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Abstract. The fine geometry of carbon nanotubes is investigated from the viewpoint of
Molecular Mechanics. Actual nanotube configurations are characterized as being locally min-

imizing a given configurational energy, including both two- and three-body contributions. By

focusing on so-called zigzag and armchair topologies, we prove that the configurational energy
is strictly minimized within specific, one-parameter families of periodic configurations. Such

optimal configurations are checked to be stable with respect to a large class of small nonpe-

riodic perturbations and do not coincide with classical rolled-up nor polyhedral geometries.

1. Introduction

Carbon nanotubes are allotropes of carbon consisting in long, cylindrical, hollow structures
including as many as 107 atoms [42]. These are covalently bonded, thus sharing a pair of
electrons. The corresponding orbitals are so-called sp2-hybridized, inducing indeed bonds at a
given atom to form 2π/3 angles, as happens in alkenes [4]. As a result, the local topology of
atomic bonds is hexagonal, for each atom has exactly three active bonds, approximately forming
2π/3 angles. Although evidence of carbon filaments has to be traced back at least to the ’50
[33], a new branch of carbon-nanotube chemistry definitely emerged from the early ’90 with [20]
and [2, 21], see the review [31]. Since then, carbon nanotubes have been subject of intensive
investigation under a variety of different experimental and computational techniques [23, 19].

The unique trait of carbon nanotubes is their amazing aspect-ratio: structures of a few
nanometers in diameter can have lengths up to several centimeters, thus bridging molecular
and macroscopic scales. In addition, carbon nanotubes show remarkable mechanical strength
[25, 41, 44] and, depending on the topology, high electrical conductivity or semiconductivity
[24, 32]. Such exceptional properties make carbon nanotubes interesting for the development of
innovative technologies. Carbon nanotubes are presently used in the production of composite
materials, coatings, microelectronics, energy-storage devices, and biotechnologies [8].

Carbon nanotubes can be intuitively visualized as the result of the rolling-up of graphene,
a two-dimensional carbon sheet where atomic bonds form an ideal hexagonal pattern. More
precisely, let the hexagonal lattice H := {pa+qb+rc : p, q ∈ Z, r = 0, 1} with a = (

√
3, 0),

b = (
√

3/2, 3/2), and c = (
√

3, 1) represent graphene. We may prescribe the topology of the
atomic bonds of a nanotube by specifying a vector (`,m) for `, m ∈ N, ` > 2 and identifying
x ∈ H with x+`a+mb, see Figure 1. This identification actually defines the roll-up, an example
of a resulting structure being in Figure 5. Nanotubes are called zigzag for m = 0, armchair for
m = `, and chiral in all other cases. We concentrate here on zigzag and armchair topologies,
leaving the chiral case aside, for it involves additional intricacies.
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Figure 1. The identification x 7→ x+ `a+mb on the hexagonal lattice defines
the topology of the atomic bonds of the nanotube.

The fine geometry of carbon nanotubes is presently still debated and different models are
available. In the zigzag and armchair case, the classical rolled-up [9, 10] model is directly
inspired by the above idealized identification and assumes that two of the three bond angles at
each atom are exactly 2π/3. An alternative is the polyhedral model [6, 7], which prescribes the
three bond angles at each atom to be equal, see also the generalization in [26].

All the mentioned nanotube models are geometrical in nature for they reside on sets of geomet-
rical postulates. The aim of this note is instead to follow a variational approach by investigating
carbon-nanotube geometries within the frame of Molecular Mechanics [1, 27, 34]. Atom con-
figurations are modeled as a collection of particle positions, to which a configurational energy
is associated. This energy is given in terms of classical potentials and takes into account both
attractive-repulsive two-body interactions, minimized at some given bond length, and three-body
terms favoring 2π/3 angles between bonds [39, 40]. This simplified, phenomenological approach
is obviously very far from the quantum-mechanical nature of actual chemical bonding. Still,
it has the advantage of being simple, parametrizable, and of delivering the only computation-
ally amenable option as the dimension of the ensamble scales up, as it is the case of carbon
nanotubes.

We single out specific carbon-nanotube geometries by focusing on their stability. This concept
is central with respect to the process of molecular structuring, since among the many theoret-
ically possible geometries, only those showing some suitable stability can be expected to be
realized. This is formalized here by interpreting stability as the minimality of the configura-
tional energy with respect to small perturbations. This approach is fairly classical, at least in
the case of infinite crystals, where a number of different stability criteria has been set forth,
essentially by prescribing specific set of admissible perturbations [14, 15]. The reader is referred
to the discrete-to-continuous analysis in [12, 13] and the recent comparison in [35] of such differ-
ent stability concepts at the continuum level for free-standing graphene. Our approach here is
that of possibly considering all small perturbations, where such smallness is exclusively aimed at
preserving the local coordination of the atomic bonds. As a consequence, the stability criterion
here addressed turns out to be the most restrictive. The reader is referred to [17, 38] for related
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stability analysis for other carbon nanostructures, including carbyne, graphene, the fullerene
C60, and diamond.

Under some classical choice of interaction potentials, we investigate first the minimization
of the configurational energy in specific one-parameter classes of periodic zigzag and armchair
configurations. Here, the dimensionality of the problem scales down and we can prove that
a unique optimal configuration exists. Quite remarkably, this optimal configuration do not
coincide neither with the classical rolled-up [10] nor with the polyhedral model [6]. Our analysis
thus entails that these classical geometrical models do not admit a variational interpretation
and that energy minimality induces a different structure.

The stability of such optimal configurations with respect to general small perturbations has
been already computationally ascertained in [29]. Our aim here is to provide some analytical
justification of this fact. In particular, we prove stability with respect to a large class of small
perturbations including tractions and diameter dilations, among many others. Moreover, we
advance an ansatz, namely (5), under which stability can be proved for all small perturbations.
Numerical evidence for the validity of such assumption is provided.

This path is of course not new to computational chemists, and numerical investigations of
carbon-nanotube geometries at the single-atom level are already available [36, 37, 45]. With
respect to the current stand the novelty of our contribution is twofold. On the one hand, we
investigate the full structure at once, by dropping the periodicity assumption on perturbations.
On the other hand, we obtain rigorous analytical results instead of numerical assessments.
Note that a menagerie of different possible choices for energy terms has been implemented in
Computational Chemistry codes [3, 5, 18, 30, 43]. By sorting out a set of minimal hypothesis
of the configurational energy we are hence contributing to cross-validate these choices in view
of their capability of describing stable carbon-nanotube geometries.

The plan of the paper is the following. We devote Section 2 to the specification of the
mathematical setting and the statement of the main stability result. The specific geometry of
periodic zigzag and armchair configurations is then detailed in Section 3. We analyze energy
minimization at single atoms in Section 4 and identify optimal configurations, whose stability
is then proved in Section 5 by means of convexity and monotonicity arguments. Eventually, we
devote Section 6 to a numerical assessment of ansatz (5).

2. Main result

In this section we introduce the mathematical setting and state the main result of the paper,
namely Theorem 2.1. Nanotubes are described as collections of distinct points in R3 of the form

C := Cn + LZ e3.

The set Cn := {x1, . . . , xn} is called the n-cell of the nanotube C, where the points xi ∈ R3 are
such that xi · e3 ∈ [0, L). The possibly very large L > 0 acts as period of the nanotube along its
axis e3 := (0, 0, 1) and is here introduced for the sake of definiteness only. In particular, such
periodicity is immaterial with respect to the fine, local geometry of the nanotube which is here
analyzed and it is introduced just to prevent the need of discussing the boundary effects due to
finite capping. Note that nanotubes can be as long as 106 times their diameter, so that L would
ideally correspond to such length. In the following, we systematically identify the nanotube C
with the pair (Cn, L).
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To each nanotube C we associate a configurational energy E(C). This is modeled on the specific
phenomenology of sp2 covalent bonding of carbon atoms [4]. In particular, bonds of a specific
length (here normalized to 1) and bond angles of 2π/3 and 4π/3 are favored. Correspondingly,
the energy E features the sum of a two- and a three-body contribution and reads

E(C) = E(Cn, L) :=
1

2

∑
(i,j)∈N

v2(|xi−xj |L) +
1

2

∑
(i,j,k)∈T

v3(ωijk), (1)

the two terms being described in the following.

The two-body potential v2 : R+ → [−1,∞) is assumed to be minimized only in 1 and its
minimal value is fixed to be v2(1) = −1, with no loss of generality. Moreover, v2 is asked to be
short-ranged, i.e. to be supported in a neighborhood of 1 of the form (0, ρ) . For the sake of
definiteness, we let v2(r) = 0 for r > ρ with ρ := 1.1. By introducing the distance modulo L
defined by

|xi − xj |L := min
z∈{−1,0,+1}

|xi − xj + Lze3|,

we say that two points xi, xj ∈ Cn, i 6= j, are bonded, or that the bond between xi and xj is
active, if |xi − xj |L < ρ, and we refer to the graph formed by all the active bonds as the bond
graph. Let us denote by N the set of all pairs of indexes corresponding to bonded points, i.e.

N := {(i, j) : xi, xj ∈ Cn, i 6= j, and |xi − xj |L < ρ}.
For xj ∈ Cn we also let

N (xj) := {i ∈ {1, . . . , n} : (i, j) ∈ N},
and if i ∈ N (xj) we define by xji the point in {xi +Lze3 : z = −1, 0,+1} such that |xji − xj | =
|xi − xj |L.

The three-body potential v3 : [0, 2π) → [0,∞) is assumed to be symmetric around π, namely
v3(α) = v3(2π−α), and to attain minimum value 0 only at 2π/3 and 4π/3. Furthermore, v3 is
required to be convex and strictly decreasing in the interval

Iε := (2π/3−ε, 2π/3], (2)

for some given ε < π/8, and twice differentiable at each point of Iε, with continuous second
derivative. This entails that v′3(2π/3) = 0. Moreover, we additionally assume that v′′3 (2π/3) > 0.
The parameter ε will be assumed to be fixed throughout the paper. The index set T in (1)
identifies triples of first-neighboring points, namely,

T := {(i, j, k) : xi, xj , xk ∈ Cn, i 6= k, i 6= j, j 6= k, i ∈ N (xj) and k ∈ N (xj)}.

For (i, j, k) ∈ T , the bond angle ωijk in (1) is the angle formed by the vectors xji −xj and xjk−xj
(counterclockwise oriented with respect to the normal (xji − xj) ∧ (xjk − xj)), see Figure 2.

xj

xj
kxj

i

ωijk

Figure 2. Notation for bonds and bond angles.
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The above assumptions on v2 and v3 are quite general. In particular, they are satisfied by
standard interaction potentials for sp2-bonding in carbon [39, 40]. Note that we do not require
v2 to be repulsive at short-range, although this is a fairly classical assumption and, currently,
the only frame in which crystallization in the hexagonal lattice has been rigorously proved
[11, 16, 28]. Since the energy E is clearly rotation and translation invariant, in the following we
will tacitly assume that all statements are to be considered up to isometries.

We aim at characterizing the fine geometry of stable nanotubes, namely those which locally
minimize the configurational energy E. To this end, we need to introduce specific families of
zigzag and armchair nanotubes, denoted by F z

` and F a
` in the following, where ` ∈ N stands

for the roll-up parameter whose role we discussed in the introduction, see Figure 1. For the sake
of convenience we postpone to Section 3 the detailed definition of such families. Let us however
anticipate that all nanotubes in F s

` (throughout the paper we use the index s = z for zigzag and
s = a for armchair) are objective configurations [22], for they can be obtained as orbits of one
single point under the action of an isometry group of rotations and translations. In particular,
nanotubes in F s

` all have points disposed on sections orthogonal to their axis, each containing
exactly ` ∈ N points, and the topology of their bond graph corresponds to that of the hexagonal
lattice H under the identification x 7→ x + `a for zigzag and x 7→ x + `(a+b) for armchair, as
seen in the introduction.

For a given ` ∈ N, the collection F s
` can be described by a single scalar parameter. As a

consequence, when restricted to the specific family F s
` of nanotubes, the minimization of the

configurational energy is reduced to a scalar problem. Under the above assumptions one can
prove that a unique strict minimizer Fs` exists in F s

` . We prove this in Theorem 4.4 by slightly
extending the former [29, Thms. 4.3 and 6.1]. Let us mention again that these minimizers do
not coincide with the classical rolled-up [10] nor with the polyhedral model [6], see [29, Thms.
4.1-2 and 6.1], which however belong to these families.

The focus of this paper is to prove that the objective nanotubes Fs` are stable, namely that
they locally minimize the energy with respect to general perturbations, not restricting to F s

` .
In order to illustrate the statement, let ` ∈ N be fixed and denote by F sn = {xs1, . . . , xsn} and Ls

the n-cell and the period of Fs` , so that Fs` = (F sn, L
s). We define small perturbations Pη(Fs` )

of Fs` as

Pη(Fs` ) := {F̃ = (Fn, L) : Fn := {x1, . . . , xn} and L := Ls + δL

with xi := xsi + δxi for |δxi| < η and |δL| < η}.

The parameter η > 0 will be always chosen to be small enough so that the topology of the bond

graph of a nanotube F̃ ∈Pη(Fs` ) coincides with that of Fs` : in particular, if η is small enough
we have

N (xi) = N (xsi ), i = 1, . . . , n. (3)

For all nanotubes whose n-cell Cn = {x1, . . . , xn} fulfills (3), in particular for all perturbations

F̃ ∈ Pη(Fs` ) with small enough η, we have #N (xi) = 3 and we denote by i1, i2, i3 the three

elements of N (xi), for any i ∈ {1, . . . , n}. Moreover, we indicate by bi = |xi−xi3 |, and aji =
|xi−xij |, j = 1, 2, the lengths of the three bonds at xi. The bond angle (smaller than or equal

to π) between a1i and a2i will be denoted by βi whereas αji are the bond angles (smaller than or

equal to π) between bi and aji , for j = 1, 2, see Figure 3. This notation will be used to highlight
the role of the bond bi: this will (approximately) be parallel to the axis for zigzag nanotubes
and (approximately) lay on a plane perpendicular to the axis for armchair nanotubes.
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xixi3 xi2

xi1

α1
i

α2
i

βi

bi

a1i

a2i

Figure 3. Angles and bonds at the point xi ∈ Cn.

Given xi ∈ Cn with N (xi) = {i1, i2, i3}, the full three-dimensional geometry of its first
neighbors can be uniquely determined up to rotations in terms of the bond lengths (a1i , a

2
i , bi)

and the bond angles (α1
i , α

2
i , βi). In fact, the angle βi can be expressed as a function of α1

i , α
2
i ,

and an additional angle γsi , whose definition differs in the zigzag and in the armchair case.
Indeed, we let γzi be the (smaller than π) angle formed by the plane containing xi, xi1 , and xi3
and the plane containing xi, xi2 , and xi3 , and γai is the (larger than π/2) angle between the line
xi−xi3 and its projection on the plane containing xi, xi1 , and xi2 (see Figure 4).

xixi3 xi2

xi1

γzi

γai

xixi3 xi2

xi1

Figure 4. Angles γzi and γai at the point xi ∈ Cn are illustrated on the left and
on the right, respectively. Note that the two dashed lines in the right picture
are perpendicular.

We indicate by γ` the internal angle of the regular (2`)-gon, namely

γ` := π(1− 1/`).

Given a nanotube F̃ ∈Pη(Fs` ), with small enough η so that (3) holds, let γ be the mean of its
γsi angles, namely

γ :=
1

n

n∑
i=1

γsi . (4)
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We note that γ = γ` if F̃ ∈ F s
` . Indeed, nanotubes in F s

` are contained in the surface of a
prism (see Section 3 below), whose section is a (2`)-gon, and the sum of the γsi is related with
the sum of the internal angles of such (2`)-gon. On the other hand, γ 6= γ` in general.

We are now ready to state our main result.

Theorem 2.1 (Stability). Let ε ∈ (0, π/8). There exists `sε = `sε(v3, ε) ∈ N such that for all

` > `sε one can find ηsε = ηsε(v3, ε, `) > 0 so that any nontrivial perturbation F̃ ∈ Pηsε
(Fs` ) with

γ ≤ γ` satisfies E(F̃) > E(Fs` ).

The theorem asserts the local minimality of Fs` with respect to all small perturbations with
γ ≤ γ`. As already mentioned, this class includes all small perturbations in F s

` , which indeed
fulfill the stronger γ = γ`. This particularly implies that Theorem 2.1 includes the former
analysis in [29], which is restricted to perturbations in F s

` .

More significantly, a large class of small perturbations which are not in F s
` fulfill the constraint

γ ≤ γ` as well. In the zigzag case, one has even γ = γ` whenever the perturbation preserves the
alignment to the nanotube axis of the bi bonds. This includes tractions and diameter changes,
which may vary section by section of the nanotube. Moreover, sections can be deformed, for
instance squeezed to ellipses, and some shear can also be accommodated, all possibly varying
section by section. The armchair case is analogous: a large class of relevant perturbations
including traction and diameter change fulfill γ ≤ γ`.

Unfortunately not all small perturbations have γ ≤ γ`. One example is obtained by displacing
a single point of Fs` orthogonally to the axis. The assertion of Theorem 2.1 can be extended to
all small perturbations under the following assumption: given `, ηsε from Theorem 2.1,

∀F̃ ∈Pηsε
(Fs` ), ∃ F ∈Pηsε

(Fs` ) such that γ ≤ γ` and E(F̃) ≥ E(F), (5)

where γ is the mean value of the γsi angles of F . The latter has a constructive flavor: for all
given small perturbations one is required to exhibit a better energy competitor fulfilling the
constraint γ ≤ γ`. We advance two such candidate, energy-reducing constructions and present
numerical evidence for (5) in Section 6.

The statement of Theorem 2.1 relates the size of `, which roughly corresponds to the diameter
of the nanotube, and the parameter ε, which instead measures the interval of validity of the
assumptions on v3. The smaller the ε, namely the weaker the hypothesis on v3, the larger the
diameter of the nanotube needs to be in order have stability. At the same time, nanotubes of
very small diameter may be treated if assumptions on v3 are strengthened, namely if ε is large
enough.

3. Zigzag and armchair geometries

We devote this section to the description of the geometry of zigzag and armchair nanotubes
and, specifically, we define the families F s

` .

Zigzag. For any ` > 3, the family F z
` is defined up to isometries as{(

r cos

(
π(2i+k)

`

)
, r sin

(
π(2i+k)

`

)
, k(1+s) + j

) ∣∣∣∣∣ i = 1, . . . , `, j = 0, 1, k ∈ Z

}
(6)
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for some choice of radius r and step 1 + s so that

r ∈
(

0,
1

2 sin(π/(2`))

)
and s ∈ (0, 1)

along with the constraint

s2 + 4r2 sin2
( π

2`

)
= 1. (7)

Figure 5 illustrates a configuration in F z
` . As already mentioned, configurations in F z

` are
objective [22] for they correspond to orbits of the single point (r, 0, 0) under counterclockwise
rotations around the axis e3 of 2π/`, translations along e3 of 2(1+s), and rototranslations in
direction e3 of angle π/` and length 1 + s. The constraint (7) expresses the fact that all bonds
have length 1 and we have that F z

` is a one-parameter smooth family of configurations: each
configuration in F z

` is uniquely determined by specifying either r or s. Note that for r = 0 the
cylinder is reduced to its axis and for s = 0 the sections collide.

e3

Figure 5. A zigzag nanotube in F z
12.

Nanotubes F in F z
` have all points lying on the surface of a cylinder with axis e3 and radius

r and are organized in planar sections, perpendicular to e3, obtained by fixing k and j in (6).
Each section contains exactly ` points are arranged at the vertices of a regular `-gon, and its
two closest sections are at distance s and 1, respectively.

The position of any point in F is identified by the triple (i, k, j) for i ∈ {1, . . . , `}, k ∈ Z, and
j ∈ {0, 1}. The point (i, k, j) is bonded to the three points (i, k, 1), (i, k−1, 1) and (i−1, k−1, 1)
for j = 0, or the three points (i, k, 0), from (i, k+ 1, 0) and (i− 1, k+ 1, 0) for j = 1 (along with
the convention that (0, k, j) and (`, k, j) are identified), since they are at distance 1. The full
geometry of such three neighbors to xi is hence described by the three angles (α1

i , α
2
i , βi), see

Figure 3. Equivalently, one can express βi as a function of α1
i , α

2
i and γzi as

βi = β̃z(α1
i , α

2
i , γ

z
i )

where the function β̃z is defined by

β̃z(α1, α2, γ) := 2 arcsin
(√

(1− sinα1 sinα2 cos γ − cosα1 cosα2)/2
)

(8)

In case α1 = α2 we will also use the notation

βz(α, γ) := β̃z(α, α, γ) = 2 arcsin
(

sinα sin
γ

2

)
.

Restrictions on the possible choice of the radius r have to be introduced in order to ensure
that bond graph of nanotubes in F z

` to locally have the topology of Figure 4. This imposes
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to rule out extremal values of the radius r. At first, sections of the nanotube should be wide
enough to have that second-neighbors stay at distance larger than ρ = 1.1. This translates to

r > rz− :=
0.55

sin γ`
. (9)

On the other hand, if r is large then the intersectional distance 1+s approaches 1, thus activating
extra bonds. This calls for the condition

r < rz+ :=

√
0.9975

2 sin(π/(2`))
(10)

as already discussed in [29]. We record all relevant facts about the family F z
` in the following

statement.

Proposition 3.1 (Zigzag geometry). In F ∈ F z
` with radius r ∈ (rz−, r

z
+) all points have exactly

three (first-nearest) neighbors, all at distance 1, with one bond b aligned with e3. The two bond
angles (smaller than π) formed by b are equal and have value α ∈ (π/2, π). The third bond angle
(smaller than π) is

βz(α, γ`) = 2 arcsin
(

sinα sin
γ`
2

)
.

We refer to [29, Proposition 3.2] for a detailed proof of Proposition 3.1. Let us point out here

that, by (7) and the fact that sinα =
√

1− s2 = 2r sin(π/(2`)), the family F z
` is smoothly and

uniquely-determined not only by the parameters r and s independently, but also by the angle
α. In this regard note that the constraints on α corresponding to (10) is

α > αz− := arccos(−1/20) ≈ 93◦ (11)

and the one corresponding to (9) is

2 sinα sin(γ`/2) > ρ.

For all ` ≥ 4 the latter is implied by the following

α < αz+ := π − arcsin

(
1.1
/√

2 +
√

2

)
≈ 143.5◦. (12)

Proposition 3.1 entails in particular that, for all α ∈ (αz−, α
z
+), a configuration Fα ∈ F z

` ,
uniquely defined by its bond angle α, features two thirds of the bond angles (smaller than π)
with value α and one third with value βz(α, γ`). This allows a simple expression for its energy.
Denote its n-cell (n = 4m` for some m ∈ N) by Fn and observe that its period L can can be
computed as

L = 2m(1− cosα) (13)

(for m = 1 we get the minimal period of the configuration). As all points bring the same
contribution to the energy we have

E(Fα) = E(Fn, L) = −3

2
n+ nEz(α, γ`) (14)

where

Ez(α, γ) := 2v3(α) + v3(βz(α, γ)).
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Armchair. For all ` ∈ 2N, we introduce the family F a
` up to isometries as{(

r cos

(
2π

`
(2i+k)+qrj

)
, r sin

(
2π

`
(2i+k)+qrj

)
, pk

) ∣∣∣∣∣ i = 1, . . . ,
`

2
, j = 0, 1, k ∈ Z

}
(15)

for some choice of radius r and step p such that

r ∈
(

1

2 sin(π/`)
,

1

2 sin(π/(2`))

)
and p ∈ (0, 1)

and the following constraint holds

p2 + 4r2 sin2
(π
`
− qr

2

)
= 1, (16)

where

qr := 2 arcsin

(
1

2r

)
.

Points in F ∈ F a
` lie on the surface of a cylinder with radius r and axis e3 and they are

arranged in planar sections, perpendicular to e3, obtained by fixing k and j in (15). The
constraint (16) entails that all bonds have length 1. The collection F a

` is a one-parameter
smooth family uniquely determined by r or p. The limit cases p = 0 (for which we have
qr = π/`) and p = 1 (for which qr = 2π/`) correspond to having the sections on the same plane,
and to a prism shape, respectively.

Each of the sections exactly contains ` points, arranged at the vertices of two regular (`/2)-
gons, which are rotated of an angle qr with respect to each other. For each section, the two
closest sections are both at distance p. Nanotubes F a

` are objective [22], for they correspond
to the orbit of the single point (r, 0, 0) under rotations of 4π/` around the axis e3, translations
along e3 of step 2p, and rototranslations about e3 of angle 2π/` and step p.

By (15) we see that the triple (i, k, j) for i ∈ {1, . . . , `/2}, k ∈ Z, and j ∈ {0, 1} uniquely
determines the positions of all points. Note that the point (i, k, j) is bonded with the three
points (i, k, 1), (i, k− 1, 1) and (i− 1, k+ 1, 1) for j = 0, or the three points (i, k, 0), (i, k+ 1, 0),
and (i+1, k−1, 0) for j = 1 (where we identify (0, k, j) and (`/2, k, j)), since they are at distance
1. The geometry of such ensamble of three neighbors to xi is hence described by the three angles
(α1
i , α

2
i , βi), see Figure 4. Equivalently, one can express βi as a function of α1

i , α
2
i and γai as

βi = β̃a(α1
i , α

2
i , γ

a
i )

where the function β̃a is defined by

β̃a(α1, α2, γ) := arccos

(
cosα1

cos γ

)
+ arccos

(
cosα2

cos γ

)
,

If α1 = α2 we will also use the notation

βa(α, γ) := β̃aβ2(α, α, γ) = 2 arccos

(
cosα

cos γ

)
.

As in the case of zigzag geometries, parameters should be additionally constrained in order
the bond graph to locally have the topology of Figure 4. Since p is the distance between two
consecutive sections we require 2p > ρ. According to (16) this corresponds to 2r sin(π/`−qr/2) <√

0.6975, which yields r < ra+, where ra+ denotes the unique positive solution of the corresponding
equality (notice that the map r 7→ 2r sin(π/` − qr/2) is monotone increasing for r > 1/2, as
` ≥ 4, and takes values 0 and 1 at extremes of the definition range for r).
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On the other hand, the distance between two nearest points on a section is either 2r sin(qr/2) =
1 or 2r sin(2π/` − qr/2). We impose the latter to be greater than ρ to avoid an extra bond.
This requires r > ra−, where ra− is the unique positive solution to 2r sin(2π/`− qr/2) = ρ. The
armchair version of Proposition 3.1 reads as follows.

Proposition 3.2 (Armchair geometry). In F ∈ F a
` with radius r ∈ (ra−, r

a
+) all points have

exactly three (first-nearest) neighbors, all at distance 1, with one bond b orthogonal to e3. The
two bond angles (smaller than π) formed by b are equal and have value α ∈ (π/2, π). The third
bond angle (smaller than π) is

βa(α, γ`) = 2 arccos

(
cosα

cos γ`

)
.

Analogously as for the zigzag family, by equation

cosα = 2r cos γ` sin
(π
`
− qr

2

)
one can characterize the element of the family F a

` via the bond angle α ∈ (π/2, γ`). The
constraint r < ra+ is equivalent to

cos2 α < 0.6975 cos2 γ`, (17)

which, for all ` ≥ 4, is implied by

α < αa+ := arccos(−
√

0.34875) ≈ 126◦. (18)

On the other hand, using the identity 2r sin(2π/`− qr/2) = 1 + 4r cos(π/`) sin(π/`− qr/2) and
(17), the constraint r > ra− translates to

α > αa− := arccos(−1/20) ≈ 93◦. (19)

For all α ∈ (αa−, α
a
+) the energy of the nanotube Fα ∈ F a

` has a simple expression, since all
points contribute the same amount to it. For Fα = (Fn, L) where n = 2m`, m ∈ N, we can
compute that

L := 2m

(
1− cos2 α

cos2 γ`

)1/2

(20)

and the energy reads

E(Fα) = E(Fn, L) = −3

2
n+ nEa(α, γ`) (21)

where
Ea(α, γ) := 2v3(α) + v3(βa(α, γ)).

4. Angle-energy optimization

The analysis of the previous section entails that the minimization problem for configurations
in F s

` is localized, for all points equally contribute to the energy. As all bond lengths in F s
` are

equal to 1, we reduce ourselves to the study of a scalar functional corresponding to the angle
energy of a single point, see (14) and (21). This analysis is performed in this section and, in
particular, brings to the identification of the optimal configuration Fs` .

Let us start by computing the derivatives of the functions β̃s, which we consider to be defined
in (π/2, 3π/4)× (π/2, 3π/4)× [3π/4, π]. These values are just taken for the sake of definiteness
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and could be differently chosen around 2π/3 for α1, α2, and left to π for γ. Notice in particular
that γ` ∈ [3π/4, π) for ` ≥ 4. In this range, we have

∂α1 β̃z(α1, α2, γ) =
− cosα1 sinα2 cos γ + sinα1 cosα2√

1− (sinα1 sinα2 cos γ+ cosα1 cosα2)2
< 0

∂α2 β̃z(α1, α2, γ) =
− sinα1 cosα2 cos γ + cosα1 sinα2√

1− (sinα1 sinα2 cos γ+ cosα1 cosα2)2
< 0

∂αi β̃
a(α1, α2, γ) = − 2 sinαi√

cos2 γ − cos2 αi
< 0, i = 1, 2.

(22)

The functions βs(α, γ) are smooth on (π/2, 3π/4)× [3π/4, π] and we have

∂αβ
z =

2 sin(γ/2) cosα√
1− sin2 α sin2(γ/2)

< 0, ∂2ααβ
z = −2 sinα sin(γ/2) cos2(γ/2)

(1− sin2 α sin2(γ/2))3/2
< 0,

∂γβ
z =

sinα cos(γ/2)√
1− sin2 α sin2(γ/2)

> 0, ∂2γγβ
z = − sinα cos2 α sin(γ/2)

2(1− sin2 α sin2(γ/2))3/2
< 0, (23)

∂αβ
a = − 2 sinα√

cos2 γ − cos2 α
< 0, ∂2ααβ

a =
2 cosα sin2 γ

(cos2 γ − cos2 α)3/2
< 0,

∂γβ
a =

2 cosα tan γ√
cos2 γ − cos2 α

> 0, ∂2γγβ
a =

2 cosα(cos2 γ − cos2 α+ sin2 γ cos2 γ)

cos2 γ(cos2 γ − cos2 α)3/2
< 0. (24)

The values at the extrema of the definition range are

∂αβ
z(2π/3, π) = −2, ∂2ααβ

z(2π/3, π) = 0,

∂γβ
z(2π/3, π) = 0, ∂2γγβ

z(2π/3, π) = −
√

3/2, (25)

∂αβ
a(2π/3, π) = −2, ∂2ααβ

a(2π/3, π) = 0,

∂γβ
a(2π/3, π) = 0, ∂2γγβ

a(2π/3, π) = −2/
√

3. (26)

Let us consider first the case in which two of the three bond angles are equal. In particular,
we discuss the minimization of Es with respect to α for all given γ. Some care is needed for the
choice of the interval of optimization. This has to be specified depending on γ and ε ∈ (0, π/8)
from (2) in order to ensure that v3 is evaluated just in Iε, namely where the assumptions hold.
For ε ∈ (0, π/8) and γ ∈ [3π/4, π] we define the two quantities

σzε (γ) := π − arcsin

(
sin(π/3− ε/2)

sin(γ/2)

)
, σaε (γ) := arccos(cos γ cos(π/3− ε/2)). (27)

From the definitions of βs and their monotonicity properties from (23), (24), it is not difficult
to check that σsε(γ) belongs to (π/2, 3π/4) and that it is the unique solution to the equation
βs(·, γ) = 2π/3 − ε on (π/2, 3π/4). Moreover, we have βs(α, γ) > 2π/3 − ε if α < σsε(γ). The
functions σsε(γ) are strictly increasing both with respect to ε ∈ (0, π/8) and to γ ∈ [3π/4, π].

By recalling that ε is fixed throughout, one has that σsε(γ) is larger than 2π/3 if γ is large
enough (i.e., close to π). More precisely, taking into account the strict monotonicity of [3π/4, π] 3
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γ 7→ σsε(γ), we define values γsε as follows

γsε :=

{
3π/4 if σsε(3π/4) ≥ 2π/3
(σsε)

−1(2π/3) if σsε(3π/4) < 2π/3,

where (σsε)
−1(·) is the inverse of σsε(·) on [3π/4, π]. In this way, we obtain σsε(γ) > 2π/3 if

γ ∈ (γsε , π). It will hence be important to keep γ in the range (γsε , π). Notice that the smaller
the ε, the stronger is the restriction on the values of γ. For instance, if ε = π/12, we have
γzε = 3π/4 and γaε ∈ (3π/4, 5π/6).

We will also need the quantities σs0(γ), defined as the unique solutions to βs(·, γ) = 2π/3 on
(π/2, 3π/4). These are explicitly given by

σz0(γ) := π − arcsin

( √
3

2 sin(γ/2)

)
, σa0 (γ) := arccos

(cos γ

2

)
. (28)

The notation corresponds to the fact that σs0 = limε→0 σ
s
ε . Notice that γ 7→ σs0(γ) is increasing

on [3π/4, π] and converging to 2π/3 as γ ↑ π. Thanks to (23) and (24) we also have that
βs(α, γ) > 2π/3 if α < σs0(γ). The definition of γsε and the monotonicity of σsε(γ) entail that
σs0(γ) > 2π/3− ε for any ε ∈ (0, π/8), as soon as γ > γsε .

We can now proceed with the optimization of Es(·, γ) as follows.

Lemma 4.1 (Minimality in α). Given γ ∈ (γsε , π), the map α 7→ Es(α, γ) admits a unique
minimizer αs(γ) on (2π/3 − ε, σsε(γ)). Moreover, one has that αs(γ) < 2π/3, βs(αs(γ), γ) <
2π/3, ∂2ααEs(αs(γ), γ) > 0, and αs(γ)→ 2π/3 as γ ↑ π.

Proof. let γ ∈ (γsε , π) be fixed. This ensures that σsε(γ) > 2π/3, by the definition of γsε .

First of all, we show that α is not a minimizer of α 7→ Es(α, γ) if βs(α, γ) > 2π/3. We recall
that σs0(γ) is defined as the unique value in (π/2, 2π/3) such that βs(σs0(γ), γ) = 2π/3, and that
σs0(γ) > 2π/3 − ε. If βs(α, γ) > 2π/3, the monotonicity of βs from (23) and (24) shows that
2π/3− ε < α < σs0(γ), then we have

Es(α, γ) = 2v3(α) + v3(βs(α, γ)) > 2v3(σs0(γ)) = 2v3(σs0(γ)) + v3(βs(σs0(γ), γ)) = Ei(σs0(γ), γ),

where we have used the nonnegativity and the strict monotonicity of v3 and the fact that
v3(2π/3) = 0.

One can similarly prove that there is no minimizer in (2π/3, σsε(γ)). Indeed, for α in such
interval we have βs(α, γ) ∈ Iε, from the obvious geometric constraint 2α + βi(α, γ) < 2π and
from the definition of σsε(γ). Then, the monotonicity of α 7→ βs(α, γ) and v3 entails

Es(α, γ) = 2v3(α) + v3(βs(α, γ)) > v3(βs(2π/3, γ)) = Es(2π/3, γ).

Let now α ∈ (σs0(γ), 2π/3). Then, we have just shown that βs(α, γ) ∈ Iε. Since the composi-
tion of v3 (convex and strictly decreasing on Iε) and βs(·, γ) (strictly concave) is strictly convex,
it follows that Es(·, γ) is strictly convex in (σs0(γ), 2π/3). Let us now check that α 7→ Es(α, γ)
is not minimized at the extrema σs0(γ) and 2π/3, and this will conclude the proof. Since
σs0(γ) > 2π/3− ε, then

∂αEs(σs0(γ), γ) = 2v′3(σs0(γ)) + v′3(βs(σs0(γ), γ))∂αβ
s(σs0(γ), γ) = 2v′3(σs0(γ)) < 0,

because v′3(2π/3) = 0 by assumption. Concerning 2π/3, since βs(2π/3, γ) < 2π/3, we have

∂αEs(2π/3, γ) = 2v′3(2π/3) + v′3(βs(2π/3, γ))∂αβ
s(2π/3, γ) > 0,
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thanks once more to the monotonicity of v3 and βs(·, γ). The claim is proved, and the unique
minimizer αs(γ) belongs to (σs0(γ), 2π/3) ⊂ Iε.

Eventually, we have βs(σs0(γ), γ) < 2π/3 since αs(γ) > σs0(γ). It is clear from (27) that σs0(γ)
tends to 2π/3 as γ ↑ π, so that αs(γ) tends to 2π/3 as well. �

Note that Lemma 4.1 generalizes [29, Thms. 4.3 and 6.1] to the case γ 6= γ`.

We now turn to prove convexity. The following functions angle energies Ẽs will be used

Ẽz(α1, α2, γ) := v3(α1) + v3(α2) + v3(β̃s(α1, α2, γ)).

Lemma 4.2 (Convexity in α). There exist γ̌sε ∈ (γsε , π) such that, for all γ ∈ (γ̌sε , π), the map

(α1, α2) 7→ Ẽs(α1, α2, γ) is strictly convex on [σs0(γ), 2π/3]× [σs0(γ), 2π/3].

Proof. Let γ > γsε so that we have both σsε(γ) > 2π/3 and σs0(γ) > 2π/3 − ε, as previously
observed, see (27)-(28). By taking (23) and (24) into account we have that α ≥ σs0(γ) > 2π/3−ε
implies βs(α, γ) ≤ 2π/3, and α ≤ 2π/3 < σsε(γ) implies βs(α, γ) > 2π/3 − ε. Thanks to

the monotonicity in (22), analogous bounds are found for β̃s as well. That is, if α1, α2 ∈
[σs0(γ), 2π/3] ⊂ Iε, then β̃s(α1, α2, γ) ∈ (2π/3− ε, 2π/3] = Iε.

In the following ∇ denotes the derivative with respect to (α1, α2). The index s as well as

the dependence of β̃s and Ẽs on the three variables (α1, α2, γ) will be omitted for brevity. For
α1, α2 ∈ [σs0(γ), 2π/3], we have

∇2Ẽ(α1, α2, γ) = diag(v′′3 (α1), v′′3 (α2)) + v′′3 (β̃)∇β̃ ⊗∇β̃ + v′3(β̃)∇2β̃.

A direct computation yields

Ẽα1α1(α1, α2, γ) = v′′3 (α1) + β̃α1α1v′3(β̃) + β̃2
α1v′′3 (β̃),

Ẽα2α2(α1, α2, γ) = v′′3 (α2) + β̃α2α2v′3(β̃) + β̃2
α2v′′3 (β̃),

Ẽα1α2(α1, α2, γ) = β̃2
α1α2v′3(β̃) + β̃α1 β̃α2v′′3 (β̃),

det∇2Ẽ =
[
v′′3 (α1) + βα1α1v′3(β̃)

] [
v′′3 (α2) + β̃α2α2v′3(β̃)

]
+ v′′3 (α1)v′′3 (β̃)β̃2

α2 + v′′3 (α2)v′′3 (β̃)β̃2
α1 − v′23 (β̃)β̃2

α1α2 − 2v′3(β̃)v′′3 (β̃)β̃α1 β̃α2 β̃α1α2 ,

where we have exploited the regularity of v3, see Section 2. In particular, we have v′3(2π/3) = 0

and v′′3 (2π/3) > 0. We recall that the functions β̃s(α1, α2, γ) are smooth and tend to 2π/3 as
(α1, α2, γ) tends to (2π/3, 2π/3, π), see (8). On the other hand, σs0(γ) ↑ 2π/3 as γ ↑ π, see (28).
Therefore, we can choose γ̌sε ∈ (γsε , π) such that, for all (α1, α2) ∈ [σs0(γ), 2π/3] × [σs0(γ), 2π/3]
and γ ∈ (γ̌sε , π), there hold

v′′3 (α1) >
1

2
v′′3 (2π/3), v′′3 (α2) >

1

2
v′′3 (2π/3), |β̃α1α1v′3(β̃)| < 1

4
v′′3 (2π/3)

and ∣∣∣v′′3 (α1)β̃α2α2v′3(β̃) + v′′3 (α2)β̃α1α1v′3(β̃)

+(β̃α1α1 β̃α2α2 − β̃2
α1α2)v′23 (β̃)− 2v′3(β̃)v′′3 (β̃)β̃α1 β̃α2 β̃α1α2

∣∣∣ < 1

8
(v′′3 (2π/3))2.

This way we get 4Ẽα1α1 > v′′3 (2π/3) > 0 and 8 det∇2Ẽ > (v′′3 (2π/3))2 > 0 as desired. �
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Let us now turn to analyze the dependence of Es on γ. We have the following.

Lemma 4.3 (Monotonicity and convexity in γ). There exists γ̂sε ∈ (γsε , π) such that the map

γ 7→ E s(γ) := Es(αs(γ), γ) = min{Es(α, γ) | α ∈ (σs0(γ), 2π/3)}

is strictly decreasing and strictly convex on (γ̂sε , π).

Proof. In the following, we drop the index s from βs, Es, E s, γsε , γ̂sε , σs0(γ), and αs(γ), for the
sake of notational simplicity. Let γ ∈ (γε, π) and take derivatives with respect to γ. Thanks to
first order optimality condition for α(γ), i.e. Eα(α(γ), γ) = 0, we have

E ′(γ) = Eα(α(γ), γ)α′(γ) + Eγ(α(γ), γ) = v′3(β(α(γ), γ))βγ(α(γ), γ).

As β(α(γ), γ) < 2π/3 from Proposition 4.1, we have v′3(β(α(γ), γ)) < 0 and we conclude from
(23) and (24) that E ′ < 0 on (γε, π). By taking the derivative with respect to γ in the identity
Eα(α(γ), γ) = 0, we get Eαα(α(γ), γ)α′(γ) + Eαγ(α(γ), γ) = 0, thus

α′(γ) = −Eαγ(α(γ), γ)

Eαα(α(γ), γ)
.

Using the latter expression for α′(γ), we find (here ∇ denotes derivation in the couple α, γ)

E ′′(γ) = Eαγ(α(γ), γ)α′(γ) + Eγγ(α(γ), γ)

=
Eαα(α(γ), γ)Eγγ(α(γ), γ)− E2αγ(α(γ), γ)

Eαα(α(γ), γ)

=
det∇2E(α(γ), γ)

Eαα(α(γ), γ)
.

The second-order optimality condition for α(γ) reads Eαα(α(γ), γ) > 0, as seen in Proposition
4.1. In order to check the positivity of E ′′, we need to prove that det∇2E(α(γ), γ) > 0. We check
this property in a left neighborhood of γ = π. To this aim we compute the general expression
of det∇2E(α, γ) on (σ(γ), 2π/3) × (γε, π). The computations of second-order derivatives are
similar to the ones in Lemma 4.2. We have that

Eαα = 2v′′3 (α) + β2
αv
′′
3 (β) + βααv

′
3(β),

Eγγ = β2
γv
′′
3 (β) + βγγv

′
3(β),

Eαγ = βαβγv
′′
3 (β) + βαγv

′
3(β).

These entail in particular that

det∇2E = 2v′′3 (α)v′′3 (β)β2
γ + 2v′′3 (α)v′3(β)βγγ

+ v′3(β)v′′3 (β)
(
β2
αβγγ + β2

γβαα − 2βαβγβαγ
)

+ v′23 (β)
(
βααβγγ − β2

αγ

)
.

Recall now from Proposition 4.1 that if γ ↑ π we also have α(γ)→ 2π/3, and then β(α(γ), γ)→
2π/3 as well. Taking (25)-(26) into account, one finds that β2

γβαα − 2βαβγβαγ is negligible

with respect to β2
αβγγ , which has nonzero limit as γ ↑ π, and that the term involving β2

αβγγ
dominates the ones involving v′23 (β). Indeed, we have β → 2π/3 and |v′23 (β)| � v′3(β)v′′3 (β),
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since v′3(2π/3) = 0 and v′′3 (2π/3) > 0. Therefore, there exists γ̂ε ∈ (γε, π) such that the sign of
det∇2E(α(γ), γ) in (γ̂ε, π) is the same of

2v′′3 (α(γ))v′′3 (β(α(γ), γ))β2
γ(α(γ), γ)

+ 2v′′3 (α(γ))v′3(β(α(γ), γ))βγγ(α(γ), γ)

+ v′3(β(α(γ), γ))v′′3 (β(α(γ), γ))β2
α(α(γ), γ)βγγ(α(γ), γ).

The latter is positive thanks to (23)-(24) and the fact that v′3(β(α(γ), γ)) < 0 because of
β(α(γ), γ) < 2π/3. �

Moving from Lemma 4.1 one can prove that the configurational energy E admits a unique
minimizer on the family F s

` , recovering indeed [29, Thms. 4.3 and 6.1]. In fact, by (14) and (21)
such minimization reduces to the minimization of the angle energy of a single point, namely,

min {Es(α, γ`) : α ∈ (2π/3− ε, σsε(γ`))} . (29)

In fact, following Section 3 we should require α ∈ (αs−, α
s
+) from (11)-(12) and (18)-(19). Note

nonetheless that

(2π/3− ε, σsε(γ`)) ⊂ (αs−, α
s
+)

if v2(r) = 0 for r ≥ 1.1 and ` ≥ 4 in the zigzag case or ` ≥ 6 in the armchair case. Lemma 4.1
entails the following.

Theorem 4.4 (Minimality in F s
` ). Letting ` ≥ 4 (zigzag) or ` ≥ 6 (armchair), there exists a

unique nanotube Fs` ∈ F s
` minimizing E within F s

` . This corresponds to the unique minimizer
of α 7→ Es(α, γ`) in (2π/3− ε, σsε(γ`)).

Before closing this section, let us mention again that the minimizing nanotubes Fs` do not
coincide with the rolled-up [10] nor with the polyhedral nanotubes [6]. Indeed, these are defined
via their corresponding angles αsru = 2π/3 and by αspoly solving βs(αspoly, γ`) = αspoly. One easily

checks that ∂αEs(·, γ`) 6= 0 both in αsru and αspoly, see [29, Thms. 4.1-2 and 6.1].

5. Proof of Theorem 2.1

We are eventually in the position of proving the assertion of Theorem 2.1.

Define `sε as the smallest integer (larger than 2) such that

γ`sε > max{γ̌sε , γ̂sε},

where γ̌sε and γ̂sε appear in Lemma 4.2 and Lemma 4.3. Notice from the proofs of such lemmas
that the numbers γ̌sε and γ̂sε are depending on the specific choice of the potential v3. Fix the
integer ` > `sε from now on. Let moreover ηsε be the largest positive number such that

i) the n-cell {x1, . . . , xn} of any nanotube in Pηsε
(Fs` ) satisfies (3), and moreover

ii) the angle γsi at xi satisfies γsi > max{γ̌sε , γ̂sε}, and the angles α1
i , α

2
i at xi belong to

(σs0(γsi ), 2π/3), for any i = 1, . . . , n.

The number ηsε gives the smallness of the perturbation and depends on v3, ε, and on `.

Let now Fs` ∈ F s
` be the minimal nanotube from Theorem 4.4 and F̃ ∈ Pηsε

(Fs` ) be a
nontrivial perturbation, with n-cell {x1, . . . , xn}. In particular, the restrictions on ` and ηsε
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entail that the topology of Fs` and that of F̃ coincide and the energy E(F̃) can be computed as

E(F̃) = E(Fn, L) =
1

2

n∑
i=1

3∑
k=1

v2(|xi − xik |L) +

n∑
i=1

Ẽs(α1
i , α

2
i , γ

s
i ),

where xik , k = 1, 2, 3, are the three points that are bonded to xi. We recall that γ is given by
(4) and that we are assuming γ̄ ≤ γ`. As v2 ≥ −1, we get the bound

E(F̃) ≥ −3

2
n+

n∑
i=1

Ẽs(α1
i , α

2
i , γ

s
i ).

By letting αi := (α1
i + α2

i )/2 we have
n∑
i=1

Ẽs(α1
i , α

2
i , γ

s
i ) ≥

n∑
i=1

Es(αi, γsi ) ≥
n∑
i=1

Es(αi(γsi ), γsi ) =

n∑
i=1

E s(γsi ) ≥ nE s(γ)

where we have used Lemma 4.2, the definition of αs(γsi ) as the unique minimizer of α 7→ Es(α, γsi )
from Lemma 4.1, and the definition of E sand its convexity from Lemma 4.3 (note that all the
anglesγsi , α1

i and α2
i belong to the correct range of validity of these properties thanks to the

restrictions on ` and ηsε). We have obtained,

E(F̃) ≥ −3n/2 + nE s(γ).

As E s is decreasing due to Lemma 4.3, from the assumption γ ≤ γ` we deduce that

E(F̃) ≥ −3n/2 + nEi(γ`) = E(Fs` ).

The assertion follows upon noting that equality holds if and only if the perturbation is trivial,
since all the convexity and monotonicity properties we used are strict. Note that the proof is
independent from the period L of F̃ , which is a small perturbation of the one of Fs` .

6. Numerical evidence for (5)

Theorem 2.1 asserts the stability of Fs` with respect to all small perturbations fulfilling
γ ≤ γ`. Under assumption (5) the reach of the result could then be readily extended to all
small perturbations. As we are presently not able to present an analytical proof of (5), we
resort in recording here some numerical evidence under the specific choice of v2 and v3 given for
f(t) := 1/(2t12)− 1/t6 by

v2(r) =

{
f(r)− f(1.1) if 0 < r < 1.1,
0 otherwise,

v3(θ) = 10(cos θ + 1/2)2.

These interaction potentials fulfill the general requirements of Section 2. In particular, v2 is a
short-ranged, truncated version of the classical Lennard-Jones potential and v3 corresponds to
the standard choice in [40]. We argue on the zigzag and the armchair case separately.

Zigzag. Fix ` ∈ N suitably large and let Fz` = (F zn , L
z
n) be the optimal configuration in F z

` .
Recall hat the n-cell F zn is characterized by αz(γ`), which is the unique minimum in (29). The
reference period is the cell length Lzn := 2m(1− cosαz(γ`)), where the integers m, n, ` are such
that n = 4m`, see (13). As usual, e3 is the axis of the nanotube.

Let now F̃ := (Fn, L) be a small perturbation of Fz` . Notice that, as in the definition of
Pηsε

(Fs` ) in Section 2, we are perturbing the position of the points in the n-cell F zn and the
period Lzn. For every point x in Fn, let x1, x2, x3 be the points that are bonded to x (modulo
L). We define the new configuration F := (Fn, L) by letting its n-cell Fn be obtained by rigidly
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rotating around the midpoint each bond in F̃ corresponding to a bond in Fsn parallel to e3, in
such a way that the rotated bond is again parallel to e3.

A comparison between the energies E(F̃) and E(F) is given in Figure 6 with respect to two
different reference configurations, namely ` = 10, m = 2 (n = 80) in the top and ` = 20, m = 2

(n = 160) in the bottom subfigure. We ran the comparison over 106 random perturbations F̃ ,
102 of which are plotted in Figure 6. The horizontal axis of the diagram is the mean γ of the
angles γzi whereas the vertical axis corresponds to the energy (normalized with respect to the

number n of atoms). Each random perturbation F̃ is denoted by a cross in the diagram and
it is linked via a dotted line to its corresponding configuration F , indicated by a circle. The

decrease of the energy E(F̃) ≥ E(F) as well as the fact that γ = γ` for F are apparent, so that
(5) is confirmed.

The experiment gives also an illustration of Theorem 2.1, for all random perturbations have
a higher energy when compared to the optimal configuration Fz` .

Armchair. We start from the optimal configuration Fa` = (F an , L
a
n) corresponding indeed to

the unique angle αa(γ`) realizing the minimum in (29). The period Lan is given by (20) for
suitable integers n,m, ` with ` even and n = 2m`.

Assume to be given a small perturbation F̃ = (Fn, L) of Fa` . Let us indicate by bik the bond

corresponding to that of Fa` with endpoints indexed as (i, 0, k) and (i, 1, k) in (15). We define F
fulfilling (5) by F = T (F̃), where the transformation T is the composition of some elementary
transformations Ti for i = 0, . . . , 3 defined as follows.

T0: Rotate each bik around its midpoint in such a way that the rotated bond lays in an
orthogonal plane to e3 and its endpoints are equidistant from e3.

T1: Rotate each bik around its midpoint first and then around e3 in such a way that the ro-
tated bond is parallel to the corresponding bond in Fa` and its endpoints are equidistant
from e3.

T2: For each i compute the mean di of the distances of the midpoints of the bonds bik to
e3. Translate each bik by displacing its midpoint in the radial direction with respect to
e3 in such a way that the distance of the displaced midpoint from e3 is exactly di.

T3: For each i compute the mean si of lengths of the bonds bik. Dilate/contract each bik
about its midpoint without rotating it so that the transformed bond has length si.

Figure 7 and Figure 8 show random perturbations F̃ (crosses) and the transformed configura-

tions F = T (F̃) (circles) corresponding to the choices T = T2 ◦T0 (Figure 7) and T = T3 ◦T2 ◦T1
(Figure 8) and the two reference choices for the n-cell ` = 10, m = 4, n = 80 (top), and ` = 20,
m = 4, n = 160 (bottom). Normalized energies with respect to the number of atoms and mean
γ of the angles γai are the depicted on the vertical and on the horizontal axis, respectively. We
have run the simulation over 106 random perturbation, of which 102 are reported here.

In the case T = T2 ◦ T0 (Figure 7), we have that E(F) ≤ E(F̃) and that the mean angle γ of

F becomes smaller than γ`. In the case T = T3 ◦T2 ◦T1 (Figure 8), we have that E(F) ≤ E(F̃)
and γ = γ`. This last equality could also be proved by means of direct geometric considerations
from the definitions of the transformations. In both cases (5) holds.

Note that all perturbations have higher energy with respect to Fa` .
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Figure 6. Comparison of the energy of a random perturbation F̃ of Fz
` with the

energy of its corresponding configuration F . We have investigated the two cases
` = 10, n = 80 (above) and ` = 20, n = 160 (below). Energy values (normalized with
respect to n) are on the vertical axis, while the horizontal axis depicts the mean angle

γ of each configuration. The energy of each random perturbation F̃ (cross) is higher

than the energy of its corresponding configuration F (circle), which satisfies γ = γ`.
The cross at the bottom corresponds to the minimizer Fz

` .
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Figure 7. Comparison of the energy of a random perturbation F̃ of Fa
` with the

energy of its transformed configuration T2(T0(F̃)). We investigate the two cases ` =
10, n = 80 (above) and ` = 20, n = 160 (below). Energy values (normalized with
respect to n) are on the vertical axis, while the horizontal axis depicts the mean angle

γ of each configuration. The energy of each random perturbation F̃ (cross) is higher

than the energy of its transformed configuration T2(T0(F̃)) (circle), which satisfies
γ ≤ γ`. The cross at the bottom corresponds to the minimizer Fa

` .
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Figure 8. Comparison of the energy of a random perturbation F̃ of Fa
` with the

energy of its transformed configuration T3(T2(T1(F̃))). We investigate the two cases
` = 10, n = 80 (above) and ` = 20, n = 160 (below). Energy values (normalized
with respect to n) are on the vertical axis, while the horizontal axis depicts the mean

angle γ of each configuration. The energy of each random perturbation F̃ (cross) is

higher than the energy of its transformed configuration T3(T2(T1(F̃))) (circle), which
satisfies γ = γ`. The cross at the bottom corresponds to the minimizer Fa

` .
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