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Abstract

In this paper the study of a nonlocal second order Cahn–Hilliard-type
singularly perturbed family of functions is undertaken. The kernels con-
sidered include those leading to Gagliardo fractional seminorms for gradi-
ents. Using Γ convergence the integral representation of the limit energy
is characterized leading to an anisotropic surface energy on interfaces sep-
arating different phases.

1 Introduction

In the van der Waals–Cahn–Hilliard theory of phase transitions [15], [38], [47],
[28], the total energy is given by

1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

|∇u(x)|2 dx, (1.1)

where the open bounded set Ω ⊂ Rn represents a container, u : Ω → R is the
fluid density, and W : R→ [0,+∞) is a double-well potential vanishing only at
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the phases −1 and 1. The perturbation ε
∫

Ω
|∇u(x)|2 dx penalizes rapid changes

of the density u, and it plays the role of an interfacial energy. This problem
has been extensively studied in the last four decades (see, e.g., [8], [9], [10], [24],
[34], [35], [37], [36], [44], [45]).

Higher order perturbations were considered in the study of shape deforma-
tion of unilamellar membranes undergoing inplane phase separation (see, e.g.,
[30], [46], [31, 40]). A simplified local version of that model (see [40]) leads to
the study of a Ginzburg-Landau-type energy

1

ε

∫
Ω

W (u(x)) dx+ qε

∫
Ω

|∇u(x)|2 dx+ ε3

∫
Ω

∣∣∇2u(x)
∣∣2 dx , (1.2)

where q ∈ R. This functional is also related to the Swift–Hohenberg equation
(see [43]). When q = 0, the functional reduces to the second order version of
(1.1), to be precise,

1

ε

∫
Ω

W (u(x)) dx+ ε3

∫
Ω

∣∣∇2u(x)
∣∣2 dx , (1.3)

which was studied in [23]. The case q > 0 in was treated in [29], with |∇2u|2
replaced by |∆u|2. The case q < 0 is more delicate and was considered in
[16] and [17]. The original energy functional proposed in [30], [46], [31], [40])
involved also a nonlocal perturbation and was addressed in [22].

A nonlocal local version of (1.1) was studied in [1], [2], [3], with the pertur-

bation ε
∫

Ω
|∇u(x)|2 dx replaced by a nonlocal term, leading to the energy

1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

∫
Ω

Jε(x− y)|u(x)− u(y)|2dxdy , (1.4)

where

Jε(x) :=
1

εn
J
(x
ε

)
(1.5)

and the kernel J : Rn → [0,+∞) is an even measurable function such that∫
Rn
J(x)(|x| ∧ |x|2) dx =: MJ < +∞ , (1.6)

with a ∧ b := min{a, b}. Functionals of the form (1.4) arise in equilibrium
statistical mechanics as free energies of continuum limits of Ising spin systems
on lattices. In that setting, u is a macroscopic magnetization density and J
stands for a ferromagnetic Kac potential (see [3]). Note that (1.6) is satisfied if
J is integrable and has compact support. Another important case is when

J(x) = |x|−n−2s with
1

2
< s < 1 , (1.7)

so that Jε(x) = ε2s|x|−n−2s, which leads to Gagliardo’s seminorm for the frac-
tional Sobolev space Hs(Rn) (see [20], [25] [32]). A functional related to (1.4)
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with kernel (1.7) has been studied in [4], [5], and [39] for 0 < s < 1 (see also
[27] for an Lp version in dimension n = 1).

The motivation in [39] was the renewed interest in the fractional Laplacian
(see, e.g., [14] and the references therein), and nonlocal characterizations of
fractional Sobolev spaces ([6], [11], [12], [33] and the references therein).

Another important application of this type of nonlocal singular perturba-
tion functionals is in the study of dislocations in elastic materials exhibiting
microstructure (see, e.g., [13], [18], [26]).

In this paper we consider a nonlocal version of (1.3), to be precise, we study
the functional

Fε(u) :=
1

ε

∫
Ω

W (u(x)) dx+ ε

∫
Ω

∫
Ω

Jε(x− y)|∇u(x)−∇u(y)|2dxdy (1.8)

for u ∈ W 1,2
loc (Ω), where Ω ⊂ Rn, n ≥ 2, is a bounded open set with Lipschitz

boundary, the double-well potential W : R → [0,+∞) is a continuous function
with W−1({0}) = {−1,+1} satisfying appropriate coercivity and growth con-
ditions, and Jε is given by (1.5). We assume a non-degeneracy hypothesis (see
(2.2)) on the even measurable kernel J : Rn → [0,+∞), and that (1.6) holds.

We establish compactness in L2(Ω) for energy bounded sequences, and in
order to study the asymptotic behavior of (1.8) as ε→ 0+, we use the notion of
Γ-convergence (see [19]) with respect to the metric in L2(Ω) and we identify the
Γ-limit of Fε. As it is usual, we extend Fε(u) to be +∞ for u ∈ L2(Ω)\W 1,2

loc (Ω).
Our first main result is the following theorem.

Theorem 1.1 (Compactness) Assume that W and J satisfy (2.3)–(2.6) and
(1.6), (2.2), respectively. Let {uε} ⊂W 1,2

loc (Ω) ∩ L2 (Ω) be such that

M := sup
ε
Fε(uε) < +∞ . (1.9)

Then there exists a sequence εj → 0+ such that {uεj} converges in L2(Ω) to
some function u ∈ BV (Ω; {−1, 1}).

The proof of this theorem is more involved than the corresponding one in
[2] due to the presence of gradients in the nonlocal term. This prevents us from
using standard arguments in which discontinuities in u may be allowed. We
first prove compactness in n = 1, and then use a slicing technique to treat the
higher dimensional case.

To state the Γ convergence result, we need to introduce some notation. Given
n ≥ 2 and ν ∈ Sn−1 := ∂B1(0), let ν1, . . . , νn be an orthonormal basis in Rn
with νn = ν. Here, and in what follows, we denote by Br(x) the open ball in
Rn centered at x and with radius r. Let

V ν := {x ∈ Rn : |x · νi| < 1/2 for i = 1, . . . , n− 1} , (1.10)

Qν := {x ∈ Rn : |x · νi| < 1/2 for i = 1, . . . , n} , (1.11)
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let W 1,2
ν1,...,νn−1

be the set of all functions v ∈W 1,2
loc (Rn) such that v(x+νi) = v(x)

for a.e. x ∈ Rn and for every i = 1, . . . , n− 1, and let

Xν := {v ∈W 1,2
ν1,...,νn−1

: v(x) = ±1 for a.e. x ∈ Rn with ±x ·ν ≥ 1/2} (1.12)

When n = 1 take ν = ±1, V ν := R, Qν := (−1/2, 1/2), and let Xν be the space
of all functions v ∈W 1,2

loc (R) such that v(x) = ±1 for a.e. x ∈ R with ±x ≥ 1/2.
We define the anisotropic surface energy density

ψ(ν) := inf
0<ε<1

inf
v∈Xν

Fνε (v) , (1.13)

where

Fνε (u) :=
1

ε

∫
Qν
W (u(x)) dx+ ε

∫
V ν

∫
Rn
Jε(x− y)|∇u(x)−∇u(y)|2dxdy .

Finally, we define F : L2(Ω)→ [0,+∞] by

F(u) :=


∫
Su

ψ(νu) dHn−1 if u ∈ BV (Ω; {−1, 1}) ,

+∞ otherwise in L2(Ω) ,
(1.14)

where Su is the jump set of u, νu is the approximate normal to Su, and Hn−1

is the (n− 1)-dimensional Hausdorff measure (see [7] for a detailed description
of these notions).

Theorem 1.2 (Γ-Limit) Assume that W and J satisfy (2.2)–(2.6) and (1.6),
respectively. Then for every εj → 0+ the sequence {Fεj} Γ-converges to F in
L2(Ω).

Although the general structure of the proof is standard, there are remarkable
technical difficulties due to the nonlocality of the perturbation and the presence
of gradients.

This paper is organized as follows. After a brief section on preliminaries, on
Section 3 in order to establish compactness in dimension n = 1, we prove an
interpolation result, which allows us to control the L2 norm of u′ in terms of
the full energy (see Lemma 3.5). Section 4 is devoted to compactness in higher
dimensions, and here again we obtain the equivalent to the interpolation Lemma
3.5 (see Lemma 4.3). As it is classical in this type of problems, it is important
to be able to modify admissible sequences near the boundary of their domain
without increasing the limit energy. We address this in Theorem 5.1 in Section
5. Section 6 concerns the Γ-liminf inequality, and in Section 7 we construct the
recovery sequence for the Γ-limsup inequality.

2 Preliminaries

In what follows, in addition to (1.6) we also assume that the kernel J : Rn →
[0,+∞) has the following property: there exist γJ > 0, δJ ∈ (0, 1), cJ > 0, such
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that for all ξ ∈ Sn−1 there are α(ξ) < β(ξ) satisfying

−γJ ≤ α(ξ) ≤ α(ξ) + δJ ≤ β(ξ) ≤ γJ (2.1)

and ∫ β(ξ)

α(ξ)

1

J(tξ)|t|n−1
dt ≤ cJ . (2.2)

Remark 2.1 For example, condition (2.2) holds if there exist 0 < r < R and
a > 0 such that J(x) ≥ a for every x ∈ Rn with r < |x| < R. Indeed, it is enough
to set γJ = R, δJ = R− r, α(ξ) = r, β(ξ) = R, and cJ = (na)−1(r−n −R−n).

We assume that the double-well potential is a continuous function W : R→
[0,+∞) such that

W−1({0}) = {−1, 1} , (2.3)

(|s| − 1)2 ≤ cWW (s) for all s ∈ R , (2.4)

W is increasing on [1,+∞) and on [−1,−1 + aW ] , (2.5)

W is decreasing on (−∞,−1] and on [1− aW , 1] , (2.6)

for some constants cW > 0 and aW ∈ (0, 1).
If s ≤ 0 and |s + 1| ≥ 1

2 , then |s − 1| = |s| − 1 + 2, hence (s − 1)2 ≤
2(|s| − 1)2 + 4 ≤ 2cWW (s) + 4

mW
W (s), where

mW := min
{||s|−1|≥ 1

2}
W (s) > 0 . (2.7)

Together with (2.4) this leads to the estimate

(s− 1)2 ≤ ĉWW (s) for all s ∈ R with |s+ 1| ≥ 1

2
, (2.8)

where ĉW := 2cW + 4
mW

. Similarly, it can be shown that

(s+ 1)2 ≤ ĉWW (s) for all s ∈ R with |s− 1| ≥ 1

2
. (2.9)

We recall that Ω ⊂ Rn is a bounded open set with Lipschitz boundary. For
every ε > 0 and u ∈ L2 (Ω) consider the functional

Fε(u) :=

{
Wε(u) + Jε(u) if u ∈W 1,2

loc (Ω) ∩ L2 (Ω) ,
+∞ otherwise,

(2.10)

where

Wε(u) :=
1

ε

∫
Ω

W (u(x)) dx for u ∈ L2 (Ω) , (2.11)

and

Jε(u) := ε

∫
Ω

∫
Ω

Jε(x− y)|∇u(x)−∇u(y)|2dxdy for u ∈W 1,2
loc (Ω). (2.12)
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In the sequel, we will use a localized version of (2.10). To be precise, given
two open sets A, B ⊂ Rn we define

Wε(u,A) :=
1

ε

∫
A

W (u(x)) dx (2.13)

for u ∈ L2(A), and

Jε(u,A,B) := ε

∫
A

∫
B

Jε(x− y)|∇u(x)−∇u(y)|2dxdy (2.14)

for u ∈W 1,2
loc (A ∪B). When A = B we set

Fε(u,A) :=Wε(u,A) + Jε(u,A,A) and Jε(u,A) := Jε(u,A,A) (2.15)

for u ∈W 1,2
loc (A) ∩ L2(A).

Since J is even, by Fubini’s theorem for all u ∈W 1,2
loc (A ∪B) we have that

Jε(u,A,B) = Jε(u,B,A) . (2.16)

Moreover, if A ∩B = Ø we have

Jε(u,A ∪B) = Jε(u,A) + 2Jε(u,A,B) + Jε(u,B) . (2.17)

In the compactness theorem we use a slicing argument based on the following
preliminary result. Given a vector ξ ∈ Sn−1, the hyperplane through the origin
orthogonal to ξ is denoted by Πξ, that is,

Πξ := {x ∈ Rn : x · ξ = 0} . (2.18)

If E ⊂ Rn and y ∈ Πξ, then we define

Eξy := {t ∈ R : y + tξ ∈ E} . (2.19)

The next result is a particular case of the affine Blaschke–Petkantschin for-
mula, for which we refer to [41, Theorem 7.2.7].

Proposition 2.2 Let E ⊂ Rn be a Borel set and let g : E × E → [0,+∞] be a
Borel function. Then∫

E

∫
E

g(x, y) dxdy

=
1

2

∫
Sn−1

∫
Πξ

∫
Eξz

∫
Eξz

g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)dHn−1(ξ) .

Proof. For the convenience of the reader we present a proof. We extend g to
be zero outside E × E. Using the change of variables τ = t− s, we obtain∫

R
g(z + sξ, z + tξ)|t− s|n−1ds =

∫
R
g(z + tξ − τξ, z + tξ)|τ |n−1dτ ,
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and by Fubini’s theorem we get∫
Πξ

∫
R

∫
R
g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)

=

∫
Rn

∫
R
g(y − τξ, y)|τ |n−1dτdy .

Exchanging the order of integration and using integration in spherical coordi-
nates we have

1

2

∫
Sn−1

∫
Πξ

∫
R

∫
R
g(z + sξ, z + tξ)|t− s|n−1dsdtdHn−1(z)dHn−1(ξ)

=
1

2

∫
Rn

∫
Sn−1

∫
R
g(y − τξ, y)|τ |n−1dτdHn−1(ξ)dy

=

∫
Rn

∫
Rn
g(x, y) dxdy ,

which concludes the proof.
For ξ ∈ Sn−1 and ε > 0 define Jξ : R→ [0,+∞) by

Jξ(t) := J(tξ)|t|n−1 and Jξε (t) :=
1

ε
Jξ
(
t

ε

)
. (2.20)

By (1.6) and using spherical coordinates, we have∫
R
Jξ(t)(|t| ∧ |t|2) dt < +∞ (2.21)

for Hn−1-a.e. ξ ∈ Sn−1, and in view of (2.2) we obtain∫ β(ξ)

α(ξ)

1

Jξ(t)
dt ≤ cJ . (2.22)

Moreover,

Jξε (t) =
1

ε
Jξ
(
t

ε

)
=

1

ε
J

(
tξ

ε

) ∣∣∣∣ tε
∣∣∣∣n−1

= Jε(tξ)|t|n−1 . (2.23)

For ξ ∈ Sn−1, A ⊂ R, and ε > 0, we define

Fξε (v,A) :=
1

σn−1ε

∫
A

W (v(t)) dt+
ε

2

∫
A

∫
A

Jξε (s− t)(v′(s)−v′(t))2dsdt (2.24)

for v ∈W 1,2
loc (A) ∩ L2 (A), where σn−1 := Hn−1(Sn−1).
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3 Compactness and interpolation in dimension
one

For a set A contained in Rn and for η > 0 we define

(A)η := {x ∈ Rn : dist(x,A) < η} ,
(A)η := {x ∈ A : dist(x, ∂A) > η} . (3.1)

The main result of this section is the following theorem.

Theorem 3.1 Let ξ ∈ Sn−1, let A ⊂ R be a bounded open set, and let {uε} ⊂
W 1,2

loc (A) ∩ L2 (A) be such that

M := sup
ε
Fξε (uε, A) < +∞ , (3.2)

where Fξε is defined in (2.24). Then there exists a sequence εj → 0+ such that
{uεj} converges in L2(A) to some function u ∈ BV (A; {−1, 1}). Moreover,
there exists a constant cJ,W > 0, independent of ξ, A, and {uε}, such that

#Su ≤
M

cJ,W
, (3.3)

where #Su denotes the number of jump points of u.

Next we introduce some auxiliary lemmas that will be used in the proof of
Theorem 3.1.

Lemma 3.2 Let ξ ∈ Sn−1, let A ⊂ R be an open set, let ε > 0, let α < β, and
let u ∈W 1,2

loc ((A)εγJ ), where γJ is the constant in (2.1). Then for a.e. t ∈ A,

ε

∫ t−εα

t−εβ
Jξε (t− s)(u′(t)− u′(s))2ds

≥ ε(β − α)2

(∫ β

α

1

Jξ(z)
dz

)−1(
u′(t)− u(t− εα)− u(t− εβ)

ε(β − α)

)2

, (3.4)

where Jξ and Jξε are defined in (2.20).

Proof. It is enough to show that for every λ ∈ R we have

ε

∫ t−εα

t−εβ
Jξε (t− s)(λ− u′(s))2ds

≥ ε(β − α)2

(∫ β

α

1

Jξ(z)
dz

)−1(
λ− u(t− εα)− u(t− εβ)

ε(β − α)

)2

.

This inequality follows by considering the Euler–Lagrange equation of the min-
imum problem

min

∫ t−εα

t−εβ
Jξε (t− s)(λ− v′(s))2ds
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over all v ∈W 1,2((t−εβ, t−εα)) satisfying v(t−εβ) = u(t−εβ) and v(t−εα) =
u(t− εα).

Remark 3.3 Under the same assumptions of Lemma 3.2, it follows from (2.1),
(2.2), and (3.4) that

ε(u′(t))2 ≤ 2

δ2
J

1

ε

(
u(t− εα(ξ))− u(t− εβ(ξ))

)2
+ 2cJε

∫ t+εγJ

t−εγJ
Jξε (t− s)(u′(t)− u′(s))2ds

for a.e. t ∈ A.

Lemma 3.4 Let γJ be the constant in (2.1). Then there exists a constant
cJ,W > 0 such that

ε

∫ τ

σ

∫ τ+εγJ

σ−εγJ
Jξε (t−s)(u′(t)−u′(s))2dsdt+

1

ε

∫ τ+εγJ

σ−εγJ
W (u(t)) dt ≥ cJ,W (3.5)

for every ξ ∈ Sn−1, for every ε > 0, for every σ, τ , with σ < τ , and for every
u ∈W 1,2

loc ((σ − εγJ , τ + εγJ)) such that

u(t) ∈
(
− 1

2 ,
1
2

)
for every t ∈ (σ, τ) , (3.6)

and either
u(σ) = − 1

2 and u(τ) = 1
2 (3.7)

or
u(σ) = 1

2 and u(τ) = − 1
2 . (3.8)

Proof. Fix ξ, ε, σ, τ , and u as in the statement of the lemma, and let α̂ and β̂
be such that α(ξ) < α̂ < β̂ < β(ξ), and

α(ξ)− α̂ > 1

4
δJ , β̂ − α̂ > 1

4
δJ , β(ξ)− β̂ > 1

4
δJ , (3.9)

where δJ is the constant in (2.1). By (2.4) and (3.6), we have W (u(t)) ≥ 1
4CW

for every t ∈ (σ, τ). Therefore, if τ − σ > εδJ/2
6, then

1

ε

∫ τ

σ

W (uε(t)) dt >
δJ

28CW
. (3.10)

If τ − σ ≤ εδJ/26, define

A0 :=

{
t ∈ (σ, τ) : |u′(t)| ≥ 1

2

1

τ − σ

}
. (3.11)

We consider now two cases.
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Case 1: Assume that for every t ∈ A0 there exist α ∈ [α(ξ), α̂] and β ∈ [β̂, β(ξ)]
such that

|u(t− εα)− u(t− εβ)|
ε(β − α)

<
1

2
|u′(t)| .

Then (
u′(t)− u(t− εα)− u(t− εβ)

ε(β − α)

)2

≥ 1

4
(u′(t))2 .

Therefore, by Lemma 3.2,

ε

∫ t−εα

t−εβ
Jξε (t− s)(u′(t)− u′(s))2ds

≥ ε(β − α)2

4

(∫ β

α

1

Jξ(z)
dz

)−1

(u′(t))2 ,

and integrating over A0, using (2.22) and (3.9), we obtain

ε

∫
A0

∫ t−εα(ξ)

t−εβ(ξ)

Jξε (t− s)(u′(t)− u′(s))2dsdt ≥ εδ2
J

26cJ

∫
A0

(u′(t))2dt . (3.12)

By (3.7), (3.8), and (3.11) using Jensen’s inequality and τ − σ ≤ δJ
26 ε, we have∫

A0

(u′(t))2dt =

∫ τ

σ

(u′(t))2dt−
∫

(σ,τ)\A0

(u′(t))2dt ≥ 1

τ − σ
− 1

4

1

τ − σ
≥ 3 · 24

εδJ
.

Hence, from (3.12) we deduce that

ε

∫ τ

σ

∫ τ−εα(ξ)

σ−εβ(ξ)

Jξε (t− s)(u′(t)− u′(s))2dsdt ≥ 3

4

δJ
cJ

. (3.13)

Case 2: It remains to study the case in which there exists t0 ∈ A0 such that

|u(t0 − εα)− u(t0 − εβ)|
ε(β − α)

≥ 1

2
|u′ε(t0)|

for every α ∈ [α(ξ), α̂] and for every β ∈ [β̂, β(ξ)]. By (3.11) and the inequality
τ − σ ≤ εδJ/26, we have

|u(t0 − εα)− u(t0 − εβ)|
ε(β − α)

≥ 1

4(τ − σ)
≥ 16

εδJ
,

hence by (3.9),

|u(t0 − εα)− u(t0 − εβ)| ≥ 16(β̂ − α̂)

δJ
≥ 4 .
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If |u(t0 − εα)| ≥ 2 for every α ∈ [α(ξ), α̂], then by (2.4) we have W (u(t0 −
εα)) ≥ 1

cW
for every α ∈ [α(ξ), α̂]. This leads to W (u(t)) ≥ 1

cW
for every

t ∈ [t0 − εα̂, t0 − εα(ξ)], hence

1

ε

∫ τ+εγJ

σ−εγJ
W (u(t)) dt ≥ 1

ε

∫ t0−εα(ξ)

t0−εα̂
W (u(t)) dt ≥ α̂− α(ξ)

cW
≥ δJ

4cW
, (3.14)

where in the last inequality we used (3.9).
If there exists α ∈ [α(ξ), α̂] such that |u(t0 − εα)| < 2, then |u(t0 − εβ)| > 2

for every β ∈ [β̂, βJ ] (if not, there exists β ∈ [β̂, β(ξ)] such that |u(t0− εβ)| ≤ 2,
which gives |u(t0 − εα) − u(t0 − εβ)| < 4, a contradiction). Consequently, for

every β ∈ [β̂, β(ξ)] we have W (u(t0 − εβ)) ≥ 1
cW

. This leads to W (u(t)) ≥ 1
cW

for every t ∈ [t0 − εβ(ξ), t0 − εβ̂], hence

1

ε

∫ τ+εγJ

σ−εγJ
W (u(t)) dt ≥ 1

ε

∫ t0−εβ̂

t0−εβ(ξ)

W (u(t)) dt ≥ β(ξ)− β̂
cW

≥ δJ
4cW

, (3.15)

where in the last inequality we used (3.9). The conclusion follows now from
(3.10), (3.13), (3.14), and (3.15).

Lemma 3.5 (Interpolation inequality in dimension one) There exists a

constant c
(1)
J,W such that

ε

∫
A

(u′(t))2dt ≤ c(1)
J,WF

ξ
ε (u, (A)

2εγJ ) . (3.16)

for every ξ ∈ Sn−1, for every ε > 0, for every open set A ⊂ R, and for every
u ∈W 1,2

loc ((A)2εγJ ), where γJ is the constant in (2.1).

Proof. Fix ξ, ε, A, and u as in the statement of the lemma, and define

U := {t ∈ A : u(t− εα(ξ)), u(t− εβ(ξ)) /∈ [ 1
2 ,

3
2 ]} ,

V := {t ∈ A : u(t− εα(ξ)), u(t− εβ(ξ)) /∈ [− 3
2 ,−

1
2 ]} . (3.17)

If t ∈ V , then by (2.8),

(u(t− εα(ξ))− u(t− εβ(ξ)))2 ≤ 2(u(t− εα(ξ))− 1)2 + 2(u(t− εβ(ξ))− 1)2

≤ 2ĉW
(
W (u(t− εα(ξ))) +W (u(t− εβ(ξ)))

)
.

Using (2.9) we prove the same inequality for t ∈ U . Integrating and using
Remark 3.3, we obtain

ε

∫
U∪V

(u′(t))2dt ≤
(
8
ĉW
δ2
J

+ 2cJ
)
Fξε (u, (A)εγJ ) . (3.18)

If t ∈ A \ (U ∪ V ), then either

u(t− εα(ξ)) ∈ [− 3
2 ,−

1
2 ] and u(t− εβ(ξ)) ∈ [ 1

2 ,
3
2 ]
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or
u(t− εβ(ξ)) ∈ [− 3

2 ,−
1
2 ] and u(t− εα(ξ)) ∈ [ 1

2 ,
3
2 ] .

Then
(u(t− εα(ξ))− u(t− εβ(ξ)))2 ≤ 9 . (3.19)

Moreover there exist σ and τ , satisfying

t− εγJ ≤ t− εβ(ξ) ≤ σ < τ ≤ t− εα(ξ) ≤ t+ εγJ (3.20)

and such that
u(t) ∈

(
− 1

2 ,
1
2

)
for every t ∈ (σ, τ)

and either
u(σ) = 1

2 and u(τ) = − 1
2

or
u(σ) = − 1

2 and u(τ) = 1
2 .

By Lemma 3.4 and by (3.20), there exists cJ,W > 0 such that

cJ,W ≤ ε
∫ t+εγJ

t−εγJ

∫ t+2εγJ

t−2εγJ

Jξε (r − s)(u′ε(r)− u′ε(s))2dsdr +
1

ε

∫ t+2εγJ

t−2εγJ

W (uε(r)) dr .

Therefore by (3.19) we have

1

ε

∫
A\(U∪V )

(u(t− εα(ξ))− u(t− εβ(ξ)))2dt

≤ 9

cJ,W

∫
A

∫ t+εγJ

t−εγJ

∫ t+2εγJ

t−2εγJ

Jξε (r − s)(u′ε(r)− u′ε(s))2dsdrdt (3.21)

+
9

cJ,W

1

ε2

∫
A

∫ t+2εγJ

t−2εγJ

W (uε(r)) drdt .

Since
1

2η

∫
A

∫ t+η

t−η
f(r) drdt ≤

∫
(A)η

f(t) dt

for every η > 0 and for every integrable function f : A → [0,+∞], from (3.21)
we obtain

1

ε

∫
A\(U∪V )

(u(t− εα(ξ))− u(t− εβ(ξ)))2dt ≤ c̃J,WFξε (u, (A)2εγJ ) . (3.22)

for a suitable constant c̃J,W depending only on J and W . The conclusion follows
from (3.18) and (3.22) using Remark 3.3.

Proof of Theorem 3.1. By (3.2) we have that∫
A

W (uε(t)) dt ≤Mε . (3.23)
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By (2.3) and (2.4) this implies that {u2
ε} converges to 1 in L1(A) and, up to a

subsequence (not relabeled) pointwise a.e. in A.
Let γJ > 0 be the constant given in (2.1). Consider the collection Iε of

all intervals (σ − εγJ , yε + εγJ) such that (σ, τ) is contained in (A)εγJ , and uε
satisfies (3.6) and either (3.7) or (3.8) in (σ, τ). Note that by the intermediate
value theorem for all ε > 0 sufficiently small there exist such intervals. Moreover,
by construction, all intervals in Iε are contained in A. It follows from (2.4) and
(3.23) that

Mε ≥
∫ τ

σ

W (uε(t)) dt ≥
τ − σ
4cW

,

hence
τ − σ ≤ 4cWMε . (3.24)

In particular, for every I ∈ Iε we have

diam I ≤ (4cWM + 2γJ)ε . (3.25)

Moreover, by (3.2) and (3.5), if I1, . . . , Ik are pairwise disjoint intervals in Iε,
then

k ≤ M

cJ,W
. (3.26)

Let Bε be the union of all intervals in Iε and let Cε be the collection of
its connected components. Observe that distinct elements of Cε must contain
disjoint intervals of Iε, and so by (3.26) the number of elements of Cε is uniformly
bounded. To be precise,

#Cε ≤
M

cJ,W
. (3.27)

Next we claim that if C ∈ Cε, then

diamC ≤ 2(4CWM + 2γJ)

(
M

cJ,W
+ 1

)
ε . (3.28)

Assume by contradiction that (3.28) fails. Let k be the integer such that M
cJ,W

<

k ≤ M
cJ,W

+1 and partition C into k subintervals C1, . . . , Ck of equal length larger

that 2(4CWM + 2γJ)ε. The middle point of each Ci belongs to some interval
Ii ∈ Iε. By (3.25), we have that Ii ⊂ Ci and so I1, . . . , Ik are pairwise disjoint.
In turn k satisfies (3.26), which contradicts its definition. This concludes the
proof of (3.28).

In view of (3.27) there exist a sequence εj → 0+ and a nonnegative integer
k ≤ M

cJ,W
such that #Cεj = k for all j ∈ N. Write Cεj = {C1

j , . . . , C
k
j } and choose

tij ∈ Cij . Up to a subsequence (not relabeled) we may assume that tij → ti ∈ A
for all i = 1, . . . , k. By (3.28) for every η > 0 we have that Cij ⊂ [ti − η, ti + η]

for all j sufficiently large. Let S := {t1, . . . , tk} and let K be a closed interval
contained in A \ S. Then Bεj ∩ K = Ø for all j sufficiently large. We claim
that for all such j either infK uεj ≥ − 1

2 or supK uεj ≤ 1
2 . Indeed, if this does
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not hold then we can find σj and τj in K for which uεj satisfies (3.6) and either
(3.7) or (3.8). On the one hand (σj , τj) ⊂ Bεj by the definition of Bεj . On the
other hand (σj , τj) ⊂ K since K an interval. Therefore (σj , τj) ⊂ Bεj ∩K and
this contradicts the fact that Bεj ∩K = Ø.

We extract a subsequence, possibly depending on K, not relabelled, such
that, either infK uεj ≥ − 1

2 for all j or supK uεj ≤ 1
2 for all j. Since u2

εj (t)→ 1
for a.e. t ∈ K, we conclude that uεj (t) → 1 for a.e. t ∈ K in the former case
while uεj (t) → −1 for a.e. t ∈ K in the latter. By iterating this argument
with an increasing sequence of compact intervals K whose union is a connected
component of A \ S, it follows by a diagonal argument that a subsequence
{uεj} (not relabeled) converges pointwise a.e in A\S to a function u constantly
equal to −1 or 1 in each connected component of A \ S. This implies that
u ∈ BV (A; {−1, 1}) with Su ⊂ S, hence #Su ≤ #S ≤ k ≤ M

cJ,W
. The L2

convergence of {uεj} to u now follows from (2.4) and (3.23).

4 Compactness and interpolation for n ≥ 2

Given a ∈ R we define
a(1) := (−1) ∨ (a ∧ 1) . (4.1)

Lemma 4.1 Let {uε} ⊂ L2 (Ω) be such that

M := sup
ε
Wε(uε) < +∞ . (4.2)

Then uε − u(1)
ε → 0 strongly in L2(Ω).

Proof. By (2.11) and (4.2) we have that∫
Ω

W (uε(x)) dx→ 0 (4.3)

as ε→ 0+. By (2.3) and (2.4) this implies that, up to a subsequence, |uε(x)| → 1

for a.e. x ∈ Ω. Hence, uε(x)− u(1)
ε (x) → 0 for a.e. x ∈ Ω. On the other hand,

by (2.4),

(uε(x)− u(1)
ε (x))2 ≤ (uε(x))2 ≤ 2

cW
W (uε(x)) + 2 ,

so that the conclusion follows from (4.2) and the (generalized) Lebesgue domi-
nated convergence theorem.

In what follows, given a Borel set E ⊂ Rn and a function u : E → R, for
every ξ ∈ Sn−1 and for every y ∈ Πξ (see (2.18)) we define the one-dimensional
function

uξy(t) := u(y + tξ) , t ∈ Eξy , (4.4)

where Eξy is defined in (2.19).
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Lemma 4.2 For every A ⊂ Rn open, ε > 0, and u ∈ W 1,2
loc (A) ∩ L2(A), we

have

Fε(u,A) ≥
∫
Sn−1

∫
Πξ
Fξε (uξz, A

ξ
z) dHn−1(z)dHn−1(ξ) .

Proof. By Fubini’s theorem, Proposition 2.2, (2.15), (2.23), and (2.24), we
obtain

Fε(u,A)

=
1

σn−1ε

∫
Sn−1

∫
Πξ

∫
Aξz

W (u(z + tξ)) dtdHn−1(z)dHn−1(ξ)

+
ε

2

∫
Sn−1

∫
Πξ

∫
Aξz

∫
Aξz

Jξε (t−s)|∇u(z+tξ)−∇u(z+sξ)|2dtdsdHn−1(z)dHn−1(ξ)

≥ 1

σn−1ε

∫
Sn−1

∫
Πξ

∫
Aξz

W (uξz(t)) dtdHn−1(z)dHn−1(ξ)

+
ε

2

∫
Sn−1

∫
Πξ

∫
Aξz

∫
Aξz

Jξε (t− s)((uξz)′(t)− (uξz)
′(s))2dtdsdHn−1(z)dHn−1(ξ)

=

∫
Sn−1

∫
Πξ
Fξε (uξz, A

ξ
z) dHn−1(z)dHn−1(ξ) .

Proof of Theorem 1.1. Let εj → 0+ and, for simplicity, write uj := uεj . By
Lemma 4.2, ∫

Sn−1

∫
Πξ
Fξεj ((uj)

ξ
z,Ω

ξ
z) dHn−1(z)dHn−1(ξ) ≤M . (4.5)

We claim that there exist a collection ξ1, . . . , ξn ∈ Sn−1 of linearly independent
vectors and a subsequence (not relabeled) such that

lim
j→+∞

∫
Πξi
Fξiεj ((uj)

ξi
z ,Ω

ξi
z ) dHn−1(z) =: Mi < +∞ , (4.6)

for every i = 1, . . . , n.
Indeed, using Fatou’s lemma by (4.5) we have that∫

Sn−1

lim inf
j→+∞

∫
Πξ
Fξεj ((uj)

ξ
z,Ω

ξ
z) dHn−1(z)dHn−1(ξ) ≤M . (4.7)

Hence, there exists ξ1 ∈ Sn−1 such that

lim inf
j→+∞

∫
Πξ1
Fξ1εj ((uj)

ξ1
z ,Ω

ξ1
z ) dHn−1(z) =: M1 < +∞ , (4.8)

and we can extract a subsequence (not relabeled) such that (4.6) holds for i = 1.
We proceed by induction. Assume that we found a collection ξ1, . . . , ξk ∈

Sn−1, 1 ≤ k < n, of linearly independent vectors and a subsequence (not rela-
beled) such that (4.6) holds for every i = 1, . . . , k. Note that this subsequence
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still satisfies (4.5), and hence (4.7). Therefore we can find ξk+1 ∈ Sn−1, linearly
independent of ξ1, . . . , ξk, such that

lim inf
j→+∞

∫
Πξk+1

Fξk+1
εj ((uj)

ξk+1
z ,Ωξk+1

z ) dHn−1(z) =: Mk+1 < +∞ ,

and we can extract a subsequence (not relabeled) such that (4.6) holds also for
i = k + 1. After n steps we obtain that (4.6) is satisfied for every i = 1, . . . , n.

Given i = 1, . . . , n and δ > 0, for every j let

Aij :=
{
z ∈ Πξi : Fξiεj ((uj)

ξi
z ,Ω

ξi
z ) >

Mi

δ

}
, (4.9)

and let vij ∈ L2(Ω) be defined by{
(vij)

ξi
z := (u

(1)
j )ξiz if z ∈ Πξi \Aj ,

(vij)
ξi
z := 0 if z ∈ Aj ,

(4.10)

where u
(1)
j is the truncated function defined using (4.1). By (4.6) and (4.9) we

have
lim sup
j→+∞

Hn−1(Aij) ≤ δ ,

hence (4.10) yields

lim sup
j→+∞

‖vij − u
(1)
j ‖

2
L2(Ω) ≤ δ diam(Ω) . (4.11)

By Theorem 3.1 for every z ∈ Πξi the set {(uj)ξiz (1 − χAij (z)) : j ∈ N} is

relatively compact in L2(Ωξiz ), where χAij (z) = 1 for z ∈ Aij and χAij (z) = 0 for

z 6∈ Aij . Therefore the same property holds for the set of truncated functions

{(u(1)
j )ξiz (1− χAij (z)) : j ∈ N}. It follows that for every z ∈ Πξi the set {(vij)ξiz :

j ∈ N} is relatively compact in L2(Ωξiz ). Since this property is valid for every
i = 1, . . . , n, we can apply the characterization by slicing of precompact sets

of L2(Ω) given by [5, Theorem 6.6] and we obtain that the set {u(1)
j : j ∈ N}

is relatively compact in L2(Ω). In turn, by Lemma 4.1 the set {uj : j ∈ N} is
relatively compact in L2(Ω), hence there exist a subsequence (not relabeled) ,
such that uj converges in L2(Ω) to some function u. By (1.9),

lim
j→+∞

∫
Ω

W (uj(x)) dx = 0 ,

which, together with (2.3) and (2.4), implies that u(x) ∈ {−1, 1} for a.e. x ∈ Ω.
It remains to show that u ∈ BV (Ω). Using Fubini’s theorem we find that

there exists a subsequence (not relabeled) such that

(uj)
ξi
z → uξiz in L2(Ωξiz ) . (4.12)
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Moreover, Fatou’s lemma and (4.6) imply that∫
Πξi

lim inf
j→+∞

Fξiεj ((uj)
ξi
z ,Ω

ξi
z ) dHn−1(z) ≤Mi , (4.13)

hence
lim inf
j→+∞

Fξiεj ((uj)
ξi
z ,Ω

ξi
z ) < +∞ (4.14)

for Hn−1-a.e. z ∈ Πξi . Fix z ∈ Πξi satisfying (4.12) and (4.14), and extract a
subsequence {ûj}, depending on z, such that

lim
j→+∞

Fξiεj ((ûj)
ξi
z ,Ω

ξi
z ) = lim inf

j→+∞
Fξiεj ((uj)

ξi
z ,Ω

ξi
z ) . (4.15)

By (3.3), (4.12), and (4.15) we have

#S
u
ξi
z
≤ 1

cJ,W
lim inf
j→+∞

Fξiεj ((uj)
ξi
z ,Ω

ξi
z ) .

Since uξiz (t) ∈ {−1, 1} for a.e. t ∈ Ωξiz , we deduce that

|Duξiz |(Ωξiz ) ≤ 2

cJ,W
lim inf
j→+∞

Fξiεj ((uj)
ξi
z ,Ω

ξi
z )

forHn−1-a.e. z ∈ Πξi . This property holds for every i = 1, . . . , n. Therefore, we
can apply the characterization by slicing of BV functions given by [7, Remark
3.104] and we obtain from (4.13) that u ∈ BV (Ω).

For A ⊂ Rn and η > 0 we recall the notation (3.1).

Lemma 4.3 (Interpolation inequality) There exists a constant c
(n)
J,W such

that

ε

∫
A

|∇u(x)|2dx ≤ c(n)
J,WFε(u, (A)

2εγJ ) . (4.16)

for every ε > 0, for every open set A ⊂ Rn, and for every u ∈ W 1,2
loc ((A)2εγJ ),

where γJ is the constant in (2.1).

Proof. Fix ε, A, and u as in the statement of the lemma, and define B :=
(A)2εγJ . Given ξ ∈ Sn−1, for Hn−1 a.e. z ∈ Πξ we have that (Aξz)

2εγJ ⊂ Bξz
and the sliced function uξz (see (4.4)) belongs to W 1,2

loc (Bξz). Hence by Lemma
3.5 we have

ε

∫
Aξz

((uξz)
′(t))2dt ≤ c(1)

J,WF
ξ
ε (uξz, B

ξ
z) .

Integrating this inequality in z over Πξ we obtain

ε

∫
A

(∇u(x) · ξ)2dx ≤ c(1)
J,W

∫
Πξ
Fξε (uξz, B

ξ
z) dHn−1(z) .

Integrating this inequality in ξ over Sn−1 and using Lemma 4.2, together with
the identity

∫
Sn−1 |a · ξ|2dHn−1(ξ) = ωn|a|2, we deduce

ωnε

∫
A

|∇u(x)|2dx ≤ c(1)
J,WFε(u,B) .

This concludes the proof.
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5 The modification theorem

In this section we prove that we can modify an admissible sequence to match a
mollification of its limit in a neighborhood of the boundary, without increasing
the limit energy.

Given ν ∈ Sn−1, let

wν(x) :=

{
1 if x · ν > 0 ,
−1 if x · ν < 0 .

(5.1)

When ν = en, the superscript ν is omitted. Let θ ∈ C∞c (Rn) be such that
supp θ ⊂ B1 (0),

∫
Rn θ (x) dx = 1, and for every σ > 0 define the mollifier

θσ (x) :=
1

σn
θ
(x
σ

)
, x ∈ Rn . (5.2)

Note that supp θσ ⊂ Bσ (0). There exists a constant Cθ > 1, independent of σ,
such that

sup
Rn
|(wν ∗ θσ)− wν | ≤ 1 , (5.3)

(wν ∗ θσ) (x) = 1 if x · ν > σ, (wν ∗ θσ) (x) = −1 if x · ν < −σ , (5.4)

∇(wν ∗ θσ) (x) = 0 if |x · ν| > σ , (5.5)

sup
Rn
|∇(wν ∗ θσ) | ≤ Cθ

σ
and sup

Rn
|∇2(wν ∗ θσ) | ≤ Cθ

σ2
. (5.6)

Let P be a bounded polyhedron of dimension n − 1 containing 0 and let
ν ∈ Sn−1 be a normal to P . For every ρ > 0 we set

Pρ := {x+ tν : x ∈ P , t ∈ (−ρ/2, ρ/2)} . (5.7)

Theorem 5.1 (Modification Theorem) Let P be a bounded polyhedron of
dimension n−1 containing 0, let ρ > 0, let εj → 0+, and let {uj} be a sequence

in W 1,2
loc (Pρ)∩L2(Pρ) such that uj → wν in L2(Pρ). Then there exists a constant

δPρ > 0 depending only on Pρ such that for every 0 < δ < δPρ there exists a

sequence {vj} ⊂ W 1,2
loc (Pρ) ∩ L2(Pρ) such that vj → wν in L2(Pρ), vj = uj in

(Pρ)2δ, vj = wν ∗ θεj on Pρ \ (Pρ)δ, and

lim sup
j→+∞

Fεj (vj , Pρ) ≤ lim sup
j→+∞

Fεj (uj , Pρ) + κ1δ , (5.8)

where κ1 > 0 is a constant independent of j, δ, and Pρ.

Remark 5.2 By choosing a suitable subsequence, under the same assumptions
of Theorem 5.1 we obtain that

lim inf
j→+∞

Fεj (vj , Pρ) ≤ lim inf
j→+∞

Fεj (uj , Pρ) + κ1δ . (5.9)
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To prove Theorem 5.1 we use the estimate of the following lemma.

Lemma 5.3 Let ε > 0, let y ∈ Rn, let A be a measurable subset of Rn, and let
g : A→ R be a measurable function such that

0 ≤ g(x) ≤ (a|x− y|)2 ∧ b2 for every x ∈ A , (5.10)

for some constants a and b. Then∫
A

Jε(x− y)g(x) dx ≤MJ

(
(εa) ∨ b

)2
, (5.11)

where MJ is the constant given in (1.6) and α ∨ β := max{α, β}.

Proof. Using (1.5) and the change of variables z = (x− y)/ε, we obtain∫
A

Jε(x− y)g(x) dx ≤ a2

∫
A∩Bε(y)

Jε(x− y)|x− y|2 dx

+ b2
∫
A\Bε(y)

Jε(x− y)
|x− y|
ε

dx

≤ ε2a2

∫
B1(0)

J(z)|z|2 dz + b2
∫
Rn\B1(0)

J(z)|z| dz .

The conclusion follows from (1.6).

Lemma 5.4 Let 0 < ε < δ, let A and B be open sets in Rn, with dist(A,B) ≥ δ,
and let u ∈W 1,2

loc (A ∪B). Then

Jε(u,A,B) ≤ εω1

(ε
δ

)∫
A∪B
|∇u(x)|2dx , (5.12)

where

ω1(t) := 2

∫
Rn\B1/t(0)

J(z)|z| dz → 0 (5.13)

as t→ 0+.

Proof. Using a change of variables we obtain

Jε(u,A,B) = ε

∫
A

∫
B

Jε(x− y)|∇u(x)−∇u(y)|2dxdy

≤ 2ε

∫
B

(∫
A

Jε(x− y) dy
)
|∇u(x)|2dx

+ 2ε

∫
A

(∫
B

Jε(x− y) dx
)
|∇u(y)|2dy

≤ 2ε

∫
B

(∫
Rn\Bδ(x)

Jε(x− y) dy
)
|∇u(x)|2dx

+ 2ε

∫
A

(∫
Rn\Bδ(y)

Jε(x− y) dx
)
|∇u(y)|2dy
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≤ 2ε

∫
Rn\B δ

ε
(0)

J(z) dz

∫
A∪B
|∇u(x)|2dx

≤ 2ε

∫
Rn\B δ

ε
(0)

J(z)|z| dz
∫
A∪B
|∇u(x)|2dx .

This leads to (5.12). The fact that ω1(t)→ 0+ as t→ 0+ follows from (1.6).

Proof of Theorem 5.1. It is not restrictive to assume that δ < 1
4 , εj < δ2,

and 8εjγJ < δ for every j. To simplify the notation, set ũj := wν ∗ θεj . From
(5.5) and (5.6) it follows that

εj

∫
Pρ

|∇ũj(x)|2dx ≤ Cθ,P for every j , (5.14)

for some constant Cθ,P > 0 depending only on P and θ.
If the right-hand side of (5.8) is infinite, then there is nothing to prove. Thus,

by extracting a subsequence (not relabeled), without loss of generality we may
assume that

Fεj (uj , Pρ) ≤M < +∞ for every j , (5.15)

for a suitable constant M > 0.
The functions vj will be constructed as

vj := ϕjuj + (1− ϕj)ũj , (5.16)

where ϕj ∈ C∞c (Rn) are suitable cut-off functions satisfying ϕj(x) = 1 for
x ∈ (Pρ)δ and ϕj(x) = 0 for x /∈ (Pρ)δ/2. Introduce the set

S :=
{
x ∈ Pρ :

δ

2
< dist

(
x, ∂Pρ

)
≤ δ
}
. (5.17)

To construct the cut-off functions we divide S into mj pairwise disjoint layers
of width δ

2mj
.

Consider the sequence {ηj} defined by

ηj :=

∫
Pρ

(uj(x)− ũj(x))2dx+

∫
Pρ

∫
Pρ\Bεj (y)

Jεj (x− y)(uj(x)− ũj(x))2dxdy .

(5.18)
By Fubini’s theorem, a change of variables, (1.6), and (5.18), we obtain∫

Pρ

∫
Pρ\Bεj (y)

Jεj (x− y)(uj(x)− ũj(x))2dxdy

=

∫
Pρ

(∫
Pρ\Bεj (x)

Jεj (x− y) dy

)
(uj(x)− ũj(x))2dx

≤
∫
Pρ

(uj(x)− ũj(x))2dx

∫
Rn\B1(0)

J(z) dz ≤MJ

∫
Pρ

(uj(x)− ũj(x))2dx .
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Hence, ηj → 0+ as j → +∞, because {uj} and {ũj} converge to wν in L2(Pρ).
Without loss of generality, we assume that ηj <

1
4 for every j. Let mj be the

unique integer such that
√
εj +

√
ηj

εj
< mj ≤

√
εj +

√
ηj

εj
+ 1 . (5.19)

Since εj < 1 we have

1

mj
<
√
εj and mj < 2

√
εj +

√
ηj

εj
(5.20)

and
ηj
mjεj

≤ √εj +
√
ηj and mjεj ≤ 2(

√
εj +

√
ηj) . (5.21)

Divide S into mj pairwise disjoint layers of width δ
2mj

,

Sij :=

{
x ∈ Pρ :

δ

2
+

(i− 1)δ

2mj
< dist

(
x, ∂Pρ

)
<
δ

2
+

iδ

2mj

}
, (5.22)

i = 1, . . . ,mj .
For every open set A ⊂ Rd define

Gj(A) := Jεj (uj , A, Pρ) +Wεj (uj , A)

+ εj

∫
A

|∇uj(x)|2dx+
1

εj

∫
A

(uj(x)− ũj(x))2dx (5.23)

+
1

εj

∫
A

∫
Pρ\Bεj (y)

Jεj (x− y)(uj(x)− ũj(x))2dxdy .

Hence, using (5.15), (5.18), and Lemma 4.3, we obtain

mj∑
i=1

Gj(Sij) ≤ Gj(S) ≤ K − 1 +
ηj
εj

,

where K := M + c
(n)
J,WM + 1, and so there exists ij ∈ {1, . . . ,mj} such that,

setting
Sj := S

ij
j ,

we have

Gj(Sj) ≤
K − 1

mj
+

ηj
mjεj

≤ K√εj +
√
ηj ≤ K , (5.24)

where in the last inequalities we used (5.20), (5.21), and the fact that εj <
1
4 ,

ηj <
1
4 , and K ≥ 1. Define

Aj :=

{
x ∈ Pρ : dist(x, ∂Pρ) >

δ

2
+

ijδ

2mj

}
,

A∗j :=

{
x ∈ Pρ : dist(x, ∂Pρ) >

δ

2
+

ijδ

2mj
− δ

4mj

}
, (5.25)

Bj :=

{
x ∈ Pρ : dist(x, ∂Pρ) <

δ

2
+

(ij − 1)δ

2mj

}
,
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and let

ϕj(x) :=

∫
A∗j

θ
δ

4mj

(x− y) dy .

Then ϕj ∈ C∞c (Rn) and the following properties hold, thanks to (5.6) and
(5.20):

ϕj = 1 in Aj , 0 ≤ ϕj ≤ 1 in Sj , ϕj = 0 in Bj , (5.26)

sup |∇ϕj | ≤ 8
Cθ
δ

√
εj +

√
ηj

εj
≤ 8Cθ

δεj
, sup |∇2ϕj | ≤ 27Cθ

δ2

εj + ηj
ε2
j

, (5.27)

where Cθ is the constant given in (5.6).
Let vj be the function defined by (5.16). Since (Pρ)δ ⊂ Aj and Pρ\(Pρ)δ/2 ⊂

Bj , we have that vj = uj in (Pρ)δ and vj = ũj on Pρ \ (Pρ)δ/2. Moreover, since
uj and ũj converge to wν in L2(Pρ), we have that vj → wν in L2(Pρ). Note
that

∇vj := ϕj∇uj + (1− ϕj)∇ũj + (uj − ũj)∇ϕj . (5.28)

Fix 0 < η < 1
2 . Using the inequality |a+ b|2 ≤ |a|2

1−η + |b|2
η , we obtain

|∇vj(x)−∇vj(y)|2 ≤ 1

1− η
∣∣ϕj(x)∇uj(x)− ϕj(y)∇uj(y)

+ (1− ϕj(x))∇ũj(x)− (1− ϕj(y))∇ũj(y)
∣∣2 (5.29)

+
1

η

∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)
∣∣2 .

In view of the same inequality and the convexity of | · |2, we get∣∣ϕj(x)∇uj(x)− ϕj(y)∇uj(y) + (1− ϕj(x))∇ũj(x)− (1− ϕj(y))∇ũj(y)
∣∣2

=
∣∣ϕj(x)(∇uj(x)−∇uj(y)) + (ϕj(x)− ϕj(y))∇uj(y)

+ (1− ϕj(x))(∇ũj(x)−∇ũj(y))− (ϕj(x)− ϕj(y))∇ũj(y)
∣∣2

≤ 1

1− η
∣∣ϕj(x)(∇uj(x)−∇uj(y)) + (1− ϕj(x))(∇ũj(x)−∇ũj(y))

∣∣2
+

1

η

∣∣(ϕj(x)− ϕj(y))(∇uj(y)−∇ũj(y))
∣∣2

≤ ϕj(x)

1− η
∣∣∇uj(x)−∇uj(y)

∣∣2 +
1− ϕj(x)

1− η
∣∣∇ũj(x)−∇ũj(y)

∣∣2
+

1

η
(ϕj(x)− ϕj(y))2

∣∣∇uj(y)−∇ũj(y)
∣∣2 .
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This inequality and (5.29) yield

|∇vj(x)−∇vj(y)|2 ≤ ϕj(x)

(1− η)2

∣∣∇uj(x)−∇uj(y)
∣∣2

+
1− ϕj(x)

(1− η)2

∣∣∇ũj(x)−∇ũj(y)
∣∣2

+
2

η
(ϕj(x)− ϕj(y))2

∣∣∇uj(y)−∇ũj(y)
∣∣2

+
1

η

∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)
∣∣2 ,

hence for every pair of open sets A, B ⊂ Pρ we obtain by (2.14)

Jεj (vj , A,B) ≤
Jεj (uj , A,B ∩ (Aj ∪ Sj))

(1− η)2
+
Jεj (ũj , A,B ∩ (Sj ∪Bj))

(1− η)2

+
2εj
η

∫
A

(∫
B

Jεj (x− y)(ϕj(x)− ϕj(y))2dx
)
|∇uj(y)−∇ũj(y)|2dy (5.30)

+
εj
η

∫
A

(∫
B

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy.
By (2.17) we have

Jεj (vj , Pρ) = Jεj (uj , Aj) + Jεj (vj , Sj) + Jεj (ũj , Bj)
+ 2Jεj (vj , Sj , Aj ∪Bj) + 2Jεj (vj , Aj , Bj) . (5.31)

We now estimate all the terms but the first on the right-hand side of (5.31).
By (5.30),

Jεj (vj , Sj) ≤
Jεj (uj , Sj)

(1− η)2
+
Jεj (ũj , Sj)

(1− η)2
(5.32)

+
2εj
η

∫
Sj

(∫
Sj

Jεj (x− y)(ϕj(x)− ϕj(y))2dx
)
|∇uj(y)−∇ũj(y)|2dy

+
εj
η

∫
Sj

(∫
Sj

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy.
From (2.17) and (5.5) it follows that

Jεj (ũj , Sj ∪Bj) = Jεj (ũj , (Sj ∪Bj) ∩ P2εj )

+ 2Jεj (ũj , (Sj ∪Bj) ∩ P2εj , (Sj ∪Bj) \ P2εj ) . (5.33)

By the mean value theorem and by (5.6), for every y ∈ Pρ the function g(x) :=
|∇ũj(x)−∇ũj(y)|2 satisfies (5.10) with a = Cθ

ε2j
and b = 2Cθ

εj
, hence by Lemma 5.10

we obtain ∫
Pρ

Jεj (x− y)|∇ũj(x)−∇ũj(y)|2dx ≤ 4C2
θMJ

1

ε2
j

.
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Therefore by (2.14) and (5.33) we have

Jεj (ũj , Sj , Sj ∪Bj) + Jεj (ũj , Bj) ≤ Jεj (ũj , Sj ∪Bj)

≤ Ln((Sj ∪Bj) ∩ P2εj ) 4C2
θMJ

1

εj
.

We now use the fact that there exist two constants CPρ > 0 and δPρ > 0,
depending only on Pρ, such that

Ln(((Pρ)δ1 \ (Pρ)δ2) ∩ Pε) ≤ CPρε(δ2 − δ1) (5.34)

for every 0 < ε < δ1 < δ2 < δPρ . Therefore

Jεj (ũj , Sj , Sj ∪Bj) + Jεj (ũj , Bj) ≤ 4CPρC
2
θMJδ . (5.35)

By the mean value theorem, (5.20), and (5.27), for every y ∈ Sj the function
g(x) = (ϕj(x) − ϕj(y))2 satisfies (5.10) with a = 8Cθ

δεj
and b = 1 ≤ 8Cθ

δ , where

we used the inequalities Cθ ≥ 1 and δ ≤ 1. Hence, by Lemma 5.3 we have∫
Pρ

Jεj (x− y)(ϕj(x)− ϕj(y))2dx ≤ 26C
2
θ

δ2
MJ .

In turn, by (5.5), (5.6), (5.23), and (5.24),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)(ϕj(x)− ϕj(y))2dx
)
|∇uj(y)−∇ũj(y)|2dy

≤ 28C
2
θMJ

ηδ2
εj

∫
Sj

|∇uj(y)|2dy + 28C
4
θMJ

ηδ2

1

εj
Ln(Sj ∩ P2εj ) (5.36)

≤ 28C
2
θMJ

ηδ2

(
K
√
εj +

√
ηj
)

+ 28CPρ
C4
θMJ

ηδ

√
εj ,

where in the last inequality we used the estimate

Ln(Sj ∩ Pεj ) ≤ CPρδ
εj
mj
≤ CPρδεj

√
εj , (5.37)

which follows fron (5.20) and (5.34).
To treat the last term on the right-hand side of (5.32) we observe that∣∣(uj(x)− ũj(x))∇ϕj(x)− (uj(y)− ũj(y))∇ϕj(y)

∣∣2
=
∣∣(uj(x)− ũj(x))(∇ϕj(x)−∇ϕj(y))+

+ (uj(x)− ũj(x)− uj(y) + ũj(y))∇ϕj(y)
∣∣2

≤ 2(uj(x)− ũj(x))2
∣∣∇ϕj(x)−∇ϕj(y)

∣∣2
+ 2(uj(x)− ũj(x)− uj(y) + ũj(y))2

∣∣∇ϕj(y)
∣∣2 .
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Integrating and using the symmetry of J , we obtain

εj
η

∫
Sj

(∫
Sj

Jεj (x−y)
∣∣(uj(x)−ũj(x))∇ϕj(x)− (uj(y)−ũj(y))∇ϕj(y)

∣∣2dxdy
≤ 2εj

η

∫
Sj

(∫
Sj

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx
)

(uj(y)− ũj(y))2dy (5.38)

+
2εj
η

∫
Sj

(∫
Sj

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))2dx
)
|∇ϕj(y)|2dy .

By the mean value theorem and (5.27), for every y ∈ Sj the function g(x) =

|∇ϕj(x) − ∇ϕj(y)|2 satisfies (5.10) for every x ∈ Rn, with a = 27Cθ
δ2

εj+ηj
ε2j

≤
26Cθ
δ2

√
εj+
√
ηj

ε2j
and b = 24Cθ

δ

√
εj+
√
ηj

εj
≤ 26Cθ

δ2

√
εj+
√
ηj

εj
, where we used the in-

equalities δ ≤ 1, εj ≤ 1
4 , and ηj ≤ 1

4 . Hence, by Lemma 5.3 we have∫
Pρ

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx ≤ 213C
2
θMJ

δ4

εj + ηj
ε2
j

.

In turn, by (5.23) and (5.24),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)|∇ϕj(x)−∇ϕj(y)|2dx
)

(uj(y)− ũj(y))2dy

≤ 214C
2
θMJ

ηδ4
(εj + ηj)

1

εj

∫
Sj

(uj(y)− ũj(y))2dy (5.39)

≤ 214C
2
θMJK

ηδ4
(εj + ηj) .

Since J is even, by Fubini’s theorem, a change of variables, and (5.27),

2εj
η

∫
Sj

(∫
Pρ

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))2dx
)
|∇ϕj(y)|2dy

≤ 28C2
θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ∩Bεj(y)

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))2dx
)
dy

+
28C2

θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj(y)

Jεj (x− y)(uj(x)− ũj(x)− uj(y) + ũj(y))2dx
)
dy

≤ 28C2
θ

ηδ2

εj + ηj
εj

∫
Bεj(0)

Jεj (z)
(∫

Sj

(uj(y + z)− ũj(y + z)− uj(y) + ũj(y))2dy
)
dz

+
29C2

θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj(y)

Jεj (x− y)(uj(x)− ũj(x))2dx
)
dy (5.40)

+
29C2

θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj(y)

Jεj (x− y)dx
)

(uj(y)− ũj(y))2dy .
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Since εj < δ/4, by (5.20) and (5.22) for y ∈ Sj and |z| ≤ εj the segment joning y
and y+z is contained in (Pρ)δ/4, and so by the mean value theorem for |z| ≤ εj ,∫
Sj

(uj(y+ z)− ũj(y+ z)−uj(y) + ũj(y))2dy ≤ |z|2
∫

(Pρ)δ/4

|∇uj(y)−∇ũj(y)|2dy .

Therefore, recalling that 2εjγJ < δ/4, it follows from (1.5), (1.6), (5.14), and
Lemma 4.3, that

28C2
θ

ηδ2

εj+ηj
εj

∫
Bεj (0)

Jεj (z)
(∫

Sj

(uj(y+z)−ũj(y+z)−uj(y)+ũj(y))2dy
)
dz

≤ 28C2
θ

ηδ2

εj + ηj
εj

∫
Bεj (0)

Jεj (z)|z|2dz
∫

(Pρ)δ/4

|∇uj(y)−∇ũj(y)|2dy

≤ 29C2
θ

ηδ2
(εj + ηj)εj

∫
B1(0)

J(z)|z|2dz
∫

(Pρ)δ/4

|∇uj(y)|2dy (5.41)

+
29C2

θ

ηδ2
(εj + ηj)εj

∫
B1(0)

J(z)|z|2dz
∫

(Pρ)δ/4

|∇ũj(y)|2dy

≤
29C2

θMJc
(n)
J,WM

ηδ2
(εj + ηj) +

29C2
θCθ,PMJ

ηδ2
(εj + ηj) .

By (5.23) and (5.24)

29C2
θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj(y)

Jεj (x− y)(uj(x)− ũj(x))2dx
)
dy (5.42)

≤ 29C2
θK

ηδ2
(εj + ηj) .

Using (1.6), (5.23), and (5.24) we obtain

29C2
θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj (y)

Jεj (x− y)dx
)

(uj(y)− ũj(y))2dy

≤ 29C2
θMJ

ηδ2

εj + ηj
εj

∫
Sj

(uj(y)− ũj(y))2dy ≤ 29C2
θMJK

ηδ2
(εj + ηj) . (5.43)

Combining (5.32), (5.35), (5.36), (5.38), (5.39), (5.40), (5.41), (5.42), and
(5.43), we have

Jεj (vj , Sj) + Jεj (ũj , Bj) ≤
Jεj (uj , Sj)

(1− η)2
+

4CPρC
2
θMJ

(1− η)2
δ + σ

(1)
j , (5.44)

where σ
(1)
j → 0+ as j → +∞.
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Next we consider the term Jεj (vj , Sj , Aj ∪ Bj) in (5.31) . By (5.30), using
(5.26),

Jεj (vj , Sj , Aj ∪Bj) ≤
Jεj (uj , Sj , Aj)

(1− η)2
+
Jεj (ũj , Sj , Bj)

(1− η)2

+
2εj
η

∫
Sj

(∫
Aj∪Bj

Jεj (x− y)(ϕj(x)− ϕj(y))2dx
)
|∇uj(y)−∇ũj(y)|2dy

+
εj
η

∫
Sj

∫
Aj∪Bj

Jεj (x−y)(uj(y)−ũj(y))2|∇ϕj(y)|2dxdy . (5.45)

Since η < 1/2, by (5.23) and (5.24) we have

Jεj (uj , Sj , Aj)
(1− η)2

≤ 4Jεj (uj , Sj , Aj) ≤ 4K
√
εj + 4

√
ηj . (5.46)

The second and third terms on the right-hand side of (5.45) can be estimated
using (5.35) and (5.36). For the last term, we use the fact that ∇ϕj(x) = 0 if
x ∈ Aj ∪ Bj . Hence, by a change of variables, from (1.6), (5.23), (5.24), (5.27)
and from the inequalities δ ≤ 1, εj ≤ 1, and ηj ≤ 1, we obtain

εj
η

∫
Sj

∫
Aj∪Bj

Jεj (x−y)(uj(y)−ũj(y))2|∇ϕj(y)|2dxdy

≤ εj
η

∫
Sj

∫
Bεj(y)

Jεj (x−y)(uj(y)−ũj(y))2|∇ϕj(y)−∇ϕj(x)|2dxdy

+
εj
η

∫
Sj

∫
Pρ\Bεj(y)

Jεj (x−y)(uj(y)−ũj(y))2|∇ϕj(y)|2dxdy

≤ 214 C
2
θ

ηδ4

(εj + ηj)
2

ε3
j

∫
Sj

(∫
Bεj(y)

Jεj (x−y)|x− y|2dx
)

(uj(y)−ũj(y))2dy

+
27C2

θ

ηδ2

εj + ηj
εj

∫
Sj

(∫
Pρ\Bεj(y)

Jεj (x−y) dx
)

(uj(y)−ũj(y))2dxdy (5.47)

≤ 214C
2
θMJ

ηδ4

εj+ηj
εj

∫
Sj

(uj(y)−ũj(y))2dy ≤ 214C
2
θMJK

ηδ4
(εj+ηj) .

Therefore, by (5.35), (5.36), (5.45), (5.46), and (5.47) we get

Jεj (vj , Sj , Aj ∪Bj) ≤
4CPρC

2
θMJ

(1− η)2
δ + σ

(2)
j , (5.48)

where σ
(2)
j → 0+ as j → +∞.

We now estimate the term Jεj (vj , Aj , Bj) in (5.31). Since vj = uj in Aj ,

vj = ũj = 1 in Bj , and dist(Aj , Bj) = δ
2mj

, by a change of variables and in view
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of (5.14), (5.21), and Lemmas 4.3 and 5.4, for j large enough we obtain

Jεj (vj , Aj , Bj) ≤ 2ω1

(
2
mjεj
δ

)(
εj

∫
Bj

|∇ũj(x)|2dx+ εj

∫
Aj

|∇uj(y)|2dy
)

≤ 2ω1

(
4

√
εj +

√
ηj

δ

)
(Cθ,P +c

(n)
J,WM) . (5.49)

Combining (5.31), (5.35), (5.44), (5.48), and (5.49) we deduce

Jεj (vj , Pρ) ≤
Jεj (uj , Pρ)

(1− η)2
+

12CPρC
2
θMJ

(1− η)2
δ + σ

(3)
j , (5.50)

where σ
(3)
j → 0+ as j → +∞.

Next we consider the term Wεj (vj , Pρ). Fix x ∈ Sj with x · ν > εj , so that
ũj(x) = 1. By (2.5) and (2.6) we have W (vj(x)) ≤W (uj(x)) if uj(x) ≥ 1−aW .
Let s0 < −1 be such that

W (s0) = max
[−1,1]

W =: MW . (5.51)

If uj(x) ≤ s0, then either uj(x) ≤ vj(x) ≤ −1 or −1 ≤ vj(x) ≤ 1. In both cases
we get W (vj(x)) ≤ W (uj(x)), either by (2.6) or by (5.51). If s0 < uj(x) <
1− aW , then s0 < vj(x) < 1 and we have

W (vj(x)) ≤W (s0) = MW

by (2.6) and (5.51). We conclude that

W (vj(x)) ≤W (uj(x)) +MW

for every x ∈ Sj with x · ν > εj . Integrating we obtain

1

εj

∫
Sj∩{x·ν>εj}

W (vj(x)) dx ≤ 1

εj

∫
Sj∩{x·ν>σj}

W (uj(x)) dx

+
MW

εj
Ln(Sj ∩ {|uj − 1| > aW } ∩ {x · ν > εj})

≤ 1

εj

∫
Sj∩{x·ν>εj}

W (uj(x)) dx+
MW

εja2
W

∫
Sj∩{x·ν>εj}

(uj(x)− 1)2dx

A similar inequality can be obtained for Sj ∩ {x · ν < −εj}, and adding these
two inequalities we conclude that

1

εj

∫
Sj\Pεj

W (vj(x)) dx ≤ 1

εj

∫
Sj\Pεj

W (uj(x)) dx

+
MW

a2
W

1

εj

∫
Sj\Pεj

(uj(x)− ũj(x))2dx , (5.52)
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where in the last inequality we used the fact that ũj = wν on Pρ \ Pεj .
On the other hand, since W (vj(x)) ≤ W (uj(x)) + MW for every x ∈ Pρ,

integrating over Sj ∩ Pεj and using (5.37), we obtain

1

εj

∫
Sj∩Pεj

W (vj(x)) dx ≤ 1

εj

∫
Sj∩Pεj

W (uj(x)) dx+
MW

εj
Ln(Sj ∩ Pεj )

≤ 1

εj

∫
Sj∩Pεj

W (uj(x)) dx+ CPρMW δ
√
εj . (5.53)

Adding (5.52) and (5.53) gives

1

εj

∫
Sj

W (vj(x)) dx ≤ 1

εj

∫
Sj

W (uj(x)) dx

+
MW

a2
W

1

εj

∫
Sj

(uj(x)− ũj(x))2dx+ CPρMW δ
√
εj ,

hence by (5.23) and (5.24) we have

1

εj

∫
Sj

W (vj(x)) dx ≤ 1

εj

∫
Sj

W (uj(x)) dx

+
MW

a2
W

(K
√
εj +

√
ηj) + CPρMW δ

√
εj . (5.54)

By (5.3), (5.4), (5.34), and (5.51) we get

1

εj

∫
Bj

W (vj(x)) dx =
1

εj

∫
Bj

W (ũj(x)) dx

≤ MW

εj
Ln(Bj ∩ Pεj ) ≤ CPρMW δ . (5.55)

From (5.54) and (5.55) it follows that

1

εj

∫
Pρ

W (vj(x)) dx ≤ 1

εj

∫
Pρ

W (u(x)) dx+ CPρMW δ + σ
(4)
j , (5.56)

where σ
(4)
j → 0+ as j → +∞.

Adding (5.50) and (5.56) we obtain

Fεj (vj , Pρ) ≤
Fεj (uj , Pρ)

(1− η)2
+ CPρ(48C2

θMJ +MW )δ + σ
(5)
j

where σ
(5)
j → 0+ as j → +∞. This implies that

lim sup
j→+∞

Fεj (vj , Pρ) ≤
1

(1− η)2
lim sup
j→+∞

Fεj (uj , Pρ) + κ1δ ,

where κ1 is a constant independent of j, δ, and Pρ. Passing to the limit as
η → 0+ we obtain (5.8).
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6 Gamma Liminf Inequality

In this section we prove the Γ-liminf inequality.

Theorem 6.1 (Γ-Liminf) Let εj → 0+ and let {uj} be a sequence in W 1,2
loc (Ω)∩

L2(Ω) such that uj → u in L2(Ω) and

lim inf
j→+∞

Fεj (uj ,Ω) < +∞ . (6.1)

Then u ∈ BV (Ω; {−1, 1}) and

lim inf
j→+∞

Fεj (uj ,Ω) ≥
∫
Su

ψ(νu) dHn−1 , (6.2)

where ψ is defined by (1.13).

Given ν ∈ Sn−1, let ν1, . . . , νn be an orthonormal basis in Rn with νn = ν,
let

Qνρ := {x ∈ Rn : |x · νi| < ρ/2 , i = 1, . . . , n} , Q̂νρ := Rn \Qνρ, (6.3)

and let
Sνρ := {x ∈ Rn : |x · ν| < ρ/2} , Ŝνρ := Rn \ Sνρ .

When ν1, . . . , νn is the canonical basis e1, . . . , en in Rn we omit the superscript
ν in the above notation.

We recall the definition of the sets V ν and Xν in (1.10) and in (1.12),
respectively. We will use these sets in what follows. Further, as in Section 5, θε
is the standard mollifier (see (5.2)), and we set

ũε := wν ∗ θε , (6.4)

where wν is the function defined in (5.1), with ν ∈ Sn−1.

Lemma 6.2 Let 0 < ε < δ < 1/3, let Cδ := Q1+δ \ Q1−δ, and let ũε be the
function in (6.4), with ν = en. Then

Jε(ũε, Cδ) ≤ κ2δ

for some constant κ2 > 0 independent of ε and δ.

Proof. For every σ > 0 define Cσδ := Cδ ∩ {|xn| < σ}, Ĉσδ := Cδ ∩ {|xn| ≥ σ},
and write

Cδ × Cδ = (C2ε
δ × C2ε

δ ) ∪ (Cεδ × Ĉ2ε
δ ) ∪ (Ĉ2ε

δ × Cεδ ) ∪ (Ĉεδ × Ĉεδ ) .

Since J is even, we have

Jε(ũε, Cδ) ≤ Jε(ũε, C2ε
δ ) + 2Jε(ũε, Cεδ , Ĉ2ε

δ ) + Jε(ũε, Ĉεδ ) . (6.5)
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By (5.2) we have that ∇ũε = 0 on Ĉεδ and so

Jε(ũε, Ĉεδ ) = 0 . (6.6)

We now estimate the first term on the right-hand side of (6.5). Since ε∇ũε and
ε2∇2ũε are bounded in L∞ uniformly with respect to ε, there exists a constant
c > 0 such that

|∇ũε(x)−∇ũε(y)|2 ≤ c

ε2

(∣∣∣x− y
ε

∣∣∣ ∧ ∣∣∣x− y
ε

∣∣∣2)
for every x, y ∈ Rn. Therefore, by the change of variables z = (x − y)/ε and
(1.6) we get

Jε(ũε, C2ε
δ ) ≤ c

ε

∫
C2ε
δ

∫
C2ε
δ

Jε(x− y)
(∣∣∣x− y

ε

∣∣∣ ∧ ∣∣∣x− y
ε

∣∣∣2) dxdy (6.7)

≤ cMJ

ε
Ln(C2ε

δ ) ≤ 2n+1cMJδ .

Next we study the second term on the right-hand side of (6.5). Since ∇ũε = 0
on Ĉ2ε

δ and ε∇ũε is bounded in L∞ uniformly with respect to ε, there exists a
constant c > 0 such that

Jε(ũε, Cεδ , Ĉ2ε
δ ) = ε

∫
Cεδ

(∫
Ĉ2ε
δ

Jε(x− y)dx
)
|∇ũε(y)|2dy (6.8)

≤ c

ε
Ln(Cεδ )

∫
Rn\B1(0)

J(z) dz ≤ 2ncMJδ ,

where we used again the change of variables z = (x − y)/ε and (1.6). The
conclusion follows by combining (6.5)–(6.8).

The following result will be crucial in the proof of the Γ-liminf inequality.

Lemma 6.3 Let 0 < ε < δ < 1/3, let u ∈ Xν be such u = ũε in Qν1 \ Qν1−δ,
where ũε is the function defined in (6.4). Then there exist two constants κ3 and
κ4, depending only on the dimension n of the space, such that

Jε(u, V ν ,Rn)− Jε(u,Qν1) ≤ κ2δ +
(
κ3ω1

(ε
δ

)
+ κ4ω1(ε)

)
ε

∫
Qν1

|∇u(x)|2dx ,

where κ2 is the constant in Lemma 6.2, and ω1 is the function defined in (5.13).

Proof. Without loss of generality, we may assume that ν = en, the n-th vector
of the canonical basis. For simplicity we omit the superscript ν in the notation
for Qνρ, Q̂νρ, Sνρ , Ŝνρ , V ν , Xν , wν , and the subscript ρ when ρ = 1. Write

V × Rn = ((V \Q)×Q) ∪ ((V \Q)× Q̂) ∪ (Q×Q) ∪ (Q× Q̂) (6.9)

⊂ (Ŝ×Q) ∪ ((V \Q)×S) ∪ (Ŝ×Ŝ) ∪ (Q×Q) ∪ (Q×(S\Q)) ∪ (Q×Ŝ) .
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Since J is even we have

Jε(u, V,Rn)− Jε(u,Q) ≤ 2ε

∫
Ŝ

(∫
Q1−δ

Jε(x− y)|∇u(x)|2dx
)
dy

+ ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy (6.10)

+ ε

∫
Q

(∫
S\Q

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy ,

where we have used the equalities u = ±1 and ∇u = 0 in Ŝ1−δ, which follow
from the facts that u ∈ X and u = ũε on Q1 \ Q1−δ (see (5.4), (5.5), and the
inequalities 0 < ε < δ < 1/3).

We now estimate the first term on the right-hand side of (6.10). By Lemma
5.4 and because ∇u = 0 in Ŝ, we have

ε

∫
Ŝ

(∫
Q1−δ

Jε(x− y)|∇u(x)|2dx
)
dy ≤ εω1

(ε
δ

)∫
Q1−δ

|∇u(x)|2dx . (6.11)

To estimate the second term on the right-hand side of (6.10), we identify
Zn with Zn−1 × Z so that for α = (α1, . . . , αn−1) ∈ Zn−1 and β ∈ Z we have
(α, β) = (α1, . . . , αn−1, β) ∈ Zn. Write

S \Q3 =
⋃

α∈Zn−1, |α|∞≥2

((α, 0) +Q) , V =
⋃
β∈Z

((0, β) +Q) ,

where |α|∞ := max{|α1|, . . . , |αn−1|}. Then

ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy

≤ ε
∫
V \Q

(∫
S1−δ∩Q3

Jε(x− y)|∇u(x)|2dx
)
dy (6.12)

+
∑

α∈Zn−1, |α|∞≥2

∑
β∈Z

ε

∫
(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy .

By Lemma 5.4 and because ∇u = 0 in V \Q, we have

ε

∫
V \Q

(∫
S1−δ∩Q3

Jε(x− y)|∇u(x)|2dx
)
dy ≤ εω1

(ε
δ

)∫
S1−δ∩Q3

|∇u(x)|2dx .

To estimate the second term on the right-hand side of (6.12), we use the change
of variables ζ = x− y and observe that for x ∈ (α, 0) +Q and y ∈ (0, β) +Q we
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have ζ ∈ (α,−β) +Q2. Therefore, we obtain∫
(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy

=

∫
(α,0)+Q

|∇u(x)|2
(∫

(0,β)+Q

Jε(x− y) dy
)
dx

≤
∫

(α,0)+Q

|∇u(x)|2dx
∫

(α,−β)+Q2

Jε(ζ) dζ

=

∫
Q

|∇u(x)|2dx
∫

(α,−β)+Q2

Jε(ζ) dζ ,

where in the last equality we used the periodicity of u ∈ X. Hence∑
α∈Zn−1, |α|∞≥2

∑
β∈Z

ε

∫
(0,β)+Q

(∫
(α,0)+Q

Jε(x− y)|∇u(x)|2dx
)
dy

≤ ε
∫
Q

|∇u(x)|2dx
∑

α∈Zn−1, |α|∞≥2

∑
β∈Z

∫
(α,−β)+Q2

Jε(ζ) dζ

≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Q̂2

Jε(ζ) dζ .

In the last inequality we used the fact that each point of Q̂2 belongs to at most
2n cubes of the form (α,−β) + Q2 for α ∈ Zn−1, with |α|∞ ≥ 2, and β ∈ Z.
After the change of variables z = ζ/ε we obtain (see (5.13))∫

Q̂2

Jε(ζ) dζ ≤
∫
Rn\B1/ε(0)

J(z) dz ≤ ω1(ε) .

Combining the last five inequalities and using the periodicity of u, from (6.12)
we obtain

ε

∫
V \Q

(∫
S1−δ

Jε(x− y)|∇u(x)|2dx
)
dy (6.13)

≤
(
ω1

(ε
δ

)
+ 2nω1(ε)

)
ε

∫
S∩Q3

|∇u(x)|2dx

= 3n−1
(
ω1

(ε
δ

)
+ 2nω1(ε)

)
ε

∫
Q

|∇u(x)|2dx .

Finally, to estimate the last term on the right-hand side of (6.10), we use
the inclusion

Q× (S \Q) ⊂
(
Q× (S \Q3)

)
∪
(
Q1−δ × (S ∩ (Q3 \Q1)

)
∪
(
(Q1 \Q1−δ)× (Q1+δ \Q1)

)
∪
(
(Q1 \Q1−δ)× (S ∩ (Q3 \Q1+δ))

)
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and we write

ε

∫
Q

(∫
S\Q

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

≤ ε
∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1−δ

(∫
S∩(Q3\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy (6.14)

+ ε

∫
Q1\Q1−δ

(∫
Q1+δ\Q1

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1\Q1−δ

(∫
S∩(Q3\Q1+δ)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy .

By Lemma 5.4,

ε

∫
Q1−δ

(∫
S∩(Q3\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

+ ε

∫
Q1\Q1−δ

(∫
S∩(Q3\Q1+δ)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy (6.15)

≤ 2εω1

(ε
δ

)∫
S∩Q3

|∇u(x)|2dx = 2·3n−1εω1

(ε
δ

)∫
Q

|∇u(x)|2dx ,

where in the last equality we used the periodicity of u. On the other hand, by
Lemma 6.2

ε

∫
Q1\Q1−δ

(∫
Q1+δ\Q1)

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy ≤ κ2δ . (6.16)

It remains to study the first term on the right-hand side of (6.14). We have

ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)−∇u(y)|2dx
)
dy

≤ 2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy (6.17)

+ 2ε

∫
Q

(∫
S\Q3

Jε(x− y) dx
)
|∇u(y)|2dy .

To estimate the first term on the right-hand side of (6.17) we write

2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy

= 2ε
∑

α∈Zn∩(S\Q3)

∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy .
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By Fubini’s theorem and the change of variables ζ = x− y, we get∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy =

∫
α+Q

(∫
Q

Jε(x− y) dy
)
|∇u(x)|2dx

≤
∫
α+Q

(∫
x−Q

Jε(ζ) dζ
)
|∇u(x)|2dx ≤

∫
Q

|∇u(x)|2dx
∫
α−Q2

Jε(ζ) dζ ,

where in the last inequality we have used the periodicity of u and the inclusion
x−Q ⊂ α−Q2 for x ∈ α+Q. Hence,

2ε
∑

α∈Zn∩(S\Q3)

∫
Q

(∫
α+Q

Jε(x− y)|∇u(x)|2dx
)
dy

≤ 2ε

∫
Q

|∇u(x)|2dx
∑

α∈Zn∩(S\Q3)

∫
α−Q2

Jε(ζ) dζ

≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Q̂2

Jε(ζ) dζ ,

where in the last inequality we used the fact that each point of Q̂2 belongs to
at most 2n−1 cubes of the form α−Q2 for α ∈ Zn ∩ (S \Q3). After the change
of variables z = ζ/ε, we obtain

2ε

∫
Q

(∫
S\Q3

Jε(x−y)|∇u(x)|2dx
)
dy ≤ 2nε

∫
Q

|∇u(x)|2dx
∫
Rn\B1/ε(0)

J(z)|z| dz . (6.18)

We now estimate the second term on the right-hand side of (6.17). With the
change of variables z = (x− y)/ε, we have

2ε

∫
Q

(∫
S\Q3

Jε(x− y) dx
)
|∇u(y)|2dy ≤ 2ε

∫
Rn\B1/ε(0)

J(z)|z| dz
∫
Q

|∇u(y)|2dy . (6.19)

Combining the inequalities (6.17)–(6.19), we obtain

2ε

∫
Q

(∫
S\Q3

Jε(x− y)|∇u(x)|2dx
)
dy ≤ 2nεω1(ε)

∫
Q

|∇u(x)|2dx . (6.20)

The conclusion follows from (6.11), (6.13), (6.14), (6.15), (6.16), and (6.20).

Proof of Theorem 6.1. By Theorem 1.1 we deduce that u ∈ BV (Ω; {−1, 1}).
Let µj be the nonnegative Radon measure on Ω defined by

µj(B) :=
1

ε

∫
B

W (uj(x)) dx+ ε

∫
B

∫
Ω

Jε(x− y)|∇uj(x)−∇uj(y)|2dxdy (6.21)

for every Borel set B ⊂ Ω. Since µj(Ω) = Fεj (uj ,Ω), by (6.1) µj(Ω) is bounded
uniformly with respect to j. Extracting a subsequence (not relabeled), we may
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assume that the liminf in (6.2) is a limit and that µj
∗
⇀ µ weakly∗ in the space

Mb(Ω) of bounded Radon measures on Ω, considered, as usual, as the dual of
the space C0(Ω) of continuous functions on Ω vanishing on ∂Ω. Let g be the
density of the absolutely continuous part of µ with respect to Hn−1 restricted
to Su. Then the inequality (6.2) will follow from

g(x0) ≥ ψ(νu(x0)) for Hn−1 a.e. x0 ∈ Su . (6.22)

To prove this inequality, fix x0 ∈ Su such that, setting ν := νu(x0), we have

lim
ρ→0+

1

ρn

∫
Qνρ

|u(x+ x0)− wν(x+ x0)| dx = 0 , (6.23)

g(x0) = lim
ρ→0+

µ(x0 +Qνρ)

ρn−1
< +∞ . (6.24)

It is well-known (see [21, Theorem 3 in Section 5.9]) that (6.23) and (6.24) hold

for Hn−1 a.e. x0 ∈ Su. Since µj
∗
⇀ µ weakly∗ in Mb(Ω), by (2.15) and (6.21),

using a change of variables, we get

g(x0) = lim
ρ→0+

µ(x0 +Qνρ)

ρn−1
≥ lim sup

ρ→0+

lim sup
j→+∞

µj(x0 +Qνρ)

ρn−1

≥ lim sup
ρ→0+

lim sup
j→+∞

Fεj (uj , x0 +Qνρ)

ρn−1
= lim sup

ρ→0+

lim sup
j→+∞

Fηj,ρ(vj,ρ, Qν1) ,

where ηj,ρ := εj/ρ and vj,ρ(y) := uj(x0 + ρy). On the other hand, since uj → u
in L2(Ω), by (6.23) we obtain

0 = lim
ρ→0+

lim
j→+∞

1

ρn

∫
Qνρ

|uj(x+ x0)− wν(x+ x0)| dx

= lim
ρ→0+

lim
j→+∞

∫
Qν1

|vj,ρ(x)− wν(x)| dx .

Since for every ρ > 0
lim

j→+∞
ηj,ρ = 0 ,

by a diagonal argument we can choose ρj → 0+ such that, setting ηj := ηj,ρj
and vj := vj,ρj , we have ηj → 0+, vj → wν in L1(Qν1), and

g(x0) ≥ lim sup
j→+∞

Fηj (vj , Qν1) . (6.25)

The finiteness of g(x0) and Theorem 1.1 yield that vj → wν in L2(Qν1). We can
now apply the modification Theorem 5.1: there exists δν > 0 such that for every
0 < δ < δν we obtain a sequence {wj} ⊂ W 1,2

loc (Qν1) ∩ L2(Qν1) with wj → wν in
L2(Qν1), wj = wν ∗ θεj in Qν1 \Qν1−δ, and

lim sup
j→+∞

Fηj (vj , Qν1) ≥ lim sup
j→+∞

Fηj (wj , Qν1)− κ1δ , (6.26)
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where, we recall, the constant κ1 is independent of δ. Extend wj to Rn in such
a way that wj(x) = ±1 for ±x · ν ≥ 1

2 and w(x+ νi) = w(x) for all x ∈ Rn and
for all i = 1, . . . , n− 1, where νi are the vectors in (1.11). Then wj ∈ Xν and
so we can apply Lemma 6.3 to obtain

lim sup
j→+∞

Fηj (wj , Qν1) ≥ lim sup
j→+∞

(Wηj (wj , Q
ν
1) + Jηj (wj , V ν ,Rn)) + (6.27)

− κ2δ − lim sup
j→+∞

(
κ3ω1

(ηj
δ

)
+ κ4ω1(ηj)

)
ηj

∫
Qν1

|∇wj(x)|2dx ,

where we recall that Wηj is defined in (2.13). By (1.13),

Wηj (wj , Q
ν
1) + Jηj (wj , V ν ,Rn) ≥ ψ(ν) (6.28)

for every j with ηj < 1. By (6.25) and (6.25) the finiteness of g(x0) implies
that Fηj (wj , Qν1) is bounded uniformly with respect to j. Therefore Lemma
4.3, together with the periodicity of wj , proves that the same property holds
for ηj

∫
Qν1
|∇wj(x)|2dx. Together with (5.13), (6.25), (6.26), (6.27), and (6.28),

this shows that g(x0) ≥ ψ(ν)−κ1δ−κ2δ for every 0 < δ < δν . Taking the limit
as δ → 0+ we obtain (6.22). This concludes the proof of the theorem.

7 Gamma Limsup Inequality

In this section we prove the Γ-limsup inequality. Fix εj → 0+. For every
u ∈ BV (Ω; {−1, 1}) we define

F
′′
(u,Ω) := inf

{
lim sup
j→+∞

Fεj (uj ,Ω) : uj → u in L2(Ω)
}
. (7.1)

Theorem 7.1 (Γ-Limsup) For every u ∈ BV (Ω; {−1, 1}) we have

F
′′
(u,Ω) ≤

∫
Su

ψ(νu) dHn−1 . (7.2)

To prove the Γ-limsup inequality we need the results proved in the following
lemmas.

Lemma 7.2 Let u ∈ BVloc(Rn; {−1, 1}) and, for every ε > 0, let ũε be as in
(6.4). Assume that there exists a bounded polyhedral set Σ of dimension n − 1
such that Su = Σ, let Σn−2 the union of all its n − 2 dimensional faces, and
let (Σn−2)δ be defined as in (3.1). Then there exists δΣ > 0 such that for
0 < ε < δ < δΣ we have

Jε(ũε, (Σn−2)δ) ≤ c1δHn−2(Σn−2)

for some constant c1 > 0 independent of ε, δ, and Σ.
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Proof. It is enough to repeat the proof of Lemma 6.2 with Cσδ and Ĉσδ replaced
by {x ∈ (Σn−2)δ : dist(x,Σ) < ε} and {x ∈ (Σn−2)δ : dist(x,Σ) ≥ ε}.

Lemma 7.3 Let P be a bounded polyhedron of dimension n − 1 containing 0
with normal ν, let ρ > 0, and let Pρ be the n-dimensional prism defined in
(5.7). Then for every η > 0 there exists a sequence {uε} ⊂ W 1,2(Pρ) such that
uε → wν in L2(Pρ) and

lim sup
ε→0+

(
Wε(uε, Pρ) + Jε(uε, Pρ,Rn)

)
≤ (ψ(ν) + η)Hn−1(P ) .

Proof. Without loss of generality, we assume that ν = en. For simplicity, we
omit the superscript ν in the notation for wν , Xν , V ν , Qν1 , and the subscript
ρ when ρ = 1. By the definition of ψ (see (1.13)), given η > 0 there exist
ε∗ ∈ (0, 1) and u∗ ∈ X such that

Wε∗(u∗, Q) + Jε∗(u∗, V,Rn) ≤ ψ(en) + η . (7.3)

Define uε(x) := u∗(
ε∗
ε x) for x ∈ Rn. Since u∗(x) = ±1 for ±xn ≥ 1/2, the

sequence {uε} converges to w in L2
loc(Rn).

To estimateWε(uε, Pρ) and Jε(uε, Pρ,Rn), we consider the (n−1)-dimensional
cube Q(n−1) := Q ∩ {xn = 0} and we set

Zε :=
{
{α ∈ Zn : αn = 0 , (α+Q(n−1)) ∩

(ε∗
ε
P
)
6= Ø

}
.

Observe that ( ε
ε∗

)n−1

#Zε → Hn−1(P ) as ε→ 0+ , (7.4)

where #Zε is the number of elements of Zε.
Let S := {x ∈ Rn : |xn| < 1/2}. Since u∗(x) = ±1 for ±xn ≥ 1/2, by (2.3)

we have W (u∗(x)) = 0 for x ∈ Rn \ S. Therefore a change of variables and the
periodicity of u∗ give

Wε(uε, Pρ) =
( ε
ε∗

)n−1

Wε∗

(
u∗,

ε∗
ε
Pρ

)
=
( ε
ε∗

)n−1

Wε∗

(
u∗,
(ε∗
ε
Pρ

)
∩ S
)

≤
( ε
ε∗

)n−1 ∑
α∈Zε

Wε∗(u∗, α+Q) =
( ε
ε∗

)n−1

#ZεWε∗(u∗, Q) . (7.5)

Similarly,

Jε(uε, Pρ,Rn) =
( ε
ε∗

)n−1

Jε∗
(
u∗,

ε∗
ε
Pρ,Rn

)
≤
( ε
ε∗

)n−1∑
α∈Zε

Jε∗(u∗, α+ V,Rn) =
( ε
ε∗

)n−1

#ZεJε∗(u∗, V,Rn) .

(7.6)

The result now follows from (7.3)–(7.6).

38



Lemma 7.4 Let u ∈ BVloc(Rn; {−1, 1}). Assume that there exists a bounded
polyhedral set Σ of dimension n − 1 such that Su = Σ. For every ρ > 0 let
Σρ := {x ∈ Rn : dist(x,Σ) < ρ/2}. Then for every σ > 0 there exist ρ > 0
and δ ∈ (0, ρ) with the following property: for every εj → 0+ there exists
vj ∈W 1,2(Σρ) such that vj = u on Σρ \ Σρ−δ and

lim sup
j→+∞

Fεj (vj ,Σρ) ≤
∫

Σ

ψ(νu) dHn−1 + σ .

Proof. Let δΣ > 0 be as in Lemma 7.2. Fix σ and σ̂ with σ̂ ∈ (0,min{σ, δΣ}).
There exist ρ ∈ (0, σ̂) and a finite number of bounded polyhedra P 1, . . . , P k

of dimension n− 1 and contained in the n− 1 dimensional faces of Σ such that
P iρ ∩ P jρ = Ø for i 6= j and

Σρ \
k⋃
i=1

P iρ ⊂ (Σn−2)σ̂, (7.7)

where P iρ and (Σn−2)σ̂ are defined as in (5.7) and Lemma 7.2, respectively.

Find R1, . . . , Rk, bounded polyhedra of dimension n− 1 contained in the n− 1
dimensional faces of Σ, such that P i b Ri and Riρ ∩Rjρ = Ø for i 6= j.

Fix η > 0 such that ηHn−1(Σ) < σ/2. By Lemma 7.3 for every i = 1, . . . ,
k, there exists a sequence {uij} ⊂W 1,2(Riρ) such that uij → u in L2(Riρ), and

lim sup
j→+∞

(
Wεj (u

i
j , R

i
ρ) + Jεj (uij , Riρ,Rn)

)
≤ (ψ(νi) + η)Hn−1(Ri) . (7.8)

By Theorem 5.1 there exist δ ∈ (0,min{σ̂, ρ/2}) and {vij} ⊂W 1,2(Riρ) such that

vij → u in L2(Riρ) as j → +∞, vij = u∗ θεj on Riρ \ (Riρ)δ, and

lim sup
j→+∞

Fεj (vij , Riρ) ≤ lim sup
j→+∞

Fεj (uij , Riρ) + κ1δ (7.9)

≤ (ψ(νi) + η)Hn−1(Ri) + κ1σ̂ ,

where, we recall, the costant κ1 > 0 is independent of j, σ̂, and Riρ. Define

vj := vij on Riρ and vj := u∗ θεj on Aρ := Σρ \
⋃k
i=1R

i
ρ. Then vj ∈ W 1,2(Σρ)

and vj → u in L2(Σρ). Moreover vj = u on Σρ \Σρ−δ for all j sufficiently large.
By additivity we obtain

Wεj (vj ,Σρ) ≤
k∑
i=1

Wεj (vj , R
i
ρ) +Wεj (vj , Aρ) . (7.10)

Since (u∗ θεj )(x) = ±1 for x /∈ Σ2εj and −1 ≤ (u∗ θεj )(x) ≤ 1, by (2.3) and
(7.7) we have

Wεj (vj , Aρ) ≤ Wεj (u∗ θεj , (Σn−2)σ̂ ∩ Σ2εj )

≤ 1

εj
MWLn((Σn−2)σ̂ ∩ Σ2εj ) ≤MW cΣσ̂Hn−2(Σn−2) ,
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where MW is the constant in (5.51) and cΣ > 0 is a constant depending only
on the geometry of Σ. The previous inequality together with (7.10) gives

Wεj (vj ,Σρ) ≤
k∑
i=1

Wεj (vj , R
i
ρ) +MW cΣσ̂Hn−2(Σn−2) . (7.11)

To estimate Jεj (vj ,Σρ) we use the inclusion

Σρ × Σρ ⊂
k⋃
i=1

(Riρ ×Riρ) ∪
k⋃
i=1

(P iρ × (Σρ \Riρ)) ∪
k⋃
i=1

((Σρ \Riρ)× P iρ)

∪
((

Σρ \
k⋃
i=1

P iρ

)
×
(

Σρ \
k⋃
i=1

P iρ

))
∪
⋃
i6=j

(Riρ ×Rjρ) ,

which, together with (7.7), gives

Jεj (vj ,Σρ) ≤
k∑
i=1

Jεj (vj , Riρ) +

k∑
i=1

Jεj (vj , P iρ,Σρ \Riρ) (7.12)

+

k∑
i=1

Jεj (vj ,Σρ \Riρ, P iρ) + Jεj (vj , (Σn−2)σ̂) +
∑
i 6=j

Jεj (vj , Riρ, Rjρ) .

By Lemma 4.3 and (7.9) the sequence {εj
∫
Riρ
|∇vij |2dx} is uniformly bounded

with respect to j. Taking into account (5.5) and (5.6) we see that the same
property holds for {εj

∫
Σρ
|∇vj |2dx}. Hence, by Lemma 5.4, the second, third,

and fifth terms on the right-hand side of (7.12) tend to zero as j → +∞. By
Lemma 7.2,

Jεj (vj , (Σn−2)σ̂) ≤ c1σ̂Hn−2(Σn−2) . (7.13)

Combining (7.9), (7.11), (7.12), and (7.13) we get

lim sup
j→+∞

Fεj (vj ,Σρ) ≤
∫

Σ

ψ(νu) dHn−1 + ηHn−1(Σ)

+ κ1σ̂ +MW cΣσ̂Hn−2(Σn−2) + c1σ̂Hn−2(Σn−2) .

Since ηHn−1(Σ) < σ/2, the conclusion can be obtained by taking σ̂ sufficiently
small.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. By [8, Lemma 3.1] for every u ∈ BV (Ω; {−1, 1})
there exists a sequence {zk} in BV (Ω; {−1, 1}) converging to u in L2(Ω) such
that Szk is given by the intersection with Ω with a bounded polyhedral set Σk
of dimension n− 1 and Hn−1(Szk)→ Hn−1(Su). By Reshetnyak’s convergence
theorem (see, e.g., [42]) this implies that

lim
k→+∞

∫
Szk

ψ(νzk) dHn−1 =

∫
Su

ψ(νu) dHn−1 .
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Hence, using the lower semicontinuity of F ′′(·,Ω) with respect to convergence
in L2(Ω) it suffices to prove (7.2) for u ∈ BV (Ω; {−1, 1}) such that Su = Ω∩Σ
with Σ a bounded polyhedral set of dimension n− 1.

In this case, for every σ > 0 let 0 < δ < ρ and vj ∈ W 1,2(Σρ) be as in
Lemma 7.4. Define uj := vj on Σρ and uj := u on Ω \Σρ. The properties of vj
imply that uj := u on Ω \ Σρ−δ for all j sufficiently large. Hence, by (2.3) we
have

Wεj (uj ,Ω) ≤ Wεj (uj ,Σρ) . (7.14)

To estimate Jεj (uj ,Ω) we consider the inclusion

Ω× Ω ⊂(Σρ × Σρ) ∪ (Σρ−δ × (Ω \ Σρ)) ∪ ((Ω \ Σρ)× Σρ−δ) (7.15)

∪ ((Ω \ Σρ−δ)× (Ω \ Σρ−δ)) .

Since ∇uj = ∇u = 0 on Ω \ Σρ−δ, in view of (7.15) we obtain

Jεj (uj ,Ω) ≤ Jεj (uj ,Σρ)+Jεj (uj ,Σρ−δ,Ω\Σρ)+Jεj (uj ,Ω\Σρ,Σρ−δ) . (7.16)

By Lemmas 4.3 and 5.4 the last two terms tend to zero as j → ∞, and by
Lemma 7.4 we deduce

lim sup
j→+∞

Fεj (uj ,Σρ) ≤
∫

Σ

ψ(νu) dHn−1 + σ .

Together with (7.14) and (7.16) this shows that

F
′′
(u,Ω) ≤ lim sup

j→+∞
Fεj (uj ,Ω) ≤

∫
Σ

ψ(νu) dHn−1 + σ .

Letting σ tend to 0 we obtain (7.2).
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