flat (n + 1)-dimensional Riemannian manifold T and a smooth
immersed hypersurface ¢ : M — T, we consider the Huisken’s integral

H(p, T, 1,u) = \/47T7'/ wdp
M

and the Perelman’s entropy

W(T, 7, 1) /

T

2
1
(7‘ Val® _ ulogu — WT)U log [47n7] — u(n + 1)) dx
u

for 7 > 0and v : T — R smooth and positive.
We define the combined H)V-entropy as follows,

HW(o, T, 1,u) =H(p, T, 7,u) — 2W(T, 7, u)
:m/ udu_/(zT‘V“
M T u

Remark 2.2. The Perelman’s functional )V shares the following important properties,
see [8],
e Suppose that K1 (-, p, 7) is the positive heat kernel at some point p € T and time
7 > 0, for the manifold T, then W(T, 7, K1 (-, p, 7)) < 0. Moreover, W(R"™! 7, Kgnt1(-,p, 7)) =
0.
e Defining

‘ 2

—2ulogu — u(n + 1) log [477] — 2u(n + 1)) dx .

O(T,7) = inf W(T, 1,u),

Jpudz=1,u e C>(T)

we have (T, 7) <0 forevery T and 7 > 0, and lim, o+ 8(T, 7) = 0.
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e We have lim,_,o, W(T, 7, Kr(-,p,7)) = 0.

Definition 2.3. Let ¢ : M — R""! be a smooth, compact, immersed hypersurface.
Given 7 > 0, we consider the family F, of smooth positive functions « : R"*! — R such
that [,.,, udz = 1 and there exists a smooth positive solution of the problem

vy =—Av inR"™ x [0,7),
v(z,0) = u(x) for every x € R,

Then, we define the following quantity
o(p,7) = sup HW(o, R"™ 7 u).

u€.7:7—

Remark 2.4. The heat kernel K(-,p,7) of R"*! at time 7 > 0 and point p € R"™! clearly

_la—p|?
belongs to the family F,, we recall that Kgn+1 (2, p, 7) = “—.

(4n7)" 2
Proposition 2.5. The quantity o(p, T) is positive and precisely, for every p € R"™ and 7 > 0,

_Jz—p|? _Jz—p|?

. 2 VT [ dute) = [ dut) 0.

(47r7‘) nTH (47‘(’ T ) 2
which is the quantity of the “classical” Huisken’s monotonicity formula. Hence,

_lz—p|?

o(p,7) > sup / %du(:ﬁ) >0.
peRn+1 J v (477'7') 2

Proof. By the previous remark, for every p € R"* and 7 > 0, the heat kernel Kgn+1 (-, p, 7)
belongs to the family F,, moreover, my Remark 2.2 it satisfies W(R"*!, 7, Kgn+1(+,p, 7))

0, hence, (¢, 7) > HW(p, R" 7, Kpn+1 (-, p, 7)) = VAT [}, Ko (-, p, 7) dpa(). O

Before going on we work out some properties of the functions u € 7.
We recall the integrated version of Li-Yau Harnack inequality (see [7]).
Proposition 2.6 (Li—Yau integral Harnack inequality in R"*!). Let v : R"* x (0,7) — R
be a smooth positive solution of heat equation, then for every 0 < t < s < T we have
(n+1)/2 |o—y|?
u(z,t) < u(y,s) (;) e iG-0 .

Since the functions v : R""'x [0, 7) — R associated to any u € F, are positive solutions
of the backward heat equation, such inequality read, for 0 < s <t < 7,

T — s) (/2,2

e 4(t—s) |

(2.1) v(z,t) <oy, s) <

This estimates, together with the uniqueness theorem for positive solution of the heat
equation (see again [7]), implies that the function u = v(-, 0) is obtained by convolution
of the function v(-,¢) with the forward heat kernel at time ¢ > 0. This fact implies that

T—1
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the condition [, v(z,t) dx = 1 holds for every t € [0,7), and that every derivative of
every function v is bounded in the strip [0, 7 — €], for every ¢ > 0.

Another important property is the generalization by Hamilton of differential Li-Yau
Harnack inequality in [4].

Proposition 2.7 (Hamilton’s matrix Harnack inequality in R"™). Let u : R™™ x (0,7) —
R be a smooth positive solution of heat equation such that u, |Vul|, |V?u| are bounded in space
by some constant C'(t) > 0, depending only on t (C(t) is possibly unbounded as t — 0).

Then, the quadratic matrix

ViuVu L
u 2t
is non negative definite for every x € R" and t > 0.

Hz‘j = V?JU 5@'

Remark 2.8. In the compact setting the growth hypothesis on v and its derivatives is
obviously not needed.

As the functions w(z, s) = v(xz,7 — s) : R"™! x (0,7) — R, are positive solutions of
heat equation on (0, 7) satisfying the hypothesis of this proposition, by the previous
discussion, we get

V,2wV,w w
2 WV
Vijw— T_’_Q_Séw Z 07
which in terms of v becomes, ast = 7 — s,

V., oV,v v
2.2 Vip - 6::>0.
(2.2) is" v +2(T—t> 7=

Finally, the last result we need is the fact that formula (1.2) holds for the positive
functions v, even if R"*! is not compact. This is another consequence of Li-Yau Harnack
inequality, in particular of the exponential estimate (2.1), see the paper [8] and references
therein for details ([2] in particular).

By formulas (1.1) and (1.2), it follows then if ¢ : M x [0,7) — R"*! is the MCF of a
compact hypersurface M and u € F, with associate positive solution v of the backward
heat equation, we have

(2.3)
%HW (90(7 t)> RnJrla T —1, U('a t))

< —\/47T(T—t)/MU|H—|—Vllogvl2dut—4(T—t)/R

which is clearly negative in the time interval [0, min{7,T'}).

0 2
v ‘Hessij logv + 2 i ) dx

n+1

Proposition 2.9. For every compact M, immersion ¢ : M — R"™ and 7 > 0, the quantity
o(, T) is finite.

Moreover, the sup in Definition 2.3 is actually a maximum which is obtained by some positive
function u, € F..
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Proof. Let u; : R"*' — R be a sequence of smooth positive functions in F, such that
HW (o, R"™ 1 u;) N a(p,T).

We know that u; = v;(+,t) * Kgnt1(-,0,t) where Kgn+1 is the heat kernel at time ¢t < 7.
By the uniform integrability, one gets compactness of v;(-, t) dz in the weak*—topology
of measures and using a diagonal procedure, we can assume this holds for a sequence
of times t; — 0. Now, by Harnack estimates and the uniqueness theorem for positive
solutions, we have a smooth non negative limit function v, : R"*! x [0, 7) satisfying
the backward heat equation, which, by maximum principle, it has to be positive or
identically zero, hence, the sequence u; converges to u, = v,(-,0) in L}, .(R""') and

l%oc (RnJrl).

It is now standard to see that the WV functional is lower semicontinuous with respect to
the L} —convergence and, since the functions u; converge uniformly on compact subset
of R™™, also the H term is continuous, thus HW (¢, R"™ 7 u.) = o(p, 7).

Clearly, the function u, cannot be zero, otherwise this quantity would be zero also,
hence, the function v, is positive everywhere, moreover it satisfies 0 < fRn aurde < 1.
The last point to check is that fRn .1 urdxr = 1, hence u, € F, and we are done. This can

be seen noticing that for any A > 1 we have

HW (o, R" 7 \uy) = AHW (o, R 7 ou,) + 2)\10g)\/ urdr > Ao, 7) > oo, 7).
Rn+1
Hence, if [;,,: u- dz < 1 choosing @ = u( [;.,: ur dz)~!, which belongs to the family 7.,
we would get a contradiction. O

Proposition 2.10 (Rescaling Invariance). For every A > 0 we have

oA, \27) = a(p, 7).

Proof. Letu € F, with associate solution of backward heat equation v : R"** x[0,7) — R
and consider the rescaled function u(y) = u(y/A\) A=+,
It is easy to see that

/ i(y) dy = A0+ / u(y/\) dy = / u(w) de = 1
Rn+1 Rn+1 Rn+1

with the change of variable » = A\~("*1y, moreover the function 9(y, s) = v(y/A, s/ ) A=+
is a positive solution of the backward heat equation on the time interval A?r, hence

u € Fzr.

It is now a straightforward computation to see that HW(Ap, R" ™ A\, 4) = HW (o, R" ™, 7, u)
for every smooth immersion of a compact hypersurface ¢ : M — R"™!, the statement
clearly follows. O

Proposition 2.11 (Monotonicity and Differentiability). Along a MCF, ¢ : M x [0,T) —
R if 7(t) = C —t for some constant C' > 0, the quantity o (py, T) is monotone non increasing
in the time interval [0, min{C, T'}), hence it is differentiable almost everywhere.
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Moreover, letting f, = —logu,, where T = C' —t and u, is one of maximizer of Proposition 2.9,
we have for almost every t € [0, min{C,T'}),

(2.4) %a(gp,r) < —\/47T7'/MefT

or, since this inequality has to be intended in distributional sense, for every 0 < r <t < T,

(2.5) ooy, 7(1r)) — (i, T(t)) > /t@/Meff

¢
—|—4/ 7'/ e I
r R+

Proof. Fix some time ¢ € [0, min{C,T'}) and let u; be a sequence of functions in F, such
that HW(p(-,t), R"" 7 u;) 7 o(p(-,t), 7). By definition, there exist a family of positive
solutions v; : R"™ x [0,C — t) of the backward heat equation such that v;(z,0) = u;(z).
Being the functions u; smooth, we can extend such solutions of the backward heat equa-
tions on R™*! to the time interval [—¢, C' — ¢], simply solving backward the heat equation
with initial data u;, notice that they remain positive by the strong maximum principle. It
is easy to see then that defining uS(z) = v;(x, —¢) for € € (0, t], every function u; belongs
to the family ... Hence, by inequality (2.3)

U(th—sa T+ 5) - HW ((pta Rn+17 T, uz) Z HW(SDt—Ea Rn+17 T+ g, Uf) - HW(SDM Rn+17 T, uz)

0
:/ \/47T7'/ v; [H+ V*log v dus ds
—€ M

0
+4/ 7'/ V;
—e Rn+1

and passing to the limit

2

5
Hess;; fr — 2—J dx
T

H—VLfT}2 dut—47'/ eI

Rn+1

H— V| dp, ds

2

i dz ds .

Hess;; f- — o
-

2
dz ds

O;i
Hess;; log v; + 2—j
-

0
o(pt-e, 7+ ) —0(pr,T) > / \/477/ v; [H 4 V+log v dus ds
—€ M

0
+4/ T/ V;
—& Rnt+1

which gives the monotonicity of o(p, 7).
The last assertion is standard, using Hamilton’s trick (see [3]) to exchange the sup and
derivative operations. O

Sii |2
Hess;; log v; + 2—] drds >0,
T

Remark 2.12. Notice that the quantity o can be defined also for any n—dimensional count-
ably rectifiable subset S of R"*!, by substituting in the definition of #W the term [, u dpu
with [ udH", where H" is the n-dimensional Hausdorff measure (possibly counting
multiplicities). If then S is the support of a rectifiable varifold, with finite Area, mov-
ing by mean curvature according to Brakke’s definition (see [1]), Huisken-Hamilton’s
monotonicity formula (1.1) holds, hence, also this proposition.
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Definition 2.13. We define, in the same hypothesis, for 7 = C' -t with C' < T,
E(C) = hm U(QOt,T),
t—C—

and ¥ = X(7).
By Proposition 2.5, ¥ > sup,cg«+1 ©(p), where this latter quantity is defined as
1 |z —p>
O(p) = lim ——— TIHT-D 7
(v) = tm (T — )]3 /M ¢ ()

the existence of this limit for every p € R"! is a consequence of Huisken’s monotonicity
formula.

3. OTHER ENTROPIES

Definition 3.1. Let ¢ : M — R""! be a smooth, compact, immersed hypersurface.

e Given 7 > 0, we consider the family 7, of smooth positive functions u : R"*! —
R such that fRn ., udr = 1 and there exists a smooth positive solution of the
problem

vy = —Av in R"™ x [0,7),
v(z,0) = u(x) for every x € R,
Then, we define the following quantity

oulp,7) = sup H(p, R" 7,u).
ueF-

e Given 7 > 0, we consider the subfamily K, of F, of the heat kernels of R"*! at
time 7 > 0, thatis, K, = {Kgu+1(-,p,7) | p € R""}.
Then, we define the following quantity
ox(o,7) = sup HW(p, R™ 7, Kgnia (-, p, 7))
peRn+1

= sup H(p,R"™ 7 Kgnii(-,p,7)).

peRn+1

e Given a flat Riemannian manifold T, a Riemannian covering map 7 : R"*' — T
and 7 > 0, we consider the immersion ¢ = [ o ¢ : M — T and we define the
family Fr . of smooth positive functions u : T — R such that [,udz = 1 and
there exists a smooth positive solution of the problem

vy =—AvinT x [0,7)

v(x,0) = u(z) foreveryz € T.
Then, we define the following quantity

O'T(QO, T) = Sup HW(&? Ta T, u) :

uG]—'TJ-
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e Given an open bounded convex set with smooth boundary Q@ € R"*! such that
(M) C 2, we define the family Fq, , of smooth positive functions u : Q — R such
that [, udz = 1, 9u/0v = 0 on 99 and there exists a smooth positive solution of
the problem

vy =—Av in Q x [0,7)

v(x,0) = u(z) for every z € Q

P —=0indQx[0,7).

Then, we define the following quantity
ga(p,7) = sup HW(p, R"™ 7 u).
UE}—Q;,-

Remark 3.2. All these quantities are well defined, finite, positive and monotonically de-
creasing if ¢, moves by mean curvature.
For o1 and oq, we can use again as a test function in order to show their positivity, the

relative heat kernel at time 7 > 0 but the analysis is more delicate, see the paper by Lei
Ni [8]. It can also be shown that

lim inf sup(—2W) = —2limsup inf W >0,

(3 1 T—0 *FT,T 7—0 -FT,T
D lim inf sup(—2W) = —2limsup inf W > 0.
T—0 Fa,r r—0 For
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