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Introduction

This thesis is devoted to the study of some aspects of curvature flows both for abstract
and immersed smooth differentiable manifolds. We will be concerned with three kinds of
flows: the Ricci flow, the mean curvature flow (MCF) and a curvature flow which can be
used to make evolve singular immersed initial data in some Euclidean space.
Geometric flows have been introduced many years ago (see e.g. [10]) to make the metric
of a Riemannian manifold evolve towards a special one. In particular, given a Riemannian
manifold (M, g) and a smooth functional F of the metric and its derivatives, it is possible
to try to make the metric move along the gradient lines of F to investigate the existence
of special metrics corresponding to critical points.
Within this frame, one can date the introduction of the mean curvature flow to the paper of
Mullins (see [30]), where the evolution of some interfaces is studied by means of the gradient
flow of a functional which is proportional to the area of the interface. Another motivation
for the study of the mean curvature flow comes from its geometric applications. Indeed, it is
possible to use this kind of flow to obtain classification theorems for hypersurfaces satisfying
certain curvature conditions, to obtain isoperimetric inequalities and to construct minimal
surfaces (see e.g. [13], [12], [20], [23], [21], [22], [24], [25] and [38]).
The Ricci flow has been introduced more recently by Hamilton (see [16]) as a possible way
to give a proof of the Poincaré conjecture. Despite this kind of flow is not the gradient flow
of any smooth functional of the metric and its derivatives, the discovery of its gradient-like
structure by Perelman (see [32]) both brought to the proof of the Poincaré and Thurston
conjectures (see [34], [33]) and gave a strong impulse to the study of the Ricci flow.
Amongst the most important results obtained along these lines, we mention the proof of
the long standing differentiable sphere conjecture by Brendle and Schoen [2], [4].

This thesis is essentially divided into three parts. In Chapters 1 and 2 we deal with the
Ricci flow and we present a new framework for the description of its gradient-like structure.
Moreover, we give some result on the possibility to obtain monotonicity formulas from the
coupling of the Ricci flow with the MCF.
In Chapters 3 and 4 we study some aspects of the MCF. We show some results which can
be obtained by maximizing the Huisken’s and we give some applications to the study of
the singularities (especially for the case of evolving plane curves).
In Chapter 5, we begin the study of a curvature motion for hypersurfaces with boundary.
Our motivation is to analyze the mean curvature evolution of partitions of Euclidean spaces
in dimension greater than two.
The thesis is structured as follows:
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4 INTRODUCTION

Chapter 1 is mainly for a notational purpose: we will briefly recall some theorems and
formulae in Riemannian geometry and the basic tools which are used in the study of the
Ricci flow and of the mean curvature flow.

In Chapter 2, we focus our attention on the gradient-like structure of the Ricci flow and,
taking inspiration from Perelman’s work (see [32]), we give a frame which makes it possible
to write this flow - and other flows - in a gradient-like way.

In Chapter 3 we consider the coupling of the Ricci flow with the mean curvature flow. This
kind of coupling can be useful to find new monotonicity formulae for submanifold evolving
by mean curvature. Even if at the moment we miss a general theory for such a kind of
coupling, we will show some new monotonic quantities arising in some special settings.

In Chapter 4 we take as our starting point the Hamilton’s generalization of the Huisken’s
monotonicity formula[18], [19] and we will investigate the structure of the largest set of
functions on which this formula makes sense. In the second part of the chapter we give
some applications, especially to the case of plane curve. Namely, using some techniques
and ideas from Ilmanen [25], Stone [36] and White [39], we will present a unified analysis
for the singularities of the flow which will lead to a short proof of Grayson’s theorem [15].

In Chapter 5 we try to give a setting for a possible generalization of the work done in
[28](which was concerned with the curvature evolution of partitions in the plane) to higher
dimension. As a preliminary step, we will compute the evolution equation for the motion
of codimension one hypersurfaces with boundary in an Euclidean space. The speed of the
motion will have a normal component equal to the mean curvature and a non vanishing
tangential component preserving the parabolicity of the equation. In particular, we will
work out in full detail the dependence of the evolution of the second fundamental form -
and its covariant gradients of any order - on the tangential speed. We plan to continue
this analysis in the near future.
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CHAPTER 1

Preliminaries

1.1. Riemannian Metrics and the Riemann Tensor for abstract Manifolds

In this chapter we fix notation, sign conventions and we give some results in Riemannian
geometry which will be used extensively in the sequel.
Given an abstract differentiable n-dimensional manifold M endowed with a Riemannian
metric g, we denote with ∇ the covariant differentiation associated to the Levi-Civita
connection related to g. If (e1, ..., en) are a local basis for the tangent space of M at
some point, we define the components of the Riemannian metric with respect to this basis
as gij = g(ei, ej) and we denote with gij its inverse. Using the standard abstract index
notation and understanding summation over repeated indices, we can define the norm of
a p-covariant and q-controvariant tensor T

i1···iq
j1···jp as

(1.1.1) T
i1···iq
j1···jpT

a1···aq
b1···bp gi1a1 · · · giqaqg

jib1 · · · gjpbp .
With the same convention we can define the Christoffel symbols of the connection

(1.1.2) Γkij := g(∇iej, ek) =
1

2
gkl(∂iglj + ∂jgil − ∂lgij) ,

where ∂i is the standard derivative along the direction ei.
If V is a smooth vector field on M with components (v1, ..., vn), we have

(1.1.3) ∇iv
j = ∂iv

j + Γjikv
k .

Consequently, for a smooth one form ω on M , with components (ω1, ..., ωn), we get:

(1.1.4) ∇iωj = ∂iωj − Γkijωk .

The covariant derivative extends to a (p, q) tensor as follows

(1.1.5) ∇kT
i1···iq
j1···jp = ∂kT

i1···iq
j1···jp +

q∑
l=1

ΓilkrT
i1···il+1r···iq
j1···jp −

p∑
l=1

ΓrkjlT
i1···ip
j1···jl+1r···jp .

We define the Riemann tensor as follows

(1.1.6) ∇i∇jωk −∇j∇iωk = Rijk
lωl = [∂jΓ

l
ik − ∂iΓljk + ΓrikΓ

l
jr − ΓrjkΓ

l
ir]ωl ,
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10 1. PRELIMINARIES

this way we can express it in terms of the Christoffel symbols as:

(1.1.7) Rijk
l = ∂jΓ

l
ik − ∂iΓljk + ΓrikΓ

l
jr − ΓrjkΓ

l
ir.

As an immediate consequence, we have that

(1.1.8) ∇i∇jv
k −∇j∇iv

k = −Rijl
kvl .

The Ricci tensor and the scalar curvature are defined respectively by

(1.1.9) Rij = Rikj
k and R = Ri

i .

From (1.1.7), it is immediate to obtain the expressions of Rij and R in terms of the
Christoffel symbols and their spatial derivatives.
All the symmetry properties of the Riemann tensor are determined by

(1.1.10) Rijkl = −Rjikl = Rklij ,

which in turn imply the following Bianchi identity

(1.1.11) ∇iRjklr +∇lRjkri +∇rRjkil = 0 ,

and contracting

(1.1.12) ∇iRijkl = ∇kRjl −∇lRjk .

One more contraction gives

(1.1.13) ∇iRij =
1

2
∇jR .

1.2. Riemannian Geometry of immersed Manifolds

Along this section, M will be an n-dimensional smooth differentiable manifold without
boundary and φ : M → Rn+1 a smooth immersion. Denoting with (x1, ..., xn) a local
coordinate system on M at some point and ( ∂

∂x1
, ..., ∂

∂xn
) := (e1, ..., en) the associated base

for the tangent space at the same point, the Riemannian metric g naturally induced by φ
on M via the pullback reads as follows:

(1.2.1) gij := 〈∂iφ, ∂jφ〉 ,
where 〈·, ·〉 denotes the standard scalar product in Rn+1. Using the metric g we can endow

M with a Riemannian volume element given by dµ =
√

det(g)dx, where dx denotes the
Lebesgue measure on Rn. If X is a vector field on M , the existence of a Riemannian
volume element allows to define the divergence of X (denoted by divX) by the relation
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(1.2.2) divXdµ = LXdµ = ∇iX
idµ ,

where LX is the Lie derivative with respect to the vector field X and ∇ is the covariant
derivative associated to the Levi-Civita connection of g.
Since φ(M) has codimension one in Rn+1, it follows that M is orientable and at each point
of φ(M) there is a well defined (up to sign) normal vector field that we call ν. Within this
setting we define (giving components) the second fundamental form of φ(M) according to

(1.2.3) A = hij := 〈ν, ∂2ijφ〉 ,
which immediately implies that A is a well defined symmetric 2-tensor on φ(M).
The mean curvature of the couple (M,φ) is defined as the trace of the second fundamental
form and will be denoted by H.
Within this setting, the Gauss-Weingarten relations read

(1.2.4) ∂2ijφ = Γkij∂kφ+ hijν and ∂iν = −hikg
kl∂lφ ,

where the Γkij are the Christoffel symbols of the Levi-Civita connection associated to g.
Direct computations show that all the properties of the curvature tensor associated with
the metric g are encoded by the second fundamental form. Actually, we have:

Rijkl = hikhlj − hilhjk ,

Rij = Hhij − hikhljg
kl ,

R = H2 − |h|2
(1.2.5)

and the Bianchi identities for the Riemann tensor of the immersed manifold are given by

(1.2.6) ∇ihjk = ∇jhik .

In the next chapters, we will make use of the following identity (Simons’ identity, see [35])
while computing the evolution equations of certain geometric quantities:

(1.2.7) ∆hij = ∇i∇jHhikhljg
kl − |A|2hij .

If M is compact and we denote its boundary with ∂M , we have that the divergence theorem
holds when both the manifold and its boundary are endowed with the natural Riemannian
volume elements dµ and dη induced by the immersion. If X is a vector field on M , we
have that

(1.2.8)

∫
φ(M)

divXdµ =

∫
φ(∂M)

〈X,n〉dη ,

were n is the outward unit normal vector field on φ(∂M) in the tangent space to φ(M).
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1.3. The Ricci Flow

Given a smooth Riemannian manifold with a time dependent metric (M, g(·, t)), we
say that it evolves by the Ricci flow if

(1.3.1) ∂tgij = −2Rij .

It is possible to prove (see [7] for a reference) that for anyM and any admissible Riemannian
metric g0 on M , there exists a unique smooth solution for small times to the problem

∂tgij = −2Rij ,

gij(·, 0) = g0 .
(1.3.2)

1.3.1. Evolutions of the Curvature Tensors. We now list the evolution equations
induced by the Ricci flow on the curvature tensors. The proofs consist of computations
worked out in normal coordinates (see [29] for a detailed proof).

(1.3.3) ∂tΓ
k
ij = −gkl(∇iRlj +∇jRil −∇lRij) ,

using (1.1.7) we have

∂tRijkl = ∆Rijkl + 2(Bijkl − Bijlk + Bikjl − Biljk)

− RisRsjkl − RjsRiskl − RksRijsl − RlsRijks ,
(1.3.4)

where Bijkl := RipjqRkrlsg
prgqs

and consequently

(1.3.5) ∂tRij = ∆Rij + 2RrsRirjs − 2RisRsj ,

(1.3.6) ∂tR = ∆R + 2RijR
ij .

For the evolution of the volume element associated to the metric g we have

(1.3.7) ∂tdV = −RdV .

The backward analogue of the Ricci flow is defined by assigning the following evolution
equation for the metric:

(1.3.8) ∂tgij = 2Rij ,

which is usually called anti-Ricci flow.
It is possible to compute the evolution for all the curvature tensors following the same
procedure used for the Ricci flow.
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1.3.2. Solitons. In this section we recall some aspects of the theory of Ricci solitons.

Definition 1.3.1. The pair (M, g(t)) is called a Ricci soliton if g(t) is evolving by
Ricci flow and there exist a smooth positive function µ : M → (0,+∞) as well as a family
of diffeomorphisms φ : m× [0, T )→M such that

(1.3.9) g(t) = µ(t)φ∗(t)g(0) .

Differentiating (1.3.9) with respect to time, we get

(1.3.10) −2Ricg(t) = µ̇(t)φ∗(t)g0 + µ(t)φ∗(t)(LXg0) ,

where L is the Lie derivative and X is the (possibly time dependent) vector field associated
with the one-parameter family of diffeomorphisms φ(t). We say that a given soliton is
shrinking (resp. steady, expanding) at a given time t0 if µ̇(t) < 0(resp = 0, > 0).
The following theorem allows to write each soliton in a canonical form (see [5] for a proof).

Proposition 1.3.2. Let (M, g(t)) to be a Ricci soliton and assume that the Ricci flow
with initial datum g0 admits a unique solution among the solitonic ones. Then there exist
a family of diffeomorphisms ψ : M × [0, T )→M and a constant ω ∈ R such that

(1.3.11) g(t) = (1 + ωt)ψ∗(t)g0

Notice that, by rescaling the initial metric, we can always restrict to the case ω =
−1(resp.0,+1) for the shrinking (resp. steady, expanding) solitons.
If we write the equation (1.3.10) for a given time t = t0 and we set ω = µ̇(t0), we obtain

(1.3.12) −2Ricg(t0) = ωg0 + LX̂(t0)
g0 ,

where X̂(t0) = µ(t0)X(t0) . Using coordinates, removing subscripts and setting Xi = gikX
k

we have

(1.3.13) −2Rij = ωgij +∇iXj +∇jXi .

Definition 1.3.3. Given a smooth manifold M , we say that the triple (g,X, ω), with
obvious notation, is a Ricci soliton structure on M if the equation (1.3.13) holds true.

Amongst the Ricci soliton structures, the following ones are of special interest.

Definition 1.3.4. A Ricci soliton structure (g,X, ω) is a gradient Ricci soliton struc-
ture if there exists a smooth function f : M → R such that Xi = gikX

k = (df)i. In this
case the function f is called the potential of the soliton.

It is possible to prove a canonical form theorem for the case of the gradient Ricci solitons
(see again [5] for a proof):
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Proposition 1.3.5. Suppose that (g0,∇g0f0, ω) is a complete gradient Ricci soliton
structure on M . Then there exist a solution g(t) for the Ricci flow with g(0) = g0, a one-
parameter family of diffeomorphisms ψ(t) with ψ(0) = IdM and a one parameter family of
smooth functions f(t) with f(0) = f0 such that, if we set

(1.3.14) τ = 1 + ωt > 0 ,

we have:

(1) ψ(t) is the one-parameter family of diffeomorphisms associated with the vector
field X(t) = 1

τ(t)
∇g0f0,

(2) g(t) = τ(t)ψ∗(t)g0 and f(t) = f0(ψ(t));
(3) the following two equations hold for all times

(1.3.15) Rij(g(t)) +∇g(t)
i ∇

g(t)
j f(t) +

ω

2τ(t)
gij(t) = 0 ,

(1.3.16) ∂tf(x, t) = |∇g(t)f(t)|2g(t)

1.4. The Mean Curvature Flow

Let (M,φ0) be a smooth n-dimensional compact embedded hypersurface in Rn+1. We
say that the hypersurface moves by Mean Curvature Flow (MCF) with initial datum M0 =
φ0(M) if there exists a smooth one parameter family of immersions φ(·, t) : M × [0, T )→
Rn+1 which satisfies

∂tφ = Hν = ∆φ ,

φ(·, 0) = φ0 ,
(1.4.1)

where ν is the inner normal vector to the hypersurface.
From now on we will use the notationMt := φ(M, t) to denote the image of the hypersurface
along the flow.
Using (1.4.1) and the definitions in the previous sections, one can obtain the following
results:

(1.4.2) ∂tgij := ∂t〈∂iφ, ∂jφ〉 = −2Hhij ,

(1.4.3) ∂tν = −∇H ,

(1.4.4) ∂t
√

det g = −H2
√

det g ,

(1.4.5) ∂thij = ∆hij − 2Hhjlg
lkhki + |A|2hij ,
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(1.4.6) ∂tH = ∆H + |A|2H ,

(1.4.7) ∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ,
while for the generic k-th covariant derivative of the second fundamental form we have

(1.4.8) ∂t|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA ,

where the symbol ∗ denotes a suitable contraction with the metric tensor gij.
One of the most important technical tools for the study of the MCF is Huisken’s mono-
tonicity formula.

Theorem 1.4.1 (Huisken’s monotonicity - Hamilton’s formulation). Given a positive
smooth solution of the backward heat equation ∂tu = −∆u on Rn+1 × [0, C) and a MCF
which exists at least on the time interval [0, C), we have that

∂t[
√

4π(C − t)
∫
M

udµ] = −
√

4π(C − t)
∫
M

u|H− 〈∇ log u, ν〉|2dµ

−
√

4π(C − t)
∫
M

(
∇ν∇νu−

|∇νu|2

u
+

u

2(C − t)

)
dµ ,

(1.4.9)

where ∇ν denotes the covariant derivative in the normal direction to φ(M)

Notice that in (1.4.9), the first term on the rhs is non positive and the second term on the
same side is non positive thanks to the Li-Yau Harnack estimate (see [26]) and it vanishes
on any backward heat kernel, for which the formula becomes

(1.4.10) ∂t

∫
M

e−
|x−y|2
4(C−t)

[4π(C − t)]n/2
dµ = −

∫
M

e−
|x−y|2
4(C−t)

[4π(C − t)]n/2

∣∣∣∣∣H +
〈x− y, ν〉
2(C − t)

∣∣∣∣∣
2

dµ ,

where y is the center of the backward heat kernel.





CHAPTER 2

Perelman’s Dilaton

It is very well known since the ’90 that it is not possible to give a formulation of the
Ricci flow as the gradient flow of any smooth functional of the Riemannian metric and its
derivatives. Anyway, one of the most important contributions given by Perelman to the
study of the Ricci flow (see [32]), it has been the discover of its gradient-like structure.
In this chapter we investigate the gradient flow-like structure of the Ricci flow using a
Kaluza-Klein reduction approach. In particular, given a smooth Riemannian manifold, we
will show how the Ricci flow can be presented as a component of the constrained gradient
flow of the Hilbert-Einstein functional on an extended manifold.

2.1. Hilbert-Einstein Action and Perelman’s F-Functional

Let (Mm, g) and (Nn, h) be two closed Riemannian manifolds of dimension m and n
respectively and let f : M → R be a smooth function on M . On the product manifold

M̃ = M ×N we consider a metric g̃ of the form

g̃ = e−Afg ⊕ e−Bfh,
where A and B are real constants and we call the function f dilaton field. Notice that g̃ is
a conformal deformation of a warped product on M .
As a notation, we will use Latin indices, i, j, . . . for the coordinates on M (we will call them
the ”real” variables) and Greek indices, α, β, . . . , for the coordinates on N (the ”phantom”
variables). Within this setting, we clearly have ∀ i, j ∈ {1, . . . ,m} and ∀α, β ∈ {1, . . . , n},

g̃iα = g̃iα = 0 ,

g̃ij = eAfgij , g̃αβ = eBfhαβ .

Let µ, σ and µ̃ be respectively the canonical volume measure on M , N and M̃ . By definition

of g̃, it follows that µ̃ = e−
Am+Bn

2
fµ× σ.

Remembering (1.1.2), we can compute the following expressions for the Christoffel symbols
of the product metric

Γ̃kij =
1

2
g̃kl (∂ig̃jl + ∂j g̃il − ∂lg̃ij)

=
1

2
eAfgkl

[
e−Af (∂igjl + ∂jgil − ∂lgij)− Ae−Af (∂ifgjl + ∂jfgil − ∂lfgij)

]
= Γkij −

A

2

(
∂ifδ

k
j + ∂jfδ

k
i − gkl∂lfgij

)
.

17



18 2. PERELMAN’S DILATON

Using the fact that the metric g̃ is zero for a pair of “mixed” indices and that the function
f depends only on the real variables, we get

Γ̃γij =
1

2
g̃γβ (∂ig̃jβ + ∂j g̃iβ − ∂β g̃ij) = 0 ,

Γ̃kαi =
1

2
g̃kl (∂ig̃αl + ∂αg̃il − ∂lg̃iα) = 0 ,

Γ̃γiβ =
1

2
g̃γα (∂ig̃αβ + ∂β g̃iα − ∂αg̃iβ) = −B

2
∂ifδ

γ
β ,

Γ̃kαβ =
1

2
g̃kl (∂αg̃lβ + ∂β g̃αl − ∂lg̃αβ) =

B

2
e(A−B)fgkl∂lfhαβ .

Finally, a computation analogous to the one above gives Γ̃γαβ = Γγαβ.
Summarizing we have:

Γ̃kij = Γkij −
A

2

(
∂ifδ

k
j + ∂jfδ

k
i − gkl∂lfgij

)
(2.1.1)

Γ̃αij = Γ̃kiα = 0(2.1.2)

Γ̃kαβ =
B

2
e(A−B)fgkl∂lfhαβ(2.1.3)

Γ̃γiβ = − B

2
∂ifδ

γ
β(2.1.4)

Γ̃γαβ = Γγαβ .(2.1.5)

We now want to compute the Ricci curvature of the metric g̃. Keeping in mind (1.1.7) and
using equations (2.1.1)– (2.1.5), computing in normal coordinates on both M and N , we
get the following

R̃jl = ∂iΓ̃
i
jl − ∂jΓ̃kkl − ∂jΓ̃ααl + Γ̃kjlΓ̃

i
ki + Γ̃kjlΓ̃

α
αk − Γ̃kijΓ̃

i
kl − Γ̃βαjΓ̃

α
βl

= Rjl −
A

2

(
2∇2

jlf −∆fgjl
)

+
Am

2
∇2
jlf +

Bn

2
∇2
jlf

+
A2m

4

(
2dfjdfl − |∇f |2gjl

)
+
ABn

4

(
2dfjdfl − |∇f |2gjl

)
−A

2

4

[
(m+ 2)dfjdfl − 2|∇f |2gjl

]
− B2n

4
dfjdfl .

Collecting similar terms, it becomes

R̃jl = Rjl +∇2
jlf

(
Am+Bn

2
− A

)
+
A

2
gjl

[
∆f − |∇f |2

(
Am+Bn

2
− A

)]
(2.1.6)

+
1

4
dfjdfl

(
2ABn+ (m− 2)A2 −B2n

)
.
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Proceeding in an analogous way for the phantom indices, we get

R̃βγ = ∂αΓ̃αβγ − ∂γΓ̃ααβ + ∂kΓ̃
k
βγ + Γ̃kβγΓ̃

α
αγ + Γ̃kβγΓ̃

i
ik − Γ̃kαγΓ̃

α
βk − Γ̃αkγΓ̃

k
αβ

= Rβγ +
B

2
e(A−B)fhβγ

(
∆f + (A−B)|∇f |2

)
−B

2n

4
e(A−B)fhβγ|∇f |2 −

ABm

4
e(A−B)fhβγ|∇f |2

+
B2

4
e(A−B)fhβγ|∇f |2 +

B2

4
e(A−B)fhβγ|∇f |2 ,

that is,

(2.1.7) R̃βγ = Rβγ +
B

2
e(A−B)fhβγ

[
∆f − |∇f |2

(
Am+Bn

2
− A

)]
.

Finally, it is easy to see that the mixed terms of the Ricci tensor of g̃ vanish, that is:

R̃iα = 0.
Contracting with the metric, we obtain the formula for the scalar curvature of g̃:

R̃ = eAfRM + eBfRN + eAf∆f(Am+Bn− A)

+
eAf

4
|∇f |2

(
4ABn− 2ABmn+ 3mA2 − 2A2 −m2A2 −B2n−B2n2

)
.

where RM and RN are respectively the scalar curvatures of (M, g) and (N, h).
We now make the following ansatz:

(C1) 2ABn+ (m− 2)A2 −B2n = 0

and

(C2)
Am+Bn

2
− A = 1 ⇐⇒ A(m− 2) +Bn = 2 .

It is useful at this stage to give a motivation for the choice of the constants A and B, which
we guess it is not very clear at this point. Condition (C1) is assumed in order to make

vanish from the expression of R̃ij the term in df ⊗ df that otherwise appears in doing the

flow by the gradient of the functional
∫
M̃

R̃ dµ̃ (see Section 2.3). The second condition,

that clearly also simplifies both R̃ij and R̃αβ, is instead more related to Perelman’s F–

functional. In writing the functional
∫
M̃

R̃ dµ̃ as an integral on M with respect to the

measure µ we will see that the only way to get the factor e−f is to assume condition (C2).
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We now prove that our choice for A and B is not significantly restrictive.

Lemma 2.1.1. If m + n > 2, we can always find two non zero constants A and B
satisfying (C1) and (C2)

Proof. Notice that A = 0 implies B = 0. If B 6= 0, dividing both sides of condition
(C1) by B2, it can be expressed in the following form for θ = A/B,

(C1∗) (m− 2)θ2 + 2nθ − n = 0 .

If m 6= 2, this second degree equation for θ has always two solutions for every choice of the
dimensions m,n ∈ N, which would coincide only in the case m = n = 1, that we excluded.
Notice also that the two solutions have opposite signs. Precisely, they are

θ =
−n±

√
n(n+m− 2)

m− 2

and in the special case n = 1, we have θ = −1±
√
m−1

m−2 .
If m = 2 we have only one solution of equation (C1∗) which is θ = 1/2.
Then, condition (C2) is equivalent to θ(m − 2) + n = 2/B which can be fulfilled, by
homogeneity, if θ(m− 2) + n 6= 0. In the case of equality, we would have

0 = θ2(m− 2) + 2nθ − n = nθ − n

which would imply θ = 1. Hence, m− 2 + n = 0 and m = n = 1. �

Under assumptions (C1) and (C2), the last term of R̃jl in formula (2.1.6) cancels out and
many coefficients become one. Indeed we get the following simplified formulas for the
components of the Ricci tensor of g̃,

(2.1.8) R̃jl = Rjl +∇2
jlf +

A

2
gjl
(
∆f − |∇f |2

)
,

(2.1.9) R̃βγ = Rβγ +
B

2
e(A−B)fhβγ

(
∆f − |∇f |2

)
.

Then, the scalar curvature of g̃ becomes

(2.1.10) R̃ = eAfRM + eBfRN + eAf
(
∆f(A+ 2)− |∇f |2(A+ 1)

)
.

From this last formula, it follows immediately the relation between the Einstein–Hilbert

action functional S on M̃ and the Perelman’s F–functional, see [32],

F(g, f) =

∫
M

(RM + |∇f |2)e−f dµ .

Theorem 2.1.2. Let (Mm, g) and (Nn, h) be two closed Riemannian manifolds of di-
mension m and n respectively, with m + n > 2 and let f : M → R be a smooth function

on M . On the product manifold M̃ = M ×N consider the metric g̃ of the form

g̃ = e−Afg ⊕ e−Bfh ,
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where A and B are constants satisfying conditions (C1) and (C2).
Then the following formula holds

(2.1.11) S(g̃) =

∫
M̃

R̃ dµ̃ = Vol(N, h)F(g, f) +

(∫
M

e(B−A−1)f dµ

)∫
N

RN dσ

In particular, if (N, h) has zero total scalar curvature and unit volume, we get S(g̃) =
F(g, f)

Proof. We simply compute∫
M̃

R̃ dµ̃ =

∫
M

∫
N

e−
Am+Bn

2
f R̃ dµ dσ

=

∫
M

∫
N

e−(1+A)f
[
eAfRM + eBfRN + eAf

(
∆f(A+ 2)− |∇f |2(A+ 1)

)]
dµ dσ

=

∫
M

∫
N

e−(1+A)feBfRN dµ dσ

+

∫
M

∫
N

[
RM + ∆f(A+ 2)− |∇f |2(A+ 1)

]
e−f dµ dσ

=

(∫
M

e(B−A−1)f dµ

)∫
N

RN dσ

+ Vol(N, h)

∫
M

[
RM + ∆f(A+ 2)− |∇f |2(A+ 1)

]
e−f dµ

=

(∫
M

e(B−A−1)f dµ

)∫
N

RN dσ

+ Vol(N, h)

∫
M

(
RM + |∇f |2

)
e−f dµ

where in the last passage we integrated by parts the Laplacian term. �

2.2. The Associated Flow

Under assumptions (C1) and (C2), we have

(2.2.1) R̃jl = Rjl +∇2
jlf +

A

2
gjl
(
∆f − |∇f |2

)
, R̃iα = 0 ,

(2.2.2) R̃βγ = Rβγ +
B

2
e(A−B)fhβγ

(
∆f − |∇f |2

)
and

(2.2.3) R̃ = eAfRM + eBfRN + eAf
(
∆f(A+ 2)− |∇f |2(A+ 1)

)
.

Suppose we have a manifold M̃ = M ×N with a time dependent metric g̃(t) for t ∈ [0, T ].
Given the initial metric as a warped product g̃ = ĝ ⊕ ϕh, with ϕ : M → R a smooth
function, (N, h) a Ricci–flat having unit volume, we consider the evolution of the metric
by the gradient of the Einstein–Hilbert action with the constraining the measure ϕ−θµ̃ to
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stay fixed, where θ is the one given by condition (C1∗) and A, B are the correspondent
constants satisfying conditions (C1) and (C2) above.
Suppose there exists a unique solution of this flow, preserving the warped product. We
can assume that for every t ∈ [0, T ] we have g̃(t) = ĝ(t) ⊕ ϕ(t)h(t) with (N, h(t)) always
of volume 1.
Writing down the evolution of h we see that it moves only by multiplication by a positive
factor. As we assumed that (N, h(t)) is of unit volume, we can conclude that the metric
h(t) is constant and equal to the initial h. Setting f = − 1

B
logϕ, which implies ϕ = e−Bf

and ϕθ = e−Af , we can write g̃ = e−Afg ⊕ e−Bfh where g(t) = eAf ĝ(t). Clearly, we also
have that g̃ = ϕθg ⊕ ϕh.
Denote with δg̃, δg and δf the variations of g̃, g and f respectively. Then we have,

δg̃ = e−Af (δg − Agδf)⊕ e−Bf (−Bhδf) .

In terms of these variations, the constraint on the measure becomes δf = trgδg/2. Keeping
in mind (2.2.1), (2.2.2), (2.2.3) and that (N, h) is Ricci–flat, we get

δ

∫
M̃

2R̃ dµ̃ =

∫
M̃

〈−2R̃ic + R̃g̃ | δg̃〉 dµ̃

=

∫
M̃

〈−2R̃ic + R̃g̃ | e−Af (δg − Agδf)⊕ e−Bf (−Bhδf)〉 dµ̃

=

∫
M̃

〈−2(RicM +∇2f) | δg〉e−Af dµ̃

− 1

2

∫
M̃

(∆f − |∇f |2)(ABn+ 2A−B2n)trg(δg)e−Af dµ̃

=

∫
M̃

〈−2(RicM +∇2f) | δg〉e−Af dµ̃

=− 2

∫
M

〈RicM +∇2f | δg〉e−f dµ ,

since, by conditions (C1) and (C2), it follows ABn+ 2A−B2n = 0.
Hence, the system {

δg = −2(RicM +∇2f)

δf = −∆f − RM

represents the constrained gradient of the Einstein–Hilbert action functional. The associ-
ated flow of the metric g̃ = e−Afg ⊕ e−Bfh is described by

∂tg = −2(RicM +∇2f)

∂th = 0

∂tf = −∆f − RM ,

that is, g evolves by the “modified” Ricci flow.
Following Perelman [32] and transforming the pair (g, f) by a suitable diffeomorphism, we
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get a solution of {
∂tg = −2RicM

∂tf = −∆f + |∇f |2 − RM .

This way, up to a factor and a diffeomorphism, the spatial part of the metric g̃ moves
according to the Ricci flow (g is equal to the spatial part of g̃ times the factor eAf ).

2.3. Other Flows

It is interesting to see what kind of functionals and flows one can get by varying the
constants A and B.
Supposing that (N, h) has unit volume and zero total scalar curvature, we already com-
puted,

R̃jl = Rjl +∇2
jlf

(
Am+Bn

2
− A

)
+
A

2
gjl

[
∆f − |∇f |2

(
Am+Bn

2
− A

)]
+

1

4
dfjdfl

(
2ABn+ (m− 2)A2 −B2n

)
R̃βγ = Rβγ +

B

2
e(A−B)fhβγ

[
∆f − |∇f |2

(
Am+Bn

2
− A

)]

Assuming the condition Am+Bn
2
− A = 1 we have

R̃jl = Rjl +∇2
jlf +

A

2
gjl
[
∆f − |∇f |2

]
+

1

4
dfjdfl

(
2ABn+ (m− 2)A2 −B2n

)
R̃βγ = Rβγ +

B

2
e(A−B)fhβγ

[
∆f − |∇f |2

]
R̃ = eAfRM + eBfRN + eAf∆f

+eAf
(
Am+Bn

2

)
(∆f − |∇f |2) +

eAf

4

(
2ABn+ (m− 2)A2 −B2n

)
|∇f |2

= eAfRM + eBfRN + eAf∆f

+eAf (A+ 1)(∆f − |∇f |2) +
eAf

4

(
2ABn+ (m− 2)A2 −B2n

)
|∇f |2 .
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Hence,∫
M̃

R̃ dµ̃ =

∫
M

∫
N

e−
Am+Bn

2
f R̃ dµ dσ

=

∫
M

∫
N

e−(1+A)f
[
eAfRM + eBfRN + eAf∆f

]
dµ dσ

+

∫
M

∫
N

e−(1+A)feAf (A+ 1)(∆f − |∇f |2) dµ dσ

+

∫
M

∫
N

e−(1+A)f
eAf

4

(
2ABn+ (m− 2)A2 −B2n

)
|∇f |2 dµ dσ

=

∫
M

∫
N

e−(1+A)feBfRN dµ dσ

+

∫
M

∫
N

[
RM + ∆f +

1

4
|∇f |2(2ABn+ (m− 2)A2 −B2n)

]
e−f dµ dσ

=

∫
M

[
RM + |∇f |2 +

1

4
|∇f |2(2ABn+ (m− 2)A2 −B2n)

]
e−f dµ

= F(g, f) + Zm,n(A,B)

∫
M

|∇f |2e−f dµ ,

with Zm,n(A,B) = (2ABn+ (m− 2)A2 −B2n)/4.

We want to see what are the possible values of Zm,n, we recall that we have the constraint
A(m− 2) +Bn = 2.
We change variables according to x = A and y = (B − A) so that the constraint becomes
(m+n−2)x+ny = 2 and 4Zm,n(A,B) = (m+n−2)x2−ny2. As y = [2−x(m+n−2)]/n
we get (like before we assume m+ n > 2),

4Zm,n(A,B) = (m+ n− 2)x2 − n
(

2− x(m+ n− 2)

n

)2

= (m+ n− 2)x2 − (4 + x2(m+ n− 2)2 − 4x(m+ n− 2))/n

=x2[(m+ n− 2)− (m+ n− 2)2/n] + 4x(m+ n− 2)/n− 4/n

= − x2 (m+ n− 2)(m− 2)

n
+ x

4(m+ n− 2)

n
− 4

n
.

When m = 2, we have B = 2/n and A “free”, then

Zm,n(A,B) =
x(m+ n− 2)− 1

n
=
An− 1

n
= A− 1/n

which can take every real value as x can vary from −∞ to +∞.
If instead, m > 2 the expression

Zm,n(A,B) = −A2 (m+ n− 2)(m− 2)

4n
+ A

m+ n− 2

n
− 1

n
.
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is a second degree polynomial in A ∈ R with negative leading coefficient, so it can vary only
between −∞ and some maximum value. By a straightforward computation one finds that
this maximum value is given by 1/(m− 2) and is evidently independent of the dimension
n.
This means that by a suitable choice of the constants A and B one has

S(g̃) =

∫
M̃

R̃ dµ̃ =

∫
M

(RM + (λ+ 1)|∇f |2)e−f dµ ,

for every λ ∈
(
−∞, 1

m−2

]
. Notice that (if m > 2), with the exception of λ = 1/(m− 2) one

has always two possible choices of pairs of constants (A,B) for every value λ.
When λ 6= 0 as

R̃jl = Rjl +∇2
jlf +

A

2
(∆f − |∇f |2)gjl + λ(df ⊗ df)jl ,

the associated flow is substantially different from the (modified) Ricci flow, indeed if as
before δf = 1

2
trg(δg) and (N, h) is Ricci–flat, we get

δ

∫
M̃

2R̃ dµ̃ =

∫
M̃

〈−2R̃ic + R̃g̃ | δg̃〉 dµ̃

=

∫
M̃

〈−2R̃ic + R̃g̃ | e−Af (δg − Agδf)⊕ e−Bf (−Bhδf)〉 dµ̃

=

∫
M̃

〈−2(RicM +∇2f + λdf ⊗ df) | δg〉e−Af dµ̃

+

∫
M̃

[
−A(∆f − |∇f |2) + (RM + ∆f(A+ 2)− |∇f |2(A+ 1))

]
trg(δg)e−Af dµ̃

+

∫
M̃

〈
−2
[
RicM +∇2f +

A

2
g(∆f − |∇f |2)

] ∣∣∣−Agδf〉e−Af dµ̃
+

∫
M̃

[
RM + ∆f(A+ 2)− |∇f |2(A+ 1)

]
(−Amδf)e−Af dµ̃

+

∫
M̃

[
−B(∆f − |∇f |2)

]
(−Bnδf)e−Af dµ̃

+

∫
M̃

[
RM + ∆f(A+ 2)− |∇f |2(A+ 1)

]
(−Bnδf)e−Af dµ̃

=− 2

∫
M

〈RicM +∇2f + λdf ⊗ df | δg〉e−f dµ .

Hence, as before, the system{
δg = −2(RicM +∇2f + λdf ⊗ df)

δf = −∆f − RM − λ|∇f |2
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represents the constrained gradient of the Einstein–Hilbert action functional and the asso-
ciated flow is {

∂tg = −2(RicM +∇2f + λdf ⊗ df)

∂tf = −∆f − RM − λ|∇f |2 .
Notice that, like in the case of the Ricci flow, the metric flow ∂tg = −2(Ric+∇2f+λdf⊗df)
can be modified by a diffeomorphism to the flow ∂tg = −2(Ric + λdf ⊗ df). Anyway,
the extra term df ⊗ df , can not be “cancelled” in this way as it was possible for ∇2f .
Moreover, as in Perelman’s work, one gets immediately the monotonicity of the associated
F–functional along the flow (see also [27]):

d

dt

∫
M

(RM + (λ+ 1)|∇f |2)e−f dµ = −2

∫
M

|RicM +∇2f + λdf ⊗ df |2e−f dµ .



CHAPTER 3

Ricci Flow Coupling with the MCF

In this chapter we study the coupling of the MCF with the other geometric flows. In
particular, we will focus our interest on an ambient Riemannian manifold (M, g) and an
embedded submanifold S endowed with the canonical Riemannian metric induced by the
embedding. We will consider the motion by MCF of S meanwhile the ambient metric g
evolves along an other flow and we will deduce some monotonicity formulas for this kind
of coupled flow in some special cases.

3.1. Rigid Ambient Space

In this section we show the extension of Huisken’s monotonicity formula worked out by
Hamilton. Let u be a positive solution of the backward heat equation on a Riemannian
manifold (M, g) on a time interval [0, T ),

ut = −∆Mu .

Let us assume that we have a smooth immersed submanifold N with dimN = n evolving by
mean curvature flow on the time interval [0, T ), in the ambient space M with dimM = m,
the metric on N is the induced metric and let µ the associated measure.
We denote the normal indices with α, β, γ, . . . and the tangent ones with i, j, k, . . . .
By mean of a straightforward computation, it is possible to prove the following ”decom-
position” formula for the Riemannian Laplace operator of M :

(3.1.1) ∆Mu = ∆Nu+ gαβ∇α∇βu− Hα∇αu .

On the other hand we have that

d

dt

∫
N

u dµ =

∫
N

ut + Hα∇αu− H2u dµ =

∫
N

−∆Mu+ Hα∇αu− H2u dµ .

Using (3.1.1) and integrating by parts we obtain

d

dt

∫
N

u dµ =

∫
N

−gαβ∇α∇βu+ 2Hα∇αu− H2u dµ .

Adding and subtracting the quantity ∇αu∇
αu

u
we get

d

dt

∫
N

u dµ =

∫
N

−
(

H2u− 2Hα∇αu+
∇αu∇αu

u

)
−
∫
N

∇α∇αu− ∇αu∇αu

u
dµ .

27
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This becomes

d

dt

∫
N

u dµ = −
∫
N

∣∣∣∣H− ∇⊥uu
∣∣∣∣2 u dµ− ∫

N

∇α∇αu− ∇αu∇αu

u
dµ .

Finally, setting τ = T − t for some constant T ∈ R one obtains, for every t < T ,

d

dt

(
τ
m−n

2

∫
N

u dµ

)
= − τ

m−n
2

∫
N

∣∣∣∣H− ∇⊥uu
∣∣∣∣2 u dµ(3.1.2)

− τ
m−n

2

∫
N

∇α∇αu− ∇αu∇αu

u
+

u

2τ
(m− n) dµ

= − τ
m−n

2

∫
N

∣∣∣∣H− ∇⊥uu
∣∣∣∣2 u dµ

− τ
m−n

2

∫
N

(∇2
αβu

u
− ∇αu∇βu

u2
+
gαβ
2τ

)
gαβu dµ

= − τ
m−n

2

∫
N

∣∣H +∇⊥f
∣∣2 e−f dµ

+ τ
m−n

2

∫
N

(
∇2
αβf −

gαβ
2τ

)
gαβe−f dµ ,

where in the last passage we substituted u = e−f , as u > 0. Notice that ft = −∆Mf+|∇f |2.
This is Hamilton’s result in [19].

3.2. Moving Ambient Space

Let us now assume that the metric of the ambient space evolves according to gt = −2Q
(if Q = Ric we have the Ricci flow) and the backward heat kernel equation is modified to

ut = −∆Mu+ Ku

for some K where with R we denote the scalar curvature of the ambient manifold.
If now we repeat the previous computation we have two extra terms, the first arising from
the modification to the equation for u and the second from the derivative of the measure on
N . Indeed, the associated metric on N is affected not only by the motion of the submanifold
but also by the evolution of the ambient metric on M . After some computations, we get

d

dt
µ = −(H2 + Qijg

ij)µ = (−H2 − tr Q + Qαβg
αβ)µ .
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Therefore we obtain

d

dt

(
τ
m−n

2

∫
N

u dµ

)
= − τ

m−n
2

∫
N

∣∣∣∣H− ∇⊥uu
∣∣∣∣2 u dµ

− τ
m−n

2

∫
N

(∇2
αβu

u
− ∇αu∇βu

u2
+
gαβ
2τ

)
gαβu dµ

+ τ
m−n

2

∫
N

(K− tr Q + Qαβg
αβ)u dµ

= − τ
m−n

2

∫
N

∣∣H +∇⊥f
∣∣2 e−f dµ

+ τ
m−n

2

∫
N

(
∇2
αβf + Qαβ −

gαβ
2τ

)
gαβe−f dµ(3.2.1)

+ τ
m−n

2

∫
N

(K− tr Q)e−f dµ .

This result suggests that a good choice is K = tr Q, as the last term vanishes and we get

d

dt

(
τ
m−n

2

∫
N

u dµ

)
= − τ

m−n
2

∫
N

∣∣H +∇⊥f
∣∣2 e−f dµ

+ τ
m−n

2

∫
N

(
∇2
αβf + Qαβ −

gαβ
2τ

)
gαβe−f dµ .(3.2.2)

Moreover, notice that with the choice K = tr Q, we have

d

dt

∫
M

u =

∫
M

ut − tr Qu =

∫
M

−∆Mu = 0 ,

hence the integral
∫
M
u =

∫
M
e−f is constant during the flow.

Definition 3.2.1. If (M, g(t)) is the flow gt = −2Q in a time interval (a, b) and u is
a smooth solution of ut = −∆Mu + tr Qu in M × (a, b), we say that (g, u) is a monotonic
pair if the quantity

(T − t)
m−n

2

∫
N

u dµ

is monotone nonincreasing in the interval (a, b) ∩ (−∞, T ).
In the case Q = Ric, we say that (g, u) is a Ricci monotonic pair, while in the case
Q = −Ric, we say that (g, u) is a anti–Ricci monotonic pair.

3.3. Ricci and Back–Ricci Flow

3.3.1. Ricci Flow Case. We choose now Q = Ric, that is, the metric g on M evolves
by the Ricci flow in some time interval (a, b) ⊂ R, and we set K = R to be the scalar
curvature.
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By the previous computation we get

d

dt

(
τ
m−n

2

∫
N

u dµ

)
= − τ

m−n
2

∫
N

∣∣H +∇⊥f
∣∣2 e−f dµ

+ τ
m−n

2

∫
N

(
∇2
αβf + Rαβ −

gαβ
2τ

)
gαβe−f dµ ,(3.3.1)

for a positive solution of the conjugate backward heat equation

(3.3.2) ut = −∆u+ Ru

and f = − log u. Hence,

(3.3.3) ft = −∆f + |∇f |2 − R .

Monotonicity of τ
m−n

2

∫
N
u dµ is so related to the nonpositivity of the Li–Yau–Hamilton

type expression
(
∇2
αβf + Rαβ − gαβ

2τ

)
gαβ. Notice that the same conclusion holds also if

ut ≤ −∆u+ Ru.
If (M, g(t)) is a gradient soliton of the Ricci flow and f its “potential” function, it is well
known that u = e−f satisfies the conjugate heat equation (3.3.2) and we have

• Expanding Solitons: flow defined on (Tmin,+∞) and ∇2f + Ric = g/2(Tmin − t)
• Steady Solitons: eternal flow and ∇2f + Ric = 0
• Shrinking Solitons: flow defined on (−∞, Tmax) and ∇2f + Ric = g/2(Tmax − t)

Substituting, in the three cases, the above expression becomes

• Expanding Soliton: m−n
2

(
1

Tmin−t −
1

T−t

)
which is always negative as t ∈ (Tmin, T ).

• Steady Soliton: m−n
2

(
− 1
T−t

)
which is always negative as t ∈ (−∞, T ).

• Shrinking Soliton: m−n
2

(
1

Tmax−t −
1

T−t

)
which is nonpositive if T ≤ Tmax as t ∈

(−∞,min{T, Tmax}).

Proposition 3.3.1. If (M, g(t)) is a steady or expanding gradient soliton and f is its
potential function, then (g, e−f ) is a Ricci monotonic pair for every T ≥ Tmin.
If (M, g(t)) is a shrinking gradient soliton on (−∞, Tmax) and f is its potential function,
then (g, e−f ) is a Ricci monotonic pair for every T ≤ Tmax

3.3.2. Back–Ricci Flow Case. If we choose Q = −Ric, that is, the metric g evolves
by back–Ricci flow in some time interval (a, b) ⊂ R, and we set K = R to be the scalar
curvature.
By the previous computation we get

d

dt

(
τ
m−n

2

∫
N

u dµ

)
= − τ

m−n
2

∫
N

∣∣H +∇⊥f
∣∣2 e−f dµ

+ τ
m−n

2

∫
N

(
∇2
αβf − Rαβ −

gαβ
2τ

)
gαβe−f dµ ,(3.3.4)
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for a positive solution of the conjugate backward heat equation

(3.3.5) ut = −∆u− Ru

and f = − log u. Hence,

ft = −∆f + |∇f |2 + R

Monotonicity of τ
m−n

2

∫
N
u dµ is so related to the nonpositivity of the Li–Yau–Hamilton

type expression
(
∇2
αβf − Rαβ − gαβ

2τ

)
gαβ. Notice that the same conclusion holds also if

ut ≤ −∆u− Ru.

3.4. Li–Yau–Hamilton Harnack Inequalities and Ricci Flow

• We denote with fij = ∇2
ijf the second covariant derivative of f , then

∇2
ijf =

∂2f

∂xi∂xj
− Γkij

∂f

∂xk
.

• Let ωi a 1–form, then we have the following formula for interchanging of covariant
derivatives

∇pqωi −∇qpωi = R s
pqi ωs .

Let ωij a 2–form, then

∇pqωij −∇qpωij = R s
pqi ωsj + R s

pqj ωis .

• II Bianchi Identity:

∇sRijkl +∇lRijsk +∇kRijls = 0

contracted,

gjs∇sRijkl −∇lRicik +∇kRicil = 0

that is,

div Riemikl = ∇kRicil −∇lRicik

contracted again (Schur Lemma),

div Rick = ∇kR− div Rick

that is,

div Ric = ∇R/2 .

• Evolution equations for Ricci tensor and scalar curvature under Ricci flow:

∂tRicij = ∆Ricij + 2RicpqRipjq − 2gpqRicipRicqj

∂tR = ∆R + 2|Ric|2 .
• Evolution equations for Christoffel symbols under Ricci flow:

∂tΓ
k
ij = −gkl(∇iRicjl +∇jRicil −∇lRicij) .



32 3. RICCI FLOW COUPLING WITH THE MCF

• Interchange of Laplacian and second derivatives:

∇2
ij∆f =∇i∇j∇k∇kf

=∇i(Rjkkp∇pf) +∇i∇k∇j∇kf

= −∇i(Ricjp∇pf) +∇i∇k∇k∇jf

= −∇iRicjp∇pf − Ricjpfip +∇i∇k∇k∇jf

= −∇iRicjp∇pf − Ricjpfip + Rikkpfpj + Rikjpfkp +∇k∇i∇k∇jf

= −∇iRicjp∇pf − Ricjpfip − Ricipfpj − Rikpjfkp +∇k(Rikjp∇pf) +∇k∇k∇i∇jf

= −∇iRicjp∇pf −∇kRikpj∇pf − Ricjpfip − Ricipfpj − Rikpjfkp − Rikpjfkp + ∆∇i∇jf

= − (∇iRicjk +∇jRicik −∇kRicij)∇kf − Ricjpfip − Ricipfpj − 2Rikpjfkp + ∆∇i∇jf

where in the last passage we used the II Bianchi identity. Hence,

∇2
ij∆f −∆∇i∇jf = −(∇iRicjk +∇jRicik−∇kRicij)∇kf −Ricjpfip−Ricipfpj− 2Rikpjfkp .

3.4.1. Computation I: Ricci Flow. Suppose that ut = −∆u + Ru and u > 0, we
want to show the nonpositivity of the term

∇2
ijf + Rij −

gij
2τ

for f = − log u which satisfies

ft = −∆f + |∇f |2 − R .

Equivalently, if we had chosen f = log u, we can show the positivity of

∇2
ijf − Rij +

gij
2τ

for f = log u which satisfies

ft = −∆f − |∇f |2 + R .

We set τ = T − t, Lij = fij − Ricij, Hij = τLij + gij/2 = τ [fij − Ricij] + gij/2.
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(∂t + ∆)Hij = − Lij − Ricij

+ τ [∆fij +∇2
ijft + (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [∂tRicij + ∆Ricij]

= − Lij − Ricij

+ τ [∆fij −∇2
ij∆f −∇2

ij|∇f |2

+ (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

= − Lij − Ricij

+ τ [(∇iRicjk +∇jRicik −∇kRicij)∇kf

+ Ricjpfip + Ricipfpj + 2Rikpjfkp

−∇2
ij|∇f |2 + (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

= − Lij − Ricij

+ τ [Ricjpfip + Ricipfpj + 2Rikpjfkp

− 2fipfjp − 2∇3
ijkf∇kf + 2(∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

= − Lij − Ricij

+ τ [Ricjpfip + Ricipfpj + 2Rikpjfkp

− 2fipfjp −∇3
ijkf∇kf −∇3

jikf∇kf + 2(∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

= − Lij − Ricij

+ τ [Ricjpfip + Ricipfpj + 2Rikpjfkp

− 2fipfjp − 2∇3
kijf∇kf − 2Rikjp∇pf∇kf + 2(∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

= − Lij − Ricij

+ τ [Ricjpfip + Ricipfpj − 2fipfjp − 2∇3
kijf∇kf ]

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2R]

+ τ [2(∇iRicjk +∇jRicik −∇kRicij)∇kf

− 2Rikjpfpk − 2Rikjp∇pf∇kf ]

substituting, Lij = [Hij − gij/2]/τ and fij = [Hij − gij/2]/τ + Ricij, we get
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(∂t + ∆)Hij = −Hij/τ + gij/2τ − Ricij

+ τ [RicjpRicip + RicipRicpj − 2∇kRicij∇kf ]

− 2τ [H2
ij/τ

2 −Hij/τ
2 + gij/4τ

2 + RicikRickj + RicikHjk/τ + RicjkHik/τ − Ricij/τ ]

+ [RicjpHip + RicipHpj − 2∇kHij∇kf ]

− Ricij

− τ [2∆Ricij + 2RicpqRipjq − 2RicipRicpj −∇2
ijR]

+ τ [2(∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− 2τRikjpRicpk − 2RikjpHpk + Ricij

− 2τRikjp∇pf∇kf

= [Hij − 2H2
ij]/τ + Ricij + τ [RicjpRicip + RicipRicpj − 2∇kRicij∇kf ]

− 2τ [RicikRickj + RicikHjk/τ + RicjkHik/τ ]

+ [RicjpHip + RicipHpj − 2∇kHij∇kf ]

− τ [2∆Ricij + 4RicpqRipjq − 2RicipRicpj −∇2
ijR]

+ τ [2(∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− 2RikjpHpk − 2τRikjp∇pf∇kf

= [Hij − 2H2
ij]/τ − 2∇kHij∇kf

− [RicikHjk + RicjkHik + 2RikjpHpk]

− τ [2∆Ricij − 2RicjpRicip + 4RicpqRipjq −∇2
ijR− Ricij/τ ]

+ τ [2(∇iRicjk +∇jRicik − 2∇kRicij)∇kf ]

− 2τRikjp∇pf∇kf

so finally, we get

(∂t + ∆)Hij = [Hij − 2H2
ij]/τ − 2∇kHij∇kf − RickiHkj − RickjHki − 2RipjqH

pq

− τ [2∆Ricij − 2gpqRicipRicjq + 4RicpqRipjq −∇2
ijR− Ricij/τ ]

+ 2τ(∇iRicjk +∇jRicik − 2∇kRicij)∇kf − 2τRipjq∇pf∇qf .

Notice that the second and third lines gives the Hamilton’s Harnack quadratic with a wrong
term −Ricij/τ .

3.4.2. Computation II: Back–Ricci Flow. Suppose that ut = −∆u − Ru and
u > 0, we want to show the nonpositivity of the term

∇2
ijf − Rij −

gij
2τ

for f = − log u which satisfies

ft = −∆f + |∇f |2 + R .
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Equivalently, if we had chosen f = log u we can show the positivity of

∇2
ijf + Rij +

gij
2τ

for f = log u which satisfies

ft = −∆f − |∇f |2 − R .

• Evolution equations for Ricci tensor and scalar curvature under back–Ricci flow:

∂tRicij = −(∆Ricij + 2RicpqRipjq − 2gpqRicipRicqj)

∂tR = −(∆R + 2|Ric|2) .

• Evolution equations for Christoffel symbols under back–Ricci flow:

∂tΓ
k
ij = gkl(∇iRicjl +∇jRicil −∇lRicij) .

We set fi = ∇if , fij = ∇2
ijf and Lij = fij+Ricij, Hij = τLij+gij/2 = τ [fij+Ricij]+gij/2,

(∂t + ∆)Hij = − Lij + Ricij

+ τ [∆fij +∇2
ijft − (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

+ τ [∂tRicij + ∆Ricij]

= − fij + τ [∆fij −∇2
ij∆f −∇2

ij|∇f |2 − (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

= − fij + τ [(∇iRicjk +∇jRicik −∇kRicij)∇kf + gpqRicjpfiq + gpqRicipfqj − 2Ripjqf
pq]

+ τ [−∇2
ij|∇f |2 − (∇iRicjk +∇jRicik −∇kRicij)∇kf ]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

= − fij + τ [gpqRicjpfiq + gpqRicipfqj − 2Ripjqf
pq −∇2

ij|∇f |2]
− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2

ijR]

= − fij + τ [gpqRicjpfiq + gpqRicipfqj − 2Ripjqf
pq]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

− τ [2fipfjp + 2∇3
ijkf∇kf ]

= − fij + τ [gpqRicjpfiq + gpqRicipfqj − 2Ripjqf
pq]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

− τ [2fipfjp + 2∇3
kijf∇kf + 2Ripjq∇pf∇qf ] .

Suppose now that at time t > 0, the tensor Hij (which goes +∞ as t → T−) get its
“last” zero eigenvalue at some point (p, t) in space and time, with V i unit zero eigenvector.
We extend V i in space such that ∇V (p) = ∇2V (p) = 0 and constant in time. Then if
Z = HijV

iV j we have that Z has a global minimum on M × [t, T ] at (p, t). At such point
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we have Z = 0, ∇Z = 0 and ∆Z ≥ 0, hence, fijV
iV j = −RicijV

iV j − 1/2τ , and as
∇Z = 0, ∇kfijV

iV j = −∇kRicijV
iV j. Then

0 ≤ ∂tZ + ∆Z = (∂tHij + ∆Hij)V
iV j

= {−fij + τ [gpqRicjpfiq + gpqRicipfqj − 2Ripjqf
pq]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

− τ [2fipfjp + 2∇3
kijf∇kf + 2Ripjq∇pf∇qf ]}V iV j

= {Ricij + gij/2τ + τ [−2Ric2ij − Ricij/τ + 2RicpqRipjq + Ricij/τ ]

− τ [2RicpqRipjq − 2gpqRicipRicqj +∇2
ijR]

− τ [2Ric2ij + 2Ricij/τ + gij/2τ
2 − 2∇kRicij∇kf + 2Ripjq∇pf∇qf ]}V iV j

= {−Ricij − τ [2Ric2ij +∇2
ijR− 2∇kRicij∇kf + 2Ripjq∇pf∇qf ]}V iV j

= − τ{∇2
ijR + 2Ric2ij + Ricij/τ − 2∇kRicij∇kf + 2Ripjq∇pf∇qf ]}V iV j .

By this computation, it follows that we would get a contradiction by maximum principle,
if the following Hamilton–Harnack type inequality is true.

∇2
ijR + 2Ric2ij + Ricij/τ − 2∇kRicijU

k + 2RipjqU
pU q ≥ 0 .

See [31] and also [11].

3.4.3. Dimension 2. In the special two–dimensional case of a surface with bounded
and positive scalar curvature this inequality holds, see [6, Chapter 15, Section 3].
If a positive function u satisfies

ut = −∆u− Ru

for a closed curve moving by its curvature k inside a surface evolving by gt = 2Ric = Rg,
we have

d

dt

(√
τ

∫
γ

u ds

)
≤ −
√
τ

∫
γ

∣∣k−∇⊥ log u
∣∣2 u ds ,

where ν is the unit normal to the curve γ.



CHAPTER 4

Maximizing Huisken’s Functional

4.1. Maximizing Huisken’s Monotonicity Formula

Let (M,φ(·, t)) to be a one parameter family of immersions of an n-dimensional smooth
hypersurface in Rn+1, with second fundamental form and mean curvature respectively
denoted by A and H.
According to (1.4.9), we call the quantity

(4.1.1)
√

4π(T − t)
∫
M

u dµt(x)

the Huisken’s functional (evaluated on a suitable function u). Within the spirit of Hamil-
ton’s extension of the Huisken’s monotonicity formula, we want to obtain informations on
the MCF of M by maximizing the Huisken’s functional on the largest class of admissible
functions.

Definition 4.1.1. Let φ : M → Rn+1 be a smooth, compact, immersed hypersurface.
Given τ > 0, we consider the family Fτ of smooth positive functions u : Rn+1 → R such
that

∫
Rn+1 u dx = 1 and there exists a smooth positive solution of the problem{

vt = −∆v in Rn+1 × [0, τ) ,

v(x, 0) = u(x) for every p ∈ Rn+1 .

Then, we define the following quantity

σ(φ, τ) = sup
u∈Fτ

√
4πτ

∫
M

u dµ .

It is important to notice that heat kernel KRn+1(x, τ) = e−
|x−y|2

4τ

(4πτ)(n+1)/2 of Rn+1 evaluated at

time τ > 0 and centered at the point y ∈ Rn+1 clearly belongs to the family Fτ . As an
immediate consequence, we have that the quantity σ(φ, τ) is positive and precisely, for
every p ∈ Rn+1 and τ > 0,

σ(φ, τ) ≥
√

4πτ

∫
M

e−
|x−y|2

4τ

(4πτ)(n+1)/2
dµ(x) =

∫
M

e−
|x−y|2

4τ

(4πτ)n/2
dµ(x) > 0 ,

37



38 4. MAXIMIZING HUISKEN’S FUNCTIONAL

which is the quantity of the “classical” Huisken’s monotonicity formula. Hence,

(4.1.2) σ(φ, τ) ≥ sup
y∈Rn+1

∫
M

e−
|x−y|2

4τ

(4πτ)n/2
dµ(x) > 0 .

We now want to show that this inequality is actually an equality, which would mean that
in order to maximize the Huisken’s functional we can take the sup only on heat kernels.
Moreover, by the assumed compactness of M this would also imply that the supremum
would be a maximum.
We work out some properties of the functions u ∈ Fτ .

Let us to start by recalling the integrated version of Li–Yau Harnack inequality (see [26]).

Proposition 4.1.2 (Li–Yau integral Harnack inequality). Let u : Rn+1 × (0, T ) → R
be a smooth positive solution of heat equation, then for every 0 < t ≤ s < T we have

u(x, t) ≤ u(y, s)
(s
t

)(n+1)/2

e
|x−y|2
4(s−t)

Since the functions v : Rn+1 × [0, τ) → R associated to any u ∈ Fτ are positive solutions
of the backward heat equation, such inequality reads, for 0 ≤ s ≤ t < τ ,

v(x, t) ≤ v(y, s)

(
τ − s
τ − t

)(n+1)/2

e
|x−y|2
4(t−s) .

This estimate, together with the uniqueness theorem for positive solution of the heat
equation (see again [26]), implies that the function u = v(·, 0) is obtained by convolution
of the function v(·, t) with the forward heat kernel at time t > 0. This fact implies that the
condition

∫
Rn+1 v(x, t) dx = 1 holds for every t ∈ [0, τ), and that every derivative of every

function v is bounded in the strip [0, τ − ε], for every ε > 0.

Lemma 4.1.3. The functions v(·, t) weakly∗ converge as probability measures, as t→ τ ,
to some positive unit measure λ on Rn+1 such that

(4.1.3) v(x, t) =

∫
Rn+1

e−
|x−y|2
4(τ−t)

[4π(τ − t)](n+1)/2
dλ(y) .

Conversely, every probability measure λ, by convolution with the heat kernel, gives rise to
a function v such that v(·, τ) ∈ Fτ , the most interesting case being λ = δp for p ∈ Rn+1

Proof. Indeed, we know that for every t ∈ [0, τ) and s ∈ (t, τ)

v(x, t) =

∫
Rn+1

v(y, s)
e
|x−y|2
4(t−s)

[4π(s− t)](n+1)/2
dx ,

hence, choosing a sequence of times si ↗ τ such that the measures v(·, si)Ln+1 weakly∗

converge to some measure λ. Since e
|x−y|2
4(t−s)

[4π(s−t)](n+1)/2 converges uniformly to e
−|x−y|

2

4(τ−t)

[4π(τ−t)](n+1)/2 on
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Rn+1 as s→ τ , we get equality (4.1.3) .

This representation formula also implies that the limit measure λ is unique and that actu-
ally lims→τ v(·, s)Ln+1 = λ in the weak∗ convergence of measures on Rn+1.

Finally, we show that |λ| = 1. This follows by Fubini–Tonelli’s theorem for positive product
measures, as

∫
Rn+1 u(x) dx = 1,

1 =

∫
Rn+1

u(x) dx =

∫
Rn+1

∫
Rn+1

e−
|x−y|2

4τ

[4πτ ](n+1)/2
dλ(y) dx

=

∫
Rn+1

∫
Rn+1

e−
|x−y|2

4τ

[4πτ ](n+1)/2
dx dλ(y)

=

∫
Rn+1

dλ(y) = |λ| .

�

By this discussion it follows that the family Fτ consists of the functions

u(x, t) =

∫
Rn+1

e−
|x−y|2

4τ

[4πτ ](n+1)/2
dλ(y) ,

where λ varies among the convex set of Borel probability measures on Rn+1 (which is
weak∗–compact).
As a consequence of this fact, since the integral

√
4πτ

∫
M
u dµ is a linear functional in the

function u, the sup in defining σ(φ, τ) can be taken considering only the extremal points
of the above convex, which are the delta measures in Rn+1. Consequently, the functions u
to be considered for the maximization process can be restricted to be heat kernels at time
τ > 0. Thus, it is then easy to conclude that, being the hypersurface M is compact in
Rn+1, the sup is actually a maximum.

Proposition 4.1.4. The quantity σ(φ, τ) is given by

σ(φ, τ) = max
y∈Rn+1

∫
M

e−
|x−p|2

4τ

(4πτ)n/2
dµ(x) .

It is also easy to check that

σ(φ, τ) = sup
y∈Rn+1

∫
M

e−
|x−y|2

4τ

(4πτ)n/2
dµ(x) ≤

∫
M

1

(4πτ)n/2
dµ(x) ≤ Area(M)

(4πτ)n/2
.

We want now to study the scaling properties of σ.

Proposition 4.1.5 (Rescaling Invariance). For every λ > 0 we have

σ(λφ, λ2τ) = σ(φ, τ)
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Proof. Let u ∈ Fτ and v : Rn+1 × [0, τ)→ R the associated solution of the backward
heat equation. Consider the rescaled function ũ(y) = u(y/λ)λ−(n+1). Using the change of
variable x = λ−(n+1)y, it is easy to see that∫

Rn+1

ũ(y) dy = λ−(n+1)

∫
Rn+1

u(y/λ) dy =

∫
Rn+1

u(x) dx = 1 .

Moreover, the function ṽ(y, s) = v(y/λ, s/λ2)λ−(n+1) is a positive solution of the backward
heat equation on the time interval λ2τ , hence ũ ∈ Fλ2τ .
Now, with a straightforward computation, we see that

√
4πλ2τ

∫
M

ũ dµλφ =
√

4πτ

∫
M

u dµφ ,

for every smooth immersion of a compact hypersurface φ : M → Rn+1. The statement
clearly follows. �

By formula (1.4.9), as the second term vanishes when v is a backward heat kernel, it follows
that if φ : M × [0, T )→ Rn+1 is the MCF of a compact hypersurface M , we have

d

dt

[√
2(C − t)

∫
M

KRn+1(x, p, C − t) dµt(x)
]

= −
√

2(C − t)
∫
M

KRn+1(x, p, C − t)|H− (x− p)⊥/2(C − t)|2 dµt(x)

which is clearly negative in the time interval [0,min{C, T}).

Proposition 4.1.6 (Monotonicity and Differentiability). Along a MCF, φ : M ×
[0, T )→ Rn+1, if τ(t) = C − t for some constant C > 0, the quantity σ(φt, τ) is monotone
nonincreasing in the time interval [0,min{C, T}), hence it is differentiable almost every-
where.
Moreover, letting yτ a point in Rn+1 such that KRn+1(x, yτ , τ) is one of maximizer for
σ(φt, τ(t)) of Proposition 4.1.4, we have for almost every t ∈ [0,min{C, T}),

(4.1.4)
d

dt
σ(φt, τ) ≤ −

∫
M

e−
|x−yτ |2

4τ

(4πτ)n/2

∣∣∣∣H− 〈(x− yτ ), ν〉2τ

∣∣∣∣2 dµt
or, since this inequality has to be intended in distributional sense, for every 0 ≤ r < t ≤
min{C, T},

(4.1.5) σ(φr, τ(r))− σ(φt, τ(t)) ≥
∫ t

r

∫
M

e−
|x−yτ(s)|

2

4τ(s)

(4πτ(s))n/2

∣∣∣∣H− 〈(x− yτ(s)), ν〉2τ(s)

∣∣∣∣2 dµs ds
Proof. As the function σ(φt, τ) is the maximum of monotone nonincreasing smooth

functions, it also must be monotone nonincreasing. Thus, it is differentiable at almost
every time t ∈ [0,min{C, T}).
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The last assertion is standard, using Hamilton’s trick (see [17]) to exchange the sup and
derivative operations. �

Remark 4.1.7. It is interesting to notice that the quantity σ can be defined also for any
n–dimensional countably rectifiable subset S of Rn+1, by substituting in the definition the
term

∫
M
u dµ with

∫
S
u dHn, where Hn is the n–dimensional Hausdorff measure (possibly

counting multiplicities). If then S is the support of a compact rectifiable varifold, with
finite Area, moving by mean curvature according to Brakke’s definition (see [3]), Huisken’s
monotonicity formula holds. Hence, the previous proposition holds too.

Definition 4.1.8. Under the same hypothesis we define, for τ = C − t with C ≤ T ,

Σ(C) = lim
t→C−

σ(φt, τ) ,

and Σ = Σ(T ).

By the previous discussion, Σ ≥ supy∈Rn+1 Θ(y), where this latter quantity, that we will
call density function, is defined as

(4.1.6) Θ(y) = lim
t→T−

θ(y, t) = lim
t→T−

∫
M

e−
|x−p|2
4(T−t)

[4π(T − t)]n/2
dµt(x) ,

the existence of this limit for every p ∈ Rn+1 is an obvious consequence of Huisken’s
monotonicity formula.
Moreover, it is easy to prove the existence of maxy∈Rn+1 Θ(y).

Definition 4.1.9. Let φ : M → Rn+1 be a smooth, compact, immersed hypersurface.
Then we define

ν(φ) = sup
τ>0

σ(φ, τ) .

Proposition 4.1.10. The quantity ν(φ) is finite and actually reached by some τφ

Proof. Indeed, we have

lim
τ→0+

σ(φ, τ) = Θ(φ) > 0 ,

where Θ(φ) is the maximum (which clearly exists as M is compact) of the n–dimensional
density of φ(M) in Rn+1. Then, if φ is an embedding, Θ(φ) = 1, otherwise it will be the
highest multiplicity of the points of φ(M).
We show then that

lim
τ→+∞

σ(φ, τ) = 0 .

By the rescaling property of σ, we have σ(φ, τ) = σ(φ/
√

4πτ, 1/4π), hence we need to show
that

lim sup
τ→+∞

sup
u∈F1

∫
M√
4πτ

u dµ = 0 .
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Since we already know that any function u ∈ F1 satisfies 0 ≤ u(x) ≤ 1
(4π)(n+1)/2 , we have

lim sup
τ→+∞

sup
u∈F1

∫
M√
4πτ

u dµ ≤ lim sup
τ→+∞

Vol(M/
√

4πτ)

(4π)(n+1)/2
= lim sup

τ→+∞

Vol(M)

(4π)(2n+1)/2
τ−n/2 = 0 .

�

The following statement can be proved by the same argument of the proof of Proposition
(4.1.6).

Proposition 4.1.11 (Monotonicity and Differentiability – II). Along a MCF, φ : M ×
[0, T ) → Rn+1, the quantity above ν(φt) is monotone non increasing in the time interval
[0, T ), hence it is differentiable almost everywhere.
Moreover, letting pφ ∈ Rn+1 and τφ to be some of the maximizers whose existence is granted
by Propositions 4.1.4 and 4.1.10, we have for almost every t ∈ [0, T ),

(4.1.7)
d

dt
ν(φt) ≤ −

∫
M

e
−
|x−yφt |

2

4τφt

(4πτφt)
n/2

∣∣∣∣H− 〈(x− yφt), ν〉2τφt

∣∣∣∣2 dµt(x)

or, since this inequality has to be intended in distributional sense, for every 0 ≤ r < t < T ,

(4.1.8) ν(φr)− ν(φt) ≥
∫ t

r

∫
M

e
−
|x−yφs |

2

4τφs

(4πτφs)
n/2

∣∣∣∣H− 〈(x− yφs), ν〉2τφs

∣∣∣∣2 dµs(x) ds

It is important to observe that it is possible to go through all this analysis for a com-
pact, immersed hypersurface in a flat Riemannian manifold T. Moreover, if the original
hypersurface φ : M → Rn+1 is immersed in Rn+1, we can choose a Riemannian covering

map I : Rn+1 → T and consider the immersion φ̃ = I ◦ φ : M → T. Then, we define as
above, for every τ > 0, the family FT,τ of smooth positive functions u : T → R such that∫
T
u dx = 1 and there exists a smooth positive solution of the problem{

vt = −∆v in T× [0, τ)

v(y, 0) = u(x) for every y ∈ T .

Then, we define the following quantity

σT(φ, τ) = sup
u∈FT,τ

√
4πτ

∫
M̃

u dµ̃

where M̃ refers to the fact that we are considering the immersion φ̃ : M → T.
Notice that another possibility is simply to embed isometrically a convex set Ω ⊂ Rn+1

containing φ(M) in a flat Riemannian manifold T (during the mean curvature flow a
hypersurface φ initially contained in Ω stays “inside” for all the evolution).
As before, these quantities are well defined, finite, positive and monotonically decreasing
as long as φt moves by mean curvature.
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4.2. Applications

4.2.1. A No–Breathers Result.

Definition 4.2.1. A breather (following Perelman [32]) for the MCF in Rn+1 is a
smooth n–dimensional hypersurface evolving by MCF φ : M × [0, T ) → Rn+1, such that
there exists a time t > 0, an isometry L of Rn+1 and a positive constant λ ∈ R for which
φ(M, t) = λL(φ(M, 0)).

Remark 4.2.2. Notice that in the case of MCF is useless to consider nonshrinking
(steady or expanding) compact breathers because, by the comparison with evolving spheres,
they simply do not exist.

Theorem 4.2.3. Every compact breather is a homothetic solution to MCF

Proof. By the rescaling property of σ in Proposition 4.1.5, fixing C > 0 we have

σ(φ0, C) ≥ σ(φt, C − t) = σ(λφ0, C − t) = σ(φ0, (C − t)/λ2)

hence, if we choose C = t
1−λ2 we have C > t, as λ < 1 and (C − t)/λ2 = C. It follows that

σ(φ0, C) = σ(φt, C − t)

and (for such special C), by Proposition 4.1.6, if τ(t) = C − t∫ t

0

∫
M

e−
|x−yτ(t)|

2

4τ(t)

(4πτ(t))n/2

∣∣∣∣H− 〈(x− yτ(t)), ν〉2τ(t)

∣∣∣∣2 dµt dt = 0 .

This implies that there exists at least one value of t ∈ (0, t) such that H(x, t) = 〈(x−y),ν〉
2(C−t)

for some p ∈ Rn+1, which is the well known equation characterizing a homothetic solution
of MCF. �

This is the same argument to show that compact shrinking breathers of Ricci flow are
actually Ricci gradient solitons.
Recalling the monotone nondecreasing quantity µ of Perelman in [32], along a Ricci flow
g(t) of a compact, n–dimensional Riemannian manifold M ,

µ(g, τ) = inf∫
M u=1, u>0

∫
M

(
τ
[
R +

|∇u|2

u

]
−u log u− un

2
log [4πτ ]− un

)
dV .

By the rescaling property µ(λg, λτ) = µ(g, τ), if we have that g(t) = λdL∗g(0) for some
diffeomorphism L : M →M and 0 < λ < 1, fixing C > 0 we have

µ(g(0), C) ≤ µ(g(t), C − t) = µ(λdL∗g(0), C − t) = µ(λg(0), C − t) = µ(g(0), (C − t)/λ)

hence, if we choose C = t
1−λ we have C > t, as λ < 1 and (C − t)/λ = C. It follows that

µ(g(0), C) = µ(g(t), C − t)

and by the results of Perelman, g(t) is a shrinking soliton.
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4.2.2. Singularities. If φ : M × [0, T ) → Rn+1 is a MCF of a smooth, compact,
embedded hypersurface, it is well known that during the flow it remains embedded and
that there exists a finite maximal time T > 0 for the smooth existence, for which the
curvature A is unbounded as t↗ T .
Moreover for every t ∈ [0, T )

sup
p∈M
|A(p, t)| ≥ 1√

2(T − t)
.

If there exists a constant C > 0 such that also

sup
p∈M
|A(p, t)| ≤ C√

2(T − t)
.

we say that at T we have a type I singularity, otherwise we say the singularity is of type II.
We want to show that if at time T we have a singularity, the associated quantity Σ =
limt→T− σ(φt, τ) is larger than one.
Indeed, for every p ∈ Rn+1 such that there exists a sequence of points qi ∈ M and times
ti ↗ T with p = limi→∞ φ(qi, ti), we consider the function Θ(p) defined in equation (4.1.6).
By a simple semicontinuity argument, we can see that Θ(p) ≥ 1 for every p ∈ Rn+1 like
above, see [8, Corollary 4.20], hence, as Σ ≥ supp∈Rn+1 Θ(p) we get Σ ≥ 1.
If then Σ = 1, it forces Θ(p) = 1 for all such points p which implies, by the local regularity
result of White [39], that the flow cannot develop a singularity at time T (see also Ecker [8]).
Suppose now to have a type I singularity at time T .
By Proposition 4.1.6 we know that along this flow, for C = T , hence, τ = T − t,

σ(φr, T − r)− σ(φt, T − t) ≥
∫ t

r

∫
M

e−
|x−yT−s|

2

4(T−s)

[4π(T − s)]n/2

∣∣∣∣H− 〈x− yT−s, ν〉2(T − s)

∣∣∣∣2 dµs(x) ds

for every 0 ≤ r ≤ t ≤ T , hence,

(4.2.1) C(φ0) ≥ σ(φ0, T )− Σ ≥
∫ T

0

∫
M

e−
|x−yT−s|

2

4(T−s)

[4π(T − s)]n/2

∣∣∣∣H− 〈(x− yT−s), ν〉2(T − s)

∣∣∣∣2 dµs(x) ds .

Rescaling every hypersurface φt as in [21], around the point yT−t as follows,

φ̃s(q) =
φ(q, t(s))− yT−t(s)√

2(T − t(s))
s = s(t) = −1

2
log(T − t)

and changing variables in formula (4.2.1), we get

(4.2.2) C ≥
∫
M

e−
|y|2
2 dµ̃− 1

2
log T ≥

∫ +∞

− 1
2
log T

∫
M

e−
|y|2
2 |H̃ + 〈y | ν̃〉|2 dµ̃s(y) ds .

Reasoning like in [21] and [36] (or [37]), we obtain that if the singularity is of type I,

the curvature of the rescaled hypersurfaces φ̃s : M → Rn+1 is uniformly bounded and any

sequence converges (up to a subsequence) to a limit embedded hypersurface M̃∞ satisfying



4.3. SHRINKING CURVES IN THE PLANE 45

H̃ = −〈x | ν̃〉 which is the defining equation for a homothetic solution of the MCF.
Moreover, By the estimates of Stone [36, Lemma 2.9], this limit hypersurface satisfies

1

(2π)n/2

∫
M̃∞

e−
|y|2
2 dHn(y) = lim

t→T−
σ(φt, T − t) = Σ > 1 .

Clearly, by this equation, this embedded limit hypersurface cannot be empty. Moreover, it
cannot be flat also, as it would be an hyperplane for the origin of Rn+1 (the only hyperplanes
satisfying H = −〈x | ν〉 must pass through the origin) as the above integral would be one.

Proposition 4.2.4. At a singular time T of the MCF of an embedded compact hyper-
surface the quantity Σ is larger than one.
If the singularity of the flow is of type I, any sequence of rescaled hypersurfaces (with
the maximal curvature) around the maximizer points for the Huisken’s functional at times
ti ↗ T converges, up to a subsequence, to a nonempty and nonflat, smooth embedded limit
hypersurface, satisfying H = −〈x | ν〉

4.3. Shrinking Curves in the Plane

In this section we apply the previous analysis the case to the motion by curvature of
embedded compact curves in the plane and we will give a short proof of the following
Grayson’s result:

Theorem 4.3.1. Before the singular time T each initially embedded compact curve
becomes convex

Using this theorem and the work by Gage and Hamilton [12, 13, 14], we can conclude
that after the curve has become convex, it stays convex along the flow and it shrinks into
a point becoming asymptotically circular.
Just to fix the notation, let γ : S1× [0, T )→ R2 be the curvature flow of a simple, smooth,
closed curve in the Euclidean plane, on a maximal time interval [0, T ). This implies that

(4.3.1) ∂tγ = kν ,

(4.3.2) kt = kss + k3 ,

(4.3.3) ∂tks = ksss + 4k2ks .

We also have that the following interior estimates hold:

Theorem 4.3.2 (Interior estimates of Ecker and Huisken [9], see also [22]). Suppose
that in a ball B2R(x0) the curve γt, for t ∈ [0, τ) is a graph of a function over 〈e1〉 and let
v = 〈ν | e2〉−1 > 0 at time t = 0.
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• Letting φ(x, t) = R2 − |x− x0|2 − 2t, if φ+ denotes the positive part of φ, we have

(4.3.4) v(x, t)φ+(x, t) ≤ sup
x∈γ0

v(x, 0)φ+(x, 0)

for every t ∈ [0, τ) and x ∈ γt, as long as v(x, t) is defined everywhere on the
support of φ+.
• For arbitrary θ ∈ [0, 1) we have the estimate

(4.3.5) sup
γt∩BθR(x0)

k2 ≤ C(1− θ)−2
(

1

R2
+

1

t

)
sup

BR(x0)×[0,τ)
v4

for all t ∈ [0, τ). The constant C is independent of t and γt

For the case of curves evolving in the plane, we also have the following properties:

Theorem 4.3.3 (Huisken’s embeddedness measure [23]). Let Lt the length of γt ⊂ R2

and consider the function Φt : γt × γt → R given by

Φt(x, y) =

{
π|x−y|
Lt

/ sin πdt(x,y)
Lt

if x 6= y,

1 if x = y ,

where dt(x, y) is the geodesic distance inside γt.
For every t ∈ [0, T ), we define the following infimum, which is actually a minimum by
compactness for closed curves,

E(t) = inf
x,y∈γt

Φt(x, y) .

Then, if the initial closed curve γ0 is embedded, the function E(t) is uniformly bounded
below by a positive constant depending only on γ0, for every t ∈ [0, T ).
As the function E(t) is positive if and only if γt is embedded, a simple closed curve stays
embedded during all the flow

Lemma 4.3.4 (Stone [36]). Let BR a ball of radius R > 0 in R2, then the following
estimates on the family of curves γ̃r hold uniformly for r ∈ [−1

2
log T,+∞),

(1) There exist a constant C independent of BR such that H1(γ̃r∩BR) ≤ CeR
2/2 where

H1 is the one–dimensional Hausdorff measure in R2.
(2) For any ε > 0 there exists a uniform radius R = R(ε,Length(γ0), T ) such that∫

γ̃r\BR(0)
e−
|y|2
2 ds ≤ ε

Lemma 4.3.5. For every x0 ∈ S ⊂ R2 where

S = {x ∈ R2 | ∃ ti ↗ T and αi ∈ S1 such that γti(αi)→ x} ,

we have Θ(x0) ≥ 1.
The set S is non empty and compact, hence, µ(t) ≥ 1 for every t ∈ [0, T ) and Σ ≥ 1
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From the results in the previous section, it follows that for every family of disjoint intervals
(ai, bi) ⊂ [−1

2
log T,+∞) such that

∑
i∈N(bi−ai) = +∞ we can find a sequence ri ∈ (ai, bi)

such that

(4.3.6) lim
i→∞

1√
2π

∫
γ̃ri

e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds = 0

and

(4.3.7) lim
i→∞

1√
2π

∫
γ̃ri

e−
|y|2
2 ds = lim

i→∞
µ(t(ri)) = Σ .

Clearly, the sequence ri converges monotonically increasing to +∞.
From the estimate (4.3.6) on the local length, it follows that the sequence of curves γ̃ri has
curvatures locally equibounded in L2. Hence, we can extract a subsequence (not relabeled)
that, after a possible reparametrization, converges in C1

loc
to a limit curve γ̃∞. Such curve

satisfies k̃ + 〈x | ν̃〉 = 0, as the integral
∫
γ̃
e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds is lower semicontinuous

under C1
loc

–convergence and it is embedded, indeed, the Huisken’s quantity E is scaling
invariant and upper semicontinuous under the C1

loc
–convergence of curves, hence, it is

bounded below also for the limit curve by a positive constant, implying that it has no self–
intersections. Moreover, by a bootstrap argument, γ̃∞ is smooth, then by the classification
result, it is either a line through the origin or the unit circle.
Since the second point of the lemma implies that

lim
i→∞

1√
2π

∫
γ̃qi

e−
|y|2
2 ds =

1√
2π

∫
γ̃∞

e−
|y|2
2 ds ,

and the first limit is equal to Σ, by equation (4.3.7), we conclude that if Σ > 1 then γ̃∞ is
the unit circle, if Σ = 1 then γ̃∞ is a line through the origin.

Grayson’s Theorem is then a consequence of the analysis of the following two cases.

The Case Σ = 1.
For every x0 ∈ S we have Θ(x0) = 1. Then, this case can be excluded by the following
general local regularity theorem of White [39] (holding in any dimension).

Theorem 4.3.6. There exists a constant ε > 0 such that if a point x0 ∈ S satisfies
Θ(x0) < 1 + ε, then there exists a radius R > 0 such that in BR(x0)× [0, T ) ⊂ R2 ×R the
curvature is uniformly bounded

Clearly, this theorem gives a contradiction, as (by a compactness argument) it implies that
the curvature is uniformly bounded as t → T−, which is impossible as T is the maximal
time of existence of the flow.
In our special case of simple curves, the fact that Σ = 1 implies the boundedness of the
curvature around every x0 ∈ S also follows by the interior estimates of Ecker and Huisken.
We give a sketch of the proof.
As Θ(x0) = 1, by the C1

loc
–convergence of the rescaled curves, for every R > 2 there is

a sequence of times ti ↗ T and a line L passing for x0 such that every curve γti is a
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graph over L in the ball B
2R
√

2(T−ti)
(x0), indeed, the distance of γti ∩B2R

√
2(T−ti)

(x0) from

L ∩B
2R
√

2(T−ti)
(x0) in the C1–norm goes to zero.

Then, supposing that x0 = 0 and that L is 〈e1〉 in R2, the pieces of curves γt ∩B2R
√

2(T−ti)
can be represented as a graph of a function at least for a small time. Moreover, the quantity
v(x, t) = 〈ν(x, t) | e2〉−1 is small at time t = ti and x ∈ γti ∩ B2R

√
2(T−ti)

. As the sphere

∂B√
2(T+ε−t) is moving by curvature and, choosing ε > 0 small enough, at time t = ti it is

contained in the ball B
2R
√

2(T−ti)
, by a geometric comparison argument it is not possible

that other parts of the moving curve “get into” the ball B√
2(T+ε−t) at time t > ti. Hence,

the only way that γt∩B√2(T+ε−t) can possibly stop to be a graph is that the tangent vector

to such graph becomes vertical at some time, equivalently, the function v is not bounded.
The interior estimates of Ecker and Huisken (4.3.4) and (4.3.5) exclude this fact if we start
with v small enough. Hence, with a suitable choice of one of the times ti, the curvature
of γt for t ∈ [ti, T ) is bounded in the ball B√

2(T+ε−t), in particular it is bounded in

B√2ε(x0) ⊂ B√
2(T+ε−t) for every t ∈ [ti, T ).

By a compactness argument, the curvature is then uniformly bounded as t → T−, which
is impossible as T is the maximal time of existence of the flow.

Remark 4.3.7. The key point in getting a bound on the curvature by means of this
argument is due to the C1

loc
–convergence of the rescaled curves to a line (by the L2 bound

on the curvature), which cannot be deduced in higher dimensions.

The Case Σ > 1.
By what we said above we can find ri ↗ +∞ such that the curves γri converge in C1

loc
to

the unit circle. Moreover, being the unit circle compact, the convergence is actually C1

with equibounded curvatures in L2 (not only locally).
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Fixing i ∈ N and letting ρ = r − ri, we look at the evolution of the following quantity,

d

dr

∫
γ̃r

(k̃2 + ρk̃2s) ds = 2(T − t) d
dt

∫
γt

√
2(T − t) k2 ds+

∫
γ̃r

k̃2s ds

+ 2(T − t)ρ d
dt

∫
γt

(
√

2(T − t))3 k2s ds

= −
√

2(T − t)
∫
γt

k2 ds+ (
√

2(T − t))3
∫
γt

(2kkss + k4) ds+

∫
γ̃r

k̃2s ds

− 3(
√

2(T − t))
3
ρ

∫
γt

k2s ds+ (
√

2(T − t))
5
ρ

∫
γt

(2ksksss + 7k2k2s) ds

=

∫
γ̃r

[−k̃2 + 2k̃k̃ss + k̃4 + k̃2s − 3ρk̃2s + 2ρk̃sk̃sss + 7ρk̃2k̃2s ] ds

≤
∫
γ̃r

[−k̃2s + k̃4 − 2ρk̃2ss + 7ρk̃2k̃2s ] ds

=

∫
γ̃r

[−k̃2s + k̃4 + ρ(−2k̃2ss + 7k̃3k̃ss/3)] ds

≤
∫
γ̃r

[−k̃2s + k̃4 + ρ(−2k̃2ss + Ck̃6 + k̃2ss)] ds

=

∫
γ̃r

[−k̃2s + k̃4 + Cρk̃6] ds .

Using the following interpolation inequalities for any closed curve in the plane of length L
(see Aubin [1, p. 93]),

‖k̃‖4L4 ≤ C‖k̃s‖L2‖k̃‖3L2 +
C

L
‖k̃‖4L2 and ‖k̃‖6L6 ≤ C‖k̃s‖2L2‖k̃‖4L2 +

C

L2
‖k̃‖6L2

which imply, by means of Young inequality,∫
γ̃r

k̃4 ds ≤ 1/2

∫
γ̃r

k̃2s ds+ C

(∫
γ̃r

k̃2 ds

)3

+

(∫
γ̃r

k̃2 ds

)3

+
C

L3(γ̃r)

Cρ

∫
γ̃r

k̃6 ds ≤
(
ρ

∫
γ̃r

k̃2s ds

)3

+ C

(∫
γ̃r

k̃2 ds

)3

+
C

L2(γ̃r)

(∫
γ̃r

k̃2 ds

)3

,

we can conclude, as we know that L(γ̃r) ≥
∫
γ̃r
e−
|y|2
2 ds ≥

√
2π,

d

dr

∫
γ̃r

(k̃2 + ρk̃2s) ds ≤ C

(∫
γ̃r

k̃2 ds

)3

+

(
ρ

∫
γ̃r

k̃2s ds

)3

+ C ≤ C

(∫
γ̃r

(k̃2 + ρk̃2s) ds

)3

+ C ,

for a constant C independent of r ≥ ri and i ∈ N.

Integrating this differential inequality for the quantity Qi(r) =
∫
γ̃r

(k̃2 + (r − ri)k̃2s) ds in

the interval [ri, ri + δ] it is easy to see that if δ > 0 is small enough, we have Qi(r) ≤
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C(δ,Qi(ri)) = C
(
δ,
∫
γ̃ri
k̃2 ds

)
= C(δ), for every r ∈ [ri, ri + 2δ], as the curves γ̃ri have

uniformly bounded curvature in L2. Hence, if r ∈ [ri + δ, ri + 2δ] we have the estimate∫
γ̃r

(k̃2 + δk̃2s/2) ds ≤
∫
γ̃r

(k̃2 + (r − ri)k̃2s) ds ≤ C(δ)

which implies ∫
γ̃r

k̃2 ds ≤ C(δ) and

∫
γ̃r

k̃2s ds ≤
2C(δ)

δ
.

We can now, as before, find a sequence of values qi ∈ [ri + δ/2, ri + δ] such that

lim
i→∞

1√
2π

∫
γ̃qi

e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds = 0 .

As this new sequence of rescaled curves γ̃qi also satisfies the length estimate (4.3.6) and

has k̃ and k̃s uniformly bounded in L2, we can extract another subsequence (not relabeled)
that, after a possible reparametrization, converges in C2 to a limit curve which is still the
unit circle.
Then, the curves γ̃qi definitely have positive curvature, hence, they are convex. This means
that the same hold for γt for some time t, which is Grayson’s result.

Remark 4.3.8. Pushing this analysis a little forward, one can also prove along the
same lines the asymptotic convergence of the full sequence of rescaled curves to the unit
circle in C∞, as done by Gage and Hamilton in [13, 14].

Remark 4.3.9. We remark that the interesting point of this line in proving Grayson’s
Theorem (or equivalently, in analysing the possible singularities) is the fact that we did
not distinguish between type I and type II singularities (the type I case is characterized

by the estimate maxγt k
2 ≤ C/

√
2(T − t) for some constant C). Indeed, the curvature

of the rescaled curves can be unbounded, but the control in L2
loc

is enough to imply the
C1

loc
–convergence which is sufficient to have the smoothness of the limit curve. This is one

of the main reasons why this unitary line of analysis is difficult to be pursued in higher
dimensions, where the control of the mean curvature in L2

loc
is not strong enough to imme-

diately give the C1
loc

–convergence.



CHAPTER 5

Evolution of Codimension one Submanifolds with Boundary

Let M be a smooth n-manifold with boundary ∂M and φ0 a smooth embedding of the
pair (M,∂M) into Rn+1. We are interested in studying the following evolution equation
for which we suppose to have existence and uniqueness of the solution for small times:

∂tφ(·, t) = Hν + Λ = ∆φ+ Λ

φ(·, 0) = φ0 .
(5.0.1)

where Λ is a smooth tangent vector field on φ(M, t).

Remark 5.0.10. It is necessary to consider a manifold with non-empty boundary, oth-
erwise any motion with an arbitrary tangential speed component and normal speed compo-
nent equal to the mean curvature vector is just a (possibly time dependent) reparametriza-
tion of the MCF.

5.1. Evolution of geometric Quantities

First of all we compute the evolution of the induced metric on M :

∂tgij = ∂t〈∂iφ, ∂jφ〉 = 〈∂i(Hν + Λ), ∂jφ〉+ 〈∂iφ, ∂j(Hν + Λ)〉
= H〈∂iν, ∂jφ〉+ H〈∂iφ, ∂jν〉+ 〈∂iΛ, ∂jφ〉+ 〈∂jΛ, ∂iφ〉

(1.2.4) = −2Hhij + 〈∂iΛ, ∂jφ〉+ 〈∂jΛ∂iφ〉
= −2Hhij + ∂i〈Λ, ∂jφ〉+ ∂j〈Λ, ∂iφ〉 − 2〈Λ, ∂2ijφ〉

(1.2.4) = −2Hhij + ∂i〈Λ, ∂jφ〉+ ∂j〈Λ, ∂iφ〉 − 2〈Λ,Γkij∂kφ〉
= −2Hhij +∇iωj +∇jωi =: Sij ,

(5.1.1)

where, given any smooth vector field X on M , ω is the one form defined by

(5.1.2) ω(X) := 〈Λ, X〉 .
If we consider (∂1φ, ..., ∂nφ) as a local basis for the tangent space at a generic point on
φ(M, t), we can write Λ and ω in components as follows:

(5.1.3) Λ = λk∂kφ , ωk = λrgrk ;

while, recalling that the metric is a parallel tensor field, we have
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(5.1.4) ∇pωq = ∇pλ
lglq .

If we set ∂tg
ij = T ij, since gijg

jk = δki we have

∂tgijg
jk = Sijg

jk + gijT
jk = 0 ,

which immediately implies that

T ij = −Sij .
Applying this result to the evolution equation (5.1.1), we obtain

(5.1.5) ∂tg
ij = 2Hhij − (∇pωq +∇qωp)g

pigjq .

By means of a direct computation, we have

∂t
√
g =

√
g

2
tr(gil∂tglj) =

√
g

2
gij(−2Hhij + ∂iωj + ∂jωi)

=
√
g(div Λ− H2)

(5.1.6)

Using (5.1.1) and normal coordinates, we can compute the evolution for the Christoffel
symbols of the Levi-Civita connection:

∂tΓ
k
ij =

1

2
gkl(∇iSlj +∇jSli −∇lSij)

(using(1.2.6)) = −Hgkl∇ihjl − gkl(∇iHhjl +∇jHhil −∇lHhij)

+
1

2
gkl(∇i∇lωj −∇l∇iωj +∇j∇lωi −∇l∇jωi +∇i∇jωl +∇j∇iωl)

(using(1.2.5)) = −Hgkl∇ihjl − gkl(∇iHhjl +∇jHhil −∇lHhij)

+
1

2
gkl[(2hijh

p
l − hpihjl − hpjhli)ωp +∇i∇jωl +∇j∇iωl]

(using(5.1.3)) = −Hgkl∇lhij − gkl(∇iHhjl +∇jHhil −∇lHhij)

+
1

2
gkl[2hijhrl − hrihjl − hrjhli]λ

r +
1

2
[∇i∇jλ

k +∇j∇iλ
k] .

(5.1.7)

To compute the evolution for the normal vector, it is sufficient to compute the following
quantities:

〈∂tν, ∂iφ〉 = −〈ν, ∂i∂tφ〉 = −〈ν, ∂i(Hν + Λ)〉
= −∂iH− 〈ν, ∂iΛ〉
= −∂iH + 〈∂iν,Λ〉 = −∂iH− 〈hilglp∂pφ,Λ〉 = −∂iH− hikλ

k ,

(5.1.8)
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which implies

(5.1.9) ∂tν = −∇H− V ,
where

(5.1.10) V := λphkpg
kl∂lφ = λphlp∂lφ .

It is important to notice that:

〈ν, ∂2ijΛ〉 = 〈ν, ∂2ij(λk∂kφ)〉
= 〈ν, ∂iλk∂2kjφ+ ∂jλ

k∂2ikφ+ λk∂3ijkφ〉
= ∂iλ

khjk + ∂jλ
khik + λk∂ihjk + λkΓljkhil .

(5.1.11)

We can now compute the evolution equation for the second fundamental form of the em-
bedding:

Lemma 5.1.1. The following evolution equation holds:

(5.1.12) ∂thij = ∆hij − 2Hhjlg
lkhki + |A|2hij + λk∇khij +∇iλ

khjk +∇jλ
khik

Proof. Using (5.1.9)-(5.1.11) we have

∂thij = ∂t〈ν, ∂2ijφ〉 = 〈−∇H− V, ∂2ijφ〉+ 〈ν, ∂2ij(Hν + Λ)〉
= ∂2ijH + H〈ν, ∂i(hijgkl∂lφ)〉+ 〈ν, ∂2ijΛ〉 − 〈∇H + V, ∂2ijφ〉
= ∆hij − 2Hhjlg

lkhki + |A|2hij + 〈ν, ∂2ijΛ〉 − 〈V, ∂2ijφ〉
= ∆hij − 2Hhjlg

lkhki + |A|2hij + ∂iλ
khjk + ∂jλ

khik

+ λk∂ihjk + λkΓljkhil − λkΓrijhkr
= ∆hij − 2Hhjlg

lkhki + |A|2hij + ∂iλ
khjk + ∂jλ

khik

+ λk∇khij + λk(Γrikhrj + Γrjkhri)

= ∆hij − 2Hhjlg
lkhki + |A|2hij + λk∇khij +∇iλ

khjk +∇jλ
khik

(5.1.13)

�

Contracting with the metric tensor, we obtain the evolution equation for the mean curva-
ture:

∂tH = ∂t(g
ijhij)

= [2Hhij − (∇pλ
sgsq +∇qλ

sgsp)g
pigjq]hij

+ [∆hij − 2hipg
pqhqj + |A|2hij + λk∇khij +∇iλ

khkj +∇jλ
khki]g

ij

= ∆H + |A|2H + λk∇kH .

(5.1.14)
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Using (5.1.5) and (5.1.12) we compute the evolution of the squared norm of the second
fundamental form:

∂t|A|2 = ∂t(g
iagjbhijhab)

= 2[2Hhia − (∇pλ
agpi +∇qλ

igqa)]hijhab + 2[∆hij − 2hipg
pqhqj + |A|2hij]habgiagjb

+ 2[λk∇khij +∇iλ
khkj +∇jλ

khki]habg
iagjb

= ∆|A|2 − 2|∇A|2 + 2|A|4 + λk∇k|A|2 .

(5.1.15)

We now want to find out how the evolution of the quantity |∇A|2 does depend on λ and
its spatial derivatives.

Lemma 5.1.2. The covariant derivative of the second fundamental form evolves accord-
ing to

∂t∇khij = ∇k∆hij − 2H∇k[hiphqj]g
pq +∇k[|A|2hij]

− grl[∇iHhkl +∇lHhki]hrj − grl[∇jHhkl +∇lHhkj]hri

+ λs∇s∇khij +∇kλ
s∇shij +∇iλ

s∇khsj +∇jλ
s∇khsi

(5.1.16)

Notation . From now on, the symbol =̂ will mean equality modulo terms which do
not contain λ and its spatial derivatives of any order.

Proof. Is is easy to check that

∂t∇khij = ∇k∂thij − ∂tΓrkihrj − ∂tΓrkjhri .(5.1.17)

Let us compute the three terms on the rhs of (5.1.17). From (5.1.12) we have:

∇k∂thij = ∇k[∆hij − 2Hhipg
pqhqj + |A|2hij]

+∇k[λ
s∇shij +∇iλ

shsj +∇jλ
shsi] ,

(5.1.18)

while (5.1.7) gives us:

−∂tΓrkihrj = [Hgrl∇khil + grl(∇kHhil −∇iHhkl −∇lHhki)]hrj

− 1

2
grl[2hkihsl − hskhli − hsihlk]hrjλ

s − 1

2
[∇i∇kλ

r +∇k∇iλ
r]hrj

(using(1.2.5)) = [Hgrl∇khil + grl(∇kHhil −∇iHhkl −∇lHhki)]hrj

+
1

2
[Riks

r − 2Rksi
r]hrjλ

s −∇k∇iλ
rhrj −

1

2
Riks

rhrjλ
s

= [Hgrl∇khil + grl(∇kHhil −∇iHhkl −∇lHhki)]hrj −∇k∇iλ
rhrj −Rksi

rhrjλ
s

(5.1.19)
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and analogously,

−∂tΓrkjhri = [Hgrl∇khjl + grl(∇kHhjl −∇jHhkl −∇lHhkj)]hri

−∇k∇jλ
rhri −Rksj

rhriλ
s(5.1.20)

Adding (5.1.18), (5.1.19) and (5.1.20), (5.1.17) we have the thesis.
�

We are now able to state and prove

Lemma 5.1.3. The squared norm of the second fundamental form evolves as

(5.1.21) ∂t|∇A|2=̂λs∇s|∇A|2

Proof. Remembering that

|∇A|2 := ∇khij∇chabg
kcgiagjb

and using (5.1.16) together with (5.1.5), we obtain

∂t|∇A|2 = 2 ∂t∇khij∇chabg
kcgiagjb +∇khij∇chab ∂t(g

kcgiagjb)

=̂ 2[λs∇s∇khij +∇kλ
s∇shij +∇iλ

s∇khsj∇jλ
s +∇khsi]∇chab

−∇khij∇chab ((∇pλ
kgpc +∇pl

cgpk)giagjb)

−∇khij∇chab (gkc(∇pλ
igpa +∇pλ

agpi)gjb)

−∇khij∇chab (gkcgia(∇pλ
jgpb +∇pλ

bgpj))

= 2λs∇s∇khij∇chabg
kcgiagjb

= λs∇s|∇A|2 .
�

Notation . Given an integer α ≥ 1, we set

(5.1.22) (∇(α)A)kα···k−1 := ∇kα · · · ∇k1hij ,

where we have set k0 = i and k−1 = j.

It is possible to check the following commutation rule for the time derivative and the
covariant differentiation:

(5.1.23) ∂t∇(α)
kα···k1hk0k−1 = ∇kα∂t∇

(α−1)
kα−1···k1hk0k−1 −

α−1∑
β=−1

∂tΓ
r
kαkβ

(∇(α−1)A)kα−1···kβ+1r···k−1 .

Looking at (5.1.12) and (5.1.16), we now prove the following result.
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Lemma 5.1.4. For any α ≥ 0 we have

(5.1.24) ∂t(∇(α)A)=̂λs∇s∇(α)A +
α∑

γ=−1

∇kγλ
s(∇(α)A)kα···kγ+1skγ−1···k−1

Notation . Throughout all the computations we will use the following shortcuts:

Γakβc ∗ (∇(α)A)(aβ)
:=

α∑
β=−1

Γakβc∇kα · · · ∇kβ+1
∇a∇kβ−1

· · · ∇k1hk0k−1

∇kγλ
s ∗ (∇(α)A)(sγ)

:=
α∑

γ=−1

∇kγλ
s∇kα · · · ∇kβ+1

∇ka∇kβ−1
· · · ∇k1hk0k−1

With this notation, equation (5.1.24) becomes

(5.1.25) ∂t(∇(α)A)=̂λs∇s∇(α)A +∇kγλ
s ∗ (∇(α)A)(sγ)

.

Proof. By (5.1.12) and (5.1.16), our claim is true for α = 0 and α = 1 respectively. We
now suppose that (5.1.24) is true for a generic α and we prove that it holds for α + 1 as
well.
Using the commutation rule (5.1.23) and the inductive claim (5.1.24), collecting the terms
as in (5.1.18), (5.1.19) and (5.1.20) we obtain

∂t(∇(α+1)A)=̂∇kα+1 [λ
s∇s∇(α)A +∇kγλ

s ∗ (∇αA)(sγ)
]− ∂tΓrkα+1kβ

∗ (∇(α))(rβ)

=̂∇kα+1λ
s∇s∇(α)A + λs∇s∇(α+1)A +∇kγλ

s ∗ ∇kα+1(∇(α)A)(sγ)

+ λsRkα+1skβ
r ∗ (∇(α)A)(rβ)

+∇kα+1∇kγλ
s ∗ (∇(α)A)(sγ)

− 1

2
grl[2hkα+1kβhls − hkα+1lhkβs − hkα+1shkβ l]λ

s ∗ (∇(α)A)(rβ)

− [∇kα+1∇kβλ
r − 1

2
Rkα+1kβs

rλs] ∗ (∇(α)A)(rβ)

= ∇kα+1λ
s∇s∇(α)A + λs∇s∇(α+1)A +∇kγλ

s ∗ ∇kα+1(∇(α)A)(sγ)
,

(5.1.26)

which is (5.1.24) for α + 1.
�

Using Lemma 5.1.4 we have

Theorem 5.1.5. For any integer α ≥ 0 we have:

(5.1.27) ∂t|∇(α)A|2=̂λs∇s|∇(α)A|2
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Proof. The proof consists of a computation which makes use of (5.1.24), (5.1.7) and
(5.1.25). During the proof we will use the following conventions:

∇(α)
k A := ∇kα · · · ∇k1hk0k−1 ,

g〈k,c〉 := gkαcα · · · gk1c1gk0c0gk−1c−1 .

We can now compute

∂t|∇(α)A|2 = 2∂t∇(α)
k A ∇(α)

c A g〈k,c〉 +∇(α)
k A ∇(α)

c A ∂tg
〈k,c〉

=̂2[λs∇s∇(α)
k A +∇kγλ

s ∗ (∇(α)
k A)(sγ)

]∇(α)
c A g〈k,c〉

−∇(α)
k A ∇(α)

c A
α∑

β=−1

(gkαcα · · · gkβ+1cβ+1(∇pλ
kβgpcβ +∇pλ

cβgpkβ) · · · gk−1c−1)

= 2λs∇s∇(α)
k A ∇(α)

c A g〈k,c〉

= λs∇s|∇(α)A|2 .
�

5.2. Partitions of the three dimensional Euclidean Space

In this section we give a possible setting for the evolution of partitions of the Euclidean
three dimensional space with immersions of three copies of the bidimensional disk with their
boundaries suitably identified. All our definitions are given in the spirit of generalizing the
work done in [28] to higher dimensional analogues.
Let D2 be the open unit disk in the Euclidean plane and Φ : D2 → R3 × R3 × R3,
a triple of smooth immersions of D2 into R3, which written in components becomes

Φ = (φ1, φ2, φ3), φα : D2 → R3 for α ∈ {1, 2, 3} .
We denote the three correspondent induced Riemannian metrics on φα(D2) with αgij.
Let Ψ : ∂D2 → R3 × R3 × R3 to be three given smooth embeddings of ∂D2 in R3 and set
Gij = (1gij,

2 gij,
3 gij) with inverse Gij = (1g

ij
, 2g

ij
, 3g

ij
).

If Φ = (φ1, φ2, φ3) : D2 → R3, we will use the following notation for considering the triple
of the associated mean curvature vectors:

H(s) = ∆gφ(s) = (∆gφ1(s),∆gφ2(s),∆gφ3(s)) = H(s)ν(s) ,

where in components we have

(5.2.1) ∆αgφ
α :=α gij

(
∂2φα

∂si∂sj
− Γhij

φα

∂sh

)
and ν is the outward unit normal vector.
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Let now Φ : D2 → R3 × R3 × R3 be a given initial datum

(5.2.2)


Φt = GijΦij in D2 × (0, T ) ,
Φ = Ψ on ∂D2 × (0, T ) ,∑3

k=1 ν
α = (0, 0, 0) on ∂D2 × (0, T ) ,

Φ(0) = Φ in D2 .

The first equation shorthands three systems of equations, which expressed in coordinates
read:

φαt = αgijφαij =: Hνα + Λα, α ∈ {1, 2, 3}
where, according to (5.2.1),

Λα = αgij αΓhij
∂ϕαh
∂sh

=: λk∂kφ ∈ να⊥, α ∈ {1, 2, 3}

and

(5.2.3) λk = gijΓkij .

In Section 5.1 we deduced all the evolution equations for the geometric quantities associated
to a generic immersion φ of a codimension-one submanifold into an Euclidean space. It is
important at this point to notice that in principle there would be an obstacle at applying
those computations to our case: from (5.2.3) it is actually clear that Λ is not a vector
field (since the Christoffel symbols are not the component of any tensor). In the case of
immersions of D2, since we have a single well defined global chart, the non tensoriality of
Λ does not affect the results. Moreover, even if Λ is not a tensor, we can formally define its
covariant derivative with respect to the Levi-Civita connection by mean of its expression in
components and check that all the algebraic properties which are used in the computations
hold true.
We can now ready to compute the evolution for the components of Λ:

Lemma 5.2.1. The components of Λ evolve according to

∂tλ
k = ∆λk − 2Γkpq∇rλ

qgpr + [hpqhsl − hsphql]gpqgklλs

+ 2gpqgkl∇pHhql + 2HhpqΓkpq
(5.2.4)

Proof. According to (5.2.3) we have

∂tλ
k = ∂tg

ijΓkij + gij∂tΓ
k
ij.

Using (5.1.5) and (5.1.7) we obtain

∂tg
ijΓkij = [2Hhij − (∇pλ

jgpi +∇qλ
igqj)]Γkij(5.2.5)

and



5.2. PARTITIONS OF THE THREE DIMENSIONAL EUCLIDEAN SPACE 59

gij∂tΓ
k
ij = −gijgkl(∇iHhjl +∇jHhil) + gklHhpl ωp − h

p
ih

i
lg
klωp + gkl∆ωl .(5.2.6)

The thesis follows summing the last two equations.
�

We can now compute the evolution of the squared norm of the tangential speed Λ.

Lemma 5.2.2. The following equation holds:

∂t|Λ|2 = ∆|Λ|2 − 2|∇Λ|2 + 2〈λl∇lΛ,Λ〉 − 4Γkij∇pλ
jλlgipgkl − 2λrλshsihjrg

ij

+ 4∇iHhjrg
ijgkr + 4HhijΓkijλ

lgkl .
(5.2.7)

Proof. We begin by observing that

∆|Λ|2 = gij∇i∇j(λ
kλlgkl) = 2∆λkλlgkl + 2|∇Λ|2 .(5.2.8)

Now, using (5.2.4) and (5.2.8), we can compute

∂t|Λ|2 = ∂t(λ
kλlgkl) = 2∂tλ

lλkgkl + λkλl∂tgkl

= 2[∆λk − 2Γkij∇pλ
jgip + (hijhsr − hsihjr)gijgkrλs + 2gijgkr∇iHhjr + 2HhijΓkij]λ

lgkl

− [2Hhkl − (∇kλ
rgrl +∇lλ

rgrk)]λ
kλl

= ∆|Λ|2 − 2|∇Λ|2 + 2〈λl∇lΛ,Λ〉 − 4Γkij∇pλ
jλlgipgkl − 2λrλshsihjrg

ij

+ 4∇iHhjrg
ijgkr + 4HhijΓkijλ

lgkl ,

(5.2.9)

which is the thesis.
�

We now can compute the evolution for the gradient of the tangential speed.

Lemma 5.2.3. The following evolution equation holds true:

∂t∇kλ
i = ∆∇kλ

i + λr∇r∇kλ
i + λl∇s(hkphql)g

pqgsi

− λl∇l(hkphqs)g
pqgsi − λs∇k(hsphql)g

pqgil +H(his∇kλ
s − hlk∇lλ

i)

+ 2[hqlhkr − hklhqr]∇pλ
lgpqgri + hkphqs∇lλ

igpqgls − hsphql∇kλ
sgpqgil

− 2∇k[Γ
i
pq∇rλ

qgrp] + 2∇k[Hh
pqΓipq] .

(5.2.10)

Proof. We begin by noticing that we have the following commutation rule:
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∇i∆λ
k = gpq∇p∇i∇qλ

k + gpqRipq
l∇lλ

k − gpqRipl
k∇qλ

l

= ∆∇iλ
k − gpq∇p[Riql

kλl]−Ri
l∇lλ

k − gpqRipl
k∇qλ

l

= ∆∇iλ
k + [∇lRis −∇sRil]λ

kgks + gpqRqil
k∇pλ

l −Ri
l∇lλ

k − gpqRipl
k∇qλ

l

= ∆∇iλ
k + [∇lHhis −∇sHhil +∇s(hiphql)g

pq −∇l(hiphqs)g
pq]λlgsk

+ 2gpq[hqlhi
k − hilhqk]∇pλ

l −Hhil∇lλ
k + hiphqsg

lsgpq∇lλ
k .

(5.2.11)

Using (5.2.4) and (5.2.11) we can compute as follows:

∇k∂tλ
i = ∇k∆λ

i − 2∇k[Γ
i
pq∇rλ

qgrp] +∇k[(hpqhsl − hsphql)λs]gpqgil + 2∇k[Hh
pqΓIpq]

= ∆∇kλ
i + [∇lHhks −∇sHhkl +∇s(hkphql)g

pq −∇l(hkphqs)g
pq]λlgsi

+ 2gpqgis[hqlhks − hklhqs]∇pλ
l −Hhlk∇lλ

i + hkphqsg
pqgls∇lλ

i − 2∇k[Γ
i
pq∇rλ

qgpr]

+∇k[(hpqhsl − hsphql)λs]gpqgil + 2∇k[Hh
pqΓipq] .

(5.2.12)

Moreover,

∂tΓ
i
krλ

r = −Hgil∇khlrλ
r − gil(∇kHhrl +∇rHhkl −∇lHhkr)λ

r

+
1

2
gil[2hkrhsl − hskhlr − hsrhlk]λsλr +

1

2
[2∇r∇kλ

i −Rkrs
iλs]λr .

(5.2.13)

Adding the two last equations and simplifying we obtain the thesis.
�

We would like to conclude making some observations on the methods that we will use to
go on with the analysis.

Remark 5.2.4. From equation (5.1.24) we can see that it is sufficient to control uni-
formly the norm of the second fundamental form and of the vector field Λ to have a control
on the derivatives of all orders on A itself. Anyway, from (5.2.7), we can see that if we want
to control |Λ|, we have to control its higher covariant derivatives too. If we now suppose
to have existence and uniqueness for small times in (5.2.2), we can let the partition evolve
until |A| does not blow up. In case that during this evolution |Λ| blows up, since |A| is
still uniformly bounded , we can always reparametrize and go on with the evolution.

Remark 5.2.5. If we want to obtain stronger results, since we are studying the evolu-
tion of manifolds with boundary, we can not use maximum principles in a straightforward
way, as it is done in the case of curvature motion of closed manifolds. We will be forced
to use integral estimates for the relevant quantities as it has been done in [28].



Bibliography

1. T. Aubin, Some nonlinear problems in Riemannian geometry, Springer–Verlag, 1998.
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