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Abstract. A class of equations with exponential nonlinearities on a compact Riemannian surface is
considered. More precisely, we study an asymmetric sinh-Gordon problem arising as a mean field

equation of the equilibrium turbulence of vortices with variable intensities.

We start by performing a blow-up analysis in order to derive some information on the local blow-up
masses. As a consequence we get a compactness property in a supercritical range.

We next introduce a variational argument based on improved Moser-Trudinger inequalities which

yields existence of solutions for any choice of the underlying surface.

1. Introduction

We consider here the following equation

(1) −∆u = ρ1

(
h1e

u´
M
h1eu dVg

− 1

|M |

)
− aρ2

(
h2e
−au´

M
h2e−au dVg

− 1

|M |

)
,

where a ∈ (0, 1), h1, h2 are smooth positive functions, ρ1, ρ2 are two positive parameters and (M, g) is
a compact orientable surface with no boundary equipped with a Riemannian metric g. For the sake of
simplicity, we normalize the total volume of M so that |M | = 1.

Equation (1) arises in the context of the statistical mechanics description of 2D-turbulence: the physical
model was first introduced in [31] and different mean field equations have been obtained according to
different constraints. In the case that the circulation number density is subject to a probability measure,
under a deterministic assumption on the vortex intensities, the model is ruled by the following equation,
see [36]:

(2) −∆u = ρ

ˆ
[−1,1]

α

(
eαu´

M
eαu dVg

− 1

|M |

)
P(dα),

where u denotes the stream function of a turbulent Euler flow, P is a Borel probability measure defined
on the interval [−1, 1] describing the point vortex intensity distribution and ρ > 0 is a physical constant
related to the inverse temperature. Equation (1) is related to the latter model for the particular choice
P(dα) = τ1δ1(dα) + τaδ−a(dα), where a ∈ (0, 1) and τ1, τa are positive parameters such that τ1 + τa = 1.
Observe that we focus just one the different-sign problem since the case suppP ⊂ [0, 1] presents some
differences and it is considered in [18].

In order to describe the nature of equation (1) and the strategy to attack it, let us first consider the
standard mean field equation obtained from (2) with P(dα) = δ1, namely

(3) −∆u = ρ

(
h eu´

M
h eu dVg

− 1

|M |

)
.

The latter equation has been widely studied since it is related to the prescribed Gaussian curvature
problem [1, 5, 6, 20, 37] and to the mean field equation of Euler flows [4, 19]. For a survey of the latter
equation we refer to [26, 38].

One of the main difficulties in dealing with this class of equations is due to the loss of compactness,
as its solutions might blow-up. As a consequence, the first step is to analyze the bubbling phenomenon.
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We point out an important property that was observed for (3), see [3, 21, 22]: for a sequence of blow-up
solutions {uk}k to (3) relative to ρk with blow-up point x̄ the following quantization holds true

(4) σ̃(x̄) = lim
δ→0

lim
k→+∞

ρk

´
Bδ(x̄)

h euk´
M
h euk dVg

= 8π.

The latter property yields important consequences in many applications, in particular for what concerns
compactness results, see the discussion later on.

In the more general situation of (1) (and (2)) the blow-up analysis has still to be completed. We refer
to [15, 29, 30, 28, 34] for the progress in this direction. We stress that for a = 1 equation (1) reduces to
the sinh-Gordon problem

(5) −∆u = ρ1

(
h1e

u´
M
h1eu dVg

− 1

|M |

)
− ρ2

(
h2e
−u´

M
h2e−u dVg

− 1

|M |

)
,

which has been very much studied recently [2, 11, 12, 13, 16, 32]. For what concerns the quantization
property (4) a similar result was derived in [15] (see also [17] for a similar approach). Indeed, the authors
proved that for a blow-up sequence {uk}k to (5) one has

(6) σ̃1(x̄) = lim
δ→0

lim
k→+∞

ρ1,k

´
Bδ(x̄)

h1e
uk´

M
h1euk dVg

∈ 8πN, σ̃2(x̄) = lim
δ→0

lim
k→+∞

ρ2,k

´
Bδ(x̄)

h2e
−uk´

M
h2e−uk dVg

∈ 8πN.

In fact, one can construct such blowing-up solutions [8, 9]. Our plan is to apply the same strategy to
the general equation (1): in this case the quantization does not have a so simple description due to the
asymmetry of the exponential terms in (1). Nevertheless, we are able to derive the following partial result

by assuming an a priori bound. Denoting by H̊1(M) =
{
u ∈ H1(M) :

´
M
u = 0

}
we have:

Theorem 1.1. Let {uk}k ⊂ H̊1(M) be a sequence of blow-up solutions to (1) relative to (ρ1,k, ρ2,k) →
(ρ̄1, ρ̄2) with blow-up point x̄ ∈ M and let σ1(x̄), σ2(x̄) be the local blow-up masses relative to u, −au,
respectively, defined similarly as in (6). Then, it holds:

(1) If ρ̄2 <
8π

a2
(resp. ρ̄1 < 8π), then (σ1(x̄), σ2(x̄)) is given by

(8π, 0)

(
resp.

(
0,

8π

a2

))
.

(2) If ρ̄1 < 16π, ρ̄2 <
16π

a2
, then (σ1(x̄), σ2(x̄)) is one of the following types:

if a ≥ 1

2
: (8π, 0),

(
0,

8π

a2

)
,

if a <
1

2
: (8π, 0),

(
0,

8π

a2

)
,

(
8π,

8π

a2
+

16π

a

)
.

We point out that recently in [35] the authors exhibit a minimum blow-up mass for the two components

as in Theorem 1.1: (8π, 0) and

(
0,

8π

a2

)
, respectively, and an existence result in the spirit of Theorem 1.3

under some assumptions on the first eigenvalue of −∆ is provided.
We follow here the argument in [15] concerning the sinh-Gordon case (5) (see also [17, 23] for the

Tzitzéica equation and SU(3) Toda system, respectively). We start by introducing a selection process
to detect a finite number of disks where the local energy is related to that of globally defined Liouville
equations. In each disk the local mass of the two components uk and −auk is quantized according to
a local Pohozaev identity. We then use the bound on the parameters ρi to exclude some configurations
which may produce other contributions to the local masses when combining the blowing-up disks.

By standard arguments the information on the local mass in Theorem 1.1 yields some compactness
properties, see for example [16].

Theorem 1.2. We have the following:
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(1) Let K be a compactly supported subset either of (R \ {8πN}) ×
(

0,
8π

a2

)
⊂ R2 or (0, 8π) ×(

R \
{

8π

a2
N
})

⊂ R2. Then, the family of solutions {uρ}ρ∈K ⊂ H̊1(M) of (1) relative to

ρ = (ρ1, ρ2) is uniformly bounded in C2,α(M) for some α > 0.

(2) Let K be a compactly supported subset of (8π, 16π)×
((

8π

a2
,

16π

a2

)
\
{

8π

a2
+

16π

a

})
⊂ R2. Then,

the same conclusion as in (1) holds true.

Let us now focus on some variational aspects concerning this class of problems. In order to understand
how to handle this kind of equations, let us start with the standard mean field equation (3). In this case
the associated energy functional is given by Iρ : H1(M)→ R,

(7) Iρ(u) =
1

2

ˆ
M

|∇u|2 dVg − ρ
(

log

ˆ
M

h eu dVg −
ˆ
M

u dVg

)
.

The basic tool in this framework is the Moser-Trudinger inequality

(8) 8π log

ˆ
M

eu−u dVg ≤
1

2

ˆ
M

|∇u|2 dVg + CM,g, u =

 
M

u dVg.

By the latter inequality we readily deduce that Iρ is bounded from below and coercive if ρ < 8π and the
global minimum corresponds to a solution of (3). As soon as ρ > 8π the functional Iρ is unbounded from
below and the minimization technique is no more possible. A successful strategy is to introduce improved
Moser-Trudinger inequalities based on the spreading of eu over the surface [7]. By using this kind of
inequalities one can show that if ρ < 8(k+ 1)π, k ∈ N and Iρ(u) is large negative, eu need to concentrate
around at most k points of M . It is then natural to introduce the set of k-th formal barycentres of M

(9) Mk =

{
k∑
i=1

tiδxi :

k∑
i=1

ti = 1, xi ∈M

}
.

By the above discussion it is possible to prove that the very low sublevels of Iρ have at least the homology
of Mk, which is non-trivial. This in turn leads to a solution of (3) for ρ /∈ 8πN.

Let us pass now to the two-parameters case (1). The associated functional is defined by Jρ : H1(M)→
R, ρ = (ρ1, ρ2)
(10)

Jρ(u) =
1

2

ˆ
M

|∇u|2 dVg − ρ1

(
log

ˆ
M

h1e
u dVg −

ˆ
M

u dVg

)
− ρ2

(
log

ˆ
M

h2e
−au dVg +

ˆ
M

au dVg

)
.

In this framework there is a generalized Moser-Trudinger inequality obtained in [28] which can be
rephrased as

(11) 8π log

ˆ
M

eu−u dVg +
8π

a2
log

ˆ
M

e−a(u−u) dVg ≤
1

2

ˆ
M

|∇u|2 dVg + CM,g, u =

 
M

u dVg.

We point out that we can interpret the latter sharp inequality by means of the minimum local blow-up
mass obtained in the Theorem 1.1. Concerning the existence issue to the general problem (1) there are
still a lot of gaps. If we restrict our attention to the symmetric case, namely the sinh-Gordon equation
(5), there are some successful strategies that one could try to pursue also for the general equation. To
this end, let us briefly illustrate them.

In case one of the two parameters ρi is small then we can rely on the analysis developed for the
standard mean field equation (3) (see the argument above) and get a solution to (5) [39]. When both
parameters are large the situation is much more subtler due to the interaction of the two components u
and −u. In this direction an existence result is derived in [11] via a detailed description of the sublevels
of the associated energy functional. Finally, a general existence result under the assumption the surface
has positive genus is given in [2], while the sphere case is still an open problem. By similar arguments as
before, one can use improved Moser-Trudinger inequalities to show that if ρ1 < 8kπ, ρ2 < 8lπ, k, l ∈ N,
in the very low sublevels of the energy functional either eu is close to Mk or e−u is close to Ml in the
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distributional sense, recall (9). This alternative can be expressed by using the topological join of Mk and
Ml. The topological join of two topological sets is given by

(12) A ∗B =
{

(a, b, s) : a ∈ A, b ∈ B, s ∈ [0, 1]
}/

E
,

where E is an equivalence relation such that:

(a1, b, 1)
E∼ (a2, b, 1) ∀a1, a2 ∈ A, b ∈ B and (a, b1, 0)

E∼ (a, b2, 0) ∀a ∈ A, b1, b2 ∈ B.
Hence, the low sublevels of the functional are mapped into Mk ∗ Ml: the join parameter s somehow
measures whether eu is closer to Mk or e−u is closer to Ml. The assumption on M to have positive genus
is then used in a crucial way to construct two disjoint simple non-contractible curves γ1, γ2 such that M
retracts on each of them through continuous maps R1, R2, respectively. By means of these retractions
one can restrict the target from Mk ∗Ml to (γ1)k ∗ (γ2)l only. The non-trivial homology of (γ1)k ∗ (γ2)l
is then used to produce a solution to (5).

Finally, we point out that the general case (1) with a ∈ (−1, 1) was treated in [33]: for some suitably
small parameters they are able to derive existence of solutions to (1) in a slightly supercritical regime.

The aim of the paper is to give general existence results in a supercritical case: more precisely, we
will show existence of solutions to (1) in the two supercritical regimes highlighted in Theorem 1.2. The
argument is based on two types of improved Moser-Trudinger inequalities and it works for any choice of
the underlying surface (with the exception of the last result). The first result is the following one.

Theorem 1.3. Suppose either ρ1 < 8π, ρ2 ∈
(

8π

a2
k,

8π

a2
(k + 1)

)
or ρ1 ∈ (8πk, 8π(k + 1)), ρ2 <

8π

a2
, for

some k ∈ N, where a ∈ (0, 1). Then, there exists a solution to (1) for any underlying surface M .

The latter result follows mainly by the analysis developed for the one-parameter case (3), see for
example [39], and it is based on a macroscopic improved Moser-Trudinger inequality.

On the other hand, the second existence result concerns a doubly supercritical case, namely when both

ρ1 > 8π, ρ2 >
8π

a2
and therefore it is more delicate to handle due to the non-trivial interaction between

the two components u and −au. We have the following result.

Theorem 1.4. Suppose ρ1 ∈ (8π, 16π) and either ρ2 ∈
(

8π

a2
,

16π

a2

)
if a ≥ 1

2
or ρ2 ∈

(
8π

a2
,

8π

a2
+

16π

a

)
if a <

1

2
. Then, there exists a solution to (1) for any underlying surface M .

Remark 1.1. We need to take into account the different ranges a ≥ 1

2
and a <

1

2
because of the the

different blow-up local masses in the point (2) of Theorem 1.1, see Section 4 for more details.

The argument is based on the description of the low sublevels of the functional Jρ: the aim is to detect
a change of topology between two sublevels. To this end we will see that one has to take into account
not only the location of the concentration points, but also the scale of concentration, in the spirit of [11]
(first used in [27] for the Toda system, see also [14]). Indeed, we will show that if Jρ(u) is large negative,
then eu and e−au are either concentrated at different points or they are concentrated at the same point
but with different scales of concentration. The argument is based on a new improved Moser-Trudinger
inequality which, differently from before, it is scale-invariant. This gives some constraints on the maps
from low-energy levels into the topological join of the barycentric sets. We anticipate that we will have
to consider the set (observing M1

∼= M)

M ∗M \
{(

x, x, s =
1

2

)
: x ∈M

}
,

where the set we are excluding is made of configurations with the same point and the same scale of
concentration. The join parameter s = 1

2 roughly expresses the two components are concentrating with
the same scale.

The only case left is ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
+

16π

a
,

16π

a2

)
for a <

1

2
; since we do not expect an

improved inequality as in the above argument to hold, we restrict our attention to positive genus surfaces
and apply the strategy in [2], see the idea below (12).
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Theorem 1.5. Suppose ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
+

16π

a
,

16π

a2

)
for a <

1

2
and suppose M has

positive genus g(M) > 0. Then, there exists a solution to (1).

The organization of this paper is as follows. In Section 2 we analyze the blow-up limits and prove
Theorem 1.1. In Section 3 we show the strategy to get the existence results of the Theorem 1.3 and
Section 4 we introduce the argument which yields to the proof of the Theorem 1.4. In Section 5 we prove
the Theorem 1.5.

Notation

The symbol Br(p) will denote the open metric ball of radius r and center p. We will simply write
Br ⊂ R2 for balls which are centered at 0, while Ap(r1, r2) is the open annulus of radii r1, r2 and center
p.

The average of u ∈ H1(M) is denoted by u =
ffl
M
u dVg. For the sublevels of the functional Jρ we will

write

(13) JLρ =
{
u ∈ H1(M) : Jρ(u) ≤ L

}
.

LetM(M) be the set of all Radon measures on M : we will consider the Kantorovich-Rubinstein distance

(14) d(µ1, µ2) = sup
‖f‖Lip≤1

∣∣∣∣ˆ
M

f dµ1 −
ˆ
M

f dµ2

∣∣∣∣ , µ1, µ2 ∈M(M).

Throughout the paper the letter C will stand for positive constants which are allowed to vary among
different formulas and even within the same lines. To stress the dependence of the constants on some
parameter we add subscripts to C, for example Cδ. We will write oα(1) to denote quantities that tend
to 0 as α→ 0 or α→ +∞; the symbol Oα(1) will be used for bounded quantities.

2. Blow-up limits

We are concerned here with the study of blow-up limits to (1) and with the proof of Theorem 1.1. We
will actually consider the following localized problem:

(15) −∆uk = ρ1,kh1e
u1,k − aρ2,kh2e

u2,k in B1,

with (ρ1,k, ρ2,k)→ (ρ̄1, ρ̄2), where

u1,k = uk − log

ˆ
M

h1 e
uk dVg, u2,k = −auk − log

ˆ
M

h2 e
−auk dVg,(16)

are such that
´
M
uk dVg = 0 and 0 is the only blow-up point in B1, i.e.:

(17) max
K⊂⊂B1\{0}

ui,k ≤ CK , max
x∈B1, i=1,2

{ui,k(x)} → ∞.

To set the problem, we suppose that

(18) h1(0) = h2(0) = 1,
1

C
≤ hi(x) ≤ C, ‖hi(x)‖C3(B1) ≤ C, ∀x ∈ B1, i = 1, 2,

for some constant C > 0. Moreover, it is natural to assume bounded boundary oscillations

|ui,k(x)− ui,k(y)| ≤ C, ∀ x, y ∈ ∂B1,(19)

where C is independent of k. By the normalization in (16) we may assume

(20) lim
k→+∞

1

2π

ˆ
B1

ρi,khie
ui,k ≤ ρ̄i

2π
.

Letting

σi = lim
δ→0

lim
k→∞

1

2π

ˆ
Bδ

ρi,khie
ui,k ,(21)

the Theorem 1.1 is equivalent to proving that
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(1) If ρ̄2 <
8π

a2
(resp. ρ̄1 < 8π), then (σ, σ2) is given by

(22) (4, 0)

(
resp.

(
0,

4

a2

))
.

(2) If ρ̄1 < 16π, ρ̄2 <
16π

a2
, then (σ1, σ2) is one of the following types:

if a ≥ 1

2
: (4, 0),

(
0,

4

a2

)
,

if a <
1

2
: (4, 0),

(
0,

4

a2

)
,

(
4,

4

a2
+

8

a

)
.

(23)

One can see the details of the above localized argument for example in [24].

We introduce now some preliminary tools: we refer to [15] for the details. The starting point is the
following process which select a finite number of bubbling disks where the blowing-up limits resemble
globally define Liouville-type equations. One has just to point out that due to the opposite-sign structure
in (15) the argument can be carried out with minor modifications.

Proposition 2.1. Let uk be a sequence of blow-up solutions of (15) such that (17), (18) and (19) hold
true. Then there exists finite sequence of points Σk = {xk1 , · · · , xkm} (all xkj → 0, j = 1, · · · ,m) and

positive scales lk1 , · · · , lkm → 0 such that, letting Mk,j = maxi=1,2{ui,k(xkj )}, we have

(1) Mk,j = maxB
lk
j

(xkj ), i=1,2{ui,k} for j = 1, · · · ,m.

(2) exp
(

1
2Mk,j

)
lkj →∞ for j = 1, · · · ,m.

(3) Let εk,j = e−
1
2Mk,j . Setting

vki (y) = ui,k
(
εk,jy + xkj

)
+ 2 log εk,j in Blkj (xkj ),(24)

we have the following alternative:
(a) either vk1 → v1 in C2

loc(R2) which satisfies the equation ∆v1 + ρ̄1e
v1 = 0 and vk2 → −∞ over

all compact subsets of R2 and

1

2π

ˆ
B
lk
j

(xkj )

ρ1,kh1e
ui,k > 4,

(b) or vk2 → v2 in C2
loc(R2) which satisfies the equation ∆v2 + a2ρ̄2e

v2 = 0 and vk1 → −∞ over
all compact subsets of R2 and

1

2π

ˆ
B
lk
j

(xkj )

ρ2,kh2e
u2,k >

4

a2
.

(4) There exists a constant C > 0 independent of k such that

max
i=1,2
{ui,k(x)}+ 2 log dist(x,Σk) ≤ C, ∀x ∈ B1.

We point out that due to the local mass in the point (3) of the latter result and the bound (20) the
process stops after a finite number of steps. Moreover, by using the point (4) one can get a Harnack-type
inequality outside the bubbling disks as follows.

Proposition 2.2. Letting x0 ∈ B1 \ Σk, there exists C > 0 independent of x0 and k such that

|ui,k(x1)− ui,k(x2)| ≤ C ∀x1, x2 ∈ Bd(x0,Σk)/2(x0), i = 1, 2.

The latter estimates gives us bounded oscillation away from the blow-up disks and hence the behavior of
a solution can be encoded in its spherical average. More precisely, let xk ∈ Σk and τk = 1

2d(xk,Σk \ {xk}),
then for x, y ∈ Bτk(xk) and |x − xk| = |y − xk| we have ui,k(x) = ui,k(y) + O(1) and hence ui,k(x) =
ui,xk(r) +O(1) where r = |xk − x| and

ui,xk(r) =
1

2π

ˆ
∂Br(xk)

ui,k.

We will see in the sequel how to use this property.
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In each bubbling disk of Proposition 2.1 one can derive some information on the local mass by means
of a Pohozaev-type identity. We can easily show thatˆ

Br

(ρ1,kx · ∇h1e
u1,k + ρ2,kx · ∇h2e

u2,k) + 2

ˆ
Br

(ρ1,kh1e
u1,k + ρ2,kh2e

u2,k)

= r

ˆ
∂Br

(
|∂νu1,k|2 −

1

2
|∇u1,k|2

)
+ r

ˆ
∂Br

(ρ1,kh1e
uk + ρ2,kh2e

u2,k) .

(25)

Consider now the above identity in Blkj (xkj ) and let

σ̃ki (lkj ) =
1

2π

ˆ
B
lk
j

(xkj )

ρi,khie
ui,k

be the local masses in this ball. To estimate the second term on the right hand side of (25) it is useful
to give the following definition: we say ui,k has fast decay at x ∈ B1 if

ui,k(x) + 2 log dist(x,Σk) ≤ −Nk,

hold for some Nk → +∞. If instead

ui,k(x) + 2 log dist(x,Σk) ≥ −C,

for some C > 0 independent of k, we say ui,k has a slow decay at x. If both ui,k, i = 1, 2 have fast decay
on ∂Blkj (xkj ) the second term on the right hand side of (25) is o(1). It is indeed possible to show that

from (25) we get the identity

(26) 4
(
σ̃k1 (lkj ) + σ̃k2 (lkj )

)
=
(
σ̃k1 (lkj )− aσ̃k2 (lkj )

)2
+ o(1),

see [15] for the details.

We are now in the position to prove the local mass Theorem 1.1.

Proof of Theorem 1.1. We need to derive the values in (22), (23). We follow here the argument in [15]
with some modification, so we will be sketchy. Let xkj ∈ Σk, where Σk is obtained in Proposition 2.1, and

suppose for simplicity that xkj = 0. Let τk = 1
2dist(0,Σk \ {0}), set

σki (r, xkj ) = σki (r) =
1

2π

ˆ
Br(0)

ρi,khie
ui,k ,

for 0 < r ≤ τk and ui,k(r) = 1
2πr

´
∂Br(0)

ui,k. A useful observation is the following:

d

dr
u1,k(r) =

1

2πr

ˆ
∂Br

∂u1,k

∂ν
=

1

2πr

ˆ
Br

∆u1,k =
−σk1 (r) + aσk2 (r)

r
,

d

dr
u2,k(r) = a

σk1 (r)− aσk2 (r)

r
.

(27)

Proof of (1). We prove here (22). We are assuming ρ̄2 <
8π

a2
(for the other alternative we can reason

in the same way). By Proposition 2.1 we observe that

max
i=1,2
{ui,k(x)}+ 2 log |x| ≤ C, |x| ≤ τk,

and letting −2 log δk = maxx∈Bτk (0) maxi=1,2{ui,k(x)} we consider

vki (y) = ui,k(δky) + 2 log δk, |y| ≤ τk/δk.

As in Proposition 2.1 one of vki converges and the other one tends to minus infinity over the compact
subsets of R2. Suppose that vk1 → v1 in C2

loc(R2) and vk2 → −∞ over any compact subset of R2, where v1

satisfies ∆v1 + ρ̄1e
v1 = 0 in R2. Then by the classifications result of the latter equation one can choose

Rk →∞ such that

(28) σk1 (δkRk) =
1

2π

ˆ
BRk

ρ1,kh1(δky) ev
k
1 = 4 + o(1), σk1 (δkRk) =

1

2π

ˆ
BRk

ρ2,kh2(δky) ev
k
2 = o(1).
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Then we get σk1 (δkRk) = 4+o(1) and σk2 (δkRk) = o(1). If instead vk2 → v2 with ∆v2 + ρ̄2e
v2 = 0 we would

get σk2 (δkRk) =
4

a2
+ o(1) and σk1 (δkRk) = o(1). The latter estimate is not possible by the assumption

on ρ̄2 and the bound (20).
Now, we need to consider the energy’s increasing from BδkRk to Bτk . Observe that on ∂BδkRk by (27)

and (28) we have
d

dr
(u2,k(r) + 2 log r) > 0,

in other words u2,k may become a slow decay component when r increases. If this does not happen the
energy does not change and we keep having

(29) σk1 (τk) = 4 + o(1), σk2 (τk) = o(1),

see for example [15].

If u2,k becomes slow decaying before r reaches τk, i.e

ū2,k(s) + 2 log s ≥ −C,

for some C > 0, then u2,k starts to increase its energy. In the case τk ∼= s by Proposition 2.2 we still get
σk1 (τk) = 4 + o(1) with u1,k fast decay, while u2,k has slow decay and its local mass can not be evaluated
at this point. If instead τk � s we can find N > 1 such that on ∂BNs

σk2 (Ns) ≥ 2

a2
+

4

a
, σk1 (Ns) = 4 + o(1),(30)

d

dr
(ū2,k(r) + 2 log r) |r=Ns< 0,

d

dr
(ū1,k(r) + 2 log r) |r=Ns> 0,

see [15]. The idea is that from r = s to r = Ns the energy of u2,k increases and hence the derivative the
associated derivative changes from positive to negative by (27). On the other hand, By Proposition 2.2
u1,k still has fast decay and hence its energy does not change. At this point it is possible to take Nk
tending to +∞ slowly such that and on ∂BNks both ui,k, i = 1, 2 have fast decay. Therefore, we can use
the Pohozaev identity (26) in BNks and (30) to obtain

(31) σk1 (Nks) = 4 + o(1), σk2 (Nks) =
4

a2
+

8

a
+ o(1).

Again, the latter estimate is not possible by the assumption on ρ̄2 and the bound (20).

It follows that in each bubbling disk we have σk1 (τk) = 4 + o(1) with u1,k fast decay. Since it has
fast decay, by Proposition 2.2 the energy contribution of u1,k comes just from the bubbling disks, more
precisely

(32) σk1 (r) =

k∑
j=1

σk1 (τ jk , x
j
k) + o(1) = 4k + o(1).

As before, by taking r suitable we have both ui,k, i = 1, 2 have fast decay and we can use the Pohozaev
identity (26) in Br. By the latter estimate, by the assumption on ρ̄2 and by the bound (20) the only
possibility is

(σk1 (r), σk2 (r)) = (4, 0) + o(1),

which concludes the proof of (1) of Theorem 1.1.

Proof of (2). We prove here (23). We assume now ρ̄1 < 16π, ρ̄2 <
16π

a2
and we proceed as in the proof

of (1). In the first step we observed that one of vki converges and the other one tends to minus infinity
over the compact subsets of R2. In this case both situations are possible. Then, analogously as in (28)
we have

(
σk1 (δkRk), σk2 (δkRk)

)
is a o(1) perturbation of

(33) (4, 0) or

(
0,

4

a2

)
.

Reasoning as in the proof of (1) concerning (31), starting from (4, 0) we could get

(34)

(
4,

4

a2
+

8

a

)
,
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while starting from

(
0,

4

a2

)
we would get

(
8

a
+ 4,

4

a2

)
. The latter possibility can not happen due to the

assumption on ρ̄1 and by the bound (20). Hence, let us focus on (34). We first point out that the latter

local mass is present just for a <
1

2
due to the assumption on ρ̄2 and by the bound (20). At this point

the role of u1,k and u2,k is exchanged in the above argument: this means that if there is a change in the
local mass then the mass of u2,k changes by o(1) while the one of u1,k jumps according to the Pohozaev
identity (26). However, it is easy to see that by the assumption on ρ̄1 and by the bound (20) such a jump
is not possible. Therefore, we exhausted all the possibilities with (33) and (34). Moreover, as before the
component with bigger local mass has fast decay property.

Finally, we have to combine the bubbling disks. We claim there is at most one bubbling disk. Indeed,
using both the assumptions on ρ̄i, i = 1, 2 and the bound (20) we can not have two bubbling disks with
the same type of local mass. Moreover, by the same reason we can not have both (33) and (34) type

disks. The only possibility to have two disks is the case with (4, 0) and

(
0,

4

a2

)
(actually, to be more

precise we would just know in one disk σk1 (r1, x
k
i ) = 4 +o(1) with u1,k fast decaying and in the other disk

σk2 (r2, x
k
j ) =

4

a2
+o(1) with u2,k fast decaying: however, we can treat this case in a similar way). Since in

the first group u1,k has fast decay and in the second one u2,k has fast decay we deduce by Proposition 2.2
that both ui,k have fast decay. Similarly as in (32) one can derive that the combination of this two disks
yields to a local mass of the type (

4,
4

a2

)
.

On the other hand, since both ui,k have fast decay we can apply the Pohozaev identity (26) to rule out
the latter possibility.

It follows that we have just one bubbling disk and the possibly local masses are those in (33) and (34).
�

3. Existence results in the semi-coercive case

Aim of this section is to present the variational argument and to derive the first existence result, see
Theorem 1.3. The strategy relies on the ideas developed for the standard mean field equation (3): in [39]
it was used for the sinh-Gordon case (5). Therefore, we will presents just the main steps, highlighting

the differences. We will focus on the case ρ1 < 8π, ρ2 ∈
(

8π

a2
k,

8π

a2
(k + 1)

)
since it requires a few new

estimates. Some of the tools will be presented with full details since they will be used in the next section.

We start by stating two important corollaries of the compactness result in Theorem 1.2. First, we
observe there exists a high sublevel JLρ (recall the notation in (13)) containing all the critical points of

the functional. Then, by deforming the space H1(M) onto such sublevel we obtain the following result.

Proposition 3.1. Let K be as in Theorem 1.2. Suppose ρ = (ρ1, ρ2) ∈ K. Then, for some large L > 0,
JLρ is a deformation retract of H1(M). In particular it is contractible.

The Palais-Smale condition can by bypassed by using the compactness result as in [25] to get the
following property.

Proposition 3.2. Let K be as in Theorem 1.2. Let a, b ∈ R be such that a < b and Jρ has no critical
points u ∈ H1(M) with a ≤ Jρ(u) ≤ b. Suppose ρ = (ρ1, ρ2) ∈ K. Then, Jaρ is a deformation retract of

Jbρ.

Our aim will be then to show that the very low sublevels of Jρ have non-trivial homology. The first
tool we need in this direction is an improved version of the Moser-Trudinger inequality (11). To this end
we state a local version of it, in the spirit of [11, 27].
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Proposition 3.3. Let δ > 0 and Ω1 ⊂ Ω2 ⊂M be such that d(Ω1, ∂Ω2) ≥ δ. Then, for any ε > 0 there
exists a constant C = C(ε, δ) such that for all u ∈ H1(M)

8π log

ˆ
Ω1

e
u−

ffl
Ω2
u
dVg +

8π

a2
log

ˆ
Ω1

e
−a
(
u−

ffl
Ω2
u
)
dVg ≤

1

2

ˆ
Ω2

|∇u|2 dVg + ε

ˆ
M

|∇u|2 dVg + C.

Proof. We may assume
ffl

Ω2
u = 0 and we decompose u so that u = v + w, with

ffl
Ω2
v =

ffl
Ω2
w = 0 and

v ∈ L∞(Ω2). Such decomposition will be suitably chosen later on. Let 0 ≤ χ ≤ 1 be a cut-off function
such that

χ|Ω1
≡ 1, χ|M\(Bδ/2(Ω1)) ≡ 0, |∇χ| ≤ Cδ.

Then we have

log

ˆ
Ω1

eu dVg ≤ log

ˆ
M

eχw dVg + ‖v‖L∞(Ω1),

and similarly for −au. Using the latter estimate and the Moser-Trudinger inequality (11) for χw we
obtain

8π log

ˆ
Ω1

eu dVg +
8π

a2
log

ˆ
Ω1

e−au dVg ≤
1

2

ˆ
M

|∇(χw)|2 dVg + C‖v‖L∞(Ω1)

+ 8π

ˆ
M

χw dVg −
8π

a2

ˆ
M

aχw dVg + C.

(35)

By the Poincaré’s and Young’s inequalities we get

(36)

ˆ
M

χw dVg ≤ ε
ˆ

Ω2

|∇w|2 dVg + ε

ˆ
Ω2

w2 dVg + Cε.

Moreover, by Young’s inequality it holdsˆ
M

|∇(χw)|2 dVg ≤ (1 + ε)

ˆ
Ω2

|∇w|2 dVg + Cε,δ

ˆ
Ω2

w2 dVg.(37)

By combining (35), (36), (37) we end up with

8π log

ˆ
Ω1

eu dVg +
8π

a2
log

ˆ
Ω1

e−au dVg ≤
1 + ε

2

ˆ
Ω2

|∇w|2 dVg + C‖v‖L∞(Ω1) + C

ˆ
Ω2

w2 dVg(38)

Reasoning as in Proposition 2.3 in [27] we can then choose v, w by decomposing u with respect to a
basis of eigenfunctions of −∆ in H1(Ω2) with Neumann boundary conditions to estimate the left terms
in (38). �

By the latter result we derive an improved inequality whenever the functions eu, e−au are spread over
the surface: indeed, it is sufficient to apply the localized inequality of Proposition 3.3 around each region
which contains a portion of the volume of eu, e−au, see [2, 17].

Proposition 3.4. Let δ > 0, θ > 0, k, l ∈ N and {Ω1,i,Ω2,j}i∈{1,...,l},j∈{1,...,k} ⊂M be such that

d(Ω1,i,Ω1,i′) ≥ δ, d(Ω2,j ,Ω2,j′) ≥ δ, ∀ i, i′ ∈ {1, . . . , l} with i 6= i′ ,∀ j, j′ ∈ {1, . . . , k} with j 6= j′.

Then, for any ε > 0 there exists C = C (ε, δ, θ, k, l,M) such that if u ∈ H1(M) satisfiesˆ
Ω1,i

eu dVg ≥ θ
ˆ
M

eu dVg, ∀i ∈ {1, . . . , l},
ˆ

Ω2,j

e−au dVg ≥ θ
ˆ
M

e−au dVg, ∀j ∈ {1, . . . , k},

it follows that

8πl log

ˆ
M

eu−u dVg +
8π

a2
k log

ˆ
M

e−a(u−u) dVg ≤
1 + ε

2

ˆ
M

|∇u|2 dVg + C.

It follows that the more the functions eu, e−au are spread the better bounds we have on Jρ. On
the other way round, if we are very low in the energy then eu, e−au should be concentrated around
some points. More precisely, in the semi-coercive case at least one of the two components have to be
concentrated as follows (see [2, 39]). Recall the definition of Mk, d in (9), (14), respectively.
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Proposition 3.5. Suppose ρ1 < 8π, ρ2 ∈
(

8π

a2
k,

8π

a2
(k + 1)

)
, k ∈ N. Then, for any ε > 0 there exists

L > 0 such that if u ∈ J−Lρ then

d

(
h2e
−au´

M
h2e−au dVg

,Mk

)
< ε.

Moreover, for L sufficiently large there exists a continuous retraction

Ψ : J−Lρ →Mk.

On the other hand, it is possible to construct a reverse map Φ : Mk → J−Lρ . Indeed, letting σ :=∑k
i=1 tiδxi ∈Mk, for large λ > 0 we set

(39) ϕλ,σ(x) = −1

a
log

k∑
i=1

ti

(
1

1 + λ2d(x, xi)2

)2

,

and define Φ = Φλ : Mk → H1(M) by Φλ(σ) = ϕλ,σ. Then, we have the following property.

Proposition 3.6. Let ϕλ,σ be defined in (39). Suppose ρ1 < 8π, ρ2 ∈
(

8π

a2
k,

8π

a2
(k + 1)

)
, k ∈ N. Then,

it holds

(40) Jρ(ϕλ,σ)→ −∞ as λ→ +∞, uniformly in σ ∈Mk.

Letting Φ be defined as above, it follows that for any L > 0 there exists λ > 0 large such that

Φ : Mk → J−Lρ .

Proof. We have the estimates

(41) |∇ϕλ,σ(x)| ≤ Cλ, for every x ∈M,

where C is a constant independent of λ, σ ∈Mk, and

(42) |∇ϕλ,σ(x)| ≤ 1

a

4

dmin(x)
, for every x ∈M,

where dmin(x) = min
i=1,...,k

d(x, xi).

Indeed, it holds

∇ϕλ,σ(x) =
2

a
λ2

∑k
i=1 ti

(
1 + λ2d2(x, xi)

)−3∇
(
d2(x, xi)

)∑k
j=1 tj

(
1 + λ2d2(x, xj)

)−2 .

By the fact that
∣∣∇(d2(x, xi)

)∣∣ ≤ 2d(x, xi) and

λ2d(x, xi)

1 + λ2d2(x, xi)
≤ Cλ, i = 1, . . . , k,

with C a fixed constant, we get (41). Next, we have

|∇ϕλ,σ(x)| ≤ 4

a
λ2

∑k
i=1 ti

(
1 + λ2d2(x, xi)

)−3
d(x, xi)∑k

j=1 tj
(
1 + λ2d2(x, xj)

)−2 ≤ 4

a
λ2

∑k
i=1 ti

(
1 + λ2d2(x, xi)

)−2 d(x,xi)
λ2d2(x,xi)∑k

j=1 tj
(
1 + λ2d2(x, xj)

)−2

≤ 4

a

∑k
i=1 ti

(
1 + λ2d2(x, xi)

)−2 1
d 1,min(x)∑k

j=1 tj
(
1 + λ2d2(x, xj)

)−2 =
1

a

4

d 1,min(x)
,

which gives (42).
From (41) we get

1

2

ˆ
M

|∇ϕλ,σ(x)|2 dVg ≤
1

2

ˆ
M\
⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg + C.

Letting

Ai =

{
x ∈M : d(x, xi) = min

j=1,...,k
d(x, xj)

}
,
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by (42) we derive

1

2

ˆ
M\
⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg ≤
8

a2

k∑
i=1

ˆ
Ai\B 1

λ
(xi)

1

d2
min(x)

dVg + C ≤
(

16π

a2
k + oλ(1)

)
log λ+ C.

We end up with

(43)
1

2

ˆ
M

|∇ϕλ,σ(x)|2 dVg ≤
(

16π

a2
k + oλ(1)

)
log λ+ C.

We consider now the nonlinear term e−aϕλ,σ . To deduce the leading term it is enough to considerˆ
M

1(
1 + λ2d(x, x)2

)2 dVg,
for some fixed x ∈M . By a change of variables one readily hasˆ

M

1(
1 + λ2d(x, x)2

)2 dVg = λ−2(1 +O(1)),

which gives

(44) log

ˆ
M

e−aϕλ,σ dVg = −2 log λ+O(1).

We are left with
´
M
aϕλ,σ dVg. For simplicity we suppose k = 1. We have

aϕλ,σ(x) = 4 log
(

max{1, λd(x, x1)}
)

+O(1), x1 ∈M.

Therefore ˆ
M

aϕλ,σ dVg = 4

ˆ
M\B 1

λ
(x1)

log
(
λd(x, x1)

)
dVg + 4

ˆ
B 1
λ

(x1)

dVg +O(1)

= 4 log λ
∣∣∣M \B 1

λ
(x1)

∣∣∣+ 4

ˆ
M\B 1

λ
(x1)

log(d(x, x1)) dVg +O(1).

Recall that |M | = 1. It follows

(45)

ˆ
M

aϕλ,σ dVg =
(
4 + oλ(1)

)
log λ+O(1).

Finally, using first the Jensen’s inequality involving the part e(ϕλ,σ−ϕλ,σ) and then (43), (44), (45) we
deduce

Jρ(ϕλ,σ) =
1

2

ˆ
M

|∇ϕλ,σ|2 dVg − ρ1

(
log

ˆ
M

h1e
ϕλ,σ dVg −

ˆ
M

ϕλ,σ dVg

)
− ρ2

(
log

ˆ
M

h2e
−aϕλ,σ dVg +

ˆ
M

aϕλ,σ dVg

)
≤ 1

2

ˆ
M

|∇ϕλ,σ|2 dVg − ρ2

(
log

ˆ
M

h2e
−aϕλ,σ dVg +

ˆ
M

aϕλ,σ dVg

)
≤
(

16π

a2
k − 2ρ2 + oλ(1)

)
log λ+O(1).

By assumption ρ2 >
8π

a2
k and hence we get the desired property. �

We prove now the main result of this section.

Proof of Theorem 1.3. Let Ψ : J−Lρ → Mk and Φ : Mk → J−Lρ be the maps defined in Proposition 3.5
and before Proposition 3.6, respectively. The existence of solutions to (1) will follow by showing that
Ψ ◦ Φ ∼= IdMk

(homotopic equivalence).
Indeed, it is well-known that

h2e
−aϕλ,σ´

M
h2e−aϕλ,σ dVg

⇀ σ, as λ→ +∞,
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in the sense of measures, see [2, 26, 39]. We have then just to observe that Ψ is a retraction and hence

Ψ
(

eϕλ,σ´
M
eϕλ,σ dVg

)
will tend strongly to the configuration σ. The homotopy equivalence is obtained by

letting λ→ +∞.
Passing to the associated maps between the homology groups we derive

Hq(Mk) ↪→ Hq

(
J−Lρ

)
.

Clearly, Mk has non-trivial homology, see for example [26], and in turn J−Lρ has non-trivial homology

as well. If by contradiction (1) has no solutions we can apply Proposition 3.2 to get that J−Lρ is a

deformation retract of JLρ for any L > 0 (recall that ρ = (ρ1, ρ2) ∈ K). Since JLρ is contractible for some

L, see Proposition 3.1, J−Lρ has trivial homology. We are lead to a contradiction. �

4. Existence result in a supercritical case

In this section we present the strategy to deal with the doubly supercritical case and to prove the
existence result of Theorem 1.4. As in the previous section our goal is to show the low sublevels of
Jρ carry some non-trivial topology. To describe the configurations in the low sublevels we will first
introduce the topological join, see (12). Secondly, we need a new improved version of the Moser-Trudinger
inequality (11) which is scaling invariant, differently from the one in Proposition 3.4, which will impose
new constrains on the projection of the low sublevel onto the topological join, see the argument in the
sequel.

We start by pointing out the role of the topological join. Let ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
,

16π

a2

)
.

By the improved inequality in Proposition 3.4 one can readily see that if Jρ(u) is large negative, then
either eu or e−au (or both) need to be concentrated around a point of the surface: more precisely, they
are d-close to some δp (recall the definition of d in (14)). Recalling that M1

∼= M , it is then natural to
map them into the join M ∗M . We collect these arguments in the following result, see [2, 17].

Proposition 4.1. Suppose ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
,

16π

a2

)
with a ∈ (0, 1). Then, for any ε > 0,

there exists L > 0 such that any u ∈ J−Lρ verifies either

(46) d1 = d

(
h1e

u´
M
h1eu dVg

,M

)
< ε or d2 = d

(
h2e
−au´

M
h2e−au dVg

,M

)
< ε.

Moreover, for L sufficiently large there exists a continuous map

Ψ : J−Lρ →M ∗M.

Proof. We sketch the main steps for the reader’s convenience. Let u ∈ J−Lρ . By Proposition 3.4 it is easy
to show that (46) holds true. Let Π : {d(·,M) < ε} →M be the projection. Set

(47) s(d1, d2) = F

(
d1

d1 + d2

)
,

where

F (x) =

 0 for x ∈ [0, 1/4],
2x− 1

2 for x ∈ (1/4 , 3/4),
1 for x ∈ [3/4, 1].

Ψ is then defined as

(48) Ψ(u) =

(
Π

(
h1e

u´
M
h1eu dVg

)
,Π

(
h2e
−au´

M
h2e−au dVg

)
, s

)
.

�
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4.1. Improved Moser-Trudinger inequality. In this subsection we will introduce the ingredients to
derive a new improved Moser-Trudinger inequality: the latter one will give some extra constrains to the
map Ψ in Proposition 4.1. Such inequality is based both on the point of concentration of a function and
on the scale of concentration. This concepts where introduced in [27] for treating a Toda system and
then in [11] for the sinh-Gordon case (5) (see also [14]). Differently from the latter references where the
topological cone on M is used, we will rephrase the argument in terms of the topological join M ∗M .
Recall the definition of d in (14) and that M1

∼= M . Let δ > 0 and consider the set

Aδ =

{
f ∈ L1(M) : f > 0 a.e. and

ˆ
M

f dVg = 1

}
∩
{
d(·,M) < δ

}
of normalized functions concentrated around a point of the surface. What we need is the following map
introduced in [27].

Proposition 4.2. Let R > 1 be fixed. Then there exist δ = δ(R)>0 and a continuous map:

ψ : Aδ →M × (0,+∞), ψ(f) = (β, σ),

such that for any f ∈ Aδ there exists p ∈ Σ such that

(1) d(p, β) ≤ Cσ with C = C(R, δ,M).
(2) It holds: ˆ

Bσ(p)

f dVg > τ,

ˆ
BRσ(p)c

f dVg > τ,

with τ > 0, τ = τ(R,M).

Proof. The argument is carried out as in [27]. We sketch the main steps for the reader’s convenience. We
start by taking R0 = 3R and setting σ : M ×Aδ → (0,+∞) such that:

(49)

ˆ
Bσ(x,f)(x)

f dVg =

ˆ
BR0σ(x,f)(x)c

f dVg.

We point out that it holds

(50) d(x, y) ≤ R0 max
{
σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)

}
.

We then define the mapping T : M ×Aδ → R by

T (x, f) =

ˆ
Bσ(x,f)(x)

f dVg.

It is possible to show that if x0 ∈M is such that T (x0, f) = maxy∈M T (y, f), then we have

(51) σ(x0, f) < 3σ(x, f), ∀x ∈M,x 6= x0.

Exploiting the latter fact, by a covering argument one can prove that there exists a fixed τ > 0 such that

(52) max
x∈M

T (x, f) > τ ∀f ∈ Aδ.

We define now a continuous function σ : Aδ → R

σ(f) = 3 min
{
σ(x, f) : x ∈ Aδ

}
.

Let τ be as in (52) and let

(53) S(f) =
{
x ∈M : T (x, f) > τ, σ(x, f) < σ(f)

}
,

Observe that by (51), (52) the latter set is a nonempty open set for any f ∈ Aδ. Moreover, from (50) we
have that

(54) diam
(
S(f)

)
≤ (R0 + 1)σ(f).

Consider now an embedding of M into R3 and identify M with its image through the latter embedding.
We consider a sort of center of mass m(f) ∈ R3

m(f) =

ˆ
M

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
x dVgˆ

M

(
T (x, f)− τ

)+(
σ(f)− σ(x, f)

)+
dVg

,
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where x+ = max{x, 0}. Observe that the integrands become nonzero only on the set S(f). We point
out that for a f ∈ Aδ we have d(f,M) < δ and hence most of its volume is accumulated in a ball

(depending on δ) centered in a point of the surface. Therefore, by definition there exists a δ̃ = δ̃(δ) such

that σ(f) ≤ δ̃. For δ̃ > 0 sufficiently small, whenever σ(f) ≤ δ̃ (54) implies that m(f) is close to M .

Letting P be a orthogonal projection from a δ̃-neighborhood of M onto the surface we define β : Aδ →M
to be

β(f) = P ◦m(f).

Then the map ψ(f) =
(
β(f), σ(f)

)
satisfies the desired properties: indeed, we have just to observe that by

(54) we have d(β(f), S(f)) ≤ (R0 + 1)σ(f) and that σ(f) ≤ 3σ(x, f) ≤ 3σ(f) (recall that R0 = 3R). �

The idea is that the latter map ψ(f) = (β, σ) gives us the point of concentration of f and its scale of
concentration around it. The smaller is σ the faster is the concentration of f . We state now the main
result of this subsection, i.e. the improved Moser-Trudinger inequality: roughly speaking, whenever the
two functions eu, e−au concentrate both at the same point and at the same scale of concentration we
derive an improved inequality.

Proposition 4.3. Let ε > 0. Then, there exist R = R(ε) > 1 and ψ as given in Proposition 4.2, such
that for any u ∈ H1(M) such that

ψ

(
eu´

M
eu dVg

)
= ψ

(
e−au´

M
e−au dVg

)
,

there exists some C = C(ε) such that, if a ≥ 1

2

(55) 16π log

ˆ
M

eu−u dVg +
16π

a2
log

ˆ
M

e−a(u−u) dVg ≤
1 + ε

2

ˆ
M

|∇u|2 dVg + C,

and if a <
1

2

(56) 16π log

ˆ
M

eu−u dVg +

(
8π

a2
+

16π

a

)
log

ˆ
M

e−a(u−u) dVg ≤
1 + ε

2

ˆ
M

|∇u|2 dVg + C.

The latter result is mainly based on two local versions of the Moser-Trudinger inequality: one in small
balls and the other one in annuli with small internal radius which we prove below. It is inspired by [27]
(see also [11]). In doing this the following lemma concerning Poincaré-Wirtinger and trace inequalities
will be used.

Lemma 4.4. There exists C > 0 such that for any u ∈ H1(M), p ∈M and r > 0 it holds∣∣∣∣∣
 
Br(p)

u dVg −
 
∂Br(p)

u dSg

∣∣∣∣∣ ≤ C
(ˆ

Br(p)

|∇u|2 dVg

)1/2

.

Furthermore, for any δ ∈ (0, 1) there exists C = Cδ such that for any u ∈ H1(M), p ∈M and r > 0 one
has ∣∣∣∣∣

 
Bδr(p)

u dVg −
 
Br(p)

u dVg

∣∣∣∣∣ ≤ C
(ˆ

Br(p)

|∇u|2 dVg

)1/2

.

We start now with the following result which is obtained by a dilation argument.

Lemma 4.5. For any ε > 0 there exists C = C(ε) > 0 such that

8π log

ˆ
Bs/2(p)

eu dVg +
8π

a2
log

ˆ
Bs/2(p)

e−au dVg ≤
1

2

ˆ
Bs(p)

|∇u|2 dVg + ε

ˆ
M

|∇u|2 dVg

+ 8π

(
1− 1

a

)
u(s) + 16π

(
1 +

1

a2

)
log s+ C,

(57)
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for any u ∈ H1(M), p ∈ M , s > 0 sufficiently small, where u(s) =

 
Bs(p)

u dVg. Moreover, under the

same assumptions, if a <
1

2
it holds

8π log

ˆ
Bs/2(p)

eu dVg +
16π

a
log

ˆ
Bs/2(p)

e−au dVg ≤
1

2

ˆ
Bs(p)

|∇u|2 dVg + ε

ˆ
M

|∇u|2 dVg

− 8πu(s) + 16π

(
1 +

2

a

)
log s+ C.

(58)

Proof. Suppose for simplicity the metric around the point p is flat. Consider then a dilation of u given
by

v(x) = u(sx+ p).

We clearly haveˆ
Bs(p)

|∇u|2 dVg =

ˆ
B1(0)

|∇v|2 dVg,
ˆ
Bs/2(p)

eu dVg = s2

ˆ
B1/2(0)

ev dVg, u(s) =

 
B1(0)

v dVg.

Taking into account the above equalities and by applying the local version of the Moser-Trudinger inequal-

ity stated in Proposition 3.3 to the functions v,−av we get inequality (57). When a <
1

2
one observes

that
16π

a
<

8π

a2
and hence we may apply Proposition 3.3 to v,−av with the constant

16π

a
replacing

8π

a2

to deduce (58). �

We next consider an annulus and derive an improved inequality by exploiting the Kelvin’s transform.

Lemma 4.6. Given ε > 0, there exists r0 > 0, r0 = r0(ε,M) such that for any r ∈ (0, r0) fixed, there

exists C= C(r, ε) >0 such that, for any u ∈ H1(M) with u = 0 on ∂B2r(p), if a ≥ 1

2

8π log

ˆ
Ap(s,r)

eu dVg +
8π

a2
log

ˆ
Ap(s,r)

e−au dVg ≤
1

2

ˆ
Ap(s/2,2r)

|∇u|2 dVg + ε

ˆ
M

|∇u|2 dVg

−8π

(
1− 1

a

)
(1 + ε)u(s)− 16π

(
1 +

1

a2

)
(1 + ε) log s+ C,

(59)

and if a <
1

2

8π log

ˆ
Ap(s,r)

eu dVg +
8π

a2
log

ˆ
Ap(s,r)

e−au dVg ≤
1

2

ˆ
Ap(s/2,2r)

|∇u|2 dVg + ε

ˆ
M

|∇u|2 dVg

+8π(1 + ε)u(s)− 16π

(
1 +

2

a

)
(1 + ε) log s+ C,

(60)

with p ∈M , s ∈ (0, r), where u(s) =

 
Bs(p)

u dVg.

Proof. Suppose for simplicity the metric around the point p is flat. We introduce the Kelvin’s transform
K : Ap(s/2, 2r)→ Ap(s/2, 2r) defined by

K(x) = p+ rs
x− p
|x− p|2

.

K is constructed in such a way that it maps the interior boundary of Ap(s/2, 2r) onto the exterior one
and vice versa. By means of the latter map we consider ũ ∈ H1(Bp(2r)) given by

ũ(x) =

{
u
(
K(x)

)
− β log |x− p| for |x− p| ≥ s/2,

−β log
(
s
2

)
for |x− p| ≤ s/2,
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where β ∈
[
− 4
a , 4
]

will be chosen later. We aim to apply the local Moser-Trudinger inequality given by
Proposition 3.3 to ũ,−aũ. To this end, we need to considerˆ

Ap(s,r)

eũ dVg =

ˆ
Ap(s,r)

eu(K(x))|x− p|−β dVg =

ˆ
Ap(s,r)

eu(K(x)) |x− p|4−β

s2r2

(sr)2

|x− p|4
dVg

=

ˆ
Ap(s,r)

eu(K(x)) (sr)2−β

|K(x)− p|4−β
|J(K(x))| dVg =

ˆ
Ap(s,r)

eu(x) (sr)2−β

|x− p|4−β
dVg,

≥ C(r)

ˆ
Ap(s,r)

eu(x)s2−β dVg,

(61)

where J(K(x)) denotes the Jacobian of K; in the last inequality we have used |x| < r and β ≤ 4.
Reasoning in a similar way we get

(62)

ˆ
Ap(s,r)

eũ dVg = C(r)

ˆ
Ap(s,r)

e−au(x)s2+aβ dVg,

where we used β ≥ − 4
a . Therefore, by (61), (62) and then by Proposition 3.3 applied to ũ,−aũ in B2r(p)

we obtain

8π log

ˆ
Ap(s,r)

eu(x) dVg +
8π

a2
log

ˆ
Ap(s,r)

e−au(x) dVg =8π log

ˆ
Ap(s,r)

eũ(x) dVg +
8π

a2
log

ˆ
Ap(s,r)

e−aũ(x) dVg

+

(
8π(β − 2)− 8π

a2
(aβ + 2)

)
log s+ C(r)

≤ 1

2

ˆ
B2r(p)

|∇ũ(x)|2 dVg + 8π

(
1− 1

a

)
ũ(2r) +

(
8π(β − 2)− 8π

a2
(aβ + 2)

)
log s+ C(r),(63)

where ũ(2r) =
ffl
B2r(p)

ũ dVg. To estimate the average part we use Lemma 4.4 to deduce∣∣∣∣∣ũ(2r)−
 
∂B2r(p)

ũ dSg

∣∣∣∣∣ ≤ C
(ˆ

B2r(p)

|∇ũ(x)|2 dVg

)1/2

≤ ε
ˆ
B2r(p)

|∇ũ(x)|2 dVg + C.

Moreover, it holds  
∂Br(p)

ũ dSg =

 
∂Br(s)

u dSg + C(r).

Therefore, still by Lemma 4.4 we have

(64)
∣∣∣ũ(2r)− u(s)

∣∣∣ ≤ εˆ
B2r(p)

|∇ũ(x)|2 dVg + ε

ˆ
Bs(p)

|∇u(x)|2 dVg + C.

We are left with the estimate of the gradient term. Since ũ is constant for |x− p| < s/2 we need just to
consider |x− p| ≥ s/2, where we have

|∇ũ(x)|2 = |∇u(K(x))|2 s2r2

|x− p|4
+

β2

|x− p|2
+ 2β∇u(K(x)) · x− p

|x− p|
sr = G1 +G2 +G3.

It is easy to see that

(65)

ˆ
Ap(s/2,2r)

G1 dVg =

ˆ
Ap(s/2,2r)

|∇u|2 dVg,

(66)

ˆ
Ap(s/2,2r)

G2 dVg = −2πβ2 log s+ C(r).

Now, by using the definition of K, by integrating by parts and by u = 0 on ∂B2r(p) we getˆ
Ap(s/2,2r)

G3 dVg = 2β

ˆ
Ap(s/2,2r)

∇u(K(x)) · K(x)− p
|K(x)− p|2

|J(K(x))| dVg

= 2β

ˆ
Ap(s/2,2r)

∇u(x) · x− p
|x− p|2

dVg = −2β

ˆ
∂Bs/2(p)

u(x)
x− p
|x− p|2

· ν dSg,
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where ν is the unit outer normal. Observe that
´
∂Bs/2(p)

x−p
|x−p|2 · ν dSg = 2π and

∣∣∣ x−p
|x−p|2 · ν

∣∣∣ ≤ C
|Bs/2(p)| .

Therefore,∣∣∣∣∣
ˆ
∂Bs/2(p)

u(x)
x− p
|x− p|2

· ν dSg − 2π

 
∂Bs/2(p)

u(x) dSg

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
∂Bs/2(p)

x− p
|x− p|2

· ν

(
u(x)−

 
∂Bs/2(p)

u(x) dSg

)∣∣∣∣∣
≤ C

∣∣∣∣∣
 
∂Bs/2(p)

(
u(x)−

 
∂Bs/2(p)

u(x) dSg

)∣∣∣∣∣
≤ C

(ˆ
Bs/2(p)

|∇u|2 dVg

)1/2

≤ ε
ˆ
Bs/2(p)

|∇u|2 dVg + C,

where we have used Lemma 4.4. Applying again the latter lemma we deduce that

(67)

ˆ
Ap(s/2,2r)

G3 dVg = −2β

ˆ
∂Bs/2(p)

u(x)
x− p
|x− p|2

· ν dSg = −4πβu(s) + ε

ˆ
Bs/2(p)

|∇u|2 dVg + C.

Finally, by using (64), (65), (66) and (67) in (63) we obtain

8π log

ˆ
Ap(s,r)

eu(x) dVg +
8π

a2
log

ˆ
Ap(s,r)

e−au(x) dVg ≤
1

2

ˆ
Ap(s/2,2r)

|∇u|2 dVg +

(
8π

(
1− 1

a

)
− 2πβ

)
u(s)

+

(
8π(β − 2)− 8π

a2
(aβ + 2)− πβ2

)
log s

+ ε

ˆ
M

|∇u|2 dVg + ε

ˆ
B2r(p)

|∇ũ(x)|2 dVg + C.

To conclude we just need to take either β = 8
(
1− 1

a

)
for a ≥ 1

2 or β = − 4
a for a < 1

2 to get the desired
inequalities (59) and (60), respectively. �

Now we have all the ingredients to prove the main Proposition 4.3.

Proof of Proposition 4.3. The strategy follows the same steps as in the proof of Proposition 3.2 in [27]
or Proposition 3.6 in [11] hence we will just present here the main idea.

Let ψ be the map defined in Proposition 4.2. Let u ∈ H1(M) be such that

ψ

(
eu´

M
eu dVg

)
= ψ

(
e−au´

M
e−au dVg

)
= (β, σ).

Then, by Proposition 4.2 there exist p1, p2 ∈M , d(p1, p2) ≤ Cσ such thatˆ
Bσ(p1)

eu dVg > τ

ˆ
M

eu dVg,

ˆ
BRσ(p1)c

eu dVg > τ

ˆ
M

eu dVg,

ˆ
Bσ(p2)

e−au dVg > τ

ˆ
M

e−au dVg,

ˆ
BRσ(p2)c

e−au dVg > τ

ˆ
M

e−au dVg,

with τ > 0 independent of σ. Suppose for a moment that p1 = p2. Then, we may apply Lemma 4.5,
Lemma 4.6: summing the inequalities (57) and (59) if a ≥ 1

2 (resp. (58) and (60) if a < 1
2 ) the extra term

8π

(
1− 1

a

)
u(σ) + 16π

(
1 +

1

a2

)
log σ, a ≥ 1

2

(
resp.− 8πu(σ) + 16π

(
1 +

2

a

)
log σ, a <

1

2

)
cancels out and we get the desired inequality of Proposition 4.3. However, one needs to face the fact
that in general p1 6= p2 and that u is not identically zero on some ∂B2r(p) as in Lemma 4.6. To deal
with these facts we have to perform some technical modifications involving dyadic decompositions and
harmonic liftings: for full details we refer to [11, 27]. �
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4.2. Topological set and test functions. In this subsection we will introduce the topological set which
will describe the sublevels J−Lρ : starting from the topological join M ∗M (recall that M1

∼= M) according
to the constraints imposed by the improved Moser-Trudinger inequality of Proposition 4.3. Next, we will
construct test functions modeled on this set.

We need to take into account the local scale σ of functions as defined in Proposition 4.2. Since the
latter is defined just for functions f such that d(f,M) < δ, for δ = δR > 0, we proceed in the following
way. Let

σM = inf

{
σ(f) : d(f,M) ≤ 1

2
δ

}
,

and set

σ(u) = min

{
σM , σ

(
eu´

M
eu dVg

)}
.

Whenever σ
(

eu´
M
eu dVg

)
is not well-defined we will consider σM . Let ψ be as in Proposition 4.2 and let

s be as defined in (47). We use the notation

(68) ψ

(
eu´

M
eu dVg

)
=
(
β(u), σ(u)

)
.

In the spirit of (48) we then set Ψ̃ : J−Lρ →M ∗M ,

(69) Ψ̃(u) =

(
β(u), β(−au), s

(
(σ(u), σ(−au)

))
.

Observe that the point of concentration β is defined just for functions f such that d(f,M) < δ. However,
notice that by the Proposition 4.1 when one of β(u), β(−au) is not defined the other necessarily is, and
the map is well defined by the equivalence relation, see (12), for L > 0 sufficiently large. Indeed, we have
just to observe that σ(f) ≈ d(f,M). Moreover, the improved inequality of Proposition 4.3 gives a lower
bound on configurations which have both the same point of concentration β and scale of concentration
σ: such configurations are represented by

(70) S =

{(
p, p,

1

2

)
: p ∈M

}
⊂M ∗M.

Therefore, we deduce the following result.

Proposition 4.7. Suppose ρ1 ∈ (8π, 16π) and either ρ2 ∈
(

8π

a2
,

16π

a2

)
if a ≥ 1

2
or ρ2 ∈

(
8π

a2
,

8π

a2
+

16π

a

)
if a <

1

2
. Let Ψ̃ be as in (69) and let S be as in (70). Then, for L sufficiently large it holds that

Ψ̃ : J−Lρ → (M ∗M) \ S.

Moreover, we can construct a map on the other way round by mapping (M ∗M) \S into the sublevels
J−Lρ . More precisely, we will consider a deformation retract Xλ of (M ∗M) \ S which is more suitable

to modeled the test functions on. Indeed, let δ̄ > 0 be sufficiently small and λ > 0 be sufficiently large:
in (M ∗M) \ S we can either deform two distinct points up to have mutual distance at least δ̄ or deform
the join parameter s to be very close either to 0, i.e. s ≤ 1

λ (when s < 1/2), or to 1, i.e. s ≥ 1− 1
λ (when

s > 1/2). In doing this we end up with the set Xλ ⊂ (M ∗M) \ S defined as
(71)

Xλ =

{(
p, q, s

)
: p, q ∈M, d(p, q) ≥ δ̄, s ∈ [0, 1]

}
∪
{(
p, q, s

)
: p, q ∈M, d(p, q) ≤ δ̄, s ≤ 1

λ
or s ≥ 1− 1

λ

}
,

with the convention that whenever s ∈ {0, 1} we do not impose any restriction on the points p, q (recall
the equivalence relation in the definition of the topological join, see (12)). We consider now test functions
modeled on the latter set: for ξ =

(
p, q, s

)
∈ Xλ we define

λ1,s = (1− s)λ, λ2,s = sλ,

and

(72) Φ̃(ξ) = ϕλ,ξ(x) = log

(
1

1 + λ2
1,sd(x, p)2

)2

− 1

a
log

(
1

1 + λ2
2,sd(x, q)2

)2

.
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Observe that the above map is well defined in the topological join due to the expressions of λi,s. In the

following result we will show that Φ̃ maps Xλ into the low sublevels J−Lρ .

Proposition 4.8. Suppose ρ1 > 8π and ρ2 >
8π

a2
with a ∈ (0, 1). Let Xλ and ϕλ,ξ be as given in (71),

(72), respectively. Then, it holds

Jρ (ϕλ,ξ)→ −∞ as λ→ +∞ uniformly in ξ ∈ Xλ.

Letting Φ̃ be defined as in (72), it follows that for any L > 0 there exists λ > 0 large such that

Φ̃ : Xλ → J−Lρ .

Proof. Let v1, v2 : M → R be given by

(73) v1(x) = log

(
1

1 + λ2
1,sd(x, p)2

)2

, v2(x) = log

(
1

1 + λ2
2,sd(x, q)2

)2

.

so that ϕλ,ξ = v1 − 1
av2. Observe that by construction of the set Xλ in (71) we need to carry out the

energy estimates in the following two regimes: either the two points of concentration p, q ∈ M are close
and the scale of concentration are very different, i.e. d(p, q) ≤ δ̄ and s = 1 − 1

λ (resp. s = 1
λ ), or p, q

are such that d(p, q) ≥ δ̄. We start by pointing out that in the first alternative we have λ1,s ≤ 1 (resp.
λ2,s ≤ 1), see the definition before (72). It follows that v1 (resp. v2) and its derivative are uniformly
bounded. Therefore, the test function ϕλ,ξ resembles the standard bubble or the one in (39) for which
the energy estimates are well known, see Proposition 3.6.

Let us consider now the case d(p, q) ≥ δ̄. Moreover, we take s ∈ (0, 1) otherwise we conclude as before.
As in the proof of Proposition 3.6 it holds

(74) |∇vi(x)| ≤ Cλi,s, for every x ∈M and s ∈ [0, 1], i = 1, 2,

where C is a constant independent of λ, ξ ∈ Xλ, and

(75) |∇v1(x)| ≤ 4

d(x, p)
, for every x ∈M, i = 1, 2,

and similarly for v2.

We have
1

2

ˆ
M

|∇ϕλ,ξ|2 dVg =
1

2

ˆ
M

(
|∇v1|2 +

1

a2
|∇v2|2 −

2

a
∇v1 · ∇v2

)
dVg.

Reasoning as in Proposition 3.3 in [2] it is easy to show that the integral of the mixed term ∇v1 · ∇v2 is
bounded by a constant depending only on M , i.e.

(76)

ˆ
M

∇v1 · ∇v2 dVg ≤ C.

Exploiting the fact that d(p, q) ≥ δ̄ and using the estimates (74), (75), we can proceed as in the proof
of Proposition 3.6, see (43), to deduce

(77)
1

2

ˆ
M

|∇ϕλ,ξ|2 dVg ≤ 16π
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+

16π

a2

(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+ C,

where δ1,s > δ > 0 as s→ 1 and δ2,s > δ > 0 as s→ 0, for some fixed δ.

The same argument as in the proof of Proposition 3.6, see (45), leads toˆ
M

v1 dVg = −4
(
1 + oλ(1)

)
log
(
λ1,s+ δ1,s

)
+O(1);

ˆ
M

v2 dVg = −4
(
1 + oλ(1)

)
log
(
λ2,s+ δ2,s

)
+O(1),

therefore we obtainˆ
M

ϕλ,ξ dVg = −4
(
1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+

4

a

(
1 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1).(78)

We are left with estimatingˆ
M

eϕλ,ξ dVg =

ˆ
M

1(
1 + λ2

1,sd(x, p)2
)2 (1 + λ2

2,sd(x, q)2
)2/a

dVg(x).
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We consider M = Bδ̄/2(p) ∪ (M \Bδ̄/2(p)). In Bδ̄/2(p) we observe that 1
C ≤ d(x, q) ≤ C and hence

ˆ
Bδ̄/2(p)

1(
1 + λ2

1,sd(x, p)2
)2 (1 + λ2

2,sd(x, q)2
)2/a

dVg(x) =

(
λ2,s + δ2,s

) 4
a(

λ1,s + δ1,s
)2 (1 +O(1)

)
.

In M \ Bδ̄/2(p) we have that 1
C ≤ d(x, p) ≤ C and we deduce that this part is a higher-order term. We

conclude that

(79) log

ˆ
M

h1e
ϕλ,ξ dVg =

4

a
log
(
λ2,s + δ2,s

)
− 2 log

(
λ1,s + δ1,s

)
+O(1).

Similarly we get

(80) log

ˆ
M

h2e
−aϕλ,ξ dVg = 4a log

(
λ1,s + δ1,s

)
− 2 log

(
λ2,s + δ2,s

)
+O(1).

Finally, using the expression of Jρ in (10) and the estimates (77), (78), (79) and (80) we assert that

Jρ(ϕλ,ξ) ≤
(
16π − 2ρ1 + oλ(1)

)
log
(
λ1,s + δ1,s

)
+

(
16π

a2
− 2ρ2 + oλ(1)

)
log
(
λ2,s + δ2,s

)
+O(1).

Observe that max
s∈[0,1]

{λ1,s, λ2,s} → +∞ as λ → ∞. The proof is done since ρ1 > 8π, ρ2 >
8π

a2
by

assumption.
�

We prove now the existence result of Theorem 1.4.

Proof of Theorem 1.4. Suppose ρ1 ∈ (8π, 16π) and either ρ2 ∈
(

8π

a2
,

16π

a2

)
if a ≥ 1

2
or ρ2 ∈

(
8π

a2
,

8π

a2
+

16π

a

)
if a <

1

2
. Let Xλ be as in (71) and denote by R the deformation retraction involved in its definition. Let

Ψ̃ be as in Proposition 4.7 and let Φ̃, ϕλ,ξ be as in (72). The key fact is to show that

(81) Xλ
Φ̃−→ J−Lρ

R◦Ψ̃−−−→ Xλ

is homotopic to Id|Xλ for λ large. Let ξ = (p, q, s) ∈ Xλ. Recalling the notation in (68) we need to
consider

Ψ̃(ϕλ,ξ) =

(
β(ϕλ,ξ), β(−aϕλ,ξ), s

(
(σ(ϕλ,ξ), σ(−aϕλ,ξ)

))
.

Recall the definition of d in (14). Reasoning as in Proposition 4.9 in [2] there exist C > 0 not depending
on λ, s such that for any ξ = (p, q, s) ∈ Xλ with d(p, q) ≥ δ̄ and s ∈ (0, 1) we have

1

C
min

{
1,

1

(1− s)λ

}
≤ d

(
h1e

ϕλ,ξ´
M
h1eϕλ,ξ dVg

,M

)
≤ C

(1− s)λ
,

1

C
min

{
1,

1

sλ

}
≤ d

(
h2e
−aϕλ,ξ´

M
h2e−aϕλ,ξ dVg

,M

)
≤ C

sλ
.

(82)

Consider now d(p, q) ≤ δ̄. By the construction of the set Xλ we readily have one of the two components
v1, v2 defined in (73) is bounded, i.e. one bubble is negligible, see the argument at the beginning of the
proof of Proposition 4.8. Therefore, we can still apply the argument in [2] to deduce the above estimates

(in this case we will have either min
{

1, 1
(1−s)λ

}
= 1

(1−s)λ and min
{

1, 1
sλ

}
= 1 or the switched situation).

Concerning the scale of concentration σ, by estimating the volume of the test functions in small balls
as in Lemma 4.4 in [27] (see also [11]) it is not difficult to see that there exists C > 0 not depending on
λ, s such that

(83)
1

C
≤ σ(ϕλ,ξ)

min

{
1,

1

(1− s)λ

} ≤ C, 1

C
≤ σ(−aϕλ,ξ)

min

{
1,

1

sλ

} ≤ C,
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see the proof of Lemma 4.5 in [27] (see also [11]). Observe that by (82) when min
{

1, 1
(1−s)λ

}
= 1 we

get σ(ϕλ,ξ) = σM , see the notation before (68), and the above estimate trivially holds true. A similar
argument works for σ(−aϕλ,ξ).

It follows that when one of the projections Π

(
h1e

ϕλ,ξ´
M
h1eϕλ,ξ dVg

)
,Π

(
h2e
−aϕλ,ξ´

M
h2e−aϕλ,ξ dVg

)
∈ M is not

defined, where Π is given before (47), the other necessarily is, and the map is well defined by the

equivalence relation, see (12), for λ > 0 sufficiently large. Moreover, Π

(
h1e

ϕλ,ξ´
M
h1eϕλ,ξ dVg

)
→ p and

Π

(
h2e
−aϕλ,ξ´

M
h2e−aϕλ,ξ dVg

)
→ q as λ→ +∞ whenever they are well defined, see for example the proof of The-

orem 1.3. On the other hand, we clearly have Π

(
h1e

ϕλ,ξ´
M
h1eϕλ,ξ dVg

)
≈ β(ϕλ,ξ) and Π

(
h2e
−aϕλ,ξ´

M
h2e−aϕλ,ξ dVg

)
≈

β(−aϕλ,ξ) for λ sufficiently large since all the volume of the test functions is accumulating around p or
q, respectively, see the argument of Lemma 4.5 in [27] for an alternative proof of the latter property (see
also [11]). We conclude that β(ϕλ,ξ) ≈ p and β(−aϕλ,ξ) ≈ q for λ large, whenever they are well defined.

Therefore, the desired homotopy is obtained by deforming β(ϕλ,ξ) to p, β(−aϕλ,ξ) to q, whenever they
are well defined and by deforming s

(
(σ(ϕλ,ξ), σ(−aϕλ,ξ)

)
to the initial s. We have just to check that

Ψ̃(ϕλ,ξ) ∈ (M ∗M) \ S, i.e. that s
(
(σ(ϕλ,ξ), σ(−aϕλ,ξ)

)
6= 1

2 for d(p, q) ≤ δ̄, see (70). Indeed, we have

already observed below (82) that in this case we get either min
{

1, 1
(1−s)λ

}
= 1

(1−s)λ and min
{

1, 1
sλ

}
= 1

or the switched situation. Suppose the first alternative holds true. Using then (83) we conclude that
σ(ϕλ,ξ)� σ(−aϕλ,ξ) for λ large and hence s

(
(σ(ϕλ,ξ), σ(−aϕλ,ξ)

)
6= 1

2 by definition.

This concludes the proof of the fact that the composition in (81) is homotopic to Id|Xλ for λ large.
Therefore, we deduce that

Hq(Xλ) ↪→ Hq

(
J−Lρ

)
.

We next observe that Xλ has non-trivial homology which leads to non-trivial homology of J−Lρ . Since Xλ

is a deformation retract of (M ∗M)\S it is enough to consider the homology of the latter set. We point out
that the positive genus case g(M) > 0 can be treated as in Section 5, which yields existence of solutions to
(1). Hence, we restrict our attention to M ∼= S2. In this case we get S2 ∗ S2 ∼= S5 and S ∼= S2. Therefore,
by the Alexander duality, see the Corollary 3.45 in [10], we obtain H2((S2 ∗ S2) \ S2) ∼= H2(S2) ∼= Z.

Therefore, by applying Proposition 3.2 and Proposition 3.1 as in the proof of Theorem 1.3 we get the
conclusion. �

5. Existence result in a supercritical case with positive genus

In this section we are concerned with the supercritical range ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
+

16π

a
,

16π

a2

)
for a <

1

2
. The goal is to get the existence result of Theorem 1.5. Observe that the improved inequality

of Proposition 4.3 does not apply to this case and hence the strategy of the previous section does not
work out for this range of the parameters. To overcome the difficulties we will restrict ourselves to a
surface M with positive genus g(M) > 0 and apply the argument introduced in [2] and used also in [17],
see the discussion in the Introduction below (12).

In the previous sections we have already introduced almost all the ingredients to carry the argument
out. We start by recalling that if Jρ(u) is large negative, then either eu or e−au (or both) need to be
concentrated around a point of the surface and hence there is a continuous map

(84) Ψ : J−Lρ →M ∗M,

for L sufficiently large, see Proposition 4.1. Next, we need the following topological result concerning
positive genus surfaces, see [2].

Lemma 5.1. Let M be a compact surface not homeomorphic to S2. Then, there exist two simple closed
curves γ1, γ2 ⊆M such that

(1) γ1, γ2 do not intersect each other ;
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(2) there exist two global retractions Ri : M → γi, i = 1, 2.

Let γi be as in the latter lemma. By means of the above retractions we can restrict the map Ψ in (84)
to targets in the topological join γ1 ∗ γ2 only. Indeed, recalling the notation in (48) we consider

(85) ΨR(u) =

(
(R1)∗Π

(
h1e

u´
M
h1eu dVg

)
, (R2)∗Π

(
h2e
−au´

M
h2e−au dVg

)
, s

)
,

where (Ri)∗ stands for the push-forward of the map Ri: we have

ΨR : J−Lρ → γ1 ∗ γ2.

Moreover, as in the previous section we can construct a reverse map. Namely, let ξ = (p, q, s) ∈ γ1 ∗ γ2,
i.e. p ∈ γ1, q ∈ γ2 and consider test functions

(86) Φ̃R(ξ) = ϕλ,ξ

as given in (72). Then, the following result holds true.

Proposition 5.2. Suppose ρ1 > 8π and ρ2 >
8π

a2
with a ∈ (0, 1). Let ϕλ,ξ be as given in (72). Then, it

holds

Jρ (ϕλ,ξ)→ −∞ as λ→ +∞ uniformly in ξ ∈ γ1 ∗ γ2.

Letting Φ̃R be defined as in (86), it follows that for any L > 0 there exists λ > 0 large such that

Φ̃R : γ1 ∗ γ2 → J−Lρ .

Proof. We have just to observe that the components v1, v2 of the test functions ϕλ,ξ, as defined in (73),
are supported in p ∈ γ1 and q ∈ γ2, respectively, where γ1, γ2 do not intersect each other by construction.
Therefore, there exists δ̄ > 0 small such that d(p, q) ≥ δ̄ and we can carry out all the estimates as in the
proof of the Proposition 4.8. �

We prove now the existence result of Theorem 1.5.

Proof of Theorem 1.5. Suppose ρ1 ∈ (8π, 16π) and ρ2 ∈
(

8π

a2
+

16π

a
,

16π

a2

)
with a <

1

2
. Let γ1, γ2 be as

in Lemma 5.1, let ΨR be as in (85) and let Φ̃R be as in (86). Reasoning as in the proof of Theorem 1.4
we get

γ1 ∗ γ2
Φ̃R−→ J−Lρ

Ψ̃R−→ γ1 ∗ γ2

is homotopic to Id|γ1∗γ2
for λ large. It follows that

Hq(γ1 ∗ γ2) ↪→ Hq

(
J−Lρ

)
.

We know that γ1 ∗γ2 is homeomorphic to S3, see for example [2] and hence J−Lρ has non-trivial homology.
One can then conclude by applying Proposition 3.2 and Proposition 3.1 as in the proof of Theorem 1.3. �
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