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ABSTRACT. Motivated by applications to image denoising, we propose an approximation of functionals
of the form

Flu) :/ |Vu|dx+/ g(lut —u~|)dH ™ + [Du|(R), w e BV(Q),
Q Su

with g: [0, +00) — [0, +00) increasing and bounded. The approximating functionals are of Ambrosio-
Tortorelli type and depend on the Hessian or on the Laplacian of the edge variable v which thus belongs
to W22(Q). When the space dimension is equal to two and three v is then continuous and this improved
regularity leads to a sequence of approximating functionals which are ready to be used for numerical
simulations.

Keywords: Ambrosio-Tortorelli approximation, free-discontinuity problems, I'-convergence.
2000 Mathematics Subject Classification: 49J45, 74G65, 68U10.

1. INTRODUCTION

The variational approach to image processing requires the minimization, over a suitable space of dis-
continuous functions, of a functional characterized by a regularizing term and a fidelity term. In the
framework of image denoising, one of the most successful models is the total-variation based model of
Rudin, Osher and Fatemi [20]. According to it, if h € L () is a given input image then its reconstruction
u is obtained as a solution of the following problem:

i {1Dul(©) + llu— b2 | (1.1)
where Du denotes the distributional derivative of v € BV (Q) and is given by Du = Vu L" + (u™ —
™) vy HP LS, + Du. The model (1.1) performs well for removing noise and preserving edges. However
it always causes a loss of contrast in the reconstructed image, and this can be attributed to the fact
that the jump-penalization increases linearly with the amplitude of the jump |u™ — «~|, resulting in
a strong penalization of large jump-amplitude. Therefore it would be desirable to consider an energy
functional which penalizes the jump-amplitude and whose dependence on |u™ — w™| is increasing for
small amplitudes, and bounded for large ones. With this idea in mind, we are then interested in replacing
in (1.1) the total variation |Du|(Q2) with the functional

F(u) = /Q |Vu|dx +/ g(lu™ —u™|) dH™ ! + | Du|(Q), (1.2)

u

for some C?, increasing and bounded function g: [0, +00) — [0, +00) such that g(0) = 0 (see Figure 1.).

It is well known that functionals as (1.2) are difficult to be treated numerically. Then a very important
task is to approximate them, in the sense of I'-convergence, with volume-functionals defined on spaces of
more regular functions. In the spirit of Ambrosio and Tortorelli’s approximation of the Mumford-Shah
functional [5], Alicandro, Braides and Shah proposed in [2] an approximation of (1.2) by means of the
sequence

ABS.(u,v) = /

1— 2
<02|Vu| + (?U) + €|Vv|2) dz, (1.3)
Q

1
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F1GURE 1. The function g.

with u € WH1(Q) and v € WH2(Q).

Motivated by the good computational results obtained in [8], where a second-order approximation of
the Mumford-Shah functional has been proposed and analyzed, in (1.3) we replace the first-order term
£|Vv|? with a second-order term depending either on the Hessian or on the Laplacian of v. Precisely, for
u e Whi(Q) and v € W22(Q), we consider the functionals

1— 2
F.(u,v) = / (v2|Vu| + (Tv) + €3|V2U|2) dx (1.4)
Q
and, under the additional condition (v — 1) € W, *(2), the functionals
1— 2
E.(u,v) = / <02|Vu| + (Tv) + €3|Av|2> dx. (1.5)
Q

In Theorems 3.1 and 3.2 we prove that both F. and E. I'-converge, with respect to the strong topology
of L1(2) x L(Q), as € — 0, to the functional F defined in (1.2), with g: [0, +00) — [0, +00) given by

. 9 9 4z
9() = min {r’ + 2V2(1 =)} = < — 7
where v/2(1 — r)? represents the minimal cost in terms of the unscaled, one-dimensional Modica-Mortola
contribution in (1.4) and (1.5) for a transition between r and 1.

Let us briefly comment the heuristic idea behind these T'-convergence results. Let (u.,v.) be a min-
imizing sequence either for F. or for E.. Then, far from S,, v. approaches 1 driven by the factor 1/e
which multiplies the potential term (1 — v.)%. Around S,, instead, both the first and second terms in
(1.4) are diverging; to keep them bounded v. makes transitions from r to 1, the value r chosen so that the
sum of the energy contributions given by [[vZVu/| 1 (o) and the Modica-Mortola term in (1.4) is minimal;
i.e., minimizing (1.6).

(1.6)

On account of the I'-convergence results Theorems 3.1 and 3.2, in Section 5 we prove that, when
perturbed by a term |lu — hll%?(fl) for some h € L>°(9), the functionals F. and E. are equicoercive (see
Theorems 5.1 and 5.2). As a result, we derive the convergence of the associated minimization problems
to

: 2
Jmin L)+ = Bl | (1.7)

However the functionals F., as well as the functionals E., are not suited to numerical applications. In
fact, due to the lack of compactness properties of the space W1(Q), the direct methods of the calculus
of variations cannot be applied to obtain the existence of minimizers for F. and E. at fixed € > 0.
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A relaxation argument allows nevertheless to obtain existence of minimizers in the larger space BV ().
For n < 3, which is the interesting case for applications, if we denote by F. and E. the relaxations of
F. and E. with respect to the strong topology of L*(Q2) x L!(Q), we find that, thanks to the presence of
the second-order perturbation in v, the expressions of F. and E. are particularly easy. Specifically, in
Section 5, we prove that if u € BV (2) and v € W?22(Q) then

yol 2 (1-v)? 3172,,|2
F.(u,v) = [ v*d|Du|+ ——— +¢e°|V7|? | dx,
Q Q €

2
Fs(u,v):/02d|Du|+/ <M+E3|Av|2) dx,
Q Q €

the proof strongly relying on the fact that W?22(Q) is compactly embedded in C(Q).
Then, the functionals F'. and E. still I'-converge to F, and, if perturbed by a term |ju — h||2LQ(Q) for
some h € L*°(Q), they are equicoercive. If for n. > 0 we consider the minimization problems

i F 2
R . {FE(U, v) + 0e|Dul(Q) + [Ju — h||L2(Q)} (1.8)

and

i B Dul(€) + Ilu = hl32a) } 1.9

v o {Bel ) e Dul(@) 4 = Bl | (1.9)
the term 7¢|Du|(€2) makes the functionals in (1.8) and (1.9) coercive for fixed ¢ > 0. Then, the existence
of a minimizing pair easily follows appealing to the direct methods of the calculus of variations. Moreover
if n. is chosen so that 1. = o(e) then it can be easily shown that

Fo(u,v) +ne|Dul(Q) = F(u,v), Ee(u,v) + 1:|Du|(Q) —— F(u,v).

Hence if (ue,v.:) is a minimizing sequence for (1.8) or (1.9), then v. — 1 in L'(£2), u. converges to a
solution @ of (1.7) in LP(§2) for all p € [1,+00), and

tim (P (e, 02) + 7 [ Ducl(Q) + llue = hl32(qy ) = F(@) + |7 = hll3z(0
We notice that the strong convergence of u. to @ in LP(Q) for all p € [1, +00) is consequence of the strong
convergence of u. to i in L*(§) together with the fact that one can always assume llucll Lo ) < 1Pl Lo ()-

The relaxed functionals F. and E. are now ready to be used for numerical simulations. In order to
solve (1.8) or (1.9) one can follow the common strategy of iterative alternating minimization (see e.g.
[18]). Hence, given an iterate (u*,v¥), one computes

" € argmin e (u”,v)
v

u* Tt € argmin F.(u, o™ ) 4 0| Dul(Q) + |ju — 22 0)- (1.10)
k+1

We notice that now, thanks to the continuity of v"t1  (1.10) is a standard weighted total-variation

minimization problem and can be solved in a straightforward way with primal dual methods (see e.g.
[9, 10, 17]).

The paper is organized as follows: after recalling some useful notation and preliminaries in Section
2, we state and prove the main results, Theorems 3.1 and 3.2, in Section 3 and Section 4. In Section 5
we first establish an equicoercivity result for the functionals under examination and then we provide an
integral representation for their relaxations, in the case when n < 3.
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2. NOTATION AND PRELIMINARIES

In this section we set a few notation and recall some preliminary results we employ in the sequel.

Throughout the paper the parameter € varies in a strictly decreasing sequence of positive real numbers
converging to zero.

Let n > 1; if not otherwise specified, 2 C R™ denotes an open bounded set with Lipschitz boundary.
We denote by A(Q) and B(12) the families of all open and Borel subsets of ), respectively. The Lebesgue
measure and the k-dimensional Hausdorff measure on R™ are denoted by £" and HF, respectively. If
x € R™, we denote by (x1,...,x,) its components in the canonical basis (e1,...,e,) of R™. The scalar
product of z, y € R™ is denoted by (z,y) and the euclidean norm by |z|, whereas A - B denotes the
product between two suitable matrices A, B. If zy € R™ and g > 0, then B,(x¢) denotes the open ball
centered at xy with radius p; if g coincides with the origin we omit the dependence on xy and we simply
write B,. Moreover we denote by S™"~! the boundary of B; in R™.

Let M, (Q) be the set of all bounded Radon measures on Q; if g, 1 € My(Q), we say that pp — p
weakly* in M;(Q) as k — +oo if

lim goduk:/tpdu Ve CH(Q).
Q Q

k—+oo

Let 1 < p < +o0 and k € N, we use standard notation for the Lebesgue and Sobolev spaces LP(2) and
Wkp(Q).

2.1. Functions of bounded variation. For the general theory of functions of bounded variation we
refer the reader to [4]; here we only collect some useful notation and facts.

For every u € BV(f), Vu denotes the approximate gradient of u, D the Cantor part of the
distributional derivative of u, .S,, the approximate discontinuity set of u, v, the generalized normal to .S,
which is defined up to the sign, and u™ and u~ are the traces of u on S,.

We state a compactness result in BV () (see [4, Theorem 3.23 and Proposition 3.21]).

Theorem 2.1. Let Q C R™ be an open bounded set with Lipschitz boundary and let (uy) be a bounded
sequence in BV (). Then there exist a subsequence of uy, (not relabeled) and a function u € BV () such
that uy = w in BV(Q); i.e., ux — u in L'(Q) and Dugp = Du in Q in My(S).

We say that a function v € BV(Q) is a special function of bounded variation, and we write u €
SBV(Q), if D°u = 0.

We also consider the larger space of the generalized functions of bounded variation on Q, GBV (),
which is made of all the functions u € L'(2) whose truncations u™ := (—m) V (u Am) belong to BV ()
for every m > 0.

By the very definitions we have BV (Q2) C GBV () and BV () N L () = GBV(2) N L>(Q).

The space GBV inherits some of the main properties of the space BV (see [4, Theorem 4.34]).
Theorem 2.2. Let w € GBV(Q2). Then

(i) u is approzimately differentiable L™-a.e. in Q and Vu = Vu™ L™-a.e. in {|Ju| < m};
(ii) Su = Um>0Sum is countably H"‘-rectifiable and H" (S, \ Ju) = 0, where J,, denotes the set of
the approximate jump points of u.

The Cantor part of the distributional derivative of w € GBV (Q) is defined as
|Du| == \/ [Du™|,

m>0
where the supremum is understood in the sense of measure (see [4, Definition 1.68]).
Notice that if u € GBV () then

[Vu™ ()| < |Vu(z)| L-a.e. in Q
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Vu™(x) = Vu(xz) L"-a.e. in Q as m — +oo
Sym C Sy, (u™)E = (ut)™ H" -ae. in Q (2.1)
XSum — X5, (W™)E(x) = uF(x) H" ae. in Q as m — +00 (2.2)
H" 7 (Sym) — H"H(S,) as m — 400
| Du™|(Q2) — |Du|(2) as m — +o0.

2.2. Slicing. We recall here some properties of one-dimensional restrictions of BV functions. We first
fix some notation. For each ¢ € S"~! we consider the hyperplane through the origin and orthogonal to

& e,
I .= {z € R": (z,¢) = 0},

and, for every y € II¢ and A C R”, we consider the one-dimensional set
Ay ={teR:y+tie A}

Moreover, for any given function u: Q@ — R we define ug ,: Q¢ y — R by ug (t) := u(y + t§).
The following result holds true (see [3]).

Theorem 2.3 (Slicing Theorem in BV). (i) Let u € BV (Q). Then for all £ € S™! the function ug,,
belongs to BV () for H" '-a.e. y € TIS. For those y such that ug, € BV (Qs,) we have

ug(8) = (Vuly +1€),€) for Ll-ae.t € Qg

Sue, ={teR:y+t& €Sy}

ug, = ut(y +t€) or ug, = uT(y +1€)

according to the cases (v, &) > 0 or (v,,€) < 0 (the case (vy,,§) = 0 being negligible). Moreover,
we have

[ D" s (e d ) = [(D°u. €)1 (4)

for all A € A(Q), and for all functions g € L*(S,; H" 1)

/m Z £ dH" " (y) = /g(x)|<vu,§>|dH"*1(x).

tESu, Su

(ii) Letuw € LY(Q). If ue, € BV (Q¢,) and
/1'[5 | Dug | (Qe,y) dH" ™ (y) < +00

for all € € {e1,...,e,} and for H" 1-a.e. y € IS, then u € BV ().

The previous theorem will be a key tool to get the lower bound inequality in the proof of Theorem
3.1.
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2.3. A density result. We denote by W () the space of all functions u € SBV () such that:
(i) ﬂnil(gu \ Su) =0;

(ii) S, is the intersection of 2 with the union of a finite number of pairwise disjoint (n — 1)-dimensional
simplexes;

(iil) uw € Wk>(Q\ S,) for every k € N.
The following theorem due to Cortesani and Toader (see [11, Theorem 3.1]) provides a density result of
W(Q) in SBV?(Q) N L>(Q), where by SBV?(Q2) we denote
SBV?(Q) = {u e SBV(Q): Vu € L*(Q), H"1(S,) < +o0},
and it will be used to get the upper bound inequality in both Theorems 3.1 and 3.2.

Theorem 2.4. Let u € SBV?(Q)NL>(Q2). Then there exists a sequence (u;) C W(Q) such that uj — u
in LY(Q), Vu; = Vu in L*(Q), limsup, ,, . lu;]lec < ||tflo and

limsup/ (b(u;r,u;,yuj)d'anl S/ duT u", vy) dH !
Suj Su

Jj—+o0

for every upper semicontinuous function ¢: R x R x §"~1 — [0, 4+00) such that ¢(a,b,v) = ¢(b,a,—v)
for every a, b€ R and v € S" L.

2.4. A relaxation result. We state here a relaxation result, due to Fonseca and Leoni (see [15, Theorem
1.8]), which will be crucial to obtain the lower bound inequality in Theorem 3.2.

Let N > 1andlet f: QxRN x R™™ — [0, +00) be a Borel function. For any (x,w, z) € QxRN x RV
we define the recession function of f as

t
(2, w, 2) := limsup M
t—00 L

Theorem 2.5. Let N > 1 and let f: Q x RN x R™™ — [0, +00) be a Borel function. Assume that

(i) for all (zo,wo) € Q x RN f(xg,wo, ") is convex in R"N;
(ii) for all (xg,wo) € Q x RN either f(xo,wo,2) = 0 for all z € R™™Y, or for every n > 0 there exist
c1, ¢2,0 > 0 such that

f($0aw0az) - f(x,w,z) < 77(1 + f(xawaz))

f(z,w,z) > CQ|Z| +c
for all (z,w) € A x RN with |z — 20| + |w — wo| < & and for all z € RV,
Consider the functional F: L' () x A(Q) — [0, +00] defined by

F(w,A) = /Af(zf,w, Vw)dr we WhH(Q),

+00 otherwise.
Then for w € BV (Q) we get

F(w, A) Z/Af(x,w,Vw)der/Afoo <x,w,%) d|Dw].
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2.5. Interpolation inequalities and elliptic regularity estimate. As we will heavily use them in
what follows, we recall here two interpolation inequalities (see e.g. [1, Theorems 4.14 and 4.15] and [19,
Theorem 3.1.2.1 and Remark 3.1.2.2]).

Proposition 2.6. Let U be an open bounded subset of R™ and let €9 > 0.
(i) If U has Lipschitz boundary, then there exists a constant co(eo,U) > 0 such that

1
cos/ |Vo|? do < —/(1—1})2dx+53/ |V2v|? d,
U €Ju U

for every € € (0,&0] and for every v € W22(U).
(ii) If U has C?-boundary, then there exists a constant co(eg,U) > 0 such that

1
cos/ |Vo|? de < —/(1—1})2 dz+53/ |Av|? dz,
U €Ju U
for every e € (0,0] and for every v € W22(U) with (1 —v) € Wy *(U).

Moreover, we also recall a local a priori estimate for the Laplace operator (see [13, Theorem 1, Section
6.3.1]) that we will use in Section 4.

Proposition 2.7. Let U be an open bounded subset of R™. Then for each open subset V. CC U there
exists a constant ¢(U, V') > 0 such that

[vllw22vy < (U, V) (HAUHLZ(U) + ||UHL2(U)) ]
for all v € W22(U).
3. STATEMENT OF THE MAIN RESULT
We consider the functionals F. and E. defined as
1— 2
/ <v2|Vu| + % + €3|V2v|2) dv ue WhHH(Q), v e W22(Q),
Q
+00 otherwise in L*(Q) x L' (1),

F.(u,v) := (3.1)

and
2 (1-wv)? 3 2 1,1 2,2
U|VU|+T+E|AU| de weWhHHQ), ve W=2(Q),
Q
+00 otherwise in L(Q) x L'(Q).

E.(u,v) := (3.2)

Hereinafter the I'-convergence of F. and E. is understood with respect to the strong topology of L*(£2) x
LY(Q).
The first main result of this paper is a I'-convergence result for the functionals F.

Theorem 3.1. The sequence (F.) defined as in (3.1) I'-converges to the functional F defined as

|Vu| dz Jr/ g(lu™ —u ) dH" ™ + |DU|() uw e GBV(Q), v =1a.e.inQ,
F(u,v) := /gz Su (3.3)
+o0 otherwise in L' () x L(Q),
where g is given by
4
g(z) = min]{r2 24+ 2v2(1—1)%} = & (3.4)

4+\/§z.

An analogous result can be recovered on GBV () for the functionals E., as stated in the following
theorem.

rel0,1
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Theorem 3.2. For every u € GBV (),
F-gl_% E.(u,1) = F(u,1),
with E. and F defined as in (3.2) and (3.3), respectively.

We may also consider the functionals &. defined as

£ (u0) = E.(u,v) (v—1) € Wy*(Q),
ST | 4o otherwise in L*(Q) x L' ().

Then, if Q has C?-boundary, Theorem 3.2 immediately yields the following theorem.
Theorem 3.3. For every u, v € L(Q),
-1l =F .
lim & (u,v) (u,v)

In fact it is sufficient to notice that, thanks to the boundary conditions on v and the increased regularity
of ©, we can now invoke Proposition 2.6(ii) to get

2 & (u,v) 2/ (’U2|VU| +
)

which, thanks to [2, Theorem 4.1], guarantees that the domain of the I-limit is contained in GBV (2) x
{v="1a.e. inQ}.

1— 2
(Gl + CQ€|V’U|2) dx,

Remark 3.4. Let r € R. Consider the minimization problem
+oo
m, := inf {/ ((f = 1)2+ (f")?) dt: f € W20, +00),
0

f(0)=r, f'(0)=0, f(t)=1ift > T, for some T > 0}.

The constant m,. represents the minimal cost, in terms of the unscaled, one-dimensional Modica-Mortola
contribution in (3.1) and (3.2), for a transition from the value r to the value 1 on the positive real half-line.
A direct computation gives (see [8, Section 3])

—+oo
mrmin{/ ((f = 1)+ (f")?) dt: f € W22(0,+00),
0

t— o0

FO)=r, £(0)=0, lim f(t)= 1} =V2(1-1)% (3.6)

Remark 3.5. It can be easily checked that the function g defined as in (3.4) satisfies the following
properties:

(i) g is increasing, g(0) = 0 and lim,_, 1 g(2) = 2v/2;

(ii) g is subadditive;

(iii) g(z) < z for all z € RT and lim,_ o+ g(zz) =1
(iv) g is Lipschitz continuous on RT with Lipschitz constant 1;

(v) for any T > 0 there exists a constant ¢y > 0 such that z < ¢p g(z) for all z € [0, 7.

Remark 3.6. The functional F(-,1) with F defined as in (3.3) is continuous with respect to truncation
in GBV (). In fact let v € GBV(Q) and for m > 0 let «™ be the truncation of u at level m. Then by
the properties of GBV functions (see Subsection 2.1) we immediately have

lim </ [Vu™| dx + |Dcum|(Q)) = / [Vu|dz + | Dl ().
Q Q

m——+o0
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Moreover, by virtue of (i) and (iv) in Remark 3.5, the Monotone Convergence Theorem together with
(2.1)-(2.2) yields

lim g(l(™)* = (™) ~[)dH"™" = lim g(I(u™)" = (™) " )xsm dH"

m——+oo S.m m——+oo S,

- / gljut = u[)amnt,

u

4. I'-CONVERGENCE

In this section we study the asymptotic behavior of the functionals F. and E.. In particular Theorems
3.1 and 3.2 will follow from Proposition 4.1-4.5.

We start proving the lower bound inequality in the one-dimensional case, where F. and FE. clearly
coincide. The proof follows the line of that of [2, Proposition 4.3]; the main difference is that, due to the
presence of the second derivative of v in the approximating functionals, we are not allowed to assume
that 0 < v < 1.

Proposition 4.1. Let n = 1 and let F. and F be defined as in (3.1) and (3.3), respectively. Then
F(u,v) < T-liminf._ o F-(u,v) for all u, v € L*(Q).

Proof. For simplicity we suppose that there exist a, b € R, a < b such that Q = (a,b), the general case
follows by repeating the same argument in each connected component of (2.

Let u, v € L'(a,b) and (u.), (v:) C L'(a,b) be such that u. — u, v. — v in L'(a,b). We want to
show that

lim inf F, >F .
iminf F (ue, ve) > F(u, v)
Clearly it is enough to consider the case lim._,q Fr(ue,ve) = liminf. o F.(ue,v:) < 400; we suppose
moreover
Ue —> u, v — v a.e.in (a,b). (4.1)

We begin noticing that [[ve — 1][z2(a0) < ¢y/2 immediately gives v = 1 a.e. in (a,b). Moreover the

interpolation inequality Proposition 2.6(i) yields e||v.||z1(4,5) — 0 as € — 0; hence, up to subsequences
(not relabeled),

evl =0 ae.in (a,b). (4.2)

Again appealing to Proposition 2.6(i) we deduce the existence of a positive constant ¢o such that for
€ > 0 sufficiently small there holds

b b 2 b
-1
00/ s(v;)Qd:cS/ (Uai)der/ e3(wl!)? dx.

3

Therefore for e > 0 sufficiently small

/ab (@ +€(v;)2) dr < ¢

hence, fixed z € (0,1), we can apply [6, Lemma 6.2 and Remark 6.3], with Z = {1} and W (s) = (1 — s)?,
to conclude that there exists a finite set S, such that, for every fixed n > 0 and for € > 0 sufficiently
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small, z < v, <2on (a,b) \ (S: + [-n,7]). Let n > 0; then

liminf F. (ue, ve)
e—0

1— 2
> 1iminf/ v2|ul| dz + 1iminf/ (v§|u'6| + d=v) + 53(1);')2) dx
20 J(ab)\(S=+[=nm]) =0 Js. 4 [—nm) €

1— 2
> 22 hminf/ |ul| dz + hmmf/ (v?|u;| + d=v) + 53(1);/)2) dz. (4.3)
=20 J(@b)\(S-+[=n.m) =20 Jsetfon) ¢

In particular f(a ) |ul| dz is equibounded. Hence u € BV ((a,b) \ (S, 4+ [—7n,7])) and

\(Sz+[=nnl)

fiminf | [l do > |Dul((a,b) \ (S. + [~n,1). (4.4)
=20 J@b\(S+=n)
Moreover, by the arbitrariness of 1, we have u € BV ((a,b) \ S.) and, since S, is finite, u € BV (a,b).
Let N :=H°(S.), S. = {y1,...,y~n}. We claim that
o v 21,7 (1—wve)? 30, 102
lim inf vZ|ul] + — +e(l)? ) de > g (4.5)
y
). (4.6)

ess-sup u — ess-inf w
(yi—n,yi+n) (yi—m.yi+n)

e—0 i—n

for every i =1,..., N.
Suppose for a moment that (4.5) holds true. Then (4.3)-(4.5) immediately give

ess-sup u — ess-inf

N
lim inf F (u.,v.) > 2%|Dul((a,b) \ (S. + [~ )+ <
migh (e, v) > 221 Dul((0,0) (e

=1

Finally we first let 7 — 0 in (4.6) to get

limnf P (ue, v2) 2 22[Dul(a,8) \ S2) + D g(ut = u”|(3:)

> 2% Dul((a,0) \ Su) + 2> Y Jut —uT()+ Y gljut —uT|(y)
y€Su\S2 SuNS,
> 2%|Dul((a,0) \ Su) + Y ((ZPlut —u”|(y) A g(lut —u”[(1)))-

YyESy

and then z — 1, obtaining the required inequality, since g(|t|) < |¢| (see Remark 3.5).

We prove now (4.5) for i = 1,..., N. Upon passing to subsequences (not relabeled), we may assume
Yyi+n 1— 2 Yyit+n 1— 2
liminf/ (v?|u;| + d=v) + 53(1);/)2) dx = lim/ (v?|u;| + d=v) + 53(1);/)2> dx.
e—0 P £ e—0 yi—n £

By the very definition of essential infimum and essential supremum and by (4.1)-(4.2), we have that for
any & > 0 there exist 2%, ¥ € (y; —n,y; +n) such that

lim ue(2}) = u(zl) < ess-inf w+4

€0 Yi—n,Yi+n)

lim u (2h) = u(xh) > ess-sup u—§
e=0 (yi—n.yi+n)

lim v, () = hm ve(2h) =1 (4.7

e—0

il_%e“ (21) = 21_1%51)8(:02) =0.

Let af € [27, 23] be such that v.(z}) = minp; .4 ve. We have now to distinguish three cases.
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Case 1: xt € (2%, 2%). In this case the regularity of v. yields v.(x) = 0. Moreover we have

i

Yi+n 1— 2 Tq 1— 2
[ (e O ) oz [ (4 S ) ao
Y Ty

i1 € €
Iz 1— 2 Z; 1— 2
+/, (( EUE) +€3(U;/)2) dm—i—/_ (( EUE) +€3(v;’)2) de

> (max{0,v.(%)})?

x5 ,
Cu.dx
] 1

> Gmax{0, 0000} Poctad) -octot) [ (B 022 o [ (B2 4 0
(4.8)

i i
Ty €

We estimate from below the term

i
To~Te

/;; (% + 3! 2> dx = /0 ’ (we — 1)* + (w!)?) dz,

i
€

where 2z = (t — 21)/e and w.(2) := v.(ez + 21).
To this end we introduce the auxiliary function G : R? — [0, +00) given by

G(w, z) := inf {/O ((g—1)%+(g")?) dt: g € C*([0,1]), g(0) =w, g(1) =1, ¢'(0) =z, g'(1) = 0};

testing G with a third-degree polynomial satisfying the boundary conditions, one can easily show that

lim G(w,z) =0. 4.9
(w,z)—(1,0) ( ) ( )

Let g.; € C%([0,1]) be an admissible function for G(ve(x}),e vl (z%)); i.e., go:(0) = ve(xh), gei(1) = 1,
gL (0) = evl(x5), gL ;(1) = 0. By construction

1 - — 1 / . e
Eh_% 9:i(0) =1 and {11_1}1}J g9:;(0) =0,

hence by (4.9) we infer
lim G(ve(2h), e vl (xh)) = 0.

0
Let (9:,) be the sequence defined as -
we(2) if nggmé—x}g,
! if 2> 22T

By definition of g ; it follows that (@) C W;22(0, +00). Since @, is a test function for m,_(zi) (Where
m,_(,i) is as in (3.6) with 7 = v. (%)), we have

_pt
Lo —w

€ +m . .
|7 (1P e @) e = [ (@ 0P+ (@00) ds = Gload), e vtah)
0 0

> my,_ (zi) *G(’UE(SCE),E’U;(SCE)).

A similar argument applies to the term
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in (4.8).
We have
Yyit+n — v 2 o
[ (4 S s o) o
> (max{0, ve(22)})*Jue(h) — ue(2))] +2my, (41) — Glve(21), e vl (1)) — G(ve(2), € vl (x))
2 inf {(max{0, 1) |ue(a3) — ue(21)] + 2my } — G(v=(21), e vl (1)) — G(ve(2), € vl (3))

min {2 06 i () = )]+ 2} b= G0n(od). 0L nh) — Gl (a0t a)

- Aueled) —weDl N e o e
= min {2v3, A O o), 200 (0) ~ G0 (o). <)

= Tg%(i)n”{ﬁlue(xé) —ue(2))] +2m, } — G(ve(2), e vl(21)) — G(ve(x), e vl (25)),

where the last equality follows from the definition (3.4) of g. By letting ¢ — 0, we get
Yi+n (1 — )2
liminf/ (v§|u'g| + +53(vg)2) dr > inf {7‘2‘ ess-sup u — ess-inf u+ 28| + 27nr}.
€0 Yi—n € r€(0,1] (yi—m,yi+n) (yi—n,yi+n)
Thus, by the arbitrariness of 4, we obtain (4.5).
Case 2: there exists a subsequence of € (not relabeled) such that 2 = x{. In this case, we have

yitn 1— 2
/ (v§|u'g| + A —v) EUE) + 53(1);’)2) dz
Yy

i1
5 . . . . . .
> / vZ|uz] dz > (max{0,ve(21)})? Jue(25) — ue(21)] = 02 (2]) lus(23) — ue(a?)]
zy
where the last equality holds for e sufficiently small by virtue of (4.7). Letting ¢ — 0, by Remark 3.5(iii)
and again (4.7), we get

.. vitn 2,1 (1—v.)? 3(,.11\2
lim inf vilug| + ———+¢e(v))° ) dz >
€
y

e—0 —

ess-sup u — ess-inf u+25’
(yi—m,yi+n) (yi—m,yi+n)

> g(‘ ess-sup w — ess-inf w4+ 25 )’
(yi—m,y:+m) (yi—m,y:+m)

thus, by the arbitrariness of d, (4.5).

Case 3: there exists a subsequence of € (not relabeled) such that z! = x%. In this case we apply the
same argument as for Case 2. O

We use now Proposition 4.1 to recover the lower bound for F. in dimension n > 1, by means of the
slicing method (see Subsection 2.2). As a preliminary step we localize the functionals F. by introducing
an explicit dependence on the set of integration: for any A € A(Q), we set

1— 2
/ (U2|VU| + % + 53|V20|2) dv ue WhHi(A), v e W22(A),
A
+00 otherwise in L1(Q) x L(€).

F.(u,v, A) :=

Proposition 4.2. Let n > 1 and let F. and F be defined as in (3.1) and (3.3), respectively. Then
F(u,v) < T-liminf._ o F-(u,v) for all u, v € L*(Q).
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Proof. In what follows we use the notation introduced in Subsection 2.2.

Let £ € 8”71 and A € A(Q). We begin noticing that for any u € W11(Q) and v € W22(Q2), Fubini’s
Theorem yields

FE(U,U,A) :/IK(/Agwy(UQ(y+t€)|vu(y+t§)| _;’_w +53|V20(y+t£)|2) dt) den—l(y)

2 (1 _U(y+t£))2 2 9 no1
2/H£ (/A5 (v (y + ) Vuly + 1), ) + —————— +"[(VIo(y + &) - £, )| )dt) dH" " (y)

:/H5 yﬁ(ui,yavﬁyaAi,y)dHn_l(y)a (4.10)

where % is the one-dimensional functional defined by

1— 2
/ (2:2|w'| + % + 53(,2”)2) dv we WHi(I), 2 € W22(I),
I

400 otherwise,

Fe(w,z, 1) =

for any w, z € L*(I) and I C R open and bounded.
Let u, v € L*(Q) and (ue), (ve) C L*(Q) be such that u. — u, v. — v in L'(Q) and

lim inf F; (u.,v.) < +00. (4.11)
e—0
Then v = 1 a.e. in Q. Moreover, by Fubini’s Theorem and Fatou’s Lemma, (us)e,y — ue,y and (ve)e, — 1

in L1(Q¢ ) for H* l-a.e. y € IIS. Therefore, appealing to Proposition 4.1 and taking into account (4.10),
we have that ug , € BV (Ag,) for H" l-a.e. y € IS and

lim inf Fe(ue, ve, A) 2 lim inf Fe((ue)eys (ve)ey, Acy) dH" " (y)
e—0 e—0 e

Z/H& lim inf F. ((ue)e,y, (Ve)e,y, Ae.y) dH" " (y)

e—0

[ e [ g, g 0+ Do) ) . (1)
me \Jac, Sug.,NAc.y

where in the second inequality we have used Fatou’s Lemma.

Let m > 0 and consider the truncated functions u™. Since g is increasing, it is clear that we decrease
the last term in (4.12) if we replace u with ™. Moreover, since u™ € L>®(Q), with ||[u"|x < m, by
Remark 3.5(v), we have

(™) = (@™)7] < emg(|(@™) = (u™)7)),
for a suitable positive constant ¢, depending only on m. Then, by (4.11) and (4.12) we have

/m [D(™)ey|(Ae.y) dH™ ™ (y) < +o0.

Thus, applying Theorem 2.3, we get that u™ € BV (A) and

T-lIminf Fo(u, 1,4) = /‘| fP“*L gl = @) DI v AR 4 (DR ) (4
(4.13)

where we have taken into account the arbitrariness of u. and v,.
Consider the superadditive increasing function g on A(Q) defined by

w(A) :=T- hgl_}lélf F.(u,1,A)
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and the Radon measure
A= L%+ g(|(u™) T = (@) T PH T LSy + [ D™
Fixed a sequence (&;), dense in S"~ !, we have, by (4.13)
M&z/ww
A

for all i € N, where

[(Vu™(x),&)] L"-a.e.in Q,

Vi) =< &, vu)] |Du™]-a.e. in Q,

(&, V)] H " l-ae. in Sym.

Hence applying [6, Lemma 15.2] we get

I-liminf F, (u,v, A) > / [Vu™| dx +/ g(|(u™) T — (u™)7|) dH" " + |Du™|(A),
€0 A SumnA
thus, taking A = Q,

I-liminf F (u,v) > /
e—0

[Vu™| d +/ g(|(u™)* = (@™)7[)dH" " + [Du™|(2). (4.14)
Q Sym

Finally by the arbitrariness of m > 0, we conclude v € GBV () and the thesis follows letting m — +o0o
in (4.14). O

A different approach is needed instead to prove the lower bound inequality for E. in dimension n > 1.
The slicing technique is in fact not anymore applicable, because of the symmetry breaking due to the
presence of the Laplacian. We use then the blow-up method of Fonseca-Miiller [16]. To this end it is
convenient to localize the functionals F. by defining for any A € A(Q)

2 (1-wv)? 3 2 1,1 2,2
\Y% — A d whi(A W#2(A
by d [ (P70l EEE AR ) o we W), 0w a)
+00 otherwise in L(Q) x L1(Q).

Proposition 4.3. Let n > 1 and let E. and F be defined as in (3.2) and (3.3), respectively. Then
F(u,1) < T-liminf._,¢ E.(u, 1) for all u € GBV(Q).
Proof. First let u € BV(Q). Let moreover (u.), (v:) C L*(Q) be such that u. — w in L*(Q), v. — 1 in
L?(Q2) and

lim inf . (u., ve) < +00.
e—0

For each € > 0 consider the measures

1— 2
Pe = (U§|VUE| + % + E3|A’U5|2) LM Q.

By hypothesis p.(Q) = E.(u, v.) is equibounded therefore, up to subsequences (not relabeled), p. — p
where 4 is a non-negative finite Radon measure on €2. Using the Radon-Nikodym Theorem we decompose
1 into the sum of four mutually orthogonal measures

1= pa L+ pre | Dl + g M TSy + pas
and we claim that
ta (o) > |Vu(zg)| for L™-a.e. zp € Q (4.15)
te(xo) > 1 for |Dul-a.e. g € Q (4.16)
pr(zo) > g(lu™ —u™|(zg)) for H" t-a.e. zo € Sy. (4.17)



FREE-DISCONTINUITY PROBLEMS WITH LINEAR GROWTH 15
Suppose for a moment that (4.15)-(4.17) hold true, then to conclude it is enough to consider an increasing

sequence of smooth cut-off functions (¢ ), such that 0 < ¢ < 1 and sup;, ¢x(x) = 1 on ©, and to note
that for every k € N

e—0

:/‘PdeZ/Na@kdiCJr/,Uc<Pkd|Dcu|+/ pr o dH"
Q Q Q Su

2/ |Vu|gpkdx+/gakd|Dcu|+/ g(lu™ —u™|) o dH™ L.
Q Q

u

—1)2
lim E. (ue,v:) > liminf/ (U§|Vu6| + (e = 1)* +53|AU5|2) on da
e—0 Q 5

Hence, letting k& — +oo the thesis follows from the Monotone Convergence Theorem.

We have now to check (4.15)-(4.17). The proof of (4.17) follows exactly the proof of (5.3) in [8,
Proposition 5.1], the only difference residing in the fact that here we appeal to the one-dimensional result
Proposition 4.1.

We prove now (4.15) and (4.16). To this end we define the function ®: [0, 1] — [0, +00) by

d(t) ::2/t(1—s)ds:1—(1—t)2; (4.18)

we notice that @ is strictly increasing, ®(0) = 0 and ®(1) = 1.
Let A € A(Q). Fix A’ € A(Q) such that A" CC A; appealing to Propositions 2.7 and 2.6 we deduce
that there exists a positive constant ¢y such that for € > 0 sufficiently small there holds

1— 2
/ (v§|Vu|+ ( EU) +E3|AU5|2) dz
A

1— 2
/ v?|Vu|do + co/ (Q + 5|Vv8|2) dx
A/ A/ E
1—9 2
/ 02| Vu|dr + co/ (Q + 5|V178|2) dx,
A/ A/ E

where 7. := 0V (ve A 1). Moreover for every € > 0 Young’s inequality yields

_~ )2
/ (%%wm?) d:cz/ Vo(o)| da,
’ A,

with @ as in (4.18). Hence we have

Ea(ua; Ve, A)

Y

Y

EE(UEaUE)A) Z f(xa (u&‘)@(68))3v(u83¢(68)))d$)
A/
with f: Q x R? x R?" — [0, +00) defined by

_ 2
Fla, (u,0), (2,0) = (2710 V (1A 1)) (2] + ol¢]).
It is easy to check that f satisfies all the hypotheses of Theorem 2.5 with N = 2, then we deduce that

Y

e—0 e—0

lim inf F. (ue,ve, A) liminf | f(z, (ue, ®(Te)), V(ue, D(0e))) dz
A/

- dD¢(u, 1) .
A/f(m, (u,l),V(u,l))dw—i—/A/f (ac, (u,1), m) d|D(u, 1)

Y

[ 19l do -+ 1D,
A/
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where we have used the fact that ®(9.) — 1 in L*(), as 9. — 1 in L?(2). Since u belongs to BV (£2),
letting A" 7 A gives

lim inf F. (ue,ve, A) 2/ |Vu| dz + | Dul(A).
e—0 A

From this, by using the Besicovitch derivation Theorem, we immediately get (4.15) and (4.16), and this
completes the proof for u € BV (Q).

If now u € GBV () the thesis follows by a standard truncation argument. In fact the truncations v
of u belong to BV () for all m > 0. Appealing to the continuity under truncation of F(-,1) in GBV ()
(see Remark 3.6) and noticing that E.(-,v) (and hence I'-liminf._,o E.(-,v)) decreases by truncation, we
immediately get

I- 1ir€r251f E.(u,1) > liminf F(u™,1) > F(u,1).

m——+o00o

O

We prove now the upper bound inequality for F; and E.. To do this, we will use the density and
relaxation results introduced in Subsection 2.3 and Subsection 2.4.

Proposition 4.4. Let n > 1 and let F. and F be defined as in (3.1) and (3.3), respectively. Then
F(u,v) > T-limsup,_,q F:(u,v) for all u, v € L'(Q).

Proof. To check the upper bound inequality, it suffices to deal with w € GBV () and v = 1 a.e. in Q.
We divide the proof into three main steps.

Step 1: u € SBV?(2) N L>=(2). We prove that
F(u,1) > T-limsup F-(u, 1) (4.19)

e—0
for all u € SBVZ(Q) N L>(Q).

By Theorem 2.4 it is enough to prove (4.19) when u belongs to W(2). Indeed assume (4.19) holds
true in W(Q). If u € SBV?(Q2) N L*>(£2) then there exists a sequence (u;) C W(£) such that u; — u in
LY(Q) and

limsup F(uj,1) < F(u,1);
Jj—+oo

hence the lower semicontinuity of I'-limsup,_, Fe(+, 1) yields

I-limsup Fr(u, 1) < liminf <F— lim sup F (u;, 1)) <liminf F(u;,1) < F(u,1). (4.20)
e—0 J—too e—0 Jj—+o0
We now prove (4.19) for a function u € W(Q); we suppose S, = QN K, with K a (n — 1)-dimensional
simplex (the case S, = Q NUI_; K;, with K; pairwise disjoint (n — 1)-dimensional simplexes, following
as a natural generalization). Upon making a rototranslation, we may assume K to be contained in the
plane {z, = 0}.
For y € S,,, we set
h(y) = [u™(y) — u” (y)l
and appealing to the regularity hypotheses on u we have that for any § > 0 there exists a triangulation
{T;}N., of S, such that
|h(y1) = h(y2)| <

for every y1, yo € T;. We consider moreover the piecewise constant function hs: S, — R defined by
hs(y) :=min{h(s): s € T;} =: z;, yeT;.
Then Remark 3.5 together with the fact that ||h — hs|leo < & gives

/ 9(hs(y)) dH () < / o(h(y) dH (y) + 61" (B,). (4.21)
Su Su
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Let x,, realize the minimum in (3.4) for z = z;; i.e., x,, € [0,1] and
9(z:) = 22 2z + 2V2(1 — z2,)% (4.22)
Fix n > 0. Then for ¢ = 1,...,N by virtue of (3.6) we deduce that there exist T(i,n) > 0 and

vy (zi;-) € W2(0,T(i,m)) such that v, (z;;0) = 2=, v} (2;0) = 0, vy(z;;t) = 1 for all t > T(i,7) and

T(i,m)
/0 (1= vy (26 0))% + (o (2:6))?) dt < 2V3(1 —2.)? 411

If now T'(n) := maxi<;<n T(7,7), we have

/OT ((1 - U’V](Zi; t))2 + (’le;(zi;t))Q) dt < 2\/5(1 - ‘rzi)2 +1, (423)

for every T > T(n) and i € {1,...,N}.
We now construct the sequences (u.) and (v.) that we expect to be the recovery sequences for F'(u, 1).
Let & > 0 be such that & /e — 0 as ¢ — 0; set T. := (T'(n) + 1)e + & and

K. :={y € {x, =0}: dist(y, K) < ¢}.

Let 7.: R"~! — R be a cut-off function between K and K; i.e., 7. € C°(K.),0<v. <1,7.=1on K
with [V |lee < £ for some ¢ > 0, and let (.) be the sequence defined by

o ws(u(ya 7T€),u(y,TE),t) |t| < T,

where
21 T, <t< —65,
zZ9 — 21
w5(21,22,t) = 26 (t+§€>+2’1 |t| st;
€
z9 €g < t < TE'

For (y,t) € Q we set
ue(y, 1) = ey, 1)7e(y) + (1 = 2:(y))uly, 1)
Forr>0,e>0andie {l,...,N}, set
B, :={(y,t) €Q:y e S, |t|<r}
5 = {y € T;: dist(y, 0T;) > ¢}
and let ¢l : R"™1 — R be a cut-off function between TF and Tj; i.e., ¢t € C°(T;), 0 < i < 1, ¢t =
on T with

; ¢
IVeelloo < = (4.24)
; c
IV2eLlleo < (4.25)
for some ¢ > 0.
We define the sequence

1 y,t) € Q\ Br,,

’Us(yat): l()zt 1— 0 ( >T' t\ ;—:

c@e(t) + (1= oi(y) yeTi |t <Tx,

where
. :I"Zi |t| S 565
vi(t) = t| —
() Uy (zz,| |€§E) e <t < T..

We have that (u.) € WHH(Q), (v-) € W22(Q); moreover u. — u and v. — 1 in L1(£).
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We now prove that u. and v, satisfy the upper bound inequality.
Asu e Wh(Q\ S,) and 0 < ¢! < 1, we have

/U§|Vu8|dx
Q

T
-/ Valdo+ [ < / <|v%<y>||ag(y,t> ~uly.b)
O\ (K x(=T:,T:)) QN(K\K) —T.

+7:(y) |V (y, 1) + (1 — %(y)wu(y,m) dt> dH" (y)

N 55

DRI

i=1 i

t+é&
26,

(Vu(y, to) — Vu(y, =1)) + Vu(y, —Tz)

+2—2€(u(y, T.) —u(y, —T¢))en dt) dH" 1 (y)

oy Lt—& n—1
02 (2 [Vu(y, T2)| dt | dH" (y)

g

oA
v/ ( [ (=) wat-m) dt) ()

- i i ot + &
+ ; /:ri\:r; <(<Ps(y)$zi +1—¢i(y) I(Vu(y, t.) — Vauly, —T2)) + Vau(y, —T.)
+2—2&‘(U(y, TE) - U(y, 7T5))€n dt) dHn_l(y)

+;/TAT? </T <<pi(y)vn <z %) +1- @i(y)>2 Vu(y, )| dt) a1 (y)
+§;/Tiw </_: (goi(y)v,] (zi; —t;&) +1- wi(y))2 |Vu(y,—T8)|dt> dH ()

N e
< [ vuldes > / f ( / e T) -y, <) dt) 1 (y) + OCe)
N
< [1vulde+ 3 [ ot o) - u Wl an ) + 00 (4.26)

where we have used that &, To, H*"1(T; \ TF) — 0 as ¢ decreases to 0 for all i = 1,..., N.
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Moreover, by virtue of (4.23)-(4.25) and since &. /e — 0 as ¢ — 0, we have also

o 2
(B s wng) as

/fg (1 — :CZ«;)2 dt) d/anl(y)

—&. 3

_i /T (/T <<1 — <Z %))2 +; (Z %)) dt) dH" " (y)
3 (7 (ot (0 (55 i (-0 (155))

2 . t— £ 1 i t— £ ° n—
20ty (055 ) + et (5:25) | ) ) )

+i/Ti\Tig (/i <§(<pi(y))2(1 —2.)? + 2 |V (y)(1 — .,) 2) dt) dH 1 (y)

< Z; /T 2V2(1 — 2.,)2 dH" " (y) + en + O(e). (4.27)

Passing to the limit as ¢ — 0, by (4.26) and (4.27), we get
I-limsup Fr(u,1) < limsup F.(ue,v:)

e—0 e—0

< /Q|Vu| dz —l—é/ﬂ (xi|u+(y) —u”(y)| +2v2(1 — aczi)2) dH" 1 (y) +cen
< /Q|Vu|dz+§/n (xﬁizi+2\/§(1—zzi)2) dH™(y) + c(n + )
N
= /QIVUIdw+i_zl/ng(ha(y))d%"‘1(y)+C(77+5)
<

/Q V| da + ; /T g(h(y)) dH" " (y) + c(n + 6)

N
ul dx ut —u~ n—1 c
/QIV d *;Lg(' () dH" (y) + el + 6),

where we have also used that ||h — hs||c < 0 together with (4.21)-(4.22). We finally let n and 6 go to 0
to obtain the required inequality. This concludes the case u € SBVZ(2) N L>=(Q).

Step 2: u € BV(Q). We now claim that the relaxation E with respect to the strong L!(2)-topology
of the functional
) — {F(u, 1) we SBV2(Q)NL=(Q),
+00 otherwise in L' (),
satisfies
E(u) < F(u,1) (4.28)
for all u € BV ().
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Suppose for a moment that (4.28) holds true. Then by virtue of (4.20) and (4.28) we have
I-limsup F-(u, 1) < E(u) < F(u, 1)
e—0

for all u € BV(Q), hence the limsup inequality in BV ().
We now prove (4.28). To this end for u € L'(Q) and A € A(Q2) we consider the functionals

Vuldr weCH(Q /Vudx uwe YN
J v R A @
+00 otherwise 400 otherwise

Ey(u, A) =

and their relaxations
Ei(u, A) = inf {hminf Eq(ug, A): up — win LI(A)}

k—+oo
Eo(u, A) = inf {Eminng(uk,A): up — uin LI(A)} .
— 400

A well-known relaxation result (see e.g. [4, Theorem 5.47]) yields

— {|Du|(A) u € BV(Q),

By (u, A) = 4.29
1w, 4) +00 otherwise in L(). (4.29)

We now want to prove that E = E;. To this end, we start noticing that (4.29) in particular implies that
for A € A(Q) and u € BV () there exists a sequence (ux) C C1(Q) such that uy — u in L*(A4) and

k—+oo

lim /|Vuk|dx:|Du|(A). (4.30)
A

We also notice that (uy) € WH'(A). Now we suitably modify (uz) to obtain a sequence in C*(€)
converging to u in L'(A) and satisfying (4.30); this would immediately imply

\Du|(A) u e BV(Q),

4.31
+00 otherwise in L!(Q). (4:31)

EQ(uaA) = {
Let (ug,) C C*(A) be such that uj — ug in WH1(A) as b — +oo (see e.g. [14, Theorem 3, Section
4.2]). Moreover, let A" be an open subset of R™ such that A’ DD A and let v: R® — R be a cut-off
function between A and A’; i.e., v € CX(A"), 0 <~y < 1,7 =1on A. We define Gy p := 7y ug,p; then,
@k, C CH(Q) and, letting first h — 400 and then k — +oo, we also have @, — u in L'(A) and

k—+o00 h—+oo

liminfliminf/ |V p| de < |Dul(A).
A
Then a diagonalization argument provides us with a diverging sequence (k) such that g, , — u in
L'(A), and
lim / |Vug, n|dx < |Du|(A),

and this concludes the proof of (4.31).
If now we define the localized functionals

/ |Vu| dx +/ g(lut —u=)dH" ' we SBV2(Q)N L>(Q),
E(u,A) := A S.NA

+00 otherwise in L(Q),

(4.32)

since C1(Q) € SBV2(Q) N L>=(9Q), we have E(u, A) < Fa(u, A); hence for all u € BV(Q2) and A € A(Q)
B(u, 4) < B(u, A) = | Dul(4). (433)
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Arguing as in [7, Proposition 3.3], one can prove that for every u € BV () the set function E(u,-) is the
restriction to A(£2) of a regular Borel measure p. Therefore

E(u) = p(Q) = p(Q\ Su) + p(QN Sy).
Then (4.33) yields
w(2\ S,) < /Q |Vu|dx + | Dul(R2) (4.34)
while (4.32) gives
w(2n Sy,) g/ g(lu™ —u™|)dH" L. (4.35)

u

Thus finally gathering (4.34) and (4.35) gives (4.28) and thus the limsup inequality for u € BV ().

Step 3: u € GBV(Q). Finally to recover the general case u € GBV (), we use a truncation argument.
Let u € GBV(Q) and consider the truncated functions ™. Then

lim F(u™,1) = F(u,1)

Jj—+oo

(see Remark 3.6). Since u™ — u in L*() we get the thesis by virtue of the lower semicontinuity of
I-limsup,_ o Fe (-, 1). O

Proposition 4.5. Let n > 1 and let E. and F be defined as in (3.2) and (3.3), respectively. Then
F(u,1) > T'-limsup,_,o F:(u,1) for all u € GBV(Q).

Proof. The proof is obtained by taking the same recovery sequence as in Proposition 4.4. 0

5. CONVERGENCE OF MINIMIZATION PROBLEMS AND RELAXATION

In this section we prove an equicoercivity result for suitable modifications of the functionals F. and &.
On account of this result, we also study the convergence of the associated minimization problems.
Let h € L>°(Q) and set

M := min {F(u,1)+/ |u — h|? da: ueLl(Q)}, (5.1)
Q
with F' defined as in (3.3); it is easy to check that the minimization problem in (5.1) admits a solution
RS BV(Q), and H’ELHLoo(Q) < ||h||Loo(Q)

Theorem 5.1. Consider the minimization problem
M, = inf{FE(u,v) Jr/ lu—h]*dx: u, v e Ll(Q)},
Q

with F. defined as in (3.1). Let (ue,ve) be a minimizing sequence for F.(u,v) + ||u — h||2L2(Q)7- i.e.,

lim <F€(u€,vs) + | |uc — h|?dz — M€> =0. (5.2)
Q

e—0

Then there exist a subsequence of (ue,v:) (not relabeled) and a function @ € BV (Q) such that ue — 4
and v — 1 in L*(Q)). Moreover 4 is a solution of the minimization problem in (5.1), and M. — M.

Proof. Let (ue,v:) be as in the statement. As a consequence of (5.2), we immediately have that (ue,v:) C
Wh(Q) x W22(Q), and v. — 1 in L*(2). We prove now that, up to passing to a subsequence (not
relabeled), u. — @ in L'(2) for some u € BV (Q).

We begin noticing that, by means of a truncation argument, we may always assume

HUEHOO < ”h”oo (5'3>



29 T. ESPOSITO

Let 9. := 0V (v A1), then ¥ € W12(); we define the sequence (w.) C W1() by
we 1= ®(.) ue

where ® is defined as in (4.18).
Then, w, is bounded in W1(Q). In fact, since ® is increasing and ®(1) = 1, we infer

/Q fwe| d < [[B]| L7 ()

moreover, appealing to the interpolation inequality Proposition 2.6(i), we deduce the existence of a
positive constant ¢y such that for € > 0 sufficiently small we have

/|Vw8|dx—/|u5 V(2(3.)) + B2(7 )Vu5|dx<2|\h|\oo/|vfl> 0. |dx+4/ (V.| da
s
gQHhHOO/ <@+5|w€|2> dz+4/ 52 |Vue| da
Q € Q

(1-v.)? 2 2
< 2|7l ——— 4 ¢|Vu|* ) de +4 | vZ|Vue|dx
Q € Q

1 _ 2
< 2c0||h||oo/ (% +gs|v2vg|2) de +4/ V| da < 2(collhlloe + 2)F(ue, v.), (5.4)
Q Q

where we have also used Young’s inequality together with the fact that 0 < ®(¢) < 2t for all t € [0, 1].
Hence Theorem 2.1 yields the existence of a subsequence of w. (not relabeled) and a function @ €
BV (Q) such that w. = @ in BV(2). As ®(0.) — 1 in L'(£2), we have then u. — @ in L' ().
We notice now that, by the uniqueness of the limit, (5.3) yields also u. — % in L?(£2) so that

liminf M, = hmmf( = (e, ve) + [lue — h|p2(q))

e—0

> liminf F. (ue, ve) + [|u — hl|72) > F(@,1) + u = hllj2q) = M, (5.5)
e—0

where we have used Proposition 4.2.
On the other hand, if @ is a minimizer for F(u,1) + |lu — h||L2 () then by virtue of Proposition 4.4

there exists a sequence (i, .) — (%,1) in L'(Q) x L(Q) such that
M = F(u,1) + [|& — hl|12(0) = hm ( 2(Ue, 0 ) + || e — h”LQ(Q)) > hmsupM (5.6)
Gathering (5.5)-(5.6), we deduce that @ is a solution of the minimization problem (5.1) and M, — M. O

Theorem 5.2. Let  C R™ be an open bounded set with C? boundary and consider the minimization
problem

M, = inf{@@g(u,v) +/ lu—h|*dz:u, ve LI(Q)}a
Q

with & defined as in (3.5). Let (ue,v:) be a minimizing sequence for &-(u,v) + ||u — h||L2 @

lim <é"€(u€,vs) +/ ue — h|? dz — Ms) —o.
e—0 Q

Then there exist a subsequence of (ue,v:) (not relabeled) and a function @ € BV (Q) such that u. — u
and v — 1 in LY(Q)). Moreover 4 is a solution of the minimization problem in (5.1), and M. — M.

')

Proof. The proof follows the line of that of Theorem 5.2, but here we appeal to Theorem 3.3. We only
point out that, to get an analogous bound as in (5.4), we need to use in addition the interpolation
inequality Proposition 2.6(ii). |
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Let now 7. > 0 be such that 7./ — 0 as € — 0 and for u, v € L*(£2) consider the functionals

, ) Fe(u,v) + T]g/ |Vuldz ueWhHi(Q), v e W22(Q),
FE(U,U) = Q

+o00 otherwise.

Thanks to the requirement that 7. /¢ — 0 as ¢ — 0, arguing as in Propositions 4.1, 4.2 and 4.4, one can
easily show that for all u, v € L1(Q)

I-lim F!(u,v) = F(u,v)
e—0

with F' defined as in (3.3).

For fixed € > 0, let FIE denote the relaxed functional of F! with respect to the strong topology of
LY(Q) x LY(); then, we also have

]
F—Elgr(l)FE(u,v) = F(u,v)

for all u, v € LY(Q) (see e.g. [12, Proposition 6.11]).

The last part of this section is devoted to provide an integral representation formula for F; in the case
n < 3, which is the interesting case in numerical applications. We show in particular that the presence
of the second derivative of v makes the expression of FIE particularly easy.

We introduce the following notation: for u, v € L1(Q2), we set

1—v)?
v? 4+ n.)d|Du +/ ((7+53V2v2)dx u € BV(Q), v e W22(Q),
Rty o 07 anu [ (2 v (@) (@)

+00 otherwise.

Theorem 5.3. Let n < 3. Then F.(u,v) = R-(u,v), for all u, v € L().

Proof. We begin noticing that F!(u,v) = R.(u,v) for all u € WH1(Q), v € W22(Q); moreover it is clear
that R. < F.

We now show that R. is lower semicontinuous. To this end let u, v € L(Q), (ux), (vx) C LY(Q) be
such that u. — u and v. — v in L*(£2); we prove that

liminf R, (ug, vg) > Re(u,v).
k— o0

Clearly it is enough to consider the case lkim inf R (ug,vr) < +00, moreover up to subsequences we can
—+00

always assume that the liminf is a limit. As a result, we have |Dug|(2) < ¢, for some ¢ > 0 independent
of k and for every k € N; moreover, by the interpolation inequality Proposition 2.6(i) we also have
llvkllw=22(0) < c. Then up to subsequences (not relabeled)

up — uwin BV(Q), wv. —vin W*%(Q) (5.7)

and, by virtue of the compact embedding of W22(Q2) in C(Q) when n < 3 (see. e.g. [1, Theorem 6.2]),
we also deduce

v — v in L>(Q). (5.8)
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Then, appealing to the weak lower semicontinuity of the L?-norm and to (5.7), we get

1— 2
liminf R (ug,vg) > 1iminf/vid|Duk|+na|Du|(Q)+/ (& +E3|V21J|2) di
> lim (v, — v)? d|Duy| + liminf/ v*d|Dug| +2 lim (v — v) vd|Dug|
1— 2
+775|Du|(9)+/ (% +53|V2v|2) dz
Q
Z Ré‘(uav)a

where we have also used that, by (5.8),

/(’Uk — v)vd|Dug|
Q

Then it remains to prove that for all u € BV (), v € W22(Q) there exists a sequence (ug,vy) C
W) x W22(Q) such that u, — u and vy — v in L'(Q), and

lim  F!(ug,vi) < Re(u,v).

k—-+oo

< vk = vllpee (@) vl oo () | Dug| (€2) — 0, as k — +oo.

Fix u € BV(Q) and v € W%2(Q); in particular, as n < 3, v € C(Q2). By a standard approximation
argument (see e.g. [14, Theorem 2 and Theorem 3, Section 5.2]) there exists (ux) C BV(2) N C°(£)
such that uj, — u in L'(Q), |Vug|L™ = |Du| in My(Q) and

lim / |Vu|de = |Dul().

Then appealing to [4, Proposition 1.80], we infer

k——+oo

lim v?d|Duy| = / v2d|Dul.
Q Q
Hence the pair (ug,v) is the desired sequence. O

We now consider the minimization problem

M. := inf {F;(u,u) + /Q lu—h[%:u,ve Ll(Q)} : (5.9)

By using the direct methods of calculus of variations, one can show that the problem in (5.9) admits a
solution in BV (Q) x W22(Q); moreover we have

M, = inf {Fs'(u,v) +/ lu—h|*: u,ve Ll(Q)} .
Q
Finally the following theorem holds true.

Theorem 5.4. Let (uc,v:) be a minimizing pair for F;(u,v) + |ju — h||2LQ(Q). Then, there exist a sub-
sequence of (uc,v:) (not relabeled) and a function @ € BV (Q) such that u. — @ and v. — 1 in L*(9Q).
Moreover 4 is a solution of the minimization problem in (5.1), and M. — M.

Proof. The proof follows the line of that of Theorem 5.1. O

Remark 5.5. Let 2 C R™ be an open bounded set with C? boundary and let n < 3. For u, v € L*(Q),
set

, ) Ee(u,v) + 775/ |Vu|de we WhHQ), v e W22(Q),
é, (’U,,’U) T Q

€
+o00 otherwise.
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Arguing as before one can prove that the relaxed functional of &’ with respect to the strong topology of
LY(Q) x LY(Q) is given by

1 — 2
e /(v2 + 1:) d|Dul Jr/ <(Tv) + €3|Av|2> dr wu € BV(Q),veW23(Q),
= Q Q

+00 otherwise in L1(Q2) x L(Q).

€

. —/
Moreover, an analogous result as in Theorem 5.4 can be recovered for &, as well.
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