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Abstract. We present a simple example of toughening mechanism in the
homogenization of composites with soft inclusions, produced by crack de-
flection at microscopic level. We show that the mechanism is connected to
the irreversibility of the crack process. Because of that it cannot be detected
through the standard homogenization tool of the Γ-convergence.

1. introduction

In this paper we focus on the toughening mechanism in composites, and more precisely on that
produced by crack-path deflection at microscopic level. It occurs whenever interactions between
the crack and an inclusion cause the crack site to evolve in the matrix out of the path expected
in an homogeneous material. In this way, the energy required to open and enlarge a crack in
the material increases.

Our aim is to replicate this mechanism within the framework of the weak formulation of Grif-
fith’s theory of brittle fracture (see [1]) with ad hoc model. According to the weak formulation,
we assumed that the displacement u belongs to the class of Special functions with Bounded
Variation. Within this functional framework, the crack site is identified with the set Su of the
discontinuities of u, the orientation of the crack is described by the normal νu to Su, and the
opening of the crack is identified with the jump [u]. At microscopic level, the equilibrium config-
urations of the system are reached by minimizing the sum Fε(u) of the elastic energy stored in
the uncracked part of the body, and the surface energy dissipated to open the crack. The small
parameter ε takes into account the size of the heterogeneity of the composite. It is important to
determine, at macroscopic level, the effective material properties, i.e., to replace the composite
with an ideal homogeneous material. Among the various properties, we are interested in the
toughness. Since the analysis rests on the study of equilibrium states, or minimizers, of the
energy Fε, it is natural to use the Γ-convergence as homogenization tool in order to describe
such an effective property. However, the toughening mechanisms cannot be captured by the
Γ-limit F of the family (Fε), as the size ε of the heterogeneities goes to zero. On the other hand,
our analysis enlightens what is the missing information, i.e., that the mechanism is originated
by the irreversibility of the crack process. When we add this constraint, then the asymptotic
behavior of the family (Fε) reproduces the toughening.

Our model is very simple: it is a composite constituted by a brittle matrix with soft inclusions
arranged at microscopic level in a sort of chessboard structure (see Figure 1). The matrix and
the soft inclusions have different elastic moduli, but the same toughness, here normalized to one.

At the microscale the surface energy part of Fε depends only on the length of the crack
H1(Su), while the Γ-limit F is of cohesive type, in the meaning that the surface energy depends
also on the opening of the crack:

∫

Su

g([u], νu) dH1
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for a certain surface energy density g. From the physical point of view, the fracture energy is not
completely dissipated at crack initiation but, due to the interaction between the crack’s faces,
also during the opening of the crack.

Because of that the surface energy associate to different displacements with the same crack
site could be different. Assume for instance to have a piecewise constant displacement u having
a horizontal crack, i.e., νu is constantly equal to the vertical direction e, and with opening [u] = t
between the crack’s faces. How is F (u) determined? From the operative point of view, we have
to build a family of displacements (uε) converging to u on one side, and minimizing the energy
Fε on the other one. Then F (u) will be the limit of (Fε(uε)) as ε goes to zero. Now, when t is
small, at the microscopic level the soft inclusions can be stretched paying a few amount of bulk
energy also in case of high gradients. In a certain sense, from the energetic point of view, the
material behaves as if there are perforations in place of soft inclusion. Because of that, the best
way to approximate u is with a zig-zag configuration (see Figures 2-4), i.e., a displacement uε
having crack site going from a soft inclusion to another one in diagonal (and not in horizontal)
and that stretches the soft regions without breaking them (a sort of bridges between the two
opposite faces of the macroscopic crack). In particular this shows that the limit model F has
a positive activation threshold g(0+, e) = 1/

√
2 strictly smaller than that of Fε, which is equal

to one (as expected, because the presence of the soft inclusions). On the other hand, when one
has a displacement v has before, but with an opening [v] = s large, it is no longer energetically
convenient to stretch the soft inclusions instead of breaking them. Because of that the best way
to approximate v is with v itself. Indeed g(s, e) = 1 for s larger than a certain threshold. So,
the Γ-limit does no detect any increment of the toughness! However, the point is that if v is an
evolution of u, then in building the approximation (vε) for v we have to take into account the
irreversibility of the crack process, i.e., at every fixed ε the crack site of vε has to contain the
crack site of uε:

Svε ⊃ Suε .

If we add this constraint, then we cannot set vε = v but we can only modify the previous
sequence uε by keeping the zig-zag configuration in the matrix and extending the crack inside
the soft inclusions. In this way we obtain an effective surface energy density geff such that
geff(s, e) = 1/2 + 1/

√
2 > 1 = g(s, e) for s large: there is an increment in resistance to large

crack-opening and to further growth.

2. Setting of the problem and presentation of the results

Let Ω be an open bounded subset of R2. The space of special functions of bounded variation on
Ω will be denoted by SBV (Ω). For the general theory we refer to [2]. For every u ∈ SBV (Ω),
∇u denotes the approximate gradient of u, Su the approximate discontinuity set of u (the crack
site), and νu the generalized normal to Su, which is defined up to the sign. If u+ and u− are
the traces of u on the sides of Su determined by νu, the difference u+ − u− is called the jump
of u (the opening of the crack) and is denoted by [u].

Our ambient space is the subspace of SBV (Ω) given by

SBV 2(Ω) := {u ∈ SBV (Ω): ∇u ∈ L2(Ω;R2) and H1(Su) < +∞}.
We consider also the larger space of generalized special functions of bounded variation on Ω,
GSBV (Ω), which is made of all the integrable functions u : Ω → R whose truncations um :=
(u∧m)∨(−m) belong to SBV (Ω) for every m ∈ N. By analogy with the case of SBV functions,
we say that u ∈ GSBV 2(Ω) if u ∈ GSBV (Ω), ∇u ∈ L2(Ω;R2) and H1(Su) < +∞.

For r > 0 we denote by Qr the square with side-length r, centered at the origin, i.e., Qr :=
(−r/2, r/2)2; while we simply write Q in place of Q1. Finally, we indicate by ut the function on
Q defined by

ut := tχ(−1/2,1/2)×(0,1/2).
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Figure 1. In black, the sets D (on the left) and R
2 \ P (on the right).

In what follows the Γ-convergence of functionals is always understood with respect to the
strong L1-topology. For the general theory about Γ-convergence we refer to the short presenta-
tion in [5] and the references therein.

Let us introduce our model. We set (see Figure 1)

D := Q 1

4

∪
(

Q 1

8

±
(

7
16 ,

7
16

)

)

∪
(

Q 1

8

±
(

7
16 ,− 7

16

)

)

,

P := R
2 \

⋃

i∈Z2

(D + i).

We are interested in the asymptotic behavior of the functionals Fε : L
1(Ω) → [0,+∞] defined

as

Fε(u,Ω) :=







∫

Ω∩εP
|∇u|2 dx+ ε

∫

Ω\εP
|∇u|2 dx+H1(Su) if u ∈ SBV 2(Ω),

+∞ otherwise in L1(Ω).

(2.1)

In the setting of linearized elasticity and antiplane shear, Ω represents the cross section of a cylin-
drical body in its reference configuration, while Fε(u,Ω) represents the energy corresponding to
a displacement u : Ω → R. The body is a periodic brittle composite made of two constituents
having different elastic properties. The constituent located in Ω \ εP has elastic modulus rep-
resented by the vanishing sequence ε. For this reason, in what follows, Ω \ εP is referred as the
soft inclusions.

We also consider the functionals F̂ε : L
1(Ω) → [0,+∞] given by

F̂ε(u,Ω) :=







∫

Ω∩εP
|∇u|2 dx+H1(Su ∩ Ω ∩ εP ) if u|Ω∩εP ∈ SBV 2(Ω ∩ εP ),

+∞ otherwise in L1(Ω).

From the physical point of view Ω \ εP represents a perforation. The asymptotic behavior of

functionals like F̂ε has been extensively studied in [4, 6, 7]. Specifically, it has been shown that

(F̂ε) Γ-converges to

F̂ (u,Ω) :=







∫

Ω
f(∇u) dx+

∫

Su

ĝ(νu) dH1 if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω),
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p1

p2 p3

p4

Figure 2. The trapezoid T (on the left, in dark grey) and the set Zε ∩ εP with
the “zig-zag” configuration (on the right, in grey).

where f : R2 → [0,+∞) and ĝ : S1 → [0,+∞) satisfy

c1|ξ|2 ≤ f(ξ) ≤ |ξ|2 for every ξ ∈ R
2,

c2 ≤ ĝ(ν) ≤ 1 for every ν ∈ S
1,

(2.2)

for some constants c1, c2>0 only depending on P . The function f is a quadratic form given by
the following homogenization formula (see [4, Theorem 4]):

f(ξ) = inf

{
∫

Q∩P
|ξ +∇w|2 dx : w ∈ H1

per(Q)

}

. (2.3)

Also the function ĝ is given through an homogenization formula (see again [4, Theorem 4]). In

particular, denoted by e the (unitary) vertical vector, one has ĝ(e) = 1/
√
2. Indeed,

ĝ(e) = lim
ε→0+

inf
{

H1(Sw) : w ∈ SBV0,1(Q ∩ εP )
}

, (2.4)

where SBV0,1(Q ∩ εP ) is the family of functions w ∈ SBV (Q ∩ εP ) such that ∇w = 0 a.e. in
Q∩εP , with w(x) = 1 [respect. 0] on a neighborhood of ∂Q∩{x2 ≥ 0} [respect. ∂Q∩{x2 < 0}].
The functions w ∈ SBV0,1(Q ∩ εP ) having the shortest discontinuity set are those such that
Sw connects in diagonals two close perforations. Among all the possible configurations, let
us consider the simplest one. We define the trapezoid T of vertices p1 := (1/8, 1/8), p2 :=
(3/8, 3/8), p3 := (3/8, 5/8), p4 := (7/8, 1/8) (see Figure 2), and the sets

Z := [0, 1) × [18 ,+∞) \ T,
Zε := Q ∩ ε

⋃

i∈Z

(

Z + (i, 0)
)

. (2.5)

Then, if ε−1 is an integer, the function w = χZε∩εP belongs to SBV0,1(Q∩εP ). Its discontinuity
set Sw is a “zig-zag” configuration (see Figure 2) and H1(Sw) = 1/

√
2. If ε−1 is not an integer,

it is enough to slightly modify w in a neighborhood of the points (−1/2, 0) and (1/2, 0), possibly
increasing Sw of a quantity vanishing as ε.

If instead we take w = χ(−1/2,1/2)×(0,1/2)∩εP , then Sw is constituted by horizontal segments

and H1(Sw) = 3/4. The fact that a horizontal discontinuity set is longer than a diagonal one
will be crucial in our analysis.
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Figure 3. In grey the set Zk \ (Rk ∪ R̃k) where uk takes value t, in dark grey

the set Rk ∪ R̃k where uk is affine, and in black the discontinuity set Suk
.

The asymptotic behavior of functionals like Fε has been instead studied only more recently
in [3]. Specifically, it can be shown that for (Fε) the following result holds. Since the microge-
ometry considered in [3] is slightly different from the one considered here, we give a short proof
highlighting the steps that differ from the original one.

Theorem 1. For every decreasing sequence of positive numbers converging to zero, there exists
a subsequence (εk) such that (Fεk) Γ-converges to a functional F : L1(Ω) → [0,+∞] of the form

F (u,Ω) :=







∫

Ω
f(∇u) dx+

∫

Su

g([u], νu) dH1 if u ∈ GSBV 2(Ω),

+∞ otherwise in L1(Ω),

where f is as in (2.2) and g : R × S
1 → [0,+∞) is a Borel function satisfying the following

properties:

(i) for every t 6= 0 and ν ∈ S
1

ĝ(ν) ≤ g(t, ν) ≤ 1;

(ii) for any fixed ν ∈ S
1, g(·, ν) is nondecreasing and left-continuous in (0,+∞) and satisfies

the symmetry condition g(−t,−ν) = g(t, ν);

(iii) for every t > 0, g(·, e) satisfies the estimate from above

g(t, e) ≤ 1√
2
+ 2

√
2 t. (2.6)

In particular, g(0+, e) = ĝ(e) = 1/
√
2. Moreover, there exists a threshold t0 > 0 such

that
g(t, e) = 1 for t ≥ t0. (2.7)

Proof. The integral representation of the Γ-limit and points (i) and (ii) follow as a particular
case of [3, Theorem 1]. We divide the proof of (iii) into two steps: one for (2.6) and one for (2.7).

Estimate (2.6). Since g(·, e) ≤ 1, it is enough to show that g(t, e) ≤ 1/
√
2 + 2

√
2 t whenever

t ≤ (
√
2− 1)/4. To this aim, consider the sets

R := (−1
8 ,

1
8 )× (18 − t√

2
, 18 )

R̃ := (38 ,
5
8)× (38 ,

3
8 + t√

2
)
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Figure 4. The profile of the function uk.

and

Rε := Q ∩ ε
⋃

i∈Z

(

R+ (i, 0)
)

R̃ε := Q ∩ ε
⋃

i∈Z

(

R̃+ (i, 0)
)

.

Then, with Zε as in (2.5), let (uk) ⊂ SBV 2(Q) be the sequence of “bridging” functions defined
as

uk(x) :=























t if x ∈ Zεk \ (Rεk ∪ R̃εk),

t−
√
2
8 +

√
2

εk
x2 if x ∈ Rεk ,

−3
√
2

8 +
√
2

εk
x2 if x ∈ R̃εk ,

0 if x ∈ Q \ (Zεk ∪Rεk ∪ R̃εk),

(see Figures 3 and 4). Note that with our choice of t we have R ⊂ Q1/4 and R̃ ⊂ Q1/4+(1/2, 1/2),

and therefore Rε ∪ R̃ε ⊂ Q \ εP . We clearly have uk → ut in L
1(Q); moreover

∫

Rεk

|∇uk|2 dx ≤ (⌊ 1
εk
⌋+ 1)

√
2 t and H1(Suk

) ≤ εk(⌊ 1
εk
⌋+ 1)

(

1√
2
+

√
2 t

)

.

Thus we readily deduce

g(t, e) = F (ut, Q) ≤ lim sup
k→+∞

Fεk(uk, Q) ≤ 1√
2
+ 2

√
2 t,

and hence the estimate from above.

Equality (2.7). Let

P̃ := R
2 \ 1

2

(

⋃

i∈Z
Q 1

2

+ i
)

and define F̃ε as Fε with P replaced by P̃ , cf. (2.1). Moreover, let F̃ be the Γ-limit of (F̃εk) and
g̃ its surface energy density. Then we can apply (a straightforward modification of) [3, Theorem

2] to F̃ε, obtaining that g̃ = 1 for t larger than a threshold t0. On the other hand, since P̃ ⊂ P ,

we have F̃ε ≤ Fε, which implies F̃ ≤ F and by locality g̃ ≤ g. �

Note that, while the function f is given by the homogenization formula (2.3) (and therefore
is independent of the subsequence), at the moment we are not able to provide an explicit
representation for the function g (and it could be dependent on the subsequence). In what
follows we fix a decreasing sequence (εk) of positive numbers such that (Fεk) Γ-converges to a
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functional F . Just in order to simplify the construction involved in our results, we assume that
(ε−1

k ) is is a sequence of odd integers. In this way for any fixed k the unitary cell Q is divided
precisely in periodicity cells of side εk, one centered in the origin.

We are mainly interested in the local minima of the Γ-limit F . Fixed t > 0 and given δ > 0,
denote by wt a solution to the problem











minF (w,Q) : w ∈ SBV 2(Q),

w = 0 in (−1/2, 1/2) × (−1/2,−δ/2),
w = t in (−1/2, 1/2) × (δ/2, 1/2).

(2.8)

Lemma 1. For any given t > 0 and given δ > 0, there exists a solution wt to the minimum
problem (2.8) constant in the horizontal direction, i.e.,

wt(x1, x2) = ŵt(x2) (2.9)

for a certain ŵt ∈ SBV 2((−1/2, 1/2)).

Proof. Since the energy decreases by truncation, in searching for solution to (2.8) we can always
assume the additional L∞-bound w(x) ∈ [0, t]. Then, the compactness in SBV and the direct
method of calculus of variations provide the existence of a solution w to (2.8). For any j ∈ N

and i ∈ {1, . . . , j} let Si
j be the open strip (−1/2+(i−1)/j,−1/2+i/j)×(−1/2, 1/2). Moreover,

let ij ∈ {1, . . . , j} be a solution to the problem

min
{

F (w,Si
j) : i = 1, . . . , j

}

.

We restrict w to S
ij
j , and then we extend it to Q by reflection with respect to the axes x1 =

−1/2 + i/j, i = 1, . . . , j − 1; we denote by vj such an extension. Because the symmetry
of the set P , g(s, (ν1, ν2)) = g(s, (−ν1, ν2)) for any s ∈ R and ν ∈ S

1. Therefore, we have
F (w,Q) = F (vj , Q) and vj is still a solution to (2.8). Again by compactness in SBV , up to a
subsequence vj converges to a certain v. By the lower semicontinuity of the functional F , v is
still a solution to (2.8). Moreover, since any vj is 2/j-periodic in the variable x1, the function v
depends only on x2 and it is the desired solution. �

In what follows we will work with solutions to (2.8) satisfying condition (2.9), because they are
easier to handle. Being f a quadratic form, if ŵt ∈ H1((−1/2, 1/2)), then ŵt has to be affine in
(−δ/2, δ/2). Noted that the function ut := tχ(−1/2,1/2)×(0,1/2) has energy F (ut, Q) = g(t, e) ≤ 1,
we deduce that for δ small enough ŵt presents a discontinuity, since the energy of an affine
function blows-up as δ goes to zero. Since g varies between 1/

√
2 and 1, ŵt cannot have more

than one discontinuity point, otherwise

F (wt, Q) ≥
√
2 > F (ut, Q).

Finally, again by minimality, if x̂2 is the discontinuity point of ŵt, we have that ŵt in affine in
(−δ/2, x̂2) and (x̂2, δ/2). The slopes of the function in this two intervals depend on f , g, t, and
δ. Note that, being g = g(t, e) definitively equal to 1 for t large, beyond a certain threshold tflat
it is not energetically favorable not to be flat in (−δ/2, x̂2) and (x̂2, δ/2), since the increment of
bulk energy is not compensated by the reduction of the surface energy. Therefore, ŵt = tχ(x̂2,1/2)

for t larger than tflat.
Let us now fix a small quantity η > 0 that we will use later. Since g(t, e) ≤ 1/

√
2 + 2

√
2 t,

there exists tinit = tinit(η) such that

F (ut, Q) = g(t, e) < 1√
2
+ η for t ∈ (0, tinit]. (2.10)

For what we said before, we can also choose δ = δ(t) so small that any solution wt to the problem
(2.8)-(2.9) has a horizontal discontinuity set (−1/2, 1/2) × {x̂2}. Note that the solution is not
unique, since the point x̂2 can vary. Now that t and δ are fixed as functions of η, let us also fix a
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̺

Figure 5. In grey the set T (on the left) and the set Tεk (on the right).

solution w = wt of the problem (2.8), and consider a recovery sequence (wk) for w with respect
to Fεk . By definition, Fεk(wk, Q) → F (w,Q) and wk → w strongly in L1 (and therefore weakly
in SBV ) as k goes to infinity.

Our main result is to show where the discontinuity set of wk concentrates for k going to
infinity. Let us introduce some other sets in order to better explain the geometrical setting.

We fix another small quantity ̺ ∈ (0, 1/8). We denote by T 1 the set given by the union
of two isosceles trapezoids sharing the same short base constituted by the segment R1 of end-
points (1/8, 1/8) and (3/8, 3/8). They have long base constituted respectively by the segment
of endpoints (1/8, 1/8 − ̺) and (3/8 + ̺, 3/8), and the segment of endpoints (1/8− ̺, 1/8) and
(3/8, 3/8 + ̺). We set T 3 := −T 1, while we denote by T 2 [respect. T 4] the reflection of T 1 with

respect to the axis {x1 = 0} [respect. {x2 = 0}]. Finally, we set T :=
⋃4

h=1 T
h (see Figure 5)

and
Tε := ε

⋃

i∈Z2

(T + i). (2.11)

Theorem 2. Given η > 0 and t ∈ (0, tinit], choose δ > 0 small enough so that the solutions to
the problem (2.8)-(2.9) are not affine and discontinuous. Let w be one of this solutions, with
discontinuity set (−1/2, 1/2)×{x̂2} for a certain x̂2 ∈ [−δ/2, δ/2], and (wk) one of its recovery
sequences. Then, given ̺ ∈ (0, 1/7) and defined Tε as in (2.11),

lim inf
k→+∞

H1(Swk
∩ Tεk) ≥

1√
2
− η

4̺
. (2.12)

Proof. The basic idea is that for t small the behaviors of Fεk and F̂εk are similar. For the Γ-limit

F̂ , the cell formula (2.4) suggests that the functions of a recovery sequence for w should have
the discontinuity set concentrate in Tε. Indeed, this is the best way to cut the hard region εP
(since it is thinner in the diagonals between two close soft inclusions). In order to simplify the
description of the proof, we assume x̂2 = 0.

First of all, let us define for each m ∈ M := (−1/2,−1/8) ∪ (1/8, 1/2) the fiber lm passing
through m. If m ∈ (1/8, 1/2), consider the points (see Figure 6)

p1 := (m, 0), p2 := (m,m− 1/8), p3 := (1/24 + 2m/3, 1/24 + 2m/3),

p4 := (m− 1/8,m), p5 := (m− 1/8, 1/2).

The point p3 belongs to the segment R1 of endpoints (1/8, 1/8) and (3/8, 3/8), while p2 belongs
to the segment S1 of endpoints (0, 1/8) and (1/2, 3/8). The middle point of R1 is p7 := (1/4, 1/4),
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p1

p2

p3

p4

p5

p6
p7

Figure 6. A couple of fibers lm.

while the middle point of S1 is p6 := (5/16, 3/16). The ratio between the distance of p3 from p7
and the distance of p2 from p6 is 2/3, i.e., the same ration between the lengths of R1 and S1.

We define l̃m as the union of the segments of endpoints (p1, p2), (p2, p3),..., (p4, p5), and then

lm := l̃m ∪ {(x1, x2) : (x1,−x2) ∈ l̃m}.
If m ∈ (−1/2,−1/8), we define lm via reflection:

lm := {(x1, x2) : (−x1, x2) ∈ l−m}.

Note that Q \D a.e.
=

⋃

{lm : m ∈M} and that the bundle of fibers undergo a sort of compression
of ratio 2/3 in passing from S1 ∪ S2 to R1 ∪ R2, where R2 [respect. S2] is the reflection of R1

[respect. S1] with respect to the axis {x1 = 0}. We also set R3 := −R1, while we denote by R4

the reflection of R3 with respect to the axis {x2 = 0}, and by R :=
⋃4

h=1R
h the union.

Finally, let us define the periodic and rescaled versions of the sets above:

Mε := ε
⋃

i∈Z
(M + i), Rε := ε

⋃

i∈Z2

(R+ i), (2.13)

and for m ∈Mε

lmε := ε
⋃

i∈Z
(l

m
ε
−[m

ε
] + i).

Note that εP
a.e.
=

⋃{lmε : m ∈ Mε}. In the next two steps we will show that Swk
intersects

asymptotically any fiber lmεk , m ∈ Mεk ∩ (−1/2, 1/2), and that such an intersection takes place
mainly close to Q ∩Rεk , in the region Q ∩ Tεk .
Step 1. Let us define

M̃εk :=
{

m ∈Mεk ∩ (−1/2, 1/2): lmεk ∩ Swk
= Ø

}

,

i.e., the set of the points m whose fibers lmεk do not intersect Swk
. We will show in this step that

M̃εk tends to vanish:

lim
k→∞

H1(M̃εk) = 0. (2.14)
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The key in this step is that along these fibers wk is regular, and therefore it cannot converge to
w, since it is not regular. We prove (2.14) by contradiction assuming that there exists λ > 0
and a subsequence not relabeled such that

H1(M̃εk) ≥ λ for any k ∈ N. (2.15)

First of all, we straighten the fibers. Fixed m ∈ Mε, we define ψε,m as the unique isometry
that transform lmε in the segment {m} × (−|lmε |/2, |lmε |/2) keeping the direction. Then, we
define ϕε,m : (−1/2, 1/2) → lmε by setting ϕε,m(s) := ψ−1

ε,m((m, |lmε |s)). We also assume that wk

coincides with its precise representative defined as in [2, Remark 3.79 and Corollary 3.80]. Then,

by [2, Theorems 3.28, 3.107 and 3.108], for a.e. m ∈ M̃εk the composition ωk,m := wk ◦ ϕεk,m is
a Sobolev map and its derivative is given by ω′

k,m = ∂1wk(ϕεk ,m)′1+∂2wk(ϕεk,m)′2. In particular,

since |ϕ′
εk ,m

| ≤ |lmε | ≤ 2, we have
∫

M̃εk

∫ 1/2

−1/2
|ω′

k,m|2 ds dm ≤ 4

∫

Q
|∇wk|2 dx.

Up to a subsequence, there exists a set W ⊂ Q of null measure such that wk → w pointwise in
Q \W . Fixed a ρ > 0, we select for each k ∈ N a mk ∈ M̃εk so that ωk,mk

is a Sobolev map,
H1(lmk

εk
∩W ) = 0 and

∫ 1/2

−1/2
|ω′

k,mk
|2 ds− ρ ≤ inf

m∈M̃εk

∫ 1/2

−1/2
|ω′

k,m|2 ds. (2.16)

By (2.15)-(2.16) the sequence (ω′
k,mk

) is bounded in L2((−1/2, 1/2),R2). On the other hand,

since wk → w pointwise in Q \W , (ωk,mk
) is also converging pointwise a.e. to a function with

discontinuity set {0} and this is a contradiction. Therefore (2.14) has to hold true.

Step 2. As we already said, in order to cut the bundle of fibers, the best choice is to make the
cut in Tε, and more precisely along the set Rε as defined in (2.13). Indeed, here the hard region
εP is thin just 1/

√
2. On the other hand, outside Tε the best choice is to make the cut along the

diagonal part of the boundary of Tε itself. Indeed, here the hard region εP is thin (1 + 4̺)/
√
2

(that it is smaller than 3/4, since ̺ < 1/7). The key in this step is the fact that the ratio of the
costs between the optimal cuts outside and inside Tε is 1 + 4̺.

Let us define
M1

εk
:=

{

m ∈Mεk ∩ (−1/2, 1/2): lmεk ∩ Swk
∩ Tεk 6= Ø

}

,

i.e., the set of the pointsm whose fibers lmεk intersect Swk
in Tεk , andM

2
εk

:= (Mεk∩(−1/2, 1/2))\
(M1

εk
∪ M̃εk). Note that by the previous step

lim
k→∞

H1(M1
εk
) +H1(M2

εk
) =

3

4
. (2.17)

The bundle of the fibers {lmε : m ∈ Mε ∩ (−1/2, 1/2)} has cross section 3/4 in Mε × {0}, 1/
√
2

in ε
⋃

i∈Z((R
1 ∪R2) + i), and (1 + 4̺)/

√
2 in ε

⋃

i∈Z((R̃
1 ∪ R̃2) + i), where R̃1 is the segment of

endpoints (1/8, 1/8 − ̺) and (3/8 + ̺, 3/8), and R̃2 is the reflection of R̃1 with respect to the
axis {x1 = 0}. Therefore, if we first project Swk

∩Tεk along the fibers on εk
⋃

i∈Z((R
1∪R2)+ i),

and then back to Mεk × {0}, we get the estimate

H1(Swk
∩ Tεk) ≥

2
√
2

3
H1(M1

εk
), (2.18)

while if we first project Swk
\ Tεk along the fibers on εk

⋃

i∈Z((R̃
1 ∪ R̃2) + i), and then back to

Mεk × {0}, we get the estimate

H1(Swk
\ Tεk) ≥ (1 + 4̺)

2
√
2

3
H1(M2

εk
). (2.19)
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p

3̺

x2 = x1 + ̺

Figure 7. In grey the set U .

We now prove that

lim inf
k→+∞

H1(M1
εk
) ≥ 3

4
− 3η

8
√
2̺
. (2.20)

This, together with (2.18) will provide (2.12). We proceed by contradiction assuming that (2.20)
is false. Thanks to (2.17), this is equivalent to assume

lim inf
k→+∞

H1(M2
εk
) ≥ 3η

8
√
2̺
.

Then, by using (2.18)-(2.19) and again (2.17),

F (w,Q) ≥ lim inf
k→+∞

H1(Swk
)

= lim inf
k→+∞

H1(Swk
∩ Tεk) +H1(Swk

\ Tεk)

≥ 2
√
2

3
lim inf
k→+∞

H1(M1
εk
) + (1 + 4̺)

2
√
2

3
lim inf
k→+∞

H1(M2
εk
)

=
1√
2
+ 4̺

2
√
2

3
lim inf
k→+∞

H1(M2
εk
) ≥ 1√

2
+ η.

On the other hand, by (2.10) we have, since w is a solution to (2.8), F (w,Q) < 1/
√
2 + η, thus

a contradiction. �

Remark 1. Note that while (2.12) just says that the discontinuity set is mainly localized in Tεk ,
(2.20) is stronger and it says that the discontinuity set is spread so to cut the fibers.

In particular, consider the set U := ((−1/2 + ̺,−1/8− ̺) ∪ (1/8 + ̺, 1/2 − ̺))× R and

Uε := ε
⋃

i∈Z
(U + (i, 0)).

The fiber lm intersects the straight line {x2 = x1 + ̺} (see Figure 7) at the point

p := (1/24 + 2m/3 + 8m̺/3− 4̺/3, 1/24 + 2m/3 + 8m̺/3− ̺/3).
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Figure 8. In grey the strips Si
k. On the right, in black, the set R2 \ P̃ .

Therefore, if 1/8 + 3̺ ≤ |m| ≤ 1/2− 3̺, then lm ∩ T ⊂ U . Let us define

M̃1
εk

:=
{

m ∈M1
εk
: 1/8 + 3̺ ≤ m

εk
− [mεk ] ≤ 1/2− 3̺

}

.

The set M̃1
εk

is constituted by points m whose fiber lmεk intersect Swk
in Tεk ∩Uεk, i.e., l

m
εk
∩Swk

∩
Tεk ∩ Uεk 6= Ø. Arguing as for (2.18) we get

H1(Swk
∩ Tεk ∩ Uεk) ≥

2
√
2

3
H1(M̃1

εk
).

By (2.20) we have also

lim inf
k→+∞

H1(M̃1
εk
) ≥ 3

4
− 3η

8
√
2̺

− 6̺

and then

lim inf
k→+∞

H1(Swk
∩ Tεk ∩ Uεk) ≥

1√
2
− η

4̺
− 4

√
2̺. (2.21)

As we observed before, when t is larger than a threshold tflat (depending on f , g and δ),
the solutions to the problem (2.8)-(2.9) have the form w = tχ(−1/2,1/2)×(x̂2,1/2) for some x̂2 ∈
(1/2, 1/2). Let us give for these solutions a complementary estimate to (2.21), in the sets Q\Uεk
and when t is large. The proof is based on [3, Theorem 2]. The point is that for t large at the
microscopic level it is energetically convenient to break also the soft inclusions, instead to stretch
them.

Theorem 3. let w := tχ(−1/2,1/2)×(x̂2,1/2) and (wk) be a sequence in SBV 2(Q) converging to v

in L1(Q). Given ̺ > 0, there exists a threshold tend = tend(̺) such that, if t ≥ tend, then

lim inf
k→+∞

Fεk(wk, Q \ Uεk) ≥
1

2
+ 4̺. (2.22)

Proof. Let Si
k be the open strip [(−εk(1/8 + ̺), 0)× (−1/2, 1/2)] + (εki, 0), and Sk the union of

the strips Si
k included in Q (see Figure 8). Moreover, let λ > 0 be a small quantity and let (λk)

be a sequence such that

λk → +∞ and sup
k

(

λk

∫

Q
|wk − w|dx

)

≤ λ.
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Let Sik
k ∈ Z be a solution to

min
{

Fεk(wk, S
i
k) + λk

∫

Si
k

|wk −w|dx : Si
k ⊂ Q

}

.

We first restrict wk to Sik
k , and then we extend it to the strip [(−εk(1/8 + ̺), εk(1/8 + ̺)) ×

(−1/2, 1/2)] + (εki, 0) by reflection with respect to the axis x1 = ikεk; we denote by w̃k such
an extension. Then we extend further w̃k by periodicity in the x1-variable to the whole R ×
(−1/2, 1/2), with period εk(1/4 + 2̺). The penalization term ensures that w̃k → w in L1(Q).

Consider now the sets Ω := (−1/8− ̺, 1/8 + ̺)× (−1/2, 1/2),

D̃ := [−1
8 ,

1
8 ]× [−1

8 ,
1
8 ],

P̃ := R
2 \

⋃

(i,j)∈Z2

(

D̃ +
((

1
4 + 2̺

)

i, j
))

(see Figure 8), and the functional F̃ε : L
1(Ω) → [0,+∞] defined as

F̃ε(u,Ω) :=







∫

Ω∩εP̃
|∇u|2 dx+ ε

∫

Ω\εP̃
|∇u|2 dx+H1(Su) if u ∈ SBV 2(Ω),

+∞ otherwise in L1(Ω).

Note that P̃ is connected. By construction of the sequence (w̃k) we have

Fεk(wk, Sk) + λk

∫

Sk

|wk − w|dx ≥ 1

2
F̃εk(w̃k,Ω), (2.23)

while by [3, Theorem 2], with some slight modifications due to the different cell of periodicity
and the different size of the soft inclusions, for t larger than a threshold tend = tend(̺)

lim inf
k→+∞

F̃εk(w̃k,Ω) ≥
1

4
+ 2̺. (2.24)

By (2.23) and (2.24), and being λ arbitrary, we get

lim inf
k→+∞

Fεk(wk, Sk) ≥
1

8
+ ̺.

By repeating a similar estimate on the remaining part of Q\Uεk , we have the full estimate (2.22).
�

3. Conclusions

Let us summarize estimates (2.21) and (2.22) in a comprehensive result.

Main Theorem. Given ̺ ∈ (0, 1/7), let η = 4̺2. Fixed t ∈ (0, tinit], choose δ > 0 small enough
so that the solutions to the problem (2.8)-(2.9) are not affine and discontinuous. Let w be one of
this solutions, with discontinuity set (−1/2, 1/2)×{x̂2} for a certain x̂2 ∈ [−δ/2, δ/2], and (wk)
one of its recovery sequences. Moreover, let v := sχ(−1/2,1/2)×(x̂2,1/2) and (vk) be a sequence in

SBV 2(Q) converging to v in L1(Q). There exists a threshold tend = tend(̺) such that, if s ≥ tend
and

Svk ⊃ Swk
, (3.1)

then

lim inf
k→+∞

Fεk(vk, Q) ≥ 1

2
+

1√
2
+ (3− 4

√
2)̺. (3.2)
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We can assume tend ≥ tflat, so that v is a solutions to the problem (2.8)-(2.9). We take t = tinit
and s = tend and we rename w as wtinit and v as wtend . We see the displacement wtend as an
evolution of wtinit at macroscopic scale when we change the boundary condition from tinit to
tend. Note that the discontinuity set (−1/2, 1/2) × {x̂2} remains the same. At the microscopic
level, i.e., for k fixed, we should impose that also vk is an evolution of wk, so that in particular
condition (3.1) holds. Under this constraint the energy in the final configuration Fεk(vk, Q) is
asymptotically bounded from below as in (3.2). Since ̺ can be taken arbitrarily small, inequality

(3.2) shows that the effective toughness of the material increases from one to 1/2+1/
√
2. From

the physical point of view, the explanation is that the bridging of the soft inclusions, being
energetically favorable when the opening of the macroscopic crack is small, originates a deflection
of the crack path with respect to the straight one. Because of the irreversibility of the crack
process, this deflection persists also when the opening of the crack is large and a straight path
should be energetically favorable with respect to the deflected one. This behavior cannot be
captured by the Γ-limit F , since it is obtained by a minimization process at microscopic level
for any fixed opening of the crack, without taking into account condition (3.1). Indeed we have
in the final configuration

F (wtend , Q) = 1.

Note also that our result shows that for (Fε) homogenization and evolution of cracks do not
commute: as we said, at the microscopic level the energy of the final configuration is asymptot-
ically close to 1/2 + 1/

√
2, while the homogenized energy of the final configuration is one. This

is in contrast with what happens in the case of a family of functionals that do not depend on
the opening of the crack, but have standard growth conditions: not only the Γ-limit still does
not depend on the opening, but homogenization and evolution commute (see [8]).

To conclude, in our specific example an effective model that takes into account the irreversibil-
ity of the crack process at microscopic level, i.e., condition (3.1), should provide accordingly to
(3.2) an effective surface energy density geff such that

geff(s, e) =
1

2
+

1√
2
> 1 = g(s, e)

for s large enough. Therefore, some generalizations must be envisaged in order to combine Γ-
convergence of energies and irreversibility of the crack process at microscopic level. However,
this seems to be a challenging problem at the moment.
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