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ON THE MINIMALITY OF THE POTENTIAL FUNCTION OF A GRADIENT
SHRINKING RICCI SOLITON

CARLO MANTEGAZZA

1. GRADIENT SHRINKING RICCI SOLITONS AND THEIRW–ENTROPY

A gradient shrinking Ricci soliton is a complete, connected Riemannian manifold (M, g)
satisfying the relation

Ric +∇2f =
g

2
,

for some smooth function f : M → R which is called potential function of the soliton
(M, g, f).

It is well known that the quantity a(g, f) := R + |∇f |2 − f must be constant on M and
it is often called the auxiliary constant.

We recall the following growth estimates, originally proved by Cao–Zhou and Munteanu [1,
7] and improved by Haslhofer–Müller [5] to the present form.

Proposition 1.1 (Potential and volume growth, Lemma 2.1 and 2.2 in [5]). Let (M, g, f)
be an n–dimensional gradient shrinking Ricci soliton with auxiliary constant a(g, f). Then there
exists a point p ∈ M where f attains its infimum and we have the following estimates for the
growth of the potential

1

4

(
dg(x, p)− 5n

)2
+
≤ f(x)− a(g, f) ≤ 1

4

(
dg(x, p) +

√
2n
)2
.

Moreover, we have the volume growth estimate Vol(B∞r (p)) ≤ V (n)rn for geodesic balls in
(M, g) around p ∈M , where V (n) is a constant depending only on the dimension n of the soliton.

As a consequence of these estimates,
∫
M
e−fdVol is well–defined and the potential

function f can always be ”normalized” by adding a constant in order that∫
M

e−f

(4π)n/2
dVol = 1. (1.1)

We then call such a potential function f and the resulting soliton (M, g, f) normalized.

In all the paper we will always consider complete, connected, normalized, gradient, shrinking
Ricci solitons, unless explicitly stated.

Proposition 1.1 implies that every function φ satisfying |φ(x)| ≤ Ceαd
2
g(x,p) for some

α < 1
4

and constant C, is integrable with respect to e−fdVol. In particular, since 0 ≤
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R + |∇f |2 ≤ f + a(g, f) and4f = n
2
− R, this holds for every polynomial in f , |∇f |2, R

and4f . Hence, every gradient shrinking Ricci soliton has a well–definedW–entropy

W(g, f) :=

∫
M

(
R + |∇f |2 + f − n

) e−f

(4π)n/2
dVol.

Let us now collect some properties of shrinking solitons and theirW–entropy that we
will use in the next sections.

Lemma 1.2. For every normalized, gradient, shrinking Ricci soliton (M, g) with potential
function f : M → R, the following properties holds:

(1) Either the scalar curvature R is positive everywhere or (M, g) is the standard flat Rn and
f(x) = |x− x0|2/4 for some x0 ∈ Rn, called ”Gaussian soliton”.

(2) There holds

W(g, f) =

∫
M

(
R + 24f − |∇f |2 + f − n

) e−f

(4π)n/2
dVol.

(3) TheW–entropyW(g, f) is equal to −a(g, f).
(4) Two potential functions f 1 and f 2 of the same soliton (M, g) either coincide, or (M, g) is

the Riemannian product of the flat Rk, for some k > 1 with a Riemannian manifold (M̃, g̃)

which is still a gradient shrinking Ricci soliton with a potential function f̃ : M → R and

f `(x, y) = f̃(x) + 1
4
|y − y`|2Rk ,

for some points y1 and y2 ∈ Rk.
In particular, if M is compact, there can be only one potential function for the soliton
(M, g).

(5) Any two potential functions f 1 and f 2 of the same soliton (M, g) share the same auxiliary
constant, that is a(g, f 1) = a(g, f 2), which impliesW(g, f 1) = W(g, f 2). Hence, we
can speak respectively of the auxiliary constant a(g) and theW–entropyW(g) of the
soliton (M, g)

(6) We have W(g) ≤ 0 and W(g) = 0 if and only if the manifold (M, g) is the flat Rn

(Gaussian soliton).
(7) If a soliton (M, g, f) is also an Einstein manifold, either it is compact and f is constant,

or (M, g, f) is the Gaussian soliton.

Proof. (1) This is a result of Zhang [16, Theorem 1.3] and Yokota [13, Appendix A.2]
(see also Pigola, Rimoldi and Setti [9]).

(2) The necessary partial integration formula∫
M

4fe−fdVol =

∫
M

|∇f |2e−fdVol

follows from the growth estimates of Proposition 1.1 using a cut–off argument.
See Section 2 of Haslhofer–Müller [5] for full detail.
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(3) By the auxiliary equation a(g, f) = R + |∇f |2 − f and the traced soliton equation
R +4f = n

2
, we have

R + 24f − |∇f |2 + f − n = −a(g, f) ,

hence, the equalityW(g, f) = −a(g, f) follows from Point 2, by integration.
(4) Since the Hessian of any potential of the soliton is uniquely determined by the

soliton equation, the difference function h := f 1 − f 2 is either a constant or the
vector field ∇h is parallel. In the first case, the constant has to be zero by the
normalization condition (1.1). In the second case, by De Rham’s splitting theorem,
(M, g) isometrically splits off a line (see for instance [3, Theorem 1.16]). Hence, we
let (M, g) = (M̃, g̃)× (Rk, can), with 1 ≤ k ≤ n, such that M̃ cannot split off a line.
Denoting by x the coordinates on M̃ and by y the coordinates on Rk, the soliton
equation implies that both potentials also split as f `(x, y) = f̃ `(x) + 1

4
|y − y`|2Rk for

` = 1, 2, where y` ∈ Rk. Moreover, (M̃, g̃) is still a gradient shrinking Ricci soliton
with both functions f̃ ` : M̃ → R as possible potentials, and since M̃ cannot split
off a line, they must coincide. Thus, we have

f `(x, y) = f̃(x) + 1
4
|y − y`|2Rk ,

for some function f̃ : M̃ → R.
(5) Integrating the two functions e−f` of the previous point, by means of Fubini’s

theorem and the normalization condition (1.1), we get that

a(g, f `) = R + |∇f `|2 − f ` = R + |∇f̃ |2 − f̃
which is independent of ` = 1, 2.

(6) This point is a result of Yokota (Carrillo–Ni [2] got similar results under more
restrictive curvature hypotheses). Our version is equivalent to his statement [13,
Corollary 1.1] and [14, Theorem 2].

(7) By point (1) either the scalar curvature is positive, or (M, g, f) is the Gaussian
soliton. In the first case (M, g) must be Einstein with a positive constant, hence, it
is compact (by Myers’s diameter estimate) with constant scalar curvature if n ≥ 3.
If n = 2 it is known that the only compact solitons are S2 and its quotient RP2

with a constant potential function. If n ≥ 3 it follows that ∆f is constant on M ,
which is compact, hence, the potential function f (unique by compactness, see
point (4)) is constant.

�

2. THE CRITICAL POINTS OF THE FUNCTIONALW

We consider the Perelman’s functionalW on a normalized, gradient, shrinking Ricci
solitons (M, g, f), freezing the metric g and varying only the function f . We want to
discuss the existence of a minimizer or, more generally, of a critical point f ∈ C∞(M),
under the constraint

∫
M

e−f

(4π)n/2 dVol = 1.
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Substituting u = e−f/2

(4π)n/4 the functional becomes

W̃(u) =

∫
M

(
Ru2 + 4|∇u|2 − u2 log u2 − u2n

2
log 4π − nu2

)
dVol ,

under the constraint
∫
M
u2 dVol = 1.

Moreover, in studying its properties, we can actually consider the functional F̃ defined
as

F̃ (u) =

∫
M

(
Ru2 + 4|∇u|2 − u2 log u2

)
dVol ,

which differs by W̃(u) only for a constant term, by the constraint
∫
M

e−f

(4π)n/2 dVol = 1 and
we define the infimum

σ = inf
u∈C∞(M),

∫
M u2 dVol=1

F̃ (u).

Notice that, even in the flat Rn, the functional F̃ (u) could be unbounded above on
H1(M, g), indeed, consider the functions, for t > 1, which all satisfy

∫
M
u2t dVol = 1,

ut =
e−
|x|2
8t

(4πt)n/4
.

We see that

|∇ut|2 =
|x|2

16t2
u2t and − u2t log u2t =

(
|x|2

4t
+
n

2
log 4πt

)
u2t ,

hence,

F̃ (ut) =

∫
M

(
|x|2

2t2
+
n

2
log 4πt

)
u2t dVol =

∫
M

|x|2

2t2
u2t dVol +

n

2
log 4πt

By direct computation, we can see that∫
M

|∇ut|2 dVol =

∫
M

|x|2

16t2
u2t dVol = C/t ,

hence, the family of functions ut, for t ≥ 1, is uniformly bounded in H1(M, g) but
limt→+∞ F̃ (ut)→ +∞.

We first discuss when the functional F̃ is bounded below on H1(M, g). Notice that
if (M, g) is different by the flat Rn, the function R is everywhere positive and actually
bounded above by

R ≤ f + a(g) ≤ 2a(g) +
1

4

(
dg(x, p) +

√
2n
)2

for some point p ∈ M , by the results of the previous section. Hence, we only need
to uniformly bound the integrand u2 log u2 (notice that the function h(t) = t2 log t2 is
C1, defining h(0) = 0) and bounded below by 1/e) , hence, we will need that Sobolev
inequalities hold. This is assured by the following result of Varopoulos in [12] (see
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also [4]), assuming that the Ricci tensor is uniformly bounded below and the soliton is
non–collapsed.

Proposition 2.1 (Theorem 3.2 in [6]). Let (M, g) be a smooth, complete, n–dimensional Rie-
mannian manifold with Ricci tensor bounded below and

inf
x∈M

Vol(B1(x)) > 0 ,

where B1(p) is the unit geodesic ball in (M, g) of center x ∈M .
Then, the Sobolev embeddings W 1,q(M, g) ↪→ Lp(M, g) holds for every q ∈ [1, n), where
1/p = 1/q − 1/n.

As we do not know whether every normalized, gradient, shrinking Ricci soliton has a
bound from below on the Ricci tensor and/or it must be non–collapsed. What we know
is that, by Perelman’s work [8], all the gradient, shrinking Ricci solitons coming from a
blow–up of a compact Ricci flow satisfy these conditions.

From now on we will assume, unless differently specified, that all the solitons we
are going to consider are non–collapsed and with Ricci tensor bounded below. As a
consequence, Sobolev embeddings hold, in particular, there exists a constant CM such
that ∫

M

u2
∗
dVol ≤

(
CM

∫
M

(|∇u|2 + u2) dVol
) n

n−2
,

where 2∗ = 2n
n−2 , for every u ∈ H1(M, g) (when n = 2 we can take 2∗ to be whatever value

in (2,+∞), by Theorem 3.7 in [6]).

Proposition 2.2. On H1(M, g) the functional F̃ (hence also W and W̃ ) is uniformly bounded
below, that is, σ > −∞.

Proof. Clearly, since we know that R ≥ 0 it is sufficient to show that the integral∫
M
u2 log u2 dVol is uniformly bounded above.

For any u ∈ H1(M, g), by applying Jensen inequality with respect to the probability
measure u2 dVol, one has∫

M

u2 log u2 dVol =
n− 2

2

∫
M

u2 log u
4

n−2 dVol

≤ n− 2

2
log
(∫

M

u2u
4

n−2 dVol
)

=
n− 2

2
log
(∫

M

u
2n
n−2 dVol

)
=
n− 2

2
log
(∫

M

u2
∗
dVol

)
.



DR
AF
T

6 C. MANTEGAZZA

On the other hand,

log
(∫

M

u2
∗
dVol

)
≤ log

[(
CM

∫
M

(|∇u|2 + u2) dVol
) n

n−2
]

=
n

n− 2
log
(
CM

∫
M

(|∇u|2 + u2) dVol
)
,

where CM is the Sobolev constant of (M, g).
Putting together these two inequalities we get

−
∫
M

u2 log u2 dVol ≥ − log
(
CM

∫
M

(|∇u|2 + u2) dVol
)
≥ −4

∫
M

(|∇u|2 + u2) dVol− C ′M ,

for some positive constant C ′M depending only on (M, g). Hence,

F̃(u) =

∫
M

(
Ru2 + 4|∇u|2 − u2 log u2

)
dVol

≥ 4

∫
M

|∇u|2 dVol− 4

∫
M

(|∇u|2 + u2) dVol− C ′M

= − 4

∫
M

u2 dVol− C ′M

= − 4− C ′M ,

where in the last passage we used that
∫
M
u2 dVol = 1. This shows that σ > −∞. �

2.1. Critical Points and Minima. By means of compact perturbations, every critical
point of the functionals F̃ or W̃ satisfies the Euler equation

−4∆u+ Ru− 2u log u = λu

for some constant λ coming from the constraint. Indeed, as usual, multiplying by u and
integrating, we get

W̃(u) =

∫
M

(
Ru2 + 4|∇u|2 − u2 log u2 − u2n

2
log 4π − nu2

)
dVol = λ− n

2
log 4π − n ,

that is,
λ = W̃(u) +

n

2
log 4π + n .

Rereading all this in terms of the function f = − log [(4π)n/2u2] we get, equivalently,

2∆f − |∇f |2 + R + f = λ− n

2
log 4π

for every constrained critical point f : M → R of the functionalW such that u = e−f/2

(4π)n/4 ∈
H1(M, g) and

∫
M

e−f

(4π)n/2 dVol = 1. Moreover,

λ =W(f) +
n

2
log 4π + n ,

hence, setting µ = λ− n
2

log 4π, we conclude as follows.
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Proposition 2.3. A constrained critical point of the functional W on the set of functions f :

M → R such that u = e−f/2

(4π)n/4 ∈ H1(M, g) and
∫
M

e−f

(4π)n/2 dVol = 1 satisfies

2∆f − |∇f |2 + R + f = µ

where the constant µ is given by
µ =W(f) + n .

The potential function f , satisfies ∆f + R = n/2 and
∫
M
e−f dVol = 1, moreover,

R + |∇f |2 − f = a(g, f) = a(g), hence,

2∆f − |∇f |2 + R + f = n− a(g) = n+W(g) = n+W(f)

which implies that f is a critical point of the functionalW .
In the following, we want to discuss whether other critical point or minimizers ofW

actually exist and their relation with the potential function of the soliton (M, g).

2.2. The Compact Case.

Proposition 2.4. If the soliton (M, g) is compact, the infimum σ is achieved by a minimizer
u ∈ C∞(M), moreover, u > 0 everywhere on M .

Proof. The same argument showing that σ > −∞, gives that any minimizing sequence
ui ∈ C∞(M), with ‖u‖L2 = 1, is uniformly bounded in the space H1(M, g). Hence, we
can extract a subsequence (not relabeled) weakly converging in H1(M, g) and strongly
converging inL2+ε(M), for some ε > 0, to some function u (by compactness of (M, g)) (the
Sobolev compact embeddings hold on a compact Riemannian manifold, see [6]). Clearly,
by the the L2+ε–convergence and the compactness of (M, g), we have

∫
M
u2 dVol = 1 and

we can also assume u ≥ 0, by the definition of F̃ .
It is easy to see that the functional F̃ is lower semicontinuous with respect to the weak
convergence in H1(M, g), as the term u2 log u2 is subcritical (and the function h(t) =
t2 log t2 is continuous) hence its integral is continuous.
Then, a limit function u : M → R is a nonnegative, constrained minimizer of F̃ in
H1(M, g).
The Euler–Lagrange equation for u read

−4∆u+ Ru− (u log u2 + u) = Cu ,

for some constant C. It can be rewritten as

∆u = Ru/4 + Cu− u log u , (2.1)

to be intended in H1(M, g).
As u is in H1(M, g) and the term u2 log u is subcritical, a bootstrap argument together
with standard elliptic estimates gives that u ∈ C1,α.

Rothaus proved in [11] that a solution of equation (2.1) is positive or identically zero.
this second possibility is obviously excluded by the constraint

∫
M
u2 dVol = 1.

Finally, as the function h(t) = t2 log t2 is smooth in R\{0}, again by a bootstrap argument,
we can conclude that the function u is actually smooth. �
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Assume that f : M → R is a critical point, that is, f satisfies 2∆f − |∇f |2 + R + f =
constant, then we have

gkj∇k [2(Rij +∇2
ijf − gij/2)e−f ]

= (∇iR + 2∆∇if)e−f − 2[(Rij +∇2
ijf − gij/2)gjk∇kf ]e−f

= (∇iR + 2∇i∆f + 2Ris∇sf)e−f − 2[(Rij +∇2
ijf − gij/2)gjk∇kf ]e−f

= (∇iR + 2∇i∆f − 2gjk∇2
ijf∇kf +∇if)e−f

=∇i(R + 2∆f − |∇f |2 + f)e−f

= 0 .

Hence,
div[(Ric +∇2f − g/2)e−f ] = 0

and

div[(∇kf −∇kf) gkj(Rij +∇2
ijf − gij/2)e−f ]

= (∇2
lkf −∇2

lkf)gkjgli(Rij +∇2
ijf − gij/2)e−f

= (∇2
lkf + Rlk − glk/2)gkjgli(Rij +∇2

ijf − gij/n)e−f

= |Rij +∇2
ijf − gij/n|2e−f ,

where, passing from the second to the third line, we substituted∇2
lkf with glk/2−Rlk, by

the soliton relation.
Hence, we conclude that, setting T = (∇kf −∇kf)gkj(Rij +∇2

ijf − gij/2)e−f , we have

0 ≤ Q = |Ric +∇2f − g/2|2e−f = div T .

Being M compact, integrating Q on M , we immediately get that Q = 0, since it is
nonnegative.
This says that the function f is a potential for the gradient Ricci soliton (M, g), then, by
point (4) of Lemma 1.2 it must coincide with f .

Proposition 2.5. If the soliton (M, g) is compact its potential function is the unique constrained
critical point of the functionalW , it is smooth and minimizesW .

2.3. The Noncompact Case. The noncompact case is more delicate, in particular it is
quite more difficult to obtain the existence of a minimizer of the functional F̃ . In [15]
Zhang showed that there exists complete, noncollapsed manifolds with bounded Riemann
tensor such that the functional F̃ does not have an extremal.

Anyway, Carrillo and Ni [2] where able to show that on every gradient shrinking
soliton, the potential function is a constrained minimizer of the functionalW . Zhang [15]
and, recently, with weaker hypotheses on the geometry of the manifold, Rimoldi and
Veronelli [10] showed the existence of extremals forW on a generic manifold, under a
condition at infinity. In particular, in this latter paper, the authors use such conclusion to
show that a general shrinking soliton (not a priori gradient) with bounded Ricci tensor
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and injectivity radius uniformly bounded below, actually admits a gradient soliton
structure (under the above mentioned condition at infinity).

As a consequence of the work of Carrillo and Ni [2], arguing as Rimoldi and Veronelli [10],
if we consider, as in the compact case, the tensor T = (∇kf − ∇kf)gkj(Rij + ∇2

ijf −
gij/2)e−f ,

0 ≤ Q = |Ric +∇2f − g/2|2e−f = div T ,

under the hypotheses of bound on the Ricci tensor and on the injectivity radius of the
manifold, the function Q can be integrated on M and we can conclude that Q = 0.

Proposition 2.6. If a gradient shrinking Ricci soliton (M, g) has uniformly bounded Ricci
tensor and injectivity radius (this latter from below), the unique constrained critical point of the
functionalW is the potential function of the soliton and minimizesW .
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