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Abstract. Motivated by applications to image denoising, we propose an approximation of functionals
of the form

F (u) =

ˆ

Ω

|∇u| dx+

ˆ

Su

g(|u+ − u−|) dHn−1 + |Dcu|(Ω), u ∈ BV (Ω),

with g : [0,+∞) → [0,+∞) increasing and bounded. The approximating functionals are of Ambrosio-
Tortorelli type and depend on the Hessian or on the Laplacian of the edge variable v which thus belongs
to W 2,2(Ω). When the space dimension is equal to two and three v is then continuous and this improved
regularity leads to a sequence of approximating functionals which are ready to be used for numerical
simulations.
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1. Introduction

The variational approach to image processing requires the minimization, over a suitable space of dis-
continuous functions, of a functional characterized by a regularizing term and a fidelity term. In the
framework of image denoising, one of the most successful models is the total-variation based model of
Rudin, Osher and Fatemi [20]. According to it, if h ∈ L∞(Ω) is a given input image then its reconstruction
u is obtained as a solution of the following problem:

min
u∈BV (Ω)

{

|Du|(Ω) + ‖u− h‖2L2(Ω)

}

, (1.1)

where Du denotes the distributional derivative of u ∈ BV (Ω) and is given by Du = ∇uLn + (u+ −
u−) νu Hn−1

xSu+D
cu. The model (1.1) performs well for removing noise and preserving edges. However

it always causes a loss of contrast in the reconstructed image, and this can be attributed to the fact
that the jump-penalization increases linearly with the amplitude of the jump |u+ − u−|, resulting in
a strong penalization of large jump-amplitude. Therefore it would be desirable to consider an energy
functional which penalizes the jump-amplitude and whose dependence on |u+ − u−| is increasing for
small amplitudes, and bounded for large ones. With this idea in mind, we are then interested in replacing
in (1.1) the total variation |Du|(Ω) with the functional

F (u) =

ˆ

Ω

|∇u| dx+
ˆ

Su

g(|u+ − u−|) dHn−1 + |Dcu|(Ω), (1.2)

for some C1, increasing and bounded function g : [0,+∞) → [0,+∞) such that g(0) = 0 (see Figure 1.).

It is well known that functionals as (1.2) are difficult to be treated numerically. Then a very important
task is to approximate them, in the sense of Γ-convergence, with volume-functionals defined on spaces of
more regular functions. In the spirit of Ambrosio and Tortorelli’s approximation of the Mumford-Shah
functional [5], Alicandro, Braides and Shah proposed in [2] an approximation of (1.2) by means of the
sequence

ABSε(u, v) =

ˆ

Ω

(

v2|∇u|+ (1− v)2

ε
+ ε|∇v|2

)

dx, (1.3)

1
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Figure 1. The function g.

with u ∈W 1,1(Ω) and v ∈W 1,2(Ω).
Motivated by the good computational results obtained in [8], where a second-order approximation of

the Mumford-Shah functional has been proposed and analyzed, in (1.3) we replace the first-order term
ε|∇v|2 with a second-order term depending either on the Hessian or on the Laplacian of v. Precisely, for
u ∈W 1,1(Ω) and v ∈W 2,2(Ω), we consider the functionals

Fε(u, v) =

ˆ

Ω

(

v2|∇u|+ (1 − v)2

ε
+ ε3|∇2v|2

)

dx (1.4)

and, under the additional condition (v − 1) ∈ W 1,2
0 (Ω), the functionals

Eε(u, v) =

ˆ

Ω

(

v2|∇u|+ (1 − v)2

ε
+ ε3|∆v|2

)

dx. (1.5)

In Theorems 3.1 and 3.2 we prove that both Fε and Eε Γ-converge, with respect to the strong topology
of L1(Ω)× L1(Ω), as ε→ 0, to the functional F defined in (1.2), with g : [0,+∞) → [0,+∞) given by

g(z) = min
r∈[0,1]

{r2z + 2
√
2(1− r)2} =

4z

4 +
√
2z
, (1.6)

where
√
2(1− r)2 represents the minimal cost in terms of the unscaled, one-dimensional Modica-Mortola

contribution in (1.4) and (1.5) for a transition between r and 1.
Let us briefly comment the heuristic idea behind these Γ-convergence results. Let (uε, vε) be a min-

imizing sequence either for Fε or for Eε. Then, far from Su, vε approaches 1 driven by the factor 1/ε
which multiplies the potential term (1 − vε)

2. Around Su, instead, both the first and second terms in
(1.4) are diverging; to keep them bounded vε makes transitions from r to 1, the value r chosen so that the
sum of the energy contributions given by ‖v2ε∇u‖L1(Ω) and the Modica-Mortola term in (1.4) is minimal;
i.e., minimizing (1.6).

On account of the Γ-convergence results Theorems 3.1 and 3.2, in Section 5 we prove that, when
perturbed by a term ‖u − h‖2

L2(Ω) for some h ∈ L∞(Ω), the functionals Fε and Eε are equicoercive (see

Theorems 5.1 and 5.2). As a result, we derive the convergence of the associated minimization problems
to

min
u∈BV (Ω)

{

F (u) + ‖u− h‖2L2(Ω)

}

. (1.7)

However the functionals Fε, as well as the functionals Eε, are not suited to numerical applications. In
fact, due to the lack of compactness properties of the space W 1,1(Ω), the direct methods of the calculus
of variations cannot be applied to obtain the existence of minimizers for Fε and Eε at fixed ε > 0.
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A relaxation argument allows nevertheless to obtain existence of minimizers in the larger space BV (Ω).
For n ≤ 3, which is the interesting case for applications, if we denote by F ε and Eε the relaxations of
Fε and Eε with respect to the strong topology of L1(Ω)×L1(Ω), we find that, thanks to the presence of
the second-order perturbation in v, the expressions of F ε and Eε are particularly easy. Specifically, in
Section 5, we prove that if u ∈ BV (Ω) and v ∈W 2,2(Ω) then

F ε(u, v) =

ˆ

Ω

v2 d|Du|+
ˆ

Ω

(

(1− v)2

ε
+ ε3|∇2v|2

)

dx,

Eε(u, v) =

ˆ

Ω

v2 d|Du|+
ˆ

Ω

(

(1− v)2

ε
+ ε3|∆v|2

)

dx,

the proof strongly relying on the fact that W 2,2(Ω) is compactly embedded in C(Ω).
Then, the functionals F ε and Eε still Γ-converge to F , and, if perturbed by a term ‖u− h‖2L2(Ω) for

some h ∈ L∞(Ω), they are equicoercive. If for ηε > 0 we consider the minimization problems

min
BV (Ω)×W 2,2(Ω)

{

F ε(u, v) + ηε|Du|(Ω) + ‖u− h‖2L2(Ω)

}

(1.8)

and

min
BV (Ω)×W 2,2(Ω)

{

Eε(u, v) + ηε|Du|(Ω) + ‖u− h‖2L2(Ω)

}

, (1.9)

the term ηε|Du|(Ω) makes the functionals in (1.8) and (1.9) coercive for fixed ε > 0. Then, the existence
of a minimizing pair easily follows appealing to the direct methods of the calculus of variations. Moreover
if ηε is chosen so that ηε = o(ε) then it can be easily shown that

F ε(u, v) + ηε|Du|(Ω) Γ−→ F (u, v), Eε(u, v) + ηε|Du|(Ω) Γ−→ F (u, v).

Hence if (uε, vε) is a minimizing sequence for (1.8) or (1.9), then vε → 1 in L1(Ω), uε converges to a
solution ū of (1.7) in Lp(Ω) for all p ∈ [1,+∞), and

lim
ε→0

(

F ε(uε, vε) + ηε|Duε|(Ω) + ‖uε − h‖2L2(Ω)

)

= F (ū) + ‖ū− h‖2L2(Ω).

We notice that the strong convergence of uε to ū in Lp(Ω) for all p ∈ [1,+∞) is consequence of the strong
convergence of uε to ū in L1(Ω) together with the fact that one can always assume ‖uε‖L∞(Ω) ≤ ‖h‖L∞(Ω).

The relaxed functionals F ε and Eε are now ready to be used for numerical simulations. In order to
solve (1.8) or (1.9) one can follow the common strategy of iterative alternating minimization (see e.g.
[18]). Hence, given an iterate (uk, vk), one computes

vk+1 ∈ argmin
v
F ε(u

k, v)

uk+1 ∈ argmin
u
F ε(u, v

k+1) + ηε|Du|(Ω) + ‖u− h‖2L2(Ω). (1.10)

We notice that now, thanks to the continuity of vk+1, (1.10) is a standard weighted total-variation
minimization problem and can be solved in a straightforward way with primal dual methods (see e.g.
[9, 10, 17]).

The paper is organized as follows: after recalling some useful notation and preliminaries in Section
2, we state and prove the main results, Theorems 3.1 and 3.2, in Section 3 and Section 4. In Section 5
we first establish an equicoercivity result for the functionals under examination and then we provide an
integral representation for their relaxations, in the case when n ≤ 3.
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2. Notation and preliminaries

In this section we set a few notation and recall some preliminary results we employ in the sequel.
Throughout the paper the parameter ε varies in a strictly decreasing sequence of positive real numbers

converging to zero.
Let n ≥ 1; if not otherwise specified, Ω ⊂ R

n denotes an open bounded set with Lipschitz boundary.
We denote by A(Ω) and B(Ω) the families of all open and Borel subsets of Ω, respectively. The Lebesgue
measure and the k-dimensional Hausdorff measure on R

n are denoted by Ln and Hk, respectively. If
x ∈ R

n, we denote by (x1, . . . , xn) its components in the canonical basis (e1, . . . , en) of R
n. The scalar

product of x, y ∈ R
n is denoted by 〈x, y〉 and the euclidean norm by |x|, whereas A · B denotes the

product between two suitable matrices A, B. If x0 ∈ R
n and ̺ > 0, then B̺(x0) denotes the open ball

centered at x0 with radius ̺; if x0 coincides with the origin we omit the dependence on x0 and we simply
write B̺. Moreover we denote by Sn−1 the boundary of B1 in R

n.

Let Mb(Ω) be the set of all bounded Radon measures on Ω; if µk, µ ∈ Mb(Ω), we say that µk
∗
⇀ µ

weakly∗ in Mb(Ω) as k → +∞ if

lim
k→+∞

ˆ

Ω

ϕdµk =

ˆ

Ω

ϕdµ ∀ ϕ ∈ C0
0 (Ω).

Let 1 ≤ p ≤ +∞ and k ∈ N, we use standard notation for the Lebesgue and Sobolev spaces Lp(Ω) and
W k,p(Ω).

2.1. Functions of bounded variation. For the general theory of functions of bounded variation we
refer the reader to [4]; here we only collect some useful notation and facts.

For every u ∈ BV (Ω), ∇u denotes the approximate gradient of u, Dcu the Cantor part of the
distributional derivative of u, Su the approximate discontinuity set of u, νu the generalized normal to Su,
which is defined up to the sign, and u+ and u− are the traces of u on Su.

We state a compactness result in BV (Ω) (see [4, Theorem 3.23 and Proposition 3.21]).

Theorem 2.1. Let Ω ⊂ R
n be an open bounded set with Lipschitz boundary and let (uk) be a bounded

sequence in BV (Ω). Then there exist a subsequence of uk (not relabeled) and a function u ∈ BV (Ω) such

that uk
∗
⇀ u in BV (Ω); i.e., uk → u in L1(Ω) and Duk

∗
⇀ Du in Ω in Mb(Ω).

We say that a function u ∈ BV (Ω) is a special function of bounded variation, and we write u ∈
SBV (Ω), if Dcu = 0.

We also consider the larger space of the generalized functions of bounded variation on Ω, GBV (Ω),
which is made of all the functions u ∈ L1(Ω) whose truncations um := (−m) ∨ (u ∧m) belong to BV (Ω)
for every m > 0.

By the very definitions we have BV (Ω) ⊂ GBV (Ω) and BV (Ω) ∩ L∞(Ω) = GBV (Ω) ∩ L∞(Ω).
The space GBV inherits some of the main properties of the space BV (see [4, Theorem 4.34]).

Theorem 2.2. Let u ∈ GBV (Ω). Then

(i) u is approximately differentiable Ln-a.e. in Ω and ∇u = ∇um Ln-a.e. in {|u| ≤ m};
(ii) Su = ∪m>0Sum is countably Hn−1-rectifiable and Hn−1(Su \ Ju) = 0, where Ju denotes the set of

the approximate jump points of u.

The Cantor part of the distributional derivative of u ∈ GBV (Ω) is defined as

|Dcu| :=
∨

m>0

|Dcum|,

where the supremum is understood in the sense of measure (see [4, Definition 1.68]).
Notice that if u ∈ GBV (Ω) then

|∇um(x)| ≤ |∇u(x)| Ln-a.e. in Ω
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∇um(x) → ∇u(x) Ln-a.e. in Ω as m→ +∞

Sum ⊆ Su, (u
m)± = (u±)m Hn−1-a.e. in Ω (2.1)

χSum → χSu
, (um)±(x) → u±(x) Hn−1-a.e. in Ω as m→ +∞ (2.2)

Hn−1(Sum) → Hn−1(Su) as m→ +∞

|Dcum|(Ω) → |Dcu|(Ω) as m→ +∞.

2.2. Slicing. We recall here some properties of one-dimensional restrictions of BV functions. We first
fix some notation. For each ξ ∈ Sn−1 we consider the hyperplane through the origin and orthogonal to
ξ; i.e.,

Πξ := {x ∈ R
n : 〈x, ξ〉 = 0},

and, for every y ∈ Πξ and A ⊂ R
n, we consider the one-dimensional set

Aξ,y := {t ∈ R : y + t ξ ∈ A}.

Moreover, for any given function u : Ω → R we define uξ,y : Ωξ,y → R by uξ,y(t) := u(y + t ξ).
The following result holds true (see [3]).

Theorem 2.3 (Slicing Theorem in BV). (i) Let u ∈ BV (Ω). Then for all ξ ∈ Sn−1 the function uξ,y
belongs to BV (Ωξ,y) for Hn−1-a.e. y ∈ Πξ. For those y such that uξ,y ∈ BV (Ωξ,y) we have

u′ξ,y(t) = 〈∇u(y + tξ), ξ〉 for L1-a.e. t ∈ Ωξ,y

Suξ,y
= {t ∈ R : y + tξ ∈ Su}

u±ξ,y = u±(y + tξ) or u±ξ,y = u∓(y + tξ)

according to the cases 〈νu, ξ〉 > 0 or 〈νu, ξ〉 < 0 (the case 〈νu, ξ〉 = 0 being negligible). Moreover,
we have

ˆ

Πξ

|Dcuξ,y|(Aξ,y) dHn−1(y) = |〈Dcu, ξ〉|(A)

for all A ∈ A(Ω), and for all functions g ∈ L1(Su;Hn−1)

ˆ

Πξ

∑

t∈Suξ,y

g(t) dHn−1(y) =

ˆ

Su

g(x)|〈νu, ξ〉| dHn−1(x).

(ii) Let u ∈ L1(Ω). If uξ,y ∈ BV (Ωξ,y) and

ˆ

Πξ

|Duξ,y|(Ωξ,y) dHn−1(y) < +∞

for all ξ ∈ {e1, . . . , en} and for Hn−1-a.e. y ∈ Πξ, then u ∈ BV (Ω).

The previous theorem will be a key tool to get the lower bound inequality in the proof of Theorem
3.1.
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2.3. A density result. We denote by W(Ω) the space of all functions u ∈ SBV (Ω) such that:

(i) Hn−1(Su \ Su) = 0;
(ii) Su is the intersection of Ω with the union of a finite number of pairwise disjoint (n− 1)-dimensional

simplexes;
(iii) u ∈W k,∞(Ω \ Su) for every k ∈ N.

The following theorem due to Cortesani and Toader (see [11, Theorem 3.1]) provides a density result of
W(Ω) in SBV 2(Ω) ∩ L∞(Ω), where by SBV 2(Ω) we denote

SBV 2(Ω) = {u ∈ SBV (Ω): ∇u ∈ L2(Ω), Hn−1(Su) < +∞},

and it will be used to get the upper bound inequality in both Theorems 3.1 and 3.2.

Theorem 2.4. Let u ∈ SBV 2(Ω)∩L∞(Ω). Then there exists a sequence (uj) ⊂ W(Ω) such that uj → u
in L1(Ω), ∇uj → ∇u in L2(Ω), lim supj→+∞ ‖uj‖∞ ≤ ‖u‖∞ and

lim sup
j→+∞

ˆ

Suj

φ(u+j , u
−
j , νuj

) dHn−1 ≤
ˆ

Su

φ(u+, u−, νu) dHn−1

for every upper semicontinuous function φ : R × R × Sn−1 → [0,+∞) such that φ(a, b, ν) = φ(b, a,−ν)
for every a, b ∈ R and ν ∈ Sn−1.

2.4. A relaxation result. We state here a relaxation result, due to Fonseca and Leoni (see [15, Theorem
1.8]), which will be crucial to obtain the lower bound inequality in Theorem 3.2.

Let N ≥ 1 and let f : Ω×R
N×R

nN → [0,+∞) be a Borel function. For any (x,w, z) ∈ Ω×R
N×R

nN

we define the recession function of f as

f∞(x,w, z) := lim sup
t→+∞

f(x,w, tz)

t
.

Theorem 2.5. Let N ≥ 1 and let f : Ω× R
N × R

nN → [0,+∞) be a Borel function. Assume that

(i) for all (x0, w0) ∈ Ω×RN f(x0, w0, ·) is convex in R
nN ;

(ii) for all (x0, w0) ∈ Ω × R
N either f(x0, w0, z) ≡ 0 for all z ∈ R

nN , or for every η > 0 there exist
c1, c2, δ > 0 such that

f(x0, w0, z)− f(x,w, z) ≤ η(1 + f(x,w, z))

f(x,w, z) ≥ c2|z|+ c1

for all (x,w) ∈ Ω× R
N with |x− x0|+ |w − w0| ≤ δ and for all z ∈ R

nN .

Consider the functional F : L1(Ω)×A(Ω) → [0,+∞] defined by

F (w,A) :=







ˆ

A

f(x,w,∇w) dx w ∈W 1,1(Ω),

+∞ otherwise.

Then for w ∈ BV (Ω) we get

F (w,A) ≥
ˆ

A

f(x,w,∇w) dx +

ˆ

A

f∞

(

x,w,
dDcw

d|Dcw|

)

d|Dcw|.
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2.5. Interpolation inequalities and elliptic regularity estimate. As we will heavily use them in
what follows, we recall here two interpolation inequalities (see e.g. [1, Theorems 4.14 and 4.15] and [19,
Theorem 3.1.2.1 and Remark 3.1.2.2]).

Proposition 2.6. Let U be an open bounded subset of Rn and let ε0 > 0.

(i) If U has Lipschitz boundary, then there exists a constant c0(ε0, U) > 0 such that

c0 ε

ˆ

U

|∇v|2 dx ≤ 1

ε

ˆ

U

(1 − v)2 dx+ ε3
ˆ

U

|∇2v|2 dx,

for every ε ∈ (0, ε0] and for every v ∈W 2,2(U).
(ii) If U has C2-boundary, then there exists a constant c0(ε0, U) > 0 such that

c0 ε

ˆ

U

|∇v|2 dx ≤ 1

ε

ˆ

U

(1− v)2 dx+ ε3
ˆ

U

|∆v|2 dx,

for every ε ∈ (0, ε0] and for every v ∈W 2,2(U) with (1− v) ∈W 1,2
0 (U).

Moreover, we also recall a local a priori estimate for the Laplace operator (see [13, Theorem 1, Section
6.3.1]) that we will use in Section 4.

Proposition 2.7. Let U be an open bounded subset of Rn. Then for each open subset V ⊂⊂ U there
exists a constant c(U, V ) > 0 such that

‖v‖W 2,2(V ) ≤ c(U, V )
(

‖∆v‖L2(U) + ‖v‖L2(U)

)

,

for all v ∈W 2,2(U).

3. Statement of the main result

We consider the functionals Fε and Eε defined as

Fε(u, v) :=







ˆ

Ω

(

v2|∇u|+ (1− v)2

ε
+ ε3|∇2v|2

)

dx u ∈W 1,1(Ω), v ∈W 2,2(Ω),

+∞ otherwise in L1(Ω)× L1(Ω),

(3.1)

and

Eε(u, v) :=







ˆ

Ω

(

v2|∇u|+ (1− v)2

ε
+ ε3|∆v|2

)

dx u ∈W 1,1(Ω), v ∈W 2,2(Ω),

+∞ otherwise in L1(Ω)× L1(Ω).

(3.2)

Hereinafter the Γ-convergence of Fε and Eε is understood with respect to the strong topology of L1(Ω)×
L1(Ω).

The first main result of this paper is a Γ-convergence result for the functionals Fε.

Theorem 3.1. The sequence (Fε) defined as in (3.1) Γ-converges to the functional F defined as

F (u, v) :=







ˆ

Ω

|∇u| dx+

ˆ

Su

g(|u+ − u−|) dHn−1 + |Dcu|(Ω) u ∈ GBV (Ω), v = 1 a.e. inΩ,

+∞ otherwise in L1(Ω)× L1(Ω),
(3.3)

where g is given by

g(z) := min
r∈[0,1]

{r2 z + 2
√
2(1− r)2} =

4z

4 +
√
2z
. (3.4)

An analogous result can be recovered on GBV (Ω) for the functionals Eε, as stated in the following
theorem.
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Theorem 3.2. For every u ∈ GBV (Ω),

Γ- lim
ε→0

Eε(u, 1) = F (u, 1),

with Eε and F defined as in (3.2) and (3.3), respectively.

We may also consider the functionals Eε defined as

Eε(u, v) :=

{

Eε(u, v) (v − 1) ∈W 1,2
0 (Ω),

+∞ otherwise in L1(Ω)× L1(Ω).
(3.5)

Then, if Ω has C2-boundary, Theorem 3.2 immediately yields the following theorem.

Theorem 3.3. For every u, v ∈ L1(Ω),

Γ- lim
ε→0

Eε(u, v) = F (u, v).

In fact it is sufficient to notice that, thanks to the boundary conditions on v and the increased regularity
of Ω, we can now invoke Proposition 2.6(ii) to get

2 Eε(u, v) ≥
ˆ

Ω

(

v2|∇u|+ (1− v)2

ε
+ c0ε|∇v|2

)

dx,

which, thanks to [2, Theorem 4.1], guarantees that the domain of the Γ-limit is contained in GBV (Ω)×
{v = 1 a.e. in Ω}.
Remark 3.4. Let r ∈ R. Consider the minimization problem

mr := inf

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈ W 2,2
loc (0,+∞),

f(0) = r, f ′(0) = 0, f(t) = 1 if t > T, for some T > 0

}

.

The constant mr represents the minimal cost, in terms of the unscaled, one-dimensional Modica-Mortola
contribution in (3.1) and (3.2), for a transition from the value r to the value 1 on the positive real half-line.
A direct computation gives (see [8, Section 3])

mr = min

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈W 2,2
loc (0,+∞),

f(0) = r, f ′(0) = 0, lim
t→+∞

f(t) = 1

}

=
√
2(1− r)2. (3.6)

Remark 3.5. It can be easily checked that the function g defined as in (3.4) satisfies the following
properties:

(i) g is increasing, g(0) = 0 and limz→+∞ g(z) = 2
√
2;

(ii) g is subadditive;

(iii) g(z) ≤ z for all z ∈ R
+ and limz→0+

g(z)
z

= 1;
(iv) g is Lipschitz continuous on R

+ with Lipschitz constant 1;
(v) for any T > 0 there exists a constant cT > 0 such that z ≤ cT g(z) for all z ∈ [0, T ].

Remark 3.6. The functional F (·, 1) with F defined as in (3.3) is continuous with respect to truncation
in GBV (Ω). In fact let u ∈ GBV (Ω) and for m > 0 let um be the truncation of u at level m. Then by
the properties of GBV functions (see Subsection 2.1) we immediately have

lim
m→+∞

(
ˆ

Ω

|∇um| dx+ |Dcum|(Ω)
)

=

ˆ

Ω

|∇u| dx+ |Dcu|(Ω).
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Moreover, by virtue of (i) and (iv) in Remark 3.5, the Monotone Convergence Theorem together with
(2.1)-(2.2) yields

lim
m→+∞

ˆ

Sum

g(|(um)+ − (um)−|) dHn−1 = lim
m→+∞

ˆ

Su

g(|(um)+ − (um)−|)χSum dHn−1

=

ˆ

Su

g(|u+ − u−|) dHn−1.

4. Γ-convergence

In this section we study the asymptotic behavior of the functionals Fε and Eε. In particular Theorems
3.1 and 3.2 will follow from Proposition 4.1-4.5.

We start proving the lower bound inequality in the one-dimensional case, where Fε and Eε clearly
coincide. The proof follows the line of that of [2, Proposition 4.3]; the main difference is that, due to the
presence of the second derivative of v in the approximating functionals, we are not allowed to assume
that 0 ≤ v ≤ 1.

Proposition 4.1. Let n = 1 and let Fε and F be defined as in (3.1) and (3.3), respectively. Then
F (u, v) ≤ Γ- lim infε→0 Fε(u, v) for all u, v ∈ L1(Ω).

Proof. For simplicity we suppose that there exist a, b ∈ R, a < b such that Ω = (a, b), the general case
follows by repeating the same argument in each connected component of Ω.

Let u, v ∈ L1(a, b) and (uε), (vε) ⊂ L1(a, b) be such that uε → u, vε → v in L1(a, b). We want to
show that

lim inf
ε→0

Fε(uε, vε) ≥ F (u, v).

Clearly it is enough to consider the case limε→0 Fε(uε, vε) = lim infε→0 Fε(uε, vε) < +∞; we suppose
moreover

uε → u, vε → v a.e. in (a, b). (4.1)

We begin noticing that ‖vε − 1‖L2(a,b) ≤ c
√
ε immediately gives v = 1 a.e. in (a, b). Moreover the

interpolation inequality Proposition 2.6(i) yields ε‖v′ε‖L1(a,b) → 0 as ε → 0; hence, up to subsequences
(not relabeled),

ε v′ε → 0 a.e. in (a, b). (4.2)

Again appealing to Proposition 2.6(i) we deduce the existence of a positive constant c0 such that for
ε > 0 sufficiently small there holds

c0

ˆ b

a

ε(v′ε)
2 dx ≤

ˆ b

a

(vε − 1)2

ε
dx+

ˆ b

a

ε3(v′′ε )
2 dx.

Therefore for ε > 0 sufficiently small

ˆ b

a

(

(vε − 1)2

ε
+ ε (v′ε)

2

)

dx ≤ c;

hence, fixed z ∈ (0, 1), we can apply [6, Lemma 6.2 and Remark 6.3], with Z = {1} and W (s) = (1− s)2,
to conclude that there exists a finite set Sz such that, for every fixed η > 0 and for ε > 0 sufficiently
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small, z ≤ vε ≤ 2 on (a, b) \ (Sz + [−η, η]). Let η > 0; then

lim inf
ε→0

Fε(uε, vε)

≥ lim inf
ε→0

ˆ

(a,b)\(Sz+[−η,η])

v2ε |u′ε| dx+ lim inf
ε→0

ˆ

Sz+[−η,η]

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx

≥ z2 lim inf
ε→0

ˆ

(a,b)\(Sz+[−η,η])

|u′ε| dx+ lim inf
ε→0

ˆ

Sz+[−η,η]

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx. (4.3)

In particular
´

(a,b)\(Sz+[−η,η])
|u′ε| dx is equibounded. Hence u ∈ BV ((a, b) \ (Sz + [−η, η])) and

lim inf
ε→0

ˆ

(a,b)\(Sz+[−η,η])

|u′ε| dx ≥ |Du|((a, b) \ (Sz + [−η, η])). (4.4)

Moreover, by the arbitrariness of η, we have u ∈ BV ((a, b) \ Sz) and, since Sz is finite, u ∈ BV (a, b).
Let N := H0(Sz), Sz = {y1, . . . , yN}. We claim that

lim inf
ε→0

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx ≥ g

(∣

∣

∣

∣

ess-sup
(yi−η,yi+η)

u− ess-inf
(yi−η,yi+η)

u

∣

∣

∣

∣

)

(4.5)

for every i = 1, . . . , N .
Suppose for a moment that (4.5) holds true. Then (4.3)-(4.5) immediately give

lim inf
ε→0

Fε(uε, vε) ≥ z2|Du|((a, b) \ (Sz + [−η, η])) +
N
∑

i=1

g

(∣

∣

∣

∣

ess-sup
(yi−η,yi+η)

u− ess-inf
(yi−η,yi+η)

u

∣

∣

∣

∣

)

. (4.6)

Finally we first let η → 0 in (4.6) to get

lim inf
ε→0

Fε(uε, vε) ≥ z2|Du|((a, b) \ Sz) +

N
∑

i=1

g(|u+ − u−|(yi))

≥ z2|Du|((a, b) \ Su) + z2
∑

y∈Su\Sz

|u+ − u−|(y) +
∑

Su∩Sz

g(|u+ − u−|(y))

≥ z2|Du|((a, b) \ Su) +
∑

y∈Su

(

(z2|u+ − u−|(y)) ∧ g(|u+ − u−|(y))
)

.

and then z → 1, obtaining the required inequality, since g(|t|) ≤ |t| (see Remark 3.5).
We prove now (4.5) for i = 1, . . . , N . Upon passing to subsequences (not relabeled), we may assume

lim inf
ε→0

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx = lim
ε→0

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx.

By the very definition of essential infimum and essential supremum and by (4.1)-(4.2), we have that for
any δ > 0 there exist xi1, x

i
2 ∈ (yi − η, yi + η) such that

lim
ε→0

uε(x
i
1) = u(xi1) < ess-inf

(yi−η,yi+η)
u+ δ

lim
ε→0

uε(x
i
2) = u(xi2) > ess-sup

(yi−η,yi+η)

u− δ

lim
ε→0

vε(x
i
1) = lim

ε→0
vε(x

i
2) = 1 (4.7)

lim
ε→0

εv′ε(x
i
1) = lim

ε→0
εv′ε(x

i
2) = 0.

Let xiε ∈ [xi1, x
i
2] be such that vε(x

i
ε) = min[xi

1
,xi

2
] vε. We have now to distinguish three cases.
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Case 1 : xiε ∈ (xi1, x
i
2). In this case the regularity of vε yields v′ε(x

i
ε) = 0. Moreover we have

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1 − vε)

2

ε
+ ε3(v′′ε )

2

)

dx ≥
ˆ xi

2

xi
1

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx

≥ (max{0, vε(xiε)})2
∣

∣

∣

∣

∣

ˆ xi
2

xi
1

u′ε dx

∣

∣

∣

∣

∣

+

ˆ xi
ε

xi
1

(

(1− vε)
2

ε
+ ε3(v′′ε )

2

)

dx+

ˆ xi
2

xi
ε

(

(1− vε)
2

ε
+ ε3(v′′ε )

2

)

dx

≥ (max{0, vε(xiε)})2|uε(xi2)−uε(xi1)|+
ˆ xi

ε

xi
1

(

(1 − vε)
2

ε
+ ε3(v′′ε )

2

)

dx+

ˆ xi
2

xi
ε

(

(1− vε)
2

ε
+ ε3(v′′ε )

2

)

dx.

(4.8)

We estimate from below the term

ˆ xi
2

xi
ε

(

(1 − vε)
2

ε
+ ε3|v′′ε |2

)

dx =

ˆ

xi
2
−xi

ε
ε

0

(

(wε − 1)2 + (w′′
ε )

2
)

dz,

where z = (t− xiε)/ε and wε(z) := vε(εz + xiε).
To this end we introduce the auxiliary function G : R2 −→ [0,+∞) given by

G(w, z) := inf

{
ˆ 1

0

(

(g − 1)2 + (g′′)2
)

dt : g ∈ C2([0, 1]), g(0) = w, g(1) = 1, g′(0) = z, g′(1) = 0

}

;

testing G with a third-degree polynomial satisfying the boundary conditions, one can easily show that

lim
(w,z)→(1,0)

G(w, z) = 0. (4.9)

Let gε,i ∈ C2([0, 1]) be an admissible function for G(vε(x
i
2), ε v

′
ε(x

i
2)); i.e., gε,i(0) = vε(x

i
2), gε,i(1) = 1,

g′ε,i(0) = ε v′ε(x
i
2), g

′
ε,i(1) = 0. By construction

lim
ε→0

gε,i(0) = 1 and lim
ε→0

g′ε,i(0) = 0,

hence by (4.9) we infer

lim
ε→0

G(vε(x
i
2), ε v

′
ε(x

i
2)) = 0.

Let (ṽε,i) be the sequence defined as

ṽε,i(z) :=



























wε(z) if 0 ≤ z ≤ xi2 − xiε
ε

,

gε,i

(

z − xi2 − xiε
ε

)

if
xi2 − xiε

ε
≤ z ≤ xi2 − xiε

ε
+ 1,

1 if z ≥ xi2 − xiε
ε

+ 1.

By definition of gε,i it follows that (ṽε,i) ⊂W 2,2
loc (0,+∞). Since ṽε,i is a test function for mvε(xi

ε)
(where

mvε(xi
ε)

is as in (3.6) with r = vε(x
i
ε)), we have

ˆ

xi
2
−xi

ε
ε

0

(

(wε − 1)2 + (w′′
ε )

2
)

dz =

ˆ +∞

0

(

(ṽε,i − 1)2 + (ṽ′′ε,i)
2
)

dz −G(vε(x
i
2), ε v

′
ε(x

i
2))

≥ mvε(xi
ε)
−G(vε(x

i
2), ε v

′
ε(x

i
2)).

A similar argument applies to the term
ˆ xi

ε

xi
1

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt
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in (4.8).
We have

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx

≥ (max{0, vε(xiε)})2|uε(xi2)− uε(x
i
1)|+ 2mvε(xi

ε)
−G(vε(x

i
1), ε v

′
ε(x

i
1))−G(vε(x

i
2), ε v

′
ε(x

i
2))

≥ inf
r∈R

{(max{0, r})2|uε(xi2)− uε(x
i
1)|+ 2mr} −G(vε(x

i
1), ε v

′
ε(x

i
1))−G(vε(x

i
2), ε v

′
ε(x

i
2))

= min

{

2 inf
r≤0

mr, inf
r≥0

{r2|uε(xi2)− uε(x
i
1)|+ 2mr}

}

−G(vε(x
i
1), ε v

′
ε(x

i
1))−G(vε(x

i
2), ε v

′
ε(x

i
2))

= min

{

2
√
2,

4|uε(xi2)− uε(x
i
1)|

4 +
√
2|uε(xi2)− uε(xi1)|

}

−G(vε(x
i
1), ε v

′
ε(x

i
1))−G(vε(x

i
2), ε v

′
ε(x

i
2))

= min
r∈[0,1]

{r2|uε(xi2)− uε(x
i
1)|+ 2mr} −G(vε(x

i
1), ε v

′
ε(x

i
1))−G(vε(x

i
2), ε v

′
ε(x

i
2)),

where the last equality follows from the definition (3.4) of g. By letting ε→ 0, we get

lim inf
ε→0

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1− vε)

2

ε
+ ε3(v′′ε )

2

)

dx ≥ inf
r∈[0,1]

{

r2
∣

∣

∣
ess-sup

(yi−η,yi+η)

u− ess-inf
(yi−η,yi+η)

u+ 2δ
∣

∣

∣
+ 2mr

}

.

Thus, by the arbitrariness of δ, we obtain (4.5).

Case 2 : there exists a subsequence of ε (not relabeled) such that xiε ≡ xi1. In this case, we have

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1 − vε)

2

ε
+ ε3(v′′ε )

2

)

dx

≥
ˆ xi

2

xi
1

v2ε |u′ε| dx ≥ (max{0, vε(xi1)})2|uε(xi2)− uε(x
i
1)| = v2ε(x

i
1)|uε(xi2)− uε(x

i
1)|

where the last equality holds for ε sufficiently small by virtue of (4.7). Letting ε→ 0, by Remark 3.5(iii)
and again (4.7), we get

lim inf
ε→0

ˆ yi+η

yi−η

(

v2ε |u′ε|+
(1 − vε)

2

ε
+ ε3(v′′ε )

2

)

dx ≥
∣

∣

∣

∣

ess-sup
(yi−η,yi+η)

u− ess-inf
(yi−η,yi+η)

u+ 2δ

∣

∣

∣

∣

≥ g

(

∣

∣

∣
ess-sup

(yi−η,yi+η)

u− ess-inf
(yi−η,yi+η)

u+ 2δ
∣

∣

∣

)

,

thus, by the arbitrariness of δ, (4.5).

Case 3 : there exists a subsequence of ε (not relabeled) such that xiε ≡ xi2. In this case we apply the
same argument as for Case 2. �

We use now Proposition 4.1 to recover the lower bound for Fε in dimension n > 1, by means of the
slicing method (see Subsection 2.2). As a preliminary step we localize the functionals Fε by introducing
an explicit dependence on the set of integration: for any A ∈ A(Ω), we set

Fε(u, v, A) :=







ˆ

A

(

v2|∇u|+ (1− v)2

ε
+ ε3|∇2v|2

)

dx u ∈ W 1,1(A), v ∈W 2,2(A),

+∞ otherwise in L1(Ω)× L1(Ω).

Proposition 4.2. Let n > 1 and let Fε and F be defined as in (3.1) and (3.3), respectively. Then
F (u, v) ≤ Γ- lim infε→0 Fε(u, v) for all u, v ∈ L1(Ω).
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Proof. In what follows we use the notation introduced in Subsection 2.2.
Let ξ ∈ Sn−1 and A ∈ A(Ω). We begin noticing that for any u ∈ W 1,1(Ω) and v ∈ W 2,2(Ω), Fubini’s

Theorem yields

Fε(u, v, A) =

ˆ

Πξ

(

ˆ

Aξ,y

(

v2(y + tξ)|∇u(y + tξ)|+ (1− v(y + tξ))2

ε
+ ε3|∇2v(y + tξ)|2

)

dt

)

dHn−1(y)

≥
ˆ

Πξ

(

ˆ

Aξ,y

(

v2(y + tξ)|〈∇u(y + tξ), ξ〉|+ (1− v(y + tξ))2

ε
+ ε3|〈∇2v(y + tξ) · ξ, ξ〉|2

)

dt

)

dHn−1(y)

=

ˆ

Πξ

Fε(uξ,y, vξ,y, Aξ,y) dHn−1(y), (4.10)

where Fε is the one-dimensional functional defined by

Fε(w, z, I) :=







ˆ

I

(

z2|w′|+ (1− z)2

ε
+ ε3(z′′)2

)

dx w ∈ W 1,1(I), z ∈ W 2,2(I),

+∞ otherwise,

for any w, z ∈ L1(I) and I ⊂ R open and bounded.
Let u, v ∈ L1(Ω) and (uε), (vε) ⊂ L1(Ω) be such that uε → u, vε → v in L1(Ω) and

lim inf
ε→0

Fε(uε, vε) < +∞. (4.11)

Then v = 1 a.e. in Ω. Moreover, by Fubini’s Theorem and Fatou’s Lemma, (uε)ξ,y → uξ,y and (vε)ξ,y → 1
in L1(Ωξ,y) for Hn−1-a.e. y ∈ Πξ. Therefore, appealing to Proposition 4.1 and taking into account (4.10),
we have that uξ,y ∈ BV (Aξ,y) for Hn−1-a.e. y ∈ Πξ and

lim inf
ε→0

Fε(uε, vε, A) ≥ lim inf
ε→0

ˆ

Πξ

Fε((uε)ξ,y, (vε)ξ,y, Aξ,y) dHn−1(y)

≥
ˆ

Πξ

lim inf
ε→0

Fε((uε)ξ,y, (vε)ξ,y, Aξ,y) dHn−1(y)

≥
ˆ

Πξ

(
ˆ

Aξ,y

|u′ξ,y| dt+
ˆ

Suξ,y
∩Aξ,y

g(|u+ξ,y − u−ξ,y|) dH0 + |Dcuξ,y|(Aξ,y)

)

dHn−1(y), (4.12)

where in the second inequality we have used Fatou’s Lemma.
Let m > 0 and consider the truncated functions um. Since g is increasing, it is clear that we decrease

the last term in (4.12) if we replace u with um. Moreover, since um ∈ L∞(Ω), with ‖um‖∞ ≤ m, by
Remark 3.5(v), we have

|(um)+ − (um)−| ≤ cm g(|(um)+ − (um)−|),
for a suitable positive constant cm depending only on m. Then, by (4.11) and (4.12) we have

ˆ

Πξ

|D(um)ξ,y|(Aξ,y) dHn−1(y) < +∞.

Thus, applying Theorem 2.3, we get that um ∈ BV (A) and

Γ- lim inf
ε→0

Fε(u, 1, A) ≥
ˆ

A

|〈∇um, ξ〉|2 dx+

ˆ

Sum∩A

g(|(um)+ − (um)−|)|〈ξ, νu〉| dHn−1 + |〈Dcum, ξ〉|(A)

(4.13)
where we have taken into account the arbitrariness of uε and vε.

Consider the superadditive increasing function µ on A(Ω) defined by

µ(A) := Γ- lim inf
ε→0

Fε(u, 1, A)
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and the Radon measure

λ := Ln + g(|(um)+ − (um)−|)Hn−1
xSum + |Dcum|.

Fixed a sequence (ξi), dense in Sn−1, we have, by (4.13)

µ(A) ≥
ˆ

A

ψi dλ

for all i ∈ N, where

ψi(x) :=











|〈∇um(x), ξi〉| Ln-a.e. in Ω,

|〈ξi, νu〉| |Dcum|-a.e. in Ω,

|〈ξi, νu〉| Hn−1-a.e. in Sum .

Hence applying [6, Lemma 15.2] we get

Γ- lim inf
ε→0

Fε(u, v, A) ≥
ˆ

A

|∇um| dx+

ˆ

Sum∩A

g(|(um)+ − (um)−|) dHn−1 + |Dcum|(A),

thus, taking A = Ω,

Γ- lim inf
ε→0

Fε(u, v) ≥
ˆ

Ω

|∇um| dx+

ˆ

Sum

g(|(um)+ − (um)−|) dHn−1 + |Dcum|(Ω). (4.14)

Finally by the arbitrariness of m > 0, we conclude u ∈ GBV (Ω) and the thesis follows letting m→ +∞
in (4.14). �

A different approach is needed instead to prove the lower bound inequality for Eε in dimension n > 1.
The slicing technique is in fact not anymore applicable, because of the symmetry breaking due to the
presence of the Laplacian. We use then the blow-up method of Fonseca-Müller [16]. To this end it is
convenient to localize the functionals Eε by defining for any A ∈ A(Ω)

Eε(u, v, A) :=







ˆ

A

(

v2|∇u|+ (1− v)2

ε
+ ε3|∆v|2

)

dx u ∈W 1,1(A), v ∈W 2,2(A),

+∞ otherwise in L1(Ω)× L1(Ω).

Proposition 4.3. Let n > 1 and let Eε and F be defined as in (3.2) and (3.3), respectively. Then
F (u, 1) ≤ Γ- lim infε→0Eε(u, 1) for all u ∈ GBV (Ω).

Proof. First let u ∈ BV (Ω). Let moreover (uε), (vε) ⊂ L1(Ω) be such that uε → u in L1(Ω), vε → 1 in
L2(Ω) and

lim inf
ε→0

Eε(uε, vε) < +∞.

For each ε > 0 consider the measures

µε :=

(

v2ε |∇uε|+
(1− vε)

2

ε
+ ε3|∆vε|2

)

Ln
xΩ.

By hypothesis µε(Ω) = Eε(uε, vε) is equibounded therefore, up to subsequences (not relabeled), µε
∗
⇀ µ

where µ is a non-negative finite Radon measure on Ω. Using the Radon-Nikodým Theorem we decompose
µ into the sum of four mutually orthogonal measures

µ = µa Ln + µc |Dcu|+ µJ Hn−1
xSu + µs

and we claim that

µa(x0) ≥ |∇u(x0)| for Ln-a.e. x0 ∈ Ω (4.15)

µc(x0) ≥ 1 for |Dcu|-a.e. x0 ∈ Ω (4.16)

µJ(x0) ≥ g(|u+ − u−|(x0)) for Hn−1-a.e. x0 ∈ Su. (4.17)
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Suppose for a moment that (4.15)-(4.17) hold true, then to conclude it is enough to consider an increasing
sequence of smooth cut-off functions (ϕk), such that 0 ≤ ϕk ≤ 1 and supk ϕk(x) = 1 on Ω, and to note
that for every k ∈ N

lim
ε→0

Eε(uε, vε) ≥ lim inf
ε→0

ˆ

Ω

(

v2ε |∇uε|+
(vε − 1)2

ε
+ ε3|∆vε|2

)

ϕk dx

=

ˆ

Ω

ϕk dµ ≥
ˆ

Ω

µa ϕk dx+

ˆ

Ω

µc ϕk d|Dcu|+
ˆ

Su

µJ ϕk dHn−1

≥
ˆ

Ω

|∇u|ϕk dx+

ˆ

Ω

ϕk d|Dcu|+
ˆ

Su

g(|u+ − u−|)ϕk dHn−1.

Hence, letting k → +∞ the thesis follows from the Monotone Convergence Theorem.
We have now to check (4.15)-(4.17). The proof of (4.17) follows exactly the proof of (5.3) in [8,

Proposition 5.1], the only difference residing in the fact that here we appeal to the one-dimensional result
Proposition 4.1.

We prove now (4.15) and (4.16). To this end we define the function Φ: [0, 1] → [0,+∞) by

Φ(t) := 2

ˆ t

0

(1− s) ds = 1− (1− t)2; (4.18)

we notice that Φ is strictly increasing, Φ(0) = 0 and Φ(1) = 1.
Let A ∈ A(Ω). Fix A′ ∈ A(Ω) such that A′ ⊂⊂ A; appealing to Propositions 2.7 and 2.6 we deduce

that there exists a positive constant c0 such that for ε > 0 sufficiently small there holds

Eε(uε, vε, A) =

ˆ

A

(

v2ε |∇u|+
(1 − v)2

ε
+ ε3|∆vε|2

)

dx

≥
ˆ

A′

v2ε |∇u| dx+ c0

ˆ

A′

(

(1− v)2

ε
+ ε|∇vε|2

)

dx

≥
ˆ

A′

ṽ2ε |∇u| dx+ c0

ˆ

A′

(

(1− ṽ)2

ε
+ ε|∇ṽε|2

)

dx,

where ṽε := 0 ∨ (vε ∧ 1). Moreover for every ε > 0 Young’s inequality yields
ˆ

A′

(

(1− ṽε)
2

ε
+ ε|∇ṽε|2

)

dx ≥
ˆ

A′

|∇Φ(ṽε)| dx,

with Φ as in (4.18). Hence we have

Eε(uε, vε, A) ≥
ˆ

A′

f(x, (uε,Φ(ṽε)),∇(uε,Φ(ṽε))) dx,

with f : Ω× R
2 × R

2n → [0,+∞) defined by

f(x, (u, v), (z, ζ)) :=
(

Φ−1(0 ∨ (v ∧ 1))
)2

(|z|+ c0|ζ|).
It is easy to check that f satisfies all the hypotheses of Theorem 2.5 with N = 2, then we deduce that

lim inf
ε→0

Eε(uε, vε, A) ≥ lim inf
ε→0

ˆ

A′

f(x, (uε,Φ(ṽε)),∇(uε,Φ(ṽε))) dx

≥
ˆ

A′

f(x, (u, 1),∇(u, 1)) dx+

ˆ

A′

f∞

(

x, (u, 1),
dDc(u, 1)

d|Dc(u, 1)|

)

d|Dc(u, 1)|

=

ˆ

A′

|∇u| dx+ |Dcu|(A′),
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where we have used the fact that Φ(ṽε) → 1 in L1(Ω), as ṽε → 1 in L2(Ω). Since u belongs to BV (Ω),
letting A′ ր A gives

lim inf
ε→0

Eε(uε, vε, A) ≥
ˆ

A

|∇u| dx+ |Dcu|(A).

From this, by using the Besicovitch derivation Theorem, we immediately get (4.15) and (4.16), and this
completes the proof for u ∈ BV (Ω).

If now u ∈ GBV (Ω) the thesis follows by a standard truncation argument. In fact the truncations um

of u belong to BV (Ω) for all m > 0. Appealing to the continuity under truncation of F (·, 1) in GBV (Ω)
(see Remark 3.6) and noticing that Eε(·, v) (and hence Γ- lim infε→0Eε(·, v)) decreases by truncation, we
immediately get

Γ- lim inf
ε→0

Eε(u, 1) ≥ lim inf
m→+∞

F (um, 1) ≥ F (u, 1).

�

We prove now the upper bound inequality for Fε and Eε. To do this, we will use the density and
relaxation results introduced in Subsection 2.3 and Subsection 2.4.

Proposition 4.4. Let n ≥ 1 and let Fε and F be defined as in (3.1) and (3.3), respectively. Then
F (u, v) ≥ Γ- lim supε→0 Fε(u, v) for all u, v ∈ L1(Ω).

Proof. To check the upper bound inequality, it suffices to deal with u ∈ GBV (Ω) and v = 1 a.e. in Ω.
We divide the proof into three main steps.

Step 1 : u ∈ SBV 2(Ω) ∩ L∞(Ω). We prove that

F (u, 1) ≥ Γ- lim sup
ε→0

Fε(u, 1) (4.19)

for all u ∈ SBV 2(Ω) ∩ L∞(Ω).
By Theorem 2.4 it is enough to prove (4.19) when u belongs to W(Ω). Indeed assume (4.19) holds

true in W(Ω). If u ∈ SBV 2(Ω) ∩ L∞(Ω) then there exists a sequence (uj) ⊂ W(Ω) such that uj → u in
L1(Ω) and

lim sup
j→+∞

F (uj , 1) ≤ F (u, 1);

hence the lower semicontinuity of Γ- lim supε→0 Fε(·, 1) yields

Γ- lim sup
ε→0

Fε(u, 1) ≤ lim inf
j→+∞

(

Γ- lim sup
ε→0

Fε(uj , 1)

)

≤ lim inf
j→+∞

F (uj , 1) ≤ F (u, 1). (4.20)

We now prove (4.19) for a function u ∈ W(Ω); we suppose Su = Ω ∩K, with K a (n − 1)-dimensional
simplex (the case Su = Ω ∩ ∪r

i=1Ki, with Ki pairwise disjoint (n − 1)-dimensional simplexes, following
as a natural generalization). Upon making a rototranslation, we may assume K to be contained in the
plane {xn = 0}.

For y ∈ Su, we set
h(y) := |u+(y)− u−(y)|

and appealing to the regularity hypotheses on u we have that for any δ > 0 there exists a triangulation
{Ti}Ni=1 of Su such that

|h(y1)− h(y2)| < δ

for every y1, y2 ∈ Ti. We consider moreover the piecewise constant function hδ : Su → R defined by

hδ(y) := min{h(s) : s ∈ Ti} =: zi, y ∈ Ti.

Then Remark 3.5 together with the fact that ‖h− hδ‖∞ < δ gives
ˆ

Su

g(hδ(y)) dHn−1(y) ≤
ˆ

Su

g(h(y)) dHn−1(y) + δHn−1(Su). (4.21)
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Let xzi realize the minimum in (3.4) for z = zi; i.e., xzi ∈ [0, 1] and

g(zi) = x2zizi + 2
√
2(1− xzi)

2. (4.22)

Fix η > 0. Then for i = 1, . . . , N by virtue of (3.6) we deduce that there exist T (i, η) > 0 and
vη(zi; ·) ∈W 2,2(0, T (i, η)) such that vη(zi; 0) = xzi , v

′
η(zi; 0) = 0, vη(zi; t) = 1 for all t ≥ T (i, η) and

ˆ T (i,η)

0

(

(1− vη(zi; t))
2 + (v′′η (zi; t))

2
)

dt ≤ 2
√
2(1 − xzi)

2 + η.

If now T (η) := max1≤i≤N T (i, η), we have
ˆ T

0

(

(1− vη(zi; t))
2 + (v′′η (zi; t))

2
)

dt ≤ 2
√
2(1− xzi)

2 + η, (4.23)

for every T ≥ T (η) and i ∈ {1, . . . , N}.
We now construct the sequences (uε) and (vε) that we expect to be the recovery sequences for F (u, 1).
Let ξε > 0 be such that ξε/ε→ 0 as ε→ 0; set Tε := (T (η) + 1)ε+ ξε and

Kε := {y ∈ {xn = 0} : dist(y,K) < ε}.
Let γε : R

n−1 → R be a cut-off function between K and Kε; i.e., γε ∈ C∞
c (Kε), 0 ≤ γε ≤ 1, γε ≡ 1 on K

with ‖∇γε‖∞ ≤ c
ε
for some c > 0, and let (ũε) be the sequence defined by

ũε(y, t) :=

{

u(y, t) |t| ≥ Tε,

wε(u(y,−Tε), u(y, Tε), t) |t| < Tε,

where

wε(z1, z2, t) :=















z1 −Tε < t < −ξε,
z2 − z1
2ξε

(t+ ξε) + z1 |t| ≤ ξε,

z2 ξε < t < Tε.

For (y, t) ∈ Ω we set
uε(y, t) := ũε(y, t)γε(y) + (1− γε(y))u(y, t).

For r > 0, ε > 0 and i ∈ {1, . . . , N}, set
Br := {(y, t) ∈ Ω: y ∈ Su, |t| < r}
T ε
i := {y ∈ Ti : dist(y, ∂Ti) > ε}

and let ϕi
ε : R

n−1 → R be a cut-off function between T ε
i and Ti; i.e., ϕ

i
ε ∈ C∞

c (Ti), 0 ≤ ϕi
ε ≤ 1, ϕi

ε ≡ 1
on T ε

i with

‖∇ϕi
ε‖∞ ≤ c

ε
, (4.24)

‖∇2ϕi
ε‖∞ ≤ c

ε2
, (4.25)

for some c > 0.
We define the sequence

vε(y, t) :=

{

1 (y, t) ∈ Ω \BTε
,

φiε(y)v
i
ε(t) + (1− φiε(y)) y ∈ Ti, |t| < Tε,

where

viε(t) :=







xzi |t| ≤ ξε,

vη

(

zi;
|t| − ξε
ε

)

ξε < |t| < Tε.

We have that (uε) ⊂W 1,1(Ω), (vε) ⊂W 2,2(Ω); moreover uε → u and vε → 1 in L1(Ω).
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We now prove that uε and vε satisfy the upper bound inequality.
As u ∈ W 1,∞(Ω \ Su) and 0 ≤ ϕi

ε ≤ 1, we have

ˆ

Ω

v2ε |∇uε| dx

=

ˆ

Ω\(Kε×(−Tε,Tε))

|∇u| dx+

ˆ

Ω∩(Kε\K)

(
ˆ Tε

−Tε

(

|∇γε(y)||ũε(y, t)− u(y, t)|

+γε(y)|∇ũε(y, t)|+ (1− γε(y))|∇u(y, t)|
)

dt

)

dHn−1(y)

+

N
∑

i=1

ˆ

T ε
i

(
ˆ ξε

−ξε

x2zi

∣

∣

∣

∣

t+ ξε
2ξε

(∇u(y, tε)−∇u(y,−Tε)) +∇u(y,−Tε)

+
1

2ξε
(u(y, Tε)− u(y,−Tε))en

∣

∣

∣

∣

dt

)

dHn−1(y)

+
N
∑

i=1

ˆ

T ε
i

(

ˆ Tε

ξε

v2η

(

zi;
t− ξε
ε

)

|∇u(y, Tε)| dt
)

dHn−1(y)

+

N
∑

i=1

ˆ

T ε
i

(

ˆ −ξε

−Tε

v2η

(

zi;
−t− ξε

ε

)

|∇u(y,−Tε)| dt
)

dHn−1(y)

+

N
∑

i=1

ˆ

Ti\T ε
i

(

(ϕi
ε(y)xzi + 1− ϕi

ε(y))
2

∣

∣

∣

∣

t+ ξε
2ξε

(∇u(y, tε)−∇u(y,−Tε)) +∇u(y,−Tε)

+
1

2ξε
(u(y, Tε)− u(y,−Tε))en

∣

∣

∣

∣

dt

)

dHn−1(y)

+

N
∑

i=1

ˆ

Ti\T
η
i

(

ˆ Tε

ξε

(

ϕi
ε(y)vη

(

zi;
t− ξε
ε

)

+ 1− ϕi
ε(y)

)2

|∇u(y, Tε)| dt
)

dHn−1(y)

+

N
∑

i=1

ˆ

Ti\T
η
i

(

ˆ −ξε

−Tε

(

ϕi
ε(y)vη

(

zi;
−t− ξε

ε

)

+ 1− ϕi
ε(y)

)2

|∇u(y,−Tε)| dt
)

dHn−1(y)

≤
ˆ

Ω

|∇u| dx+

N
∑

i=1

ˆ

T ε
i

(

ˆ ξε

−ξε

1

2ξε
x2zi |u(y, Tε)− u(y,−Tε)| dt

)

dHn−1(y) +O(ε)

≤
ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

x2zi |u
+(y)− u−(y)| dHn−1(y) +O(ε), (4.26)

where we have used that ξε, Tε, Hn−1(Ti \ T ε
i ) → 0 as ε decreases to 0 for all i = 1, . . . , N .
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Moreover, by virtue of (4.23)-(4.25) and since ξε/ε→ 0 as ε→ 0, we have also
ˆ

Ω

(

(1 − vε)
2

ε
+ ε3|∇2vε|2

)

dx

=

N
∑

i=1

ˆ

T ε
i

(

ˆ ξε

−ξε

(1− xzi)
2

ε
dt

)

dHn−1(y)

+
2

ε

N
∑

i=1

ˆ

T ε
i

(

ˆ Tε

ξε

(

(

1− vη

(

zi;
t− ξε
ε

))2

+ v2η

(

zi;
t− ξε
ε

)

)

dt

)

dHn−1(y)

+2

N
∑

i=1

ˆ

Ti\T ε
i

(
ˆ Tε

ξε

(

1

ε
(ϕi

ε(y))
2

(

1− vη

(

zi;
t− ξε
ε

))2

+ ε3
∣

∣

∣

∣

∇2ϕi
ε(y)

(

1− vη

(

zi;
t− ξε
ε

))

+
2

ε
∇ϕi

ε(y)v
′
η

(

zi;
t− ξε
ε

)

+
1

ε2
ϕi
ε(y)v

′′
η

(

zi;
t− ξε
ε

) ∣

∣

∣

∣

2)

dt

)

dHn−1(y)

+

N
∑

i=1

ˆ

Ti\T ε
i

(

ˆ ξε

−ξε

(

1

ε
(ϕi

ε(y))
2(1− xzi)

2 + ε3
∣

∣∇2ϕi
ε(y)(1 − xzi)

∣

∣

2
)

dt

)

dHn−1(y)

≤
N
∑

i=1

ˆ

Ti

2
√
2(1 − xzi)

2 dHn−1(y) + cη +O(ε). (4.27)

Passing to the limit as ε→ 0, by (4.26) and (4.27), we get

Γ- lim sup
ε→0

Fε(u, 1) ≤ lim sup
ε→0

Fε(uε, vε)

≤
ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

(

x2zi |u+(y)− u−(y)|+ 2
√
2(1− xzi)

2
)

dHn−1(y) + cη

≤
ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

(

x2zizi + 2
√
2(1− xzi)

2
)

dHn−1(y) + c(η + δ)

=

ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

g(hδ(y)) dHn−1(y) + c(η + δ)

≤
ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

g(h(y)) dHn−1(y) + c(η + δ)

=

ˆ

Ω

|∇u| dx+
N
∑

i=1

ˆ

Ti

g(|u+ − u−|(y)) dHn−1(y) + c(η + δ),

where we have also used that ‖h− hδ‖∞ < δ together with (4.21)-(4.22). We finally let η and δ go to 0
to obtain the required inequality. This concludes the case u ∈ SBV 2(Ω) ∩ L∞(Ω).

Step 2 : u ∈ BV (Ω). We now claim that the relaxation E with respect to the strong L1(Ω)-topology
of the functional

E(u) :=

{

F (u, 1) u ∈ SBV 2(Ω) ∩ L∞(Ω),

+∞ otherwise in L1(Ω),

satisfies
E(u) ≤ F (u, 1) (4.28)

for all u ∈ BV (Ω).
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Suppose for a moment that (4.28) holds true. Then by virtue of (4.20) and (4.28) we have

Γ- lim sup
ε→0

Fε(u, 1) ≤ E(u) ≤ F (u, 1)

for all u ∈ BV (Ω), hence the limsup inequality in BV (Ω).
We now prove (4.28). To this end for u ∈ L1(Ω) and A ∈ A(Ω) we consider the functionals

E1(u,A) :=







ˆ

A

|∇u| dx u ∈ C1(Ω)

+∞ otherwise
, E2(u,A) :=







ˆ

A

|∇u| dx u ∈ C1(Ω)

+∞ otherwise

and their relaxations

E1(u,A) = inf

{

lim inf
k→+∞

E1(uk, A) : uk → u in L1(A)

}

E2(u,A) = inf

{

lim inf
k→+∞

E2(uk, A) : uk → u in L1(A)

}

.

A well-known relaxation result (see e.g. [4, Theorem 5.47]) yields

E1(u,A) =

{

|Du|(A) u ∈ BV (Ω),

+∞ otherwise in L1(Ω).
(4.29)

We now want to prove that E2 = E1. To this end, we start noticing that (4.29) in particular implies that
for A ∈ A(Ω) and u ∈ BV (Ω) there exists a sequence (uk) ⊂ C1(Ω) such that uk → u in L1(A) and

lim
k→+∞

ˆ

A

|∇uk| dx = |Du|(A). (4.30)

We also notice that (uk) ⊂ W 1,1(A). Now we suitably modify (uk) to obtain a sequence in C1(Ω)
converging to u in L1(A) and satisfying (4.30); this would immediately imply

E2(u,A) =

{

|Du|(A) u ∈ BV (Ω),

+∞ otherwise in L1(Ω).
(4.31)

Let (uk,h) ⊂ C∞(A) be such that uk,h → uk in W 1,1(A) as h → +∞ (see e.g. [14, Theorem 3, Section
4.2]). Moreover, let A′ be an open subset of Rn such that A′ ⊃⊃ A and let γ : Rn → R be a cut-off
function between A and A′; i.e., γ ∈ C∞

c (A′), 0 ≤ γ ≤ 1, γ ≡ 1 on A. We define ũk,h := γ uk,h; then,

ũk,h ⊂ C1(Ω) and, letting first h→ +∞ and then k → +∞, we also have ũk,h → u in L1(A) and

lim inf
k→+∞

lim inf
h→+∞

ˆ

A

|∇ũk,h| dx ≤ |Du|(A).

Then a diagonalization argument provides us with a diverging sequence (kh) such that ũkh,h → u in
L1(A), and

lim
h→+∞

ˆ

A

|∇ukh,h| dx ≤ |Du|(A),

and this concludes the proof of (4.31).
If now we define the localized functionals

E(u,A) :=







ˆ

A

|∇u| dx+

ˆ

Su∩A

g(|u+ − u−|) dHn−1 u ∈ SBV 2(Ω) ∩ L∞(Ω),

+∞ otherwise in L1(Ω),
(4.32)

since C1(Ω) ⊂ SBV 2(Ω) ∩ L∞(Ω), we have E(u,A) ≤ E2(u,A); hence for all u ∈ BV (Ω) and A ∈ A(Ω)

E(u,A) ≤ E2(u,A) = |Du|(A). (4.33)
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Arguing as in [7, Proposition 3.3], one can prove that for every u ∈ BV (Ω) the set function E(u, ·) is the
restriction to A(Ω) of a regular Borel measure µ. Therefore

E(u) = µ(Ω) = µ(Ω \ Su) + µ(Ω ∩ Su).

Then (4.33) yields

µ(Ω \ Su) ≤
ˆ

Ω

|∇u| dx+ |Dcu|(Ω) (4.34)

while (4.32) gives

µ(Ω ∩ Su) ≤
ˆ

Su

g(|u+ − u−|) dHn−1. (4.35)

Thus finally gathering (4.34) and (4.35) gives (4.28) and thus the limsup inequality for u ∈ BV (Ω).

Step 3 : u ∈ GBV (Ω). Finally to recover the general case u ∈ GBV (Ω), we use a truncation argument.
Let u ∈ GBV (Ω) and consider the truncated functions um. Then

lim
j→+∞

F (um, 1) = F (u, 1)

(see Remark 3.6). Since um → u in L1(Ω) we get the thesis by virtue of the lower semicontinuity of
Γ- lim supε→0 Fε(·, 1). �

Proposition 4.5. Let n ≥ 1 and let Eε and F be defined as in (3.2) and (3.3), respectively. Then
F (u, 1) ≥ Γ- lim supε→0Eε(u, 1) for all u ∈ GBV (Ω).

Proof. The proof is obtained by taking the same recovery sequence as in Proposition 4.4. �

5. Convergence of minimization problems and relaxation

In this section we prove an equicoercivity result for suitable modifications of the functionals Fε and Eε.
On account of this result, we also study the convergence of the associated minimization problems.

Let h ∈ L∞(Ω) and set

M := min

{

F (u, 1) +

ˆ

Ω

|u− h|2 dx : u ∈ L1(Ω)

}

, (5.1)

with F defined as in (3.3); it is easy to check that the minimization problem in (5.1) admits a solution
ũ ∈ BV (Ω), and ‖ũ‖L∞(Ω) ≤ ‖h‖L∞(Ω).

Theorem 5.1. Consider the minimization problem

Mε := inf

{

Fε(u, v) +

ˆ

Ω

|u− h|2 dx : u, v ∈ L1(Ω)

}

,

with Fε defined as in (3.1). Let (uε, vε) be a minimizing sequence for Fε(u, v) + ‖u− h‖2
L2(Ω); i.e.,

lim
ε→0

(

Fε(uε, vε) +

ˆ

Ω

|uε − h|2 dx−Mε

)

= 0. (5.2)

Then there exist a subsequence of (uε, vε) (not relabeled) and a function ū ∈ BV (Ω) such that uε → ū
and vε → 1 in L1(Ω). Moreover ū is a solution of the minimization problem in (5.1), and Mε →M .

Proof. Let (uε, vε) be as in the statement. As a consequence of (5.2), we immediately have that (uε, vε) ⊂
W 1,1(Ω) ×W 2,2(Ω), and vε → 1 in L2(Ω). We prove now that, up to passing to a subsequence (not
relabeled), uε → ū in L1(Ω) for some ū ∈ BV (Ω).

We begin noticing that, by means of a truncation argument, we may always assume

‖uε‖∞ ≤ ‖h‖∞. (5.3)
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Let ṽε := 0 ∨ (vε ∧ 1), then ṽε ∈W 1,2(Ω); we define the sequence (wε) ⊂W 1,1(Ω) by

wε := Φ2(ṽε)uε

where Φ is defined as in (4.18).
Then, wε is bounded in W 1,1(Ω). In fact, since Φ is increasing and Φ(1) = 1, we infer

ˆ

Ω

|wε| dx ≤ ‖h‖∞Ln(Ω);

moreover, appealing to the interpolation inequality Proposition 2.6(i), we deduce the existence of a
positive constant c0 such that for ε > 0 sufficiently small we have
ˆ

Ω

|∇wε| dx =

ˆ

Ω

|uε∇(Φ2(ṽε)) + Φ2(ṽε)∇uε| dx ≤ 2 ‖h‖∞
ˆ

Ω

|∇Φ(ṽε)| dx + 4

ˆ

Ω

ṽ2ε |∇uε| dx

≤ 2 ‖h‖∞
ˆ

Ω

(

(1− ṽε)
2

ε
+ ε|∇ṽε|2

)

dx+ 4

ˆ

Ω

ṽ2ε |∇uε| dx

≤ 2 ‖h‖∞
ˆ

Ω

(

(1− vε)
2

ε
+ ε|∇vε|2

)

dx+ 4

ˆ

Ω

v2ε |∇uε| dx

≤ 2 c0‖h‖∞
ˆ

Ω

(

(1− vε)
2

ε
+ ε3|∇2vε|2

)

dx+ 4

ˆ

Ω

v2ε |∇uε| dx ≤ 2(c0‖h‖∞ + 2)Fε(uε, vε), (5.4)

where we have also used Young’s inequality together with the fact that 0 ≤ Φ(t) ≤ 2 t for all t ∈ [0, 1].
Hence Theorem 2.1 yields the existence of a subsequence of wε (not relabeled) and a function ū ∈

BV (Ω) such that wε
∗
⇀ ū in BV (Ω). As Φ(ṽε) → 1 in L1(Ω), we have then uε → ū in L1(Ω).

We notice now that, by the uniqueness of the limit, (5.3) yields also uε → ū in L2(Ω) so that

lim inf
ε→0

Mε = lim inf
ε→0

(

Fε(uε, vε) + ‖uε − h‖L2(Ω)

)

≥ lim inf
ε→0

Fε(uε, vε) + ‖u− h‖2L2(Ω) ≥ F (ū, 1) + ‖u− h‖2L2(Ω) ≥M, (5.5)

where we have used Proposition 4.2.
On the other hand, if ũ is a minimizer for F (u, 1) + ‖u − h‖2

L2(Ω), then by virtue of Proposition 4.4

there exists a sequence (ũε, ṽε) → (ũ, 1) in L1(Ω)× L1(Ω) such that

M = F (ũ, 1) + ‖ũ− h‖L2(Ω) = lim
ε→0

(

Fε(ũε, ṽε) + ‖ũε − h‖L2(Ω)

)

≥ lim sup
ε→0

Mε. (5.6)

Gathering (5.5)-(5.6), we deduce that ū is a solution of the minimization problem (5.1) andMε →M . �

Theorem 5.2. Let Ω ⊂ R
n be an open bounded set with C2 boundary and consider the minimization

problem

Mε := inf

{

Eε(u, v) +

ˆ

Ω

|u− h|2 dx : u, v ∈ L1(Ω)

}

,

with Eε defined as in (3.5). Let (uε, vε) be a minimizing sequence for Eε(u, v) + ‖u− h‖2
L2(Ω); i.e.,

lim
ε→0

(

Eε(uε, vε) +

ˆ

Ω

|uε − h|2 dx−Mε

)

= 0.

Then there exist a subsequence of (uε, vε) (not relabeled) and a function ū ∈ BV (Ω) such that uε → ū
and vε → 1 in L1(Ω). Moreover ū is a solution of the minimization problem in (5.1), and Mε →M .

Proof. The proof follows the line of that of Theorem 5.2, but here we appeal to Theorem 3.3. We only
point out that, to get an analogous bound as in (5.4), we need to use in addition the interpolation
inequality Proposition 2.6(ii). �
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Let now ηε > 0 be such that ηε/ε→ 0 as ε→ 0 and for u, v ∈ L1(Ω) consider the functionals

F ′
ε(u, v) :=







Fε(u, v) + ηε

ˆ

Ω

|∇u| dx u ∈W 1,1(Ω), v ∈W 2,2(Ω),

+∞ otherwise.

Thanks to the requirement that ηε/ε→ 0 as ε → 0, arguing as in Propositions 4.1, 4.2 and 4.4, one can
easily show that for all u, v ∈ L1(Ω)

Γ- lim
ε→0

F ′
ε(u, v) = F (u, v)

with F defined as in (3.3).

For fixed ε > 0, let F
′

ε denote the relaxed functional of F ′
ε with respect to the strong topology of

L1(Ω)× L1(Ω); then, we also have

Γ- lim
ε→0

F
′

ε(u, v) = F (u, v)

for all u, v ∈ L1(Ω) (see e.g. [12, Proposition 6.11]).

The last part of this section is devoted to provide an integral representation formula for F
′

ε in the case
n ≤ 3, which is the interesting case in numerical applications. We show in particular that the presence

of the second derivative of v makes the expression of F
′

ε particularly easy.
We introduce the following notation: for u, v ∈ L1(Ω), we set

Rε(u, v) :=







ˆ

Ω

(v2 + ηε) d|Du|+
ˆ

Ω

(

(1− v)2

ε
+ ε3|∇2v|2

)

dx u ∈ BV (Ω), v ∈ W 2,2(Ω),

+∞ otherwise.

Theorem 5.3. Let n ≤ 3. Then F
′

ε(u, v) = Rε(u, v), for all u, v ∈ L1(Ω).

Proof. We begin noticing that F ′
ε(u, v) = Rε(u, v) for all u ∈W 1,1(Ω), v ∈W 2,2(Ω); moreover it is clear

that Rε ≤ F ′
ε.

We now show that Rε is lower semicontinuous. To this end let u, v ∈ L1(Ω), (uk), (vk) ⊂ L1(Ω) be
such that uε → u and vε → v in L1(Ω); we prove that

lim inf
k→+∞

Rε(uk, vk) ≥ Rε(u, v).

Clearly it is enough to consider the case lim inf
k→+∞

Rε(uk, vk) < +∞, moreover up to subsequences we can

always assume that the liminf is a limit. As a result, we have |Duk|(Ω) ≤ c, for some c > 0 independent
of k and for every k ∈ N; moreover, by the interpolation inequality Proposition 2.6(i) we also have
‖vk‖W 2,2(Ω) ≤ c. Then up to subsequences (not relabeled)

uk
∗
⇀ u in BV (Ω), vε ⇀ v in W 2,2(Ω) (5.7)

and, by virtue of the compact embedding of W 2,2(Ω) in C(Ω) when n ≤ 3 (see. e.g. [1, Theorem 6.2]),
we also deduce

vk → v in L∞(Ω). (5.8)
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Then, appealing to the weak lower semicontinuity of the L2-norm and to (5.7), we get

lim inf
k→+∞

Rε(uk, vk) ≥ lim inf
k→+∞

ˆ

Ω

v2k d|Duk|+ ηε|Du|(Ω) +
ˆ

Ω

(

(1 − v)2

ε
+ ε3|∇2v|2

)

dx

≥ lim
k→+∞

ˆ

Ω

(vk − v)2 d|Duk|+ lim inf
k→+∞

ˆ

Ω

v2 d|Duk|+ 2 lim
k→+∞

ˆ

Ω

(vk − v) v d|Duk|

+ηε|Du|(Ω) +
ˆ

Ω

(

(1 − v)2

ε
+ ε3|∇2v|2

)

dx

≥ Rε(u, v),

where we have also used that, by (5.8),
∣

∣

∣

∣

ˆ

Ω

(vk − v) v d|Duk|
∣

∣

∣

∣

≤ ‖vk − v‖L∞(Ω)‖v‖L∞(Ω)|Duk|(Ω) −→ 0, as k → +∞.

Then it remains to prove that for all u ∈ BV (Ω), v ∈ W 2,2(Ω) there exists a sequence (uk, vk) ⊂
W 1,1(Ω)×W 2,2(Ω) such that uk → u and vk → v in L1(Ω), and

lim
k→+∞

F ′
ε(uk, vk) ≤ Rε(u, v).

Fix u ∈ BV (Ω) and v ∈ W 2,2(Ω); in particular, as n ≤ 3, v ∈ C(Ω). By a standard approximation
argument (see e.g. [14, Theorem 2 and Theorem 3, Section 5.2]) there exists (uk) ⊂ BV (Ω) ∩ C∞(Ω)

such that uk → u in L1(Ω), |∇uk|Ln ∗
⇀ |Du| in Mb(Ω) and

lim
k→+∞

ˆ

Ω

|∇u| dx = |Du|(Ω).

Then appealing to [4, Proposition 1.80], we infer

lim
k→+∞

ˆ

Ω

v2d|Duk| =
ˆ

Ω

v2d|Du|.

Hence the pair (uk, v) is the desired sequence. �

We now consider the minimization problem

Mε := inf

{

F
′

ε(u, v) +

ˆ

Ω

|u− h|2 : u, v ∈ L1(Ω)

}

. (5.9)

By using the direct methods of calculus of variations, one can show that the problem in (5.9) admits a
solution in BV (Ω)×W 2,2(Ω); moreover we have

M ε = inf

{

F ′
ε(u, v) +

ˆ

Ω

|u− h|2 : u, v ∈ L1(Ω)

}

.

Finally the following theorem holds true.

Theorem 5.4. Let (uε, vε) be a minimizing pair for F
′

ε(u, v) + ‖u − h‖2L2(Ω). Then, there exist a sub-

sequence of (uε, vε) (not relabeled) and a function ū ∈ BV (Ω) such that uε → ū and vε → 1 in L1(Ω).
Moreover ū is a solution of the minimization problem in (5.1), and M ε → M .

Proof. The proof follows the line of that of Theorem 5.1. �

Remark 5.5. Let Ω ⊂ R
n be an open bounded set with C2 boundary and let n ≤ 3. For u, v ∈ L1(Ω),

set

E
′
ε(u, v) :=







Eε(u, v) + ηε

ˆ

Ω

|∇u| dx u ∈W 1,1(Ω), v ∈W 2,2(Ω),

+∞ otherwise.
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Arguing as before one can prove that the relaxed functional of E ′
ε with respect to the strong topology of

L1(Ω)× L1(Ω) is given by

E
′

ε =







ˆ

Ω

(v2 + ηε) d|Du|+
ˆ

Ω

(

(1 − v)2

ε
+ ε3|∆v|2

)

dx u ∈ BV (Ω), v ∈W 2,2(Ω),

+∞ otherwise in L1(Ω)× L1(Ω).

Moreover, an analogous result as in Theorem 5.4 can be recovered for E
′

ε as well.
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