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Dipartimento di Matematica

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE
MATEMATICHE

INDIRIZZO MATEMATICA

CICLO XXVIII

Sharp and Quantitative

Isoperimetric Inequalities

in Carnot-Carathéodory spaces.
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Abstract

This thesis is dedicated to the study of isoperimetric inequalities in some Carnot-

Carathéodory spaces, related to the Heisenberg geometry.

The thesis is organized as follows. Chapter 1 is concerned with some preliminaries: we

consider Carnot-Carathéodory spaces, and we define Grushin spaces and H-type groups.

Then, we introduce the notion of X-perimeter, showing the validity of a non-sharp isoperi-

metric inequality. In Chapter 2, we study the sharp isoperimetric inequality in H-type

groups and Grushin spaces. Several techniques are needed here, such as representation for-

mulas for the X-perimeter, a concentration-compactness type argument, and non-classical

rearrangements. In Chapter 3, we prove quantitative isoperimetric inequalities in the

Heisenberg group Hn and in some Grushin spaces. To this purpose, we use a technique,

known in the Calculus of Variations as subcalibration, in a suitable class of sets of fi-

nite X-perimeter. Finally, in Chapter 4, we address the problem of studying quantitative

isoperimetric inequalities in the Grushin plane in a class of symmetric sets, starting from

Euclidean techniques. Crucial differences arise from the lack of invariance under translation

of the X-perimeter and lead us to study a variational problem, which has connections with

the study of soap bubbles in the Grushin plane.





Sunto

La presente tesi è dedicata allo studio di disuguaglianze isoperimetriche in alcuni spazi

di Carnot-Carathéodory, connessi con la geometria dei gruppi di Heisenberg.

La tesi è organizzata come segue. Il Capitolo 1 è introduttivo: consideriamo gli spazi di

Carnot-Carathéodory e definiamo gli spazi di Grushin e i gruppi di tipo H. Introduciamo

quindi la nozione diX-perimetro, mostrando la validità di una disuguaglianza isoperimetrica

non ottimale. Nel Capitolo 2 studiamo la disuguaglianza isoperimetrica ottimale in gruppi

di tipo H e spazi di Grushin. Sono necessarie a questo scopo diverse tecniche, tra cui formule

di rappresentazione per l’X-perimetro, un argomento di tipo concentrazione-compattezza

e riarrangiamenti non standard. Nel Capitolo 3 dimostriamo una disuguaglianza isoperi-

metrica quantitativa nel gruppo di Heisenberg Hn e in alcuni spazi di Grushin. Per farlo

usiamo una tecnica, nota nel Calcolo delle Variazioni come subcalibrazione, in una oppor-

tuna classe di insiemi di X-perimetro finito. Infine, nel Capitolo 4, consideriamo il problema

dello studio della disuguaglianza isoperimetrica quantitativa nel piano di Grushin, in una

classe di insiemi simmetrici, a partire da tecniche Euclidee. Si presentano alcune differenze

sostanziali, dovute alla mancanza di invarianza per traslazioni dell’X-perimetro, e ci con-

ducono allo studio di un problema variazionale, collegato allo studio delle bolle di sapone

nel piano di Grushin.





Introduction

Isoperimetric inequalities arise as a natural relation between quantities representing vol-

ume and perimeter of regions, and provide both an analytical and a geometrical description

of the ambient space. In the Euclidean space Rn, n ≥ 2, the isoperimetric inequality states

that if E ⊂ Rn is a Lebesgue measurable set with finite measure, then for some dimensional

constant C = C(n) > 0,

P (E)
n
n−1 ≥ CLn(E).

Here, P (E) is the perimeter of E. For the sharp constant C = CI(n) = P (B)
n
n−1 /Ln(B),

being B the open unit ball in Rn, equality occurs if and only if E is a Euclidean ball.

Such a set is therefore called an isoperimetric set in Rn. Despite the ancient origins of the

isoperimetric inequality, a complete formulation and proof in the generality of Lebesgue

measurable sets in Rn was given only in the 1958 work [40] by E. De Giorgi. This was done

thanks to the powerful notion of perimeter, introduced in the paper [38] by De Giorgi, see

also Caccioppoli [26]. As a consequence of the isoperimetric inequality in Rn, the Gagliardo-

Nirenberg inequality

(∫
Rn

∣Du∣ dx)
n
n−1

≥ C(n)∫
Rn

∣u∣
n
n−1 dx u ∈W 1,1

(Rn)

holds true, see Fleming and Rishel [47]. Such inequality is, in fact, equivalent to the isoperi-

metric inequality. In particular, an embedding theorem for the Sobolev space W 1,1(Rn) into

the space of n/(n−1)-summable functions L
n
n−1 (Rn) is valid (see also Ambrosio, Fusco and

Pallara [7, Section 3.4] for the embedding of BV (Rn) into L
n
n−1 (Rn)).

A progress on the isoperimetric inequality in Rn is the study of its stability. After

some contributions on the subject (see for instance Fuglede [62], Hall [73], Hall, Hayman

and Weitsman [74]), in [63], Fusco, Maggi and Pratelli prove existence of a dimensional

constant CQ(n) > 0 such that any Lebesgue measurable set E ⊂ Rn satisfies

P (E) − P (B(0, rE)) ≥ CQ(n)( min
x∈Rn
L
n
(E △B(x, rE)))

2
.

The quantity rE ≥ 0 is chosen in order to have Ln(E) = Ln(B(0, rE)). We refer to such

inequality as the sharp quantitative isoperimetric inequality in Rn.

i
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In the last two decades an intense investigation on Analysis and Geometry in Metric

Spaces has been carried out by many authors and led to a generalization of classical theories

to these structures: Sobolev spaces (see Haj lasz [71], Haj lasz and Koskela [72]), quasicon-

formal mappings (see Heinnonen and Koskela [76]), functions of bounded variations and

sets of finite perimeter (see Miranda [93], Ambrosio [4], [5], Ambrosio Miranda and Pallara

[10], Korte Lahti and Shanmugalingam [82]), currents and rectifiable sets (see Ambrosio and

Kircheim [8], [9]), see also Heinonen [75], Ambrosio and Tilli [11]. A very general framework

to study isoperimetric inequalities is therefore established. An important class of Metric

Spaces is given by Carnot-Carathéodory spaces, whose definition is attributed to Gromov:

in [67] (see [68] for the english version, see also Pansu [109], Gromov [69]) the author studies

various distances defined on manifolds, naming “Carnot-Carathéodory” a length distance

used by C. Carathéodory in an ancestral form to axiomatically formalize Thermodynam-

ics (see [30]), and already present in the literature of hypoelliptic differential operators and

nonholonomic mechanics. Given a family of vector fields X = {X1, . . . ,Xr} defined in a open

set Ω ⊂ Rn, the Carnot-Carathéodory distance dcc between two points in Ω is defined as the

shortest length of horizontal curves connecting them, i.e., absolutely continuous curves that

are almost everywhere tangent to the distribution of planes generated by X1, . . . ,Xr. If no

horizontal curves connect the two points, dcc is defined to be ∞. Before a formal definition

of Carnot-Carathéodory spaces was given, a sufficient condition to connect any two points

by means of horizontal curves was proved independently by Chow, [33] and Rashewski [113],

involving the rank of the Lie algebra generated by X1, . . . ,Xr. The same condition has a

key role for the hypoellipticity of the subelliptic Laplacian

∆X =
r

∑
i=1

X2
i ,

proved by Hörmander, in the 1967 paper [77]. Such a condition is known in the literature

as Hörmander condition, (also bracket generating condition). This result has motivated

many authors to study hypoelliptic operators defined as sum of squares of vector fields sat-

isfying Hörmander condition, see Bony [21], Kohn [81], Rotshild and Stein [119], Folland

[48], [49], Nagel, Stein and Weinger [106], Jerison [79], Varopoulos [123]. In the work by

Fefferman and Phong [45], dated 1981, the study of subelliptic operators which are not as-

sumed to be written as sum of squares is accomplished associating them with a suitable

metric d. This idea gives an impulse to the study of degenerate elliptic operators, via asso-

ciated Carnot-Carathéodory metrics, see Franchi and Lanconelli [54], [55], and Sobolev and

Poincaré inequalities are studied in view of a regularity theory for weak solutions and esti-

mates of the fundamental solution, see Franchi [51], Franchi, Gutierrez and Wheeden [53],

Franchi, Gallot and Wheeden [52], Capogna, Danielli and Garofalo [28], [29], Lanconelli

and Morbidelli [86]. Isoperimetric inequalities with non-sharp constants follow as a result
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of this research branch, see Varopoulos, Saloff-Coste and Couhlon [124], Garofalo and Nhieu

[65], where perimeter in Carnot-Carathéodory spaces is defined following De Giorgi defi-

nition, see Capogna, Danielli and Garofalo [28], Franchi, Serapioni and Serra Cassano[56]

and corresponds to the definition of Miranda in more general metric spaces [93].

From another point of view, the study of isoperimetric inequalities in Carnot-Carathéodory

spaces is induced by geometrical motivations. When a Riemannian metric is defined on a

manifold, the volume of a region and of its boundary are well defined according to the

metric. In [3] (see also Gromov [68]) Ahlfors proves that if M is a complete n-dimensional

Riemannian manifold satisfying for any D ⊂M

vol(D) ≤ Cvol(∂D)
α,

with α < n
n−1 , then there are no quasiregular mappings from Rn into M . Motivated by this

result, in [108], Pansu proves an isoperimetric inequality in the Heisenberg group H1. Such

a group is an example of Carnot-Carathéodory space, being a Lie group on R3 endowed

with a left-invariant metric. Pansu’s isoperimetric inequality states that for any Lebesgue

measurable set E ⊂ H1

L
3
(E) ≤ (

12

π
)

1
3
PH(E)

4
3 ,

where PH denotes the perimeter in the Heisenberg group, (see Franchi Serapioni and Serra

Cassano [59] for a systematical study). The constant (12/π)1/3 is not sharp, and, still

in [108], Pansu conjectures the form of isoperimetric sets in H1 as topological balls that

are not metric balls. The sharp isoperimetric inequality in H1, which is equivalent to the

characterization of minimizers for the Heisenberg perimeter under volume constraint is still

an open problem.

The present thesis can be included in this framework of Calculus of Variation in Metric

Spaces. Before our work, the only Carnot-Carathéodory space where a sharp isoperimet-

ric inequality was known to hold in the generality of Lebesgue measurable sets, was the

Grushin plane, see [99], and no quantitative inequalities were available. The intention of

this dissertation is to present sharp and quantitative isoperimetric inequalities in Carnot-

Carathéodory spaces connected to the Heisenberg geometry. The original work of the thesis

is presented in Chapters 2, 3, 4. The results of Chapters 2 are published in the work [60],

and part of the results in Chapter 3 are at the base of the work [61]. The results in Chapter

4, instead, are not yet published.

The main features of Carnot-Carathéodory spaces are described in Chapter 1, together

with the generalization of classical tools from Calculus of Variation to such structures, as the

notion of functions of bounded variation. In Section 1.1 we describe the notion of length

of horizontal curves, given a family of vector fields X = {X1, . . . ,Xr}, defining Carnot-
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Caratheodory and sub-Riemannian spaces, and introducing Carnot Groups as examples.

We then focus on H-type groups and Grushin spaces that are subsequent object of study

in this thesis. An H-type Lie algebra is a stratified nilpotent Lie algebra h = h1 ⊕ h2 of

dimension n ≥ 3 and step 2, such that if ⟨⋅, ⋅⟩ is a scalar product that makes h1 and h2

orthogonal, we have

⟨JY (X), JY (X ′
)⟩ = ∣Y ∣

2
⟨X,X ′

⟩.

Here J ∶ h2 → End(h1) is the Kaplan mapping, introduced in [80] (see 1.1.12) and ∣Y ∣ =

⟨Y,Y ⟩1/2. We call rank of the Lie algebra the dimension of the first layer h1 as a real vector

space. An H-type group is a Lie group whose Lie algebra is an H-type Lie algebra, and it

is a generalization of the n-dimensional Heisenberg group.

Given α ≥ 0, h, k ≥ 1 integers and n = h + k we define a Grushin space to be Rn

endowed with the Carnot-Carathéodory distance dα associated to the family of vector fields

Xα = {X1, . . . ,Xh, Y1, . . . , Yk} where

Xi = ∂xi , Yj = ∣x∣α∂yj , i = 1, . . . , h, j = 1, . . . , k.

If h = k = 1, (R2, dα) is called the Grushin plane. In Section 1.2 we recall how to define the

X-gradient of a function u, Xu, and BVX -functions, with a particular attention to lower

semicontinuity of the total variation and compactness of BVX(Rn) into L1
loc(R

n). We then

define the X-perimeter of a set E ⊂ Rn, denoted by PX(E), showing via an example in

the Grushin plane its difference from the length associated to the family X. Section 1.3

is devoted to a proof of the global non-sharp isoperimetric inequality in Grushin spaces

and Carnot groups, see Proposition 1.3.4, that follows the classical approach given by [7]

in Rn. The starting point is the validity of a global Poincaré inequality for balls, see in

particular [86]. The chapter is concluded with a review of the most important results about

the isoperimetric problem in Heisenberg groups.

Chapter 2 is devoted to the study of the sharp isoperimetric inequality in Grushin

spaces and H-type groups, under a suitable symmetry assumption that depends on the

dimensions of the layers. For h, k ≥ 1 integers and n = h+ k, we endow Rn with the Carnot-

Carathéodory distance associated to the family X = Xα, or to the family X = XH of Lie

generators of an H-type Lie algebra of dimension n ≥ 3 and rank h ≥ 2. We say that

a set E ⊂ Rn is x-spherically symmetric if there exists a set F ⊂ [0,∞) × Rk such that

E = {(x, y) ∈ Rn ∶ (∣x∣, y) ∈ F}. Instead, we say that a set is x-Schwarz symmetric if for any

y ∈ Rk the section Ey = {x ∈ Rh ∶ (x, y) ∈ E} is a euclidean ball centered at zero in Rh. The

definition of y-Schwarz symmetry is analogous (see Section 2.1). For any given v > 0 we

consider the isoperimetric problem

inf{PX(E) ∶ L
n
(E) = v, E ∈ Sx if h > 1} (IPX)
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where Sx is the class of x-spherically symmetric sets in Rn. In the case h = 1 no sym-

metry assumptions are required. In Theorem 2.1.4 we prove existence of solutions to the

isoperimetric problem and we characterize them via a differential equation for the profile

function.

Theorem 1. Let h, k ≥ 1 and n = h + k. There exist minimizers for the isoperimetric

problem (IPX). Moreover, any isoperimetric set E ⊂ Rn is x- and y-Schwarz symmetric,

and up to a vertical translation and a null set, it is of the form

E = {(x, y) ∈ Rn ∶ ∣y∣ < f(∣x∣)},

for a decreasing function f ∈ C([0, r0]) ∩C
∞(0, r0) ∩C

2([0, r0)), for some 0 < r0 <∞. The

function f satisfies the following differential equation

f ′
√
r2α + f ′2

= r1−h
∫

r

0
s2α+h−1 k − 1

f
√
s2α + f ′2

ds −
Chkα
h

r

with Chkα =
QPα(E)

(Q−1)Ln(E)
, being Q the homogeneous dimension of (Rn, dXcc) (see Definitions

(1.1.7) and (1.1.19)).

The proof is done through several Lemmas and Propositions. In Section 2.2, we prove

Representation formulas for the X-perimeter of sets with regular boundary, in terms of

their outer unit normal (see Proposition 2.2.1 and equation 2.2.5). As a consequence, in

Proposition 2.2.3 we realize that the H-type perimeter of E ∈ Sx, denoted by PH(E),

is equal to the Grushin perimeter of E for α = 1, denoted by Pα(E). This leads us to

study the isoperimetric problem (IPX) only for Pα. In Theorems 2.3.1 and 2.3.2, we prove

non-classical rearrangements for the α-perimeter, summarized in the next statement:

Theorem 2. For any set E ⊂ Rn with E ∈ Sx, such that Pα(E) < ∞ and 0 < Ln(E) < ∞

there exists an x- and y-Schwarz symmetric set E∗ ⊂ Rn such that Pα(E
∗) ≤ Pα(E) and

Ln(E∗) = Ln(E). Moreover, if Pα(E
∗) = Pα(E) then E is x-Schwarz symmetric and there

exist functions c ∶ [0,∞) → Rk and f ∶ [0,∞) → [0,∞] such that, up to a negligible set, we

have

E = {(x, y) ∈ Rn ∶ ∣y − c(∣x∣)∣ < f(∣x∣)}.

Theorem 2 leads to the proof of existence of isoperimetric sets in Section 2.4. This is

based on a Concentration-Compactness type argument, adapted to the lack of invariance

under translations of the perimeter Pα. Combining Theorem 2 together with the proof

of x- and y-Schwarz symmetry of isoperimetric sets (see Proposition 2.5.5), we provide in

Section 2.5 a characterization of isoperimetric sets through differential equations for their

profile functions. Studying such equations we deduce uniqueness of the isoperimetric set
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in the case k = 1 (see Remark 2.5.2): up to dilations and vertical translations, the unique

isoperimetric set in (Rh+1, dα) is

Eαisop = {(x, y) ∈ Rh ×R ∶ ∣y∣ < ∫
π/2

arcsin ∣x∣
sinα+1 t dt, ∣x∣ < 1}.

We also prove asymptotic and convexity properties of isoperimetric sets for general values

of k (see Proposition 2.5.3 and Section 2.6): the profile function f of an x- and y-Schwarz

symmetric isoperimetric set E ⊂ Rn satisfies for some 0 < r0 <∞, f ′ ≤ 0, f(r0) = 0, and

lim
r→r−0

f ′(r) = −∞, and lim
r→0+

f ′(r)

rα+1
= −

Chkα
h

.

Moreover, it is concave around zero. Uniqueness of isoperimetric sets for general dimensions

may require some further work as explained in Remark 2.6.3.

The proof of the sharp isoperimetric inequality for x-spherically symmetric sets in

Grushin spaces Rh+k, k = 1 motivates us to study its stability, starting from the set Eαisop.

Chapter 3 is dedicated to several applications of a sub-calibration technique yielding to

quantitative isoperimetric inequalities: our proof applies to Heisenberg groups (Section 3.2)

and Grushin spaces (Section 3.3), providing the first examples of quantitative isoperimetric

inequalities in Carnot-Carathéodory spaces, see Theorems 3.2.1 and 3.3.1. See also Section

3.4 where a quantitative inequality in the Euclidean space Rn is recovered. We endow Rh×R
with the Carnot-Carathéodory metric associated to the Grushin space (Rh+1, dα) for α ≥ 0,

or associated to the n-dimensional Heisenberg group, h = 2n. In the first case, we use the

notation Eisop = Eαisop, whereas in the second case we denote by Eisop the Pansu set. The

general scheme is the following: motivated by Theorem 1 and by Ritoré’s proof of the sharp

isoperimetric inequality in Hn in a suitable class of sets, [116], for any 0 ≤ ε < 1 we introduce

the cylinder

Cε = {(x, y) ∈ Rh ×R ∶ ∣x∣ < 1, y > ε}.

We prove the following quantitative estimates.

Theorem 3. Let F ⊂ Rh+1, be any measurable set with Lh+1(F ) = Lh+1(Eisop).

i) If F∆Eisop ⊂⊂ C0 then there exists a dimensional constant C(h) > 0 such that

PX(F ) − PX(Eisop) ≥ C(h)Lh+1
(F∆Eisop)

3.

ii) If F∆Eisop ⊂⊂ Cε for 0 < ε < 1, then there exists a constant C(h, ε) > 0 depending on

the dimension h and on ε, such that

PX(F ) − PX(Eisop) ≥ C(h, ε)Lh+1
(F∆Eisop)

2.
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Precise expressions of the constant C(h) and C(h, ε) are given in Therorems 3.2.1,

3.3.1, and 3.4.1. The proof is based on the existence of a family of hyper-surfaces {Σs}s∈R

foliating the cylinder Cε which have constant mean curvature. The mean curvature here

has to be defined according to the ambient space as in (3.2.5) and (3.3.1). The surfaces Σs

are constructed as the level sets of a smooth function obtained following the next theorem.

Theorem 4. Let 0 ≤ ε < 1. There exists a continuous function u ∶ Cε → R with level sets

Σs = {(x, y) ∈ Cε ∶ u(x, y) = s}, s ∈ R, such that:

i) u ∈ C1(Cε∩Eisop)∩C
1(Cε∖Eisop) and Xu/∣Xu∣ is continuously defined on Cε∖{x = 0};

ii) ⋃s>1 Σs = Cε ∩Eisop and ⋃s≤1 Σs = Cε ∖Eisop;

iii) Σs is a hypersurface of class C2 with constant mean curvature HΣs = 1/s for s > 1 and

HΣs = 1 =H∂Eisop
for s ≤ 1.

Theorem 3 is implied by Theorem 4, via further estimates for the mean curvature that

are also proved in Theorems 3.2.2, 3.3.4 (see relations (3.2.32), (3.2.33), (3.2.34)).

Chapter 4 contains the results so far obtained as a preliminary research in view of a

quantitative isoperimetric inequality for a class of symmetric sets in the Grushin plane. In

Theorem 4.1.1 we prove qualitative stability of the isoperimetric inequality.

Theorem 5. For every ε > 0 there exists δ = δ(α, ε) > 0 such that, for any measurable set

E ⊂ R2 with finite α-perimeter and L2(E) = ωα, if Pα(E) − Pα(E
α
isop) < δ then

Aα(E) = min
y∈R
L

2(E △ (Eαisop + (0, y))) < ε.

The quantity Aα(E) is called the α-asymmetry of E. We say that the sharp quantitative

isoperimetric inequality in the Grushin plane holds if

Aα(E)
2
≤ C(α)(Pα(E) − Pα(E

α
isop))

for any Lebesgue measurable set E ⊂ R2 satisfying L2(E) = L2(Eαisop). Our purpose is to

understand if a quantitative isoperimetric inequality in the Grushin plane holds in the class

of x- and y-Schwarz symmetric sets in R2. The starting plan in this direction was to follow

the scheme given by the Euclidean proof presented in Section 4 of [63] for axially symmetric

sets in Rn. Crucial differences arise from the very beginning, as explained in Section 4.2.

The proof in [63] starts observing that, if E ⊂ R2 is x- and y-Schwarz symmetric, satisfying

L2(E) = L2(B), the quantitative inequality

(min
p∈R2
L
n
(E △B(p,1)))

2
≤ C(P (E) − P (B))
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follows from

L
2
((B ∖E) ∩Z)

2
≤ C(P (E) − P (B)), (Z)

where Z = {(x, y) ∈ R2 ∶ ∣x∣ <
√

2/2}. Since the α-perimeter is not invariant under rotation

of the axis, relation (Z) fails to be sufficient for the quantitative isoperimetric inequality in

the Grushin plane, and it needs to be proved in two stripes, namely:

L
2
((Eαisop △E) ∩Z)

2
≤ C(Pα(E) − Pα(E

α
isop)) (Z grushin)

and

L
2
((Eαisop △E) ∩Z2)

2
≤ C(Pα(E) − Pα(E

α
isop)), (Z2 grushin)

where Z2 = {(x, y) ∈ R2 ∶ ∣y∣ < b} for a suitable b > 0. The proof of (Z) adapts to prove

(Z2 grushin), while (Z grushin) hides deep differences between the α-perimeter and the

euclidean one. The proof of (Z) is divided into three steps:

1. The volume L2((B ∖ E) ∩ Z) is estimated in terms of the length difference between

the intervals Ex̄ = {y ∈ R ∶ (x̄, y) ∈ E} and Bx′ = {y ∈ R ∶ (x′, y) ∈ B} for some x̄, x′ > 0.

Namely, there exists C1 > 0 such that

L
2
((E △B) ∩Z) ≤ C1∣H

1
(Ex̄) −H

1
(Bx′)∣

where H1 denotes the 1-dimensional Hausdorff measure. This step can be proved for

both stripes Z and Z2, as shown in Lemma 4.2.4.

2. For any x- and y-Schwarz symmetric set E ⊂ R2 satisfying L2(E) = L2(B) and any

suitable choice of x̄ and x′ as above, there exists an x-spherically symmetric and

y-Schwarz symmetric set E′ ⊂ R2 satisfying L2(E′) = L2(E), such that

P (E′
) ≤ P (E) and ∣H

1
(Ex̄) −H

1
(Bx′)∣ ≤ C2∣H

1
(E′

0) −H
1
(B0)∣. (Step 2)

The technical key point here is what motivates our further analysis. The set E′ is

constructed to be equal to a Euclidean ball centered at 0 in the stripe {(x, y) ∈ R2 ∶

∣x∣ < x0} for a suitable x0 > 0 such that

H
1
(E′

x0) =H
1
(Ex̄) and L

2
(E) = L

2
(E ∩ {x < x̄}). (constr.)

The construction of E′ doesn’t apply to the Grushin plane in the stripe Z, see Remark

4.2.7. Nonetheless, if it is possible to construct E′ to be equal to a dilation of the set

Eαisop, then estimate (Step 2) holds true, see Remark 4.2.8. As it is shown in Lemma

4.2.6, this happens in the case of the stripe Z2.



ix

3. For any x-spherically symmetric and y-Schwarz symmetric set E ⊂ R2 satisfying

L2(E) = L2(B), there exists a constant C3 > 0 such that

∣H
1
(E0) −H

1
(B0)∣

2
≤ C3(P (E) − P (B)).

The proof adapts to the α-perimeter in both stripes (see Proposition 4.4.1).

The failure of the Euclidean techniques at Step 2, leads us to introduce a minimization

problem for a functional involving the Grushin perimeter, in a class of sets that satisfy

volume and trace constraints representing (constr.). Given h1, h2, v1, v2 > 0, we define the

class Ax = Ax(v1, v2, h1, h2) of all Lebesgue measurable sets E ⊂ R2 that are x-symmetric,

y-Schwarz symmetric and such that there exists x0 = x0(v1, v2, h1, h2) ≥ 0 satisfying

L
2
(Exx0−) = v1, L

2
(E ∖Exx0−) = v2,

[−h1, h1] ⊂ trxx0−E, [−h2, h2] ⊂ trxx0+E,
(class)

where trxx0±E are the traces of E at x0 in the x-direction introduced in Definition 4.3.2.

Introducing the functional Fα(E) = Pα(E
x
x0−)+Pα(E

x
x0+)−4h1−4h2, for E ∈ Ax, we consider

inf{Fα(E) ∶ E ∈ Ax}. (Min Fα)

The study of such a minimization problem is presented in Section 4.3 and constitutes the

heart of the chapter, having possible connections with the study of soap bubbles and minimal

clusters in the Grushin plane.

Theorem 6. Let h1, h2, v1, v2 > 0. There exists a bounded set E ∈ Ax realizing the infimum

in (Min Fα) and such that, for x0 ≥ 0 defined by (class), the sets E∩{∣x∣ < x0}, E∩{x > x0},

E ∩ {x < −x0} are convex sets.

If f ∶ [0,∞) → [0,∞) is such that the set E = {(x, y) ∈ R2 ∶ ∣y∣ < f(∣x∣)} ∈ Ax is such

a minimizer, then f is C2-smooth almost everywhere on [0,∞) and there exist constants

c ≥ 0, k ≤ 0, d ∈ R such that

f ′(x) = −
sgnx c∣x∣α+1

√
1 − c2x2

if ∣x∣ < x0,

f ′(x) =
(kx + d) xα

√
1 − (kx + d)2

if x > x0, f ′(x) =
(kx − d) ∣x∣α

√
1 − (kx − d)2

if x < −x0.

Moreover, if limx→x−0 f
′(x) > −∞, trx−0E = [−h1, h1]. Analogously if limx→x+0 f

′(x) > −∞,

trx+0E = [−h2, h2].

Existence of minimizers is proved in Theorem 4.3.6, via subsequent adjustments of a

minimizing sequence. Characterization of the minimizers via differential equations for the

profile function is instead proved in Sections 4.3.2 and 4.3.3.



x

The question arising from the construction at Step 2 is whether a minimizer for (Min Fα)

is equal to a suitable dilation of Eαisop in the stripe {(x, y) ∈ R2 ∶ ∣x∣ < x0} or not. In

Proposition 4.3.11 we show that this property is not satisfied for the particular choice of

the parameter v2 = 0. Hence, it is not clear if the techniques in [63] can be adapted to the

Grushin perimeter.
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Basic notation

Rn n-dimensional Euclidean space

∆X horizontal bundle generated by family of vector fields X

`X length of curves in ∆X , i.e., horizontal curves

dXcc Carnot-Carathéodory distance associated to the family of vector fields X

BX
cc(x, r) open ball with respect to dcc of center x ∈ Rn and radius r ≥ 0

dE Euclidean distance

BE(x, r) open ball with respect to dE of center x ∈ Rn and radius r ≥ 0

G a Carnot group

τx left translation by x in a Carnot group

g Lie algebra of the Carnot group G
Q homogeneous dimension

δGλ dilation associated to the Carnot group G by λ ≥ 0

XG family of canonically generating vector fields of the Carnot group G
BG(x, r) open ball with respect to dGcc of center x ∈ G and radius r > 0

Hn n-dimensional Heisenberg group

δHλ anisotropic dilation associated with the Heisenberg group Hn

Xα family of vector fields associated with a Grushin space, for α ≥ 0

dα Carnot-Carathéodory distance in a Grushin space, for α ≥ 0

`α length of horizontal curves in a Grushin space, for α ≥ 0

δαλ dilation by λ ≥ 0 in a Grushin space for α ≥ 0

Bα(p, r) ball with respect to the distance dα of center p ∈ Rn and radius r ≥ 0

Boxα(p, r) box of center p ∈ Rn and radius r ≥ 0

Ln n-dimensional Lebesgue measure

Xu horizontal gradient of the scalar function u

divXψ horizontal divergence of the vector function ψ

divGψ horizontal divergence in a Carnot group G of the vector function ψ

xi



Lp(Ω) p-summable functions in Ω, 1 ≤ p ≤∞

Lploc(Ω) locally p-sumable functions in Ω

W 1,p
X anisotropic Sobolev space associated with X

∣Xu∣(Ω) X-variation of the scalar function u in Ω ⊂ Rn

BVX(Ω) space of functions of bounded X-variation in Ω

PX(E; Ω) X-perimeter of E in Ω ⊂ Rn

P Euclidean perimeter

PG X-perimeter, with X =XG, where G is a Carnot group

PH H-perimeter

Pα α-perimeter

Pα(E; Ω) α-perimeter of E in Ω, with α ≥ 0

CI sharp isoperimetric constant

Eisop conjectured isoperimetric set in Hn, called Pansu ball

ϕ profile function of Eisop

Eαisop isoperimetric set in Grushin spaces

ϕα profile function of Eαisop

Sx class of x-spherically symmetric sets in Rn

NE outer unit normal to E ⊂ Rn

Nα α-normal to E ⊂ Rn

NE
H H-normal to E

Hk k-dimensional Hausdorff measure with respect to the Euclidean metric

D(E) isoperimetric deficit of the set E ⊂ Rn

A(E) Fraenkel asymmetry of E ⊂ Rn

DH(E) H-isoperimetric deficit with respect to the Pansu ball of the set E ⊂ Rn

AH(E) H-asymmetry with respect to the Pansu ball of E ⊂ Rn

D(E) αisoperimetric deficit of the set E ⊂ R2

A(E) α-asymmetry of E ⊂ R2

trxx0−E left trace of E ⊂ R2 at x0 > 0 in the x-direction

trxx0+E right trace of E ⊂ R2 at x0 > 0 in the x-direction

trxx0E trace of E ⊂ R2 at x0 > 0 in the x-direction
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CHAPTER 1

An introduction to Carnot-Carathéodory structures

in view of the Calculus of Variations

1.1 Carnot-Carathéodory structures: definitions and examples

In this section we introduce the notion of Carnot-Caratheodory and sub-Riemannian

structure on Rn. We also introduce as examples H-type groups and Grushin spaces where

we are going to define and study the notion of perimeter in the subsequent Chapters. For

the general definition of a sub-Riemannian manifold see for instance [69], [2], [85], [94].

1.1.1. Vector fields on Rn

A vector field on Rn is a section of the tangent bundle of Rn, which can be thought of

as a function

X ∶ Rn → TRn, X(x) =
n

∑
i=1

ai(x)∂xi ∈ TxR
n

where, given x ∈ Rn, ∂xi is the i-th element of the standard basis of the tangent space to

Rn at x, and it can be identified with the partial derivative with respect to xi evaluated at

x. A vector field on Rn is said to be (Lipschitz, Ck,. . . -) continuous in Rn if its coefficients

ai ∶ Rn → R are (Lipschitz, Ck,. . . -) continuous. The idea to define a Carnot-Carath́eodory

structure on Rn is to consider some privileged directions and define an associated distance.

In sub-Riemannian geometry this is done by fixing a sub-bundle ∆ ⊂ TRn as the span of

vector fields on Rn, X1, . . . ,Xr (1 ≤ r ≤ n) satisfying the so called Hörmander condition (see

(1.1.2) below). To be more precise we need to recall the following notions.

Definition 1.1.1 (Lie Algebra). A real Lie Algebra is a real vector space V endowed with

an operation

{ , } ∶ V × V → V, (v,w)↦ {v,w}

3
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which satisfies the following properties

1. { , } is R-bilinear;

2. {v,w} = −{w, v} for any v,w ∈ V (skew symmetry);

3. the following identity, called the Jacobi identity holds:

{u,{v,w}} + {v,{w,u}} + {w,{u, v}} = 0 u, v,w ∈ V.

We say that a vector space W ⊂ V is a Lie subalgebra of V if it is closed under the operation

{ , } and properties 1-3 are satisfied.

Given a subset A ⊂ V , we call Lie subalgebra generated by A (in (V,{ , })) the smallest

Lie subalgebra of V containing A and we denote it by Lie(A).

There is a classical way to associate to a family of vector fields on Rn a Lie algebra (see

for instance [19, Section 1.1]). Given two smooth vector fields on Rn

X =
n

∑
i=1

ai∂xi , Y =
n

∑
j=1

bj∂xj ,

we define their composition law as the composition of partial differential operators, which

is denoted by ○, namely:

X ○ Y =
n

∑
i=1

(ai(∂ibj)∂xj + aibj∂
2
xixj

)

where ∂2
xixj is the second order derivative with respect to xi and xj . The commutator [X,Y ]

between X and Y is defined as

[X,Y ] =X ○ Y − Y ○X.

The set of C∞ vector fields on Rn, X(Rn) = {X = ∑
n
i=1 ai∂xi ∶ ai ∈ C

∞(Rn)}, endowed with

the bracket operation [ , ] is a Lie-algebra. In particular the commutator of vector fields is

again a vector field. Henceforth, given a family of smooth vector fields X = {X1, . . . ,Xr},

we consider the Lie algebra generated by X in (X, [ , ]), and we denote it by Lie(X). It is

easy to see that it coincides with the real span of the iterated brackets of the elements of

X, namely:

Lie(X) = span{[Xi, [...[Xj ,Xk]]] ∶ i, j, k = 1, . . . , r}. (1.1.1)

Definition 1.1.2 (Hörmander vector fields). We say that the smooth vector fields on Rn

X1, . . . ,Xr ∈ X(Rn) satisfy the Hörmander condition if the Lie algebra that they generate

has full rank on Rn, namely if

rank(Lie(X1, . . . ,Xr))(x) = n x ∈ Rn, (1.1.2)

where rank(W ) denotes the dimension of W as vector space.
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The following result is known as the Chow-Rashevsky theorem or Chow connectivity

theorem, and it was independently proved by Chow in [33] and Rashevsky in [113].

Theorem 1.1.3 (Rashevsy 1938, Chow 1939). Let p, q ∈ Rn. If X = {X1, . . . ,Xr} is a family

of vector fields satisfying the Hörmander condition, there exists an absolutely continuous

curve γ ∶ [0,1]→ Rn such that

γ(0) = p, γ(1) = q γ̇(t) =
r

∑
i=1

ai(t)Xi(γ(t)) for some coefficients ai for a.e. t ∈ [0,1].

For a proof we refer to [2, Theorem 3.29].

1.1.2. Sub-Riemannian and Carnot-Carathéodory structures on Rn

Associated to the family X = {X1, . . . ,Xr}, we define a sub-bundle of the tangent bundle:

∆X
= ⋃
p∈Rn

∆X
p ∆X

p = span{X1(p), . . . ,Xr(p)}

and we call it the horizontal bundle. A vector field Y ∈ ∆X is called a horizontal vector field.

We drop the upper index X if no confusion arises. We say that an absolutely continuous

curve γ ∶ [0,1]→ Rn is horizontal if γ̇(t) ∈ ∆X
γ(t) for every t ∈ [0,1]. Given, for every p ∈ Rn,

a scalar product gp on ∆p such that X1, . . . ,Xr are orthonormal, we define the length of an

horizontal curve γ as

`X(γ) = ∫
1

0
gγ(t)(γ̇(t), γ̇(t)) dt = ∫

1

0

¿
Á
ÁÀ

r

∑
i=1

a2
i (γ(t)) dt (1.1.3)

where γ̇(t) = ∑ri=1 ai(γ(t))Xi(γ(t)) ∈ ∆X
γ(t).

If the family X satisfies the Hörmander condition, it is possible to associate to this

structure a distance through the following steps. By Chow’s theorem (Theorem 1.1.3), any

two points p, q ∈ Rn can be connected by means of horizontal curves. We can therefore define

the following distance on Rn, which is called the Carnot-Carathéodory (also sub-Riemannian

or CC for short) distance associated to X:

dXcc(p, q) = inf {`X(γ) ∶ γ horizontal, γ(0) = p, γ(1) = q}. (1.1.4)

We denote the open ball of center x ∈ Rn and radius r > 0 with respect to the CC distance

by

BX
cc(x, r) = {y ∈ Rn ∶ dXcc(x, y) < r}.

Also in the case of `X , dXcc and BX
cc we may drop the index X if no confusion arises. From

now on, by sub-Riemannian structure we mean Rn endowed with a family of vector fields

on Rn, X = {X1, . . . ,Xr} satisfying the Hörmander condition.
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If a Carnot-Carathéodory distance dXcc can be constructed on Rn starting from a set

of vector fields X = {X1, . . . ,Xm} that do not necessarily satisfy Hörmander condition,

we call Rn endowed with the family X a Carnot-Carathéodory structure on Rn. Clearly

sub-Riemannian structures are Carnot-Carathéodory ones.

Example 1.1.4 (Euclidean distance). The euclidean space Rn endowed with the family

X = {∂x1 , . . . , ∂xn} is a sub-Riemannian structure and the CC distance is the euclidean

one dE(p, q) =
√
∑
n
i=1(pi − qi)

2. In this case we use the notation BE(x, r) = B
X
cc(x, r) for a

euclidean ball of center x ∈ Rn and radius r > 0.

Example 1.1.5 (Grushin spaces). In Subsection 1.1.4 we introduce Grushin spaces which

are Carnot-Carathéodory structures on Rn endowed with a family of vector fields depending

on a parameter α ≥ 0.

1.1.3. Carnot Groups

An important class of sub-Riemannian structures on Rn is given by Carnot groups on

Rn, which are Lie groups. We say that G is a Lie group if it is a smooth manifold endowed

with a group operation ∗ such that the composition map (x, y)↦ x∗y and the inverse map

x ↦ x−1 (x ∗ x−1 = x−1 ∗ x = e, unit element) are smooth on G. Fixed x ∈ G we call left

translation by x the map

τx ∶ G→ G, τx(y) = x ∗ y

and right translation by x the map

%x ∶ G→ G, %x(y) = y ∗ x.

The maps τx, %x are clearly C∞ diffeomorphisms of G into itself for any x ∈ G. We say that

a vector field X on G is left-invariant if the following holds

(Xf) ○ τx =X(f ○ τx) for every f ∈ C∞
(G), x ∈ G. (1.1.5)

The set of all left invariant vector fields is a Lie algebra, which is called the Lie algebra of

G and it is denoted by Lie(G) or g. In the theory of Lie groups, the exponential map is a

map from the Lie algebra of a group to the group itself defined using integral curves of the

vector fields in g:

Exp ∶ g→ G, Exp(X) = γX(1) (1.1.6)

where γX ∶ [0,1]→ G is the unique curve such that

γX(0) = e, γ̇X(t) =X(γ(t)) t ∈ [0,1].

Notice that here we use smoothness and completeness of left invariant vector fields (see for

instance [19, Remark 1.1.3]).



1.1. DEFINITIONS AND EXAMPLES 7

Definition 1.1.6 (Carnot Group). A Carnot group of step s is a connected, simply con-

nected Lie group whose Lie algebra g admits a step s stratification, i.e., there exist linear

subspaces V1, . . . , Vs such that

g = V1 ⊕⋯⊕ Vs, [V1, Vi] = Vi+1, Vs ≠ {0},

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with X ∈ V1 and

Y ∈ Vi.

Remark 1.1.7. The Lie algebra of a Carnot group is nilpotent, i.e., there exists m ∈ N such

that g(j) = {0}, j ≥m, where g(j) is defined recursively as follows:

g(1) = g, g(j+1)
= [g,g(j)] = span{[X,Y ] ∶X ∈ g, Y ∈ g(j)}, j ≥ 2.

We call the homogeneous dimension of G the number

Q =
s

∑
i=1

idimVi, (1.1.7)

and the rank of G, denoted by r, the dimension of V1, which is the number of Lie-generators

of the algebra.

Group operation

If G is a Carnot group, the exponential map defined in (1.1.6) is a global diffeomorphism.

This guarantees that any n-dimensional Carnot group can be identified with Rn. In fact,

any point x ∈ G can be represented by Exp(X) for a unique X ∈ g. If X = ∑
r
i=1 xiXi, we

call exponential coordinates of x the vector (x1, . . . , xn). In addition, the Baker-Campbell-

Hausdorff formula holds for any X,Y ∈ g, (see [19, Theorem 2.2.13], [37, Theorem 1.2.1]),

namely:

Exp(X) ∗Exp(Y ) = Exp(X ◇ Y ) X,Y ∈ g

where ◇ is the Baker-Campbell-Hausdorff operation whose first terms are the following

X ◇ Y =X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] − [Y, [X,Y ]]) +⋯.

The group operation of G can be written through the Baker-Campbell-Hausdorff formula

as

x ∗ y = x + y +Q(x, y) (1.1.8)

where Q ∶ G ×G → G has polinomial, skew-symmetric components (Q(−x,−y) = −Q(x, y)),

such that Q1 = ⋅ ⋅ ⋅ = Qr = 0 and Qj , j > r depends only on xi and yi for i < j (see [19,

Proposition 2.2.22]. This implies in particular that, identifying G with Rn via exponential

coordinates, the unit element of any Carnot group on Rn is 0 ∈ Rn and the inverse map is

given by x↦ −x.
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Dilations

The Lie algebra g of a Carnot group G is naturally endowed with a family of dilations

modeled on its stratification:

δgλ(
s

∑
i=1

Yi) =
s

∑
i=1

λiYi, Yi ∈ Vi, λ > 0.

The group G inherits a family of anisotropic dilations parametrized by λ > 0 and defined as

δGλ (x) = δ
G
λ (Exp(

n

∑
i=1

Yi)) = Exp(
s

∑
i=1

λiYi).

Using exponential coordinates, δGλ turns out to be of the following form (see [19, relations

(2.49c), (2.53)])

δGλ (x1, . . . , xn) = (λx1, . . . , λxr, λ
σr+1xr+1, . . . , λ

σnxn) ∶

with σj = i if Yj ∈ Vi, j = r + 1, . . . , n, i = 2, . . . , r. The components of the polynomial Q

appearing in the group operation are homogeneous with respect to the intrinsic dilation δGλ :

Qj(δ
G
λ x, δ

G
λ y) = λ

αjQj(x, y), j = 1, . . . , n. From (1.1.8) we also deduce that δGλ is a family

of automorphisms of G, namely

δGλ x ∗ δ
G
λ y = δ

G
λ (x ∗ y).

Moreover (δGλ )
−1 = δG1/λ.

Sub-Riemannian structure on G

A sub-Riemannian structure on G is given considering the first layer V1 of the strati-

fication of the Lie algebra as the horizontal bundle. Consider a basis for the Lie algebra

g = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs,

X1, . . . ,Xr,X
(2)
1 , . . . ,X(2)

r2 , . . . ,X
(s)
1 , . . . ,X(s)

rs

where X1, . . .Xr generates V1, X
(j)
1 , . . . ,X

(j)
rj generates Vj for j = 2, . . . , s, r1 + ⋅ ⋅ ⋅ + rs = n

and such that at the origin it is the canonical orthonormal basis of Rn in the coordinate

system

x = (x1, . . . , xr1 , xr1+1, . . . , xr1+r2 , . . . , xr1+⋅⋅⋅+rs−1+1, . . . , xn).

Namely,

X
(j)
1 (0) =

∂

∂xr1+⋅⋅⋅+rj−1+1
, . . . ,X(j)

ri (0) =
∂

∂xr1+⋅⋅⋅+rj
, j = 1, . . . s.

We extend the scalar product that makes ∂x1 , . . . , ∂xn orthonormal at the origin in a left

invariant way and we call it gp on ∆p, p ∈ G. Using left invariance, Xi can be written in
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the coordinate system x = (x1, . . . , xn) as follows (see [50, Proposition 1.26]):

Xi(x) = ∂xi +
n

∑
j=r+1

qji(x)∂xj i = 1 . . . r, x ∈ G, (1.1.9)

where qji = ∂xiQj(x,0) is (αj−1)-homogeneous with respect to δGλ and qji(x) = qji(x1, . . . , xj−1).

In fact, by left invariance, for any u ∈ C∞(Rn), j = 1, . . . , r, we have

Xiu(x) = (Xiu) ○ τx(0) =Xi(u ○ τx)(0) = ∂xi(u ○ τx)(0) =
n

∑
j=1

∂u

∂xj
(x)

∂(τx)j

∂xi
(0).

Then, using (1.1.8)

Xiu(x) =
n

∑
j=1

∂u

∂xj
(δij + ∂xiQj(x,0))

=
i−1

∑
j=1

∂u

∂xj
(∂xiQj) +

∂u

∂xi
(1 + ∂iQi) +

n

∑
j=i+1

∂u

∂xj
(∂xiQj)

=
∂u

∂xi
+

n

∑
j=r+1

qji
∂u

∂xi
.

We refer to X1, . . . ,Xr as the family of canonically generating vector fields and we use the

notation

XG = {X1, . . . ,Xr}.

We call the Carnot-Carathéodory distance of the Carnot group G, and denote it by dGcc, the

one defined in (1.1.4) and associated to a family of canonically generating vector fields:

dGcc(p, q) = inf {∫
1

0

¿
Á
ÁÀ

s

∑
i=1

ai(γ(t))2 dt ∶ γ(0) = p, γ(1) = q, γ̇ =
s

∑
i=1

aiXi}.

We use the notation BG = BX
cc where X is a family of canonical generators for G. The

following properties of dGcc hold:

• The topology induced on G by dGcc is the topology of the manifold;

• dGcc is left invariant:

dGcc(τxy, τxz) = d
G
cc(y, z);

• dGcc is 1-homogeneous with respect to intrinsic dilations

dGcc(δ
G
λ x, δ

G
λ y) = λd

G
cc(x, y), x, y, z ∈ G λ > 0.
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Metric characterization of Carnot groups

On a Carnot group we can consider a sub-Finsler distance instead of a sub-Riemannian

one, choosing a left invariant norm {∥ ⋅ ∥p}p∈Rn on the horizontal bundle V1, instead of a

scalar product {gp}p∈Rn . The length of an horizontal curve γ ∶ [0,1]→ G is then defined as

`X(γ) = ∫
1

0
∥γ̇(t)∥γ(t) dt.

Carnot groups endowed with a sub-Finsler distance have a precise characterization as metric

spaces, pointed out by E. Le Donne in [84]: they are the only metric spaces S that are:

1. locally compact, i.e., every point of the space has a compact neighborhood (involves

only topology).

2. geodesic, i.e., for all p, q ∈ S, there exists an isometric embedding i ∶ [0, T ] → S with

T ≥ 0 such that i(0) = p, i(T ) = q.

3. isometrically homogeneous, i.e., for all p, q ∈ S there exists a distance preserving home-

omorphism f ∶ S → S (d(f(x), f(y)) = d(x, y) for ever x, y ∈ S) such that f(p) = q.

4. self similar, i.e., the space admits a dilation, namely there exists λ > 1 and a homeo-

morphism f ∶ S → S such that d(f(p), f(q)) = λd(p, q) for all p, q ∈ S.

The fact that any Carnot group with a sub-Finsler distance (G, d) is such a metric space is

easy.

1. The topology of a Carnot group with the sub-Finsler CC-distance is the euclidean

topology;

2. (G, d) is complete and d is defined as a length distance;

3. For any p, q ∈ G, the left translation τz ∶ G→ G, z = τq(p
−1) is distance preserving and

satisfies τz(p) = q;

4. Carnot groups admits dilations for any λ > 0.

1.1.4. Examples

I) Heisenberg groups

Besides the Euclidean space, the most important example of Carnot group is the

Heisenberg group H1. The n-dimensional Heisenberg group, denoted by Hn, is Cn×R
endowed with the following group operation:

(z, t) ∗ (z′, t′) = (z + z′, t + t′ + 2Im(zz̄′)),
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where z̄′ denotes the conjugate of z′. Identifying Cn with R2n through z = x + iy ↦
(x, y) = (x1, . . . , xn, y1, . . . , yn), the operation can be also written as

(x, y, t) ∗ (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2
n

∑
i=1

(x′iyi − xiy′i)). (1.1.10)

To find a family of canonically generating vector fields of the Lie algebra h of Hn, we

look for a family of left invariant vector fields X = {X1, . . . ,Xn, Y1, . . . , Yn, T} which

correspond to the canonical basis of R2n+1 at the origin

Xi(0) = ∂xi , Yi(0) = ∂yi , T (0) = ∂t, i = 1, . . . , n.

This leads to

Xi(x, y, t) = ∂xi + 2yi∂t, Yi(x, y, t) = ∂yi − 2xi∂t, T (0) = ∂t, i = 1, . . . , n.

Notice that the only nonzero commutator of the family X is [Xi, Yi] = −4∂t = −4T .

Brackets of order bigger than 2 are zero. Hence, h = Lie(X) with X = {Xi, Yi ∶ i =
1, . . . , n} and the family X satisfies the Hörmander condition (1.1.2): rank(Lie(X)) =
2n + 1. The horizontal bundle is therefore given by ∆ = span{Xi, Yi ∶ i = 1, . . . , n}.

Moreover the Lie algebra h admits the stratification

h = ∆⊕ [∆,∆], ∆ = span{Xi, Yi ∶ i = 1, . . . n},

so that Hn is a Carnot group of step 2 and rank 2n. The homogeneous dimension of

Hn is

Q = 2n + 2

and the dilations of the group are

δHλ (z, t) = (λz, λ2t), λ > 0, (z, t) ∈ Hn.

Derivations of the Heisenberg group

While talking about sub-Riemannian structures, it is often said that the Heisen-

berg group is the “easiest” example, apart from the euclidean space. In fact, we

can view the Heisenberg Lie algebra h as the unique three dimensional nilpotent Lie

algebra, with a step 2 stratification h = V1 ⊕ V2, and rank 2 such that

[V1, V1] = V2, [V1, V2] = {0}

In particular, if V1 = span{e1, e2}, V2 = span{ε} it is sufficient to impose

[e1, e2] = ε. (1.1.11)
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The group law of the corresponding Carnot group is induced by relation (1.1.11) as

follows. Let ξ, η ∈ h, ξ = xe1 + ye2 + tε, η = x′e1 + y′e2 + t′ε. Then

[ξ, η] = xy′[e1, e2] + x′y[e2, e1] = (xy′ − x′y)ε.

In exponential coordinates, if p = Exp(ξ), q = Exp(η) ∈ H1, we write p = (x, y, t) and

q = (x′, y′, t′). Therefore, since the Exponential map is a global diffeomorphism, the

group law ● of the correspondent Lie group is given by

(x, y, t) ● (x′, y′, t′) = Exp(ξ) ∗Exp(η) = Exp(ξ ◇ η) = Exp(ξ + η + 1

2
[ξ, η])

= Exp((x + x′)e1 + (y + y′)e2 + (t + t′)ε + 1

2
(xy′ − x′y)ε)

= (x + x′, y + y′, t + t′ + 1

2
(xy′ − x′y))

Condition (1.1.11) leads to the group law ●: the group law ∗, defined in (1.1.10), is

obtained imposing [e1, e2] = −4ε, which still implies [V1, V1] = V2.

II) H-type groups

A generalization of the Heisenberg groups is given by H-type groups. Let h = h1 ⊕ h2

be a stratified nilpotent real Lie algebra of dimension n ≥ 3 and step 2. Thus we have

h2 = [h1,h1]. We fix on h a scalar product ⟨⋅, ⋅⟩ that makes h1 and h2 orthogonal. The

Kaplan mapping, introduced in [80], is the mapping J ∶ h2 → End(h1) defined via the

identity

⟨JY (X),X ′⟩ = ⟨Y, [X,X ′]⟩, (1.1.12)

holding for all X,X ′ ∈ h1 and Y ∈ h2. The algebra h is called an H-type algebra if for

all X,X ′ ∈ h1 and Y ∈ h2 there holds

⟨JY (X), JY (X ′)⟩ = ∣Y ∣2⟨X,X ′⟩, (1.1.13)

where ∣Y ∣ = ⟨Y,Y ⟩1/2. An H-type group is a Lie group whose Lie algebra is an H-

type Lie algebra, clearly an H-type group is a Carnot group. We can identify h with

Rn = Rh × Rk, h1 with Rh × {0}, and h2 with {0} × Rk, where h ≥ 2 and k ≥ 1 are

integers. In fact, h is always even.

Remark 1.1.8. The subspace z ⊂ h

z = {Z ∈ h ∶ [Z,X] = 0 ∀X ∈ h},

is called the center of h. The following general result holds true (see [80, Corollary 1]).

Let h, k ∈ N∖{0}. Then there exists anH-type Lie algebra of dimension n = h+k whose
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center has dimension k if and only if k < ρ(h) where ρ is the so called Hurwitz−Radon
function, which is such that ρ(n) = 0 if n is odd. We deduce that there cannot be

H-type Lie algebras of dimension n = h + k, h, k ≥ 1 whith center of dimension k ≥ 1

and h odd, hence h has to be an even integer.

We can assume that ⟨⋅, ⋅⟩ is the standard scalar product of Rn. By the third

fundamental theorem of Lie (see [19, Theorem 2.2.14]), since h is a finite dimensional

Lie algebra, there exists a connected and simply connected Lie group whose Lie

algebra is isomorphic to h. This Lie group is therefore an H-type group and, using

exponential coordinates, it can be identified with Rn. Denoting points of Rn as

(x, y) ∈ Rn = Rh × Rk, the Lie group product ∗ ∶ Rn × Rn → Rn is of the form

(x, y) ∗ (x′, y′) = (x + x′, y + y′ + Q(x,x′)), where Q ∶ Rh × Rh → Rk is a bilinear

skew-symmetric mapping. Let Q`
ij ∈ R be the numbers

Q`
ij = ⟨Q(ei, ej), e`⟩, i, j = 1, . . . , h, ` = 1, . . . , k,

where ei, ej ∈ Rh and e` ∈ Rk are the standard coordinate versors. An orthonormal

basis of the Lie algebra of left-invariant vector fields of the H-type group (Rn, ⋅) is

given by

Xi =
∂

∂xi
−

k

∑
`=1

h

∑
j=1

Q`
ijxj

∂

∂y`
, i = 1, . . . , h,

Yj =
∂

∂yj
, j = 1, . . . , k.

(1.1.14)

Example 1.1.9. Heisenberg groups are H-type groups with h = Lie({Xj, Yj ∶ j =
1, . . . ,N}), h1 = span{Xj, Yj}, h2 = [h1,h1] = span{∂t}. If T = −4∂t ∈ h2,

JT (
N

∑
j=1

(ajXj + bjYj)) =
N

∑
j=1

(−bjXj + ajYj)

and (1.1.13) is satisfied.

Example 1.1.10 (Complexified Heisenberg group). Another example of H-type

group is given in [19, Example 18.1.3], (see also [114]), and it is R6 with the fol-

lowing group law

x ○ y = (x(1) + y(1), x(2)
1 + y(2)1 + 1

2
⟨P1x

(1), y(1)⟩, x(2)
2 + y(2)2 + 1

2
⟨P2x

(1), y(1)⟩)

where x = (x(1), x
(2)
1 , x

(2)
2 ) ∈ R6, x(1) ∈ R4 and x

(2)
1 , x

(2)
2 ∈ R,

P1 =
√

2

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0

−1 0 0 −1

−1 0 0 1

0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P2 =
√

2

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −1 1 0

1 0 0 −1

−1 0 0 −1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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III) Grushin spaces

We now introduce a Carnot-Carathéodory structure on Rn which is related to Heisen-

berg groups without being a Carnot group. Let Rn = Rh × Rk, where h, k ≥ 1 are

integers and n = h + k. Let α ≥ 0 be a real number. A Grushin space is Rn endowed

with the following structure on Rn: Xα = {X1, . . . ,Xh, Y1, . . . , Yk},

Xi = ∂xi , i = 1, . . . , h,

Yj = ∣x∣α∂yj , j = 1, . . . , k,
(1.1.15)

where ∣x∣ is the standard norm of x ∈ Rh. When h = k = 1, R2 endowed with the family

Xα is called the Grushin plane and it has been considered by Franchi and Lanconelli

in [54] to prove Hölder regularity of the weak solutions of Lu = 0,

L = ∂2

∂x2
+ ∣x1∣2α

∂2

∂x2
2

,

using Moser’s technique. The differential operator L is known in the literature as the

Grushin operator (see also [70]), and it is hypoelliptic for α ∈ N.

In the paper [22], the Grushin plane is identified as a two dimensional almost-

Riemannian manifold (see [2], [22], [24] and references therein). Endowing the Grushin

plane with the Riemannian volume, that degenerates on the y-axis, the authors con-

sider, in the case α = 1, the Laplace-Beltrami operator, that is not the Grushin oper-

ator, and study solutions to the heat equation in such a structure. In the paper [23],

it is more generally considered the case α ∈ R: the authors characterize the solutions

of the heat equation showing that they can flow through the y-axis if and only if

α ∈ (−3,1).

Remark 1.1.11. Notice that the vector fields Yj, j = 1, . . . , k are not smooth for every

α ≥ 0 and we can not test the Hörmander condition. Nonetheless, the only non-

horizontal curves in a Grushin structure on Rn = Rh×Rk are the curves γ ∶ [0,1]→ R2

laying on the vertical axis for some time [t1, t2], 0 ≤ t1 < t2 ≤ 1. Hence, any two

points p1, p2 ∈ Rn, can be connected by means of horizontal curves and the Carnot-

Carathéodory distance can be defined together with all the other tools as the X-

perimeter (see Section 1.2 below).

On the other hand, if α is an integer, the family of vector fields X(x, y) =
∂x, Y (x, y) = xα∂y, is a sub-Riemannian structure on R2. In fact, for every (x, y) ∈ R2

[X,Y ](x, y) = αxα−1∂y

hence, with α iterated brackets we obtain [X, . . . , [X, [X,Y ]]](x, y) = ∂y, which leads



1.1. DEFINITIONS AND EXAMPLES 15

to

Lie({X,Y }) = span{[[X, . . . , [X, [X,Y ]]]] ∶ commutators of order ≤ α}

= span{∂x, ∂y} ≡ R2.

Condition (1.1.2) is therefore proved.

We show a formula for the length of horizontal cuves in Grushin structures. For

(x, y) ∈ Rn = Rh ×Rk, x ≠ 0, and α > 0 consider the metric

ds2
α = dx2

1 + ⋅ ⋅ ⋅ + dx2
h +

1

∣x∣2α
(dy2

1 + ⋅ ⋅ ⋅ + dy2
k) (1.1.16)

where dxi, dyj denote the elements of the canonical basis of the cotangent bundle to Rn

in the coordinate system (x1, . . . , xh, y1, . . . , yk). Then ds2
α makesX1, . . . ,Xh, Y1, . . . , Yk

orthonormal. Following (1.1.3), we define the α-length of an horizontal curve γ ∶
[0,1]→ Rn = Rh ×Rk as

`α(γ) = ∫
1

0

¿
ÁÁÀ

h

∑
i=1

γ′i(t)2 + 1

∣(γ1(t), . . . , γh(t))∣2α
k

∑
j=1

γ′1+j(t)2 dt. (1.1.17)

The Carnot-Carathéodory distance on Rn associated to the family X is denoted by

dα. The Grushin space Rn = Rh × Rk, with dα can be endowed with a family of

non-isotropic dilations parametrized by λ > 0

δαλ(x, y) = (λx,λα+1y), (x, y) ∈ Rh
x ×Rk

y = Rn (1.1.18)

such that dα(δαλp, δαλq) = λdα(p, q), for p, q ∈ Rn. We define the homogeneous dimen-

sion of the Grushin space Rn = Rh ×Rk with dα as

Q = h + (α + 1)k. (1.1.19)

Remark 1.1.12. Grushin spaces are not Carnot groups! In fact, (Rn, dα) is a locally

compact and geodesic metric space which admits a dilation. These are three up to

four properties needed in the metric characterization of Carnot groups given by Le

Donne, see [84, Theorem 1.1]. On the other hand, Grushin spaces are not isometrically

homogeneous. We show it for (R2, dα): let P = (0,0), Q = (1,0) and consider a

distance preserving homeomorphism f ∶ R2 → R2, i.e., dα(f(p), f(q)) = dα(p, q) for

every p, q ∈ R2. Since f is a distance preserving homeomorphism, it is a conformal

map, i.e., there exists a function u ∶ R2 → (0,∞) such that

lim
p→q

dα(f(p), f(q))
dα(p, q)

= u(q)−1.
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Applying the characterization of conformal maps in the Grushin metric, proved by

Morbidelli in [102], we deduce f(0,0) = (0, y) for some y ∈ R, hence f(P ) ≠ f(Q).
Then the points P and Q cannot be joined through a distance preserving homeomor-

phism, which implies that (R2, dα) is not isometrically homogeneous.

Connection with the Heisenberg geometry

The Grushin plane (R2, dα), α = 1, can be identified with a metric quotient of

H1. Namely, we consider the quotient of H1 with the one parameter subgroup Ξ =
{(ξ,0,0) ∈ H1, ξ ∈ R}, i.e.,

X = {Ξp ∶ p ∈ H1},

where Ξp is the right coset Ξp = {(ξ,0,0)∗(x, y, t) ∶ ξ ∈ R} = {(ξ+x, y, t−2ξy) ∶ ξ ∈ R}
for every p = (x, y, t) ∈ H1. Consider ϕ ∶ H1 → R2, ϕ(x, y, t) = (y, t + 2xy). Since

ϕ((ξ,0,0) ∗ (x, y, t)) = (y, t + 2xy) for every ξ ∈ R, ϕ induces a map

ϕ̃ ∶ X→ R2, ϕ̃(Ξp) = (y, t + 2xy).

In particular, choosing for any coset Ξp the unique representative (ξ,0,0) ∗ p =
(0, u, v) ∈ {(x, y, t) ∈ H1 ∶ x = 0}, we identify X with R2 via the map ϕ̃ as follows

ϕ̃(Ξp) = ϕ(0, u, v) = (u, v), (u, v) ∈ R2.

On X we define the quotient metric

dX(Ξp,Ξq) = inf
(ξ,0,0)∈Ξ

dH1((ξ,0,0) ∗ p, q), p, q ∈ H1.

The map ϕ̃ ∶ (X, dX)→ (R2, dα), α = 1, is an isometry, i.e.,

dX(Ξp,Ξq) = dα(ϕ̃(Ξp), ϕ̃(Ξq)), p, q ∈ H1. (1.1.20)

To prove it, we first introduce new coordinates in H1. Denote [ξ, u, v] = Ψ(ξ, u, v)
where Ψ ∶ R3 → H1 is the analytic change of variables

Ψ(ξ, u, v) = (ξ,0,0) ∗ (0, u, v) = (ξ, u, v − 2ξu)

so that, if π ∶ H1 → X denotes the projection on the quotient, π([ξ, u, v]) = Ξ(0, u, v).
Hence in the new coordinates, ϕ̃ ○ π([ξ, u, v]) = (u, v). We write X = ∂x + 2y∂t,

Y = ∂y − 2x∂t. For any f ∈ C∞
c (R3) and (x, y, t) = [ξ, u, v] ∈ H1 we have

∂ξf([ξ, u, v]) = ∂xf([ξ, u, v]) − 2u∂tf([ξ, u, v]) = ∂xf − 2y∂tf

∂uf([ξ, u, v]) = ∂yf([ξ, u, v]) − 2ξ∂tf([ξ, u, v]) = ∂yf − 2x∂tf

∂vf([ξ, u, v]) = ∂tf
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hence X = ∂ξ + 4u∂v, Y = ∂u, and the push-forward through the map ϕ̃ ○ π read

(ϕ̃ ○ π)∗X = 4u∂v and (ϕ̃ ○ π)∗Y = ∂u. In fact, for g ∶ R2 → R

(ϕ̃∗π∗X)(g) =X(g(ϕ̃(π([ξ, u, v])))) = (∂ξ + 4u∂v)(g(u, v)) = 4u∂vg(u, v),

(ϕ̃∗π∗Y )(g) = ∂ug(u, v).

Notice that the Carnot-Carathéodory distance associated to the vector fields 4u∂v

and ∂u is dα.

Now, given any horizontal curve γ = (u(t), v(t)), t ∈ (0,1) in (R2, dα), the curve

γ̃(t) = [ξ(t), u(t),4v(t)] ∈ H1, with ξ(t) = ξ0 + ∫
t

0
v̇(s)
u(s) ds, ξ0 ∈ R, is a horizontal lift of

γ in H1, i.e. it is horizontal in H1 and ϕ̃ ○ π ○ γ̃ = γ. In fact,

˙̃γ = ξ̇∂ξ + u̇∂u + 4v̇∂v =
v̇

u
(X − 4u∂v) + u̇Y + 4v̇∂v =

v̇

u
X + u̇Y.

Moreover, by definition of length of a horizontal curve, (see (1.1.3) and (1.1.17))

`H1(γ̃) = ∫
1

0

¿
ÁÁÀ v̇(s)2

u(s)2
+ u̇(s)2 ds = `α(γ).

From the lifting, we deduce (1.1.20) as follows

dα(ϕ̃(Ξp), ϕ̃(Ξq)) = dα((u1, v1), (u2, v2)) = inf
ξ1,ξ2∈R

dH1([ξ1, u1, v1], [ξ2, u2, v2])

= inf
(ξ,0,0)∈Ξ

dH1((ξ,0,0) ∗ (0, u1, v1), (0, u2, v2)) = dX(Ξp,Ξq).

In this explanation we followed [12], where Arcozzi and Baldi review Rotschild and

Stein lifting techniques for vector fields satisfying Hörmander condition (see [119,

Theorem 4]).

CC-Balls in the Grushin plane

In this Section, we resume estimates for the measure of the Carnot-Carathéodory

balls in Grushin spaces, that are used in Section 1.3 to prove a global isoperimetric

inequality. We denote by Bα(x, r) the open ball with respect to dα of center x ∈ Rn

and radius r > 0, i.e.,

Bα(x, r) = {y ∈ Rn ∶ dα(x, y) < r}.

When n = 2, Franchi and Lanconelli (see [54, Theorem 2.7]) proved estimates for

CC-balls in terms of the boxes

Boxα(p, r) = [x − r, x + r] × [y − r(∣x∣ + r)α, y + r(∣x∣ + r)α], p = (x, y) ∈ R2, r > 0.
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Namely, they prove existence of constants c1, c2 > 0 such that

Boxα(p, c1r) ⊂ Bα(x, r) ⊂ Boxα(p, c2r), r > 0, p ∈ R2.

These inclusions are generalized to Grushin spaces Rn = Rh
x × Rk

y by Franchi,

Gutiérrez and Wheeden in [53, Proposition 2.2] as follows. For every p0 = (x0, y0) ∈
Rn = Rh ×Rk and r > 0, let

(i) Λα(p0, r) = sup
∣x−x0∣<r

∣x∣α = (∣x0∣ + r)α;

(ii) Fα(p0, r) = rΛα(p0, r);

(iii) Boxα(p0, r) = BE(x0, r) ×BE(y0, Fα(p0, r)).

Then, there exists b > 1 such that

Boxα(p, r/b) ⊂ Bα(p, r) ⊂ Boxα(p, br), r > 0, p ∈ Rn. (1.1.21)

In particular, there exist c1, c2 > 0 such that

c1r
nΛα(p, r)k ≤ Ln(Bα(p, r)) ≤ c2r

nΛα(p, r)k r > 0, p0 ∈ Rn. (1.1.22)

Remark 1.1.13. Recalling that Λα(p, r)k = (∣x∣+r)αk ≥ rαk, the latter estimate implies

Ln(Bα(p, r)) ≥ c1r
Q for every p ∈ Rn, r > 0.

1.1.5. Lebesgue measure in Grushin spaces and Carnot groups: dilations

and translations

In this Section, we resume how the Lebesgue measure interacts with the metric

structure in Carnot groups and in Grushin spaces.

Proposition 1.1.14 (Q-homogeneity of the Lebesgue measure). Let {δλ}λ>0 be a

family of anisotropic dilations on Rn defined by δλ ∶ Rn → Rn

δλ(p1, . . . , pn) = (λσ1p1, . . . , λ
σnpn), σi ∈ N, 1 = σ1 ≤ σ2 ≤ ⋅ ⋅ ⋅ ≤ σn. (1.1.23)

Let Q = ∑n
i=1 σi. Then the n-dimensional Lebesgue measure Ln is δλ-homogeneous of

degree Q, i.e., for every measurable set E ⊂ Rn

Ln(δλ(E)) = λQLn(E). (1.1.24)
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Proof. Compute the Jacobian determinant of δλ at p ∈ Rn:

Jδλp = det

⎛
⎜⎜⎜⎜⎜⎜
⎝

λσ1 0 . . . 0

0 λσ2 . . . 0

⋮ ⋱ ⋮
0 . . . λσn

⎞
⎟⎟⎟⎟⎟⎟
⎠

= λQ. (1.1.25)

Hence

Ln(E) = ∫
δλ(E)

dq = ∫
E
λQ dp = λQLn(E).

Let X be one of the families of vector fields below:

• XG = {X1, . . . ,Xr} generators of a stratified nilpotent Lie algebra associated to

a Carnot group G. In this case, the dilations of the group δλ = δGλ are as in

(1.1.23), hence the Lebesgue measure is δλ-homogeneous of degree Q, which is

the number defined in (1.1.7).

• Xα = {X1, . . . ,Xh, Y1, . . . , Yk} defining a Grushin strcture on Rn = Rh × Rk as

in (1.1.15). The dilations δλ = δαλ = (λx,λα+1y) are of type (1.1.23), hence the

Lebesgue measure is δλ-homogeneous of degree Q = h + (α + 1)k.

The Carnot-Carathéodory distance dcc associated to X is 1-homogeneous with respect

to δλ: dcc(δλx, δλy) = λdcc(x, y) for every x, y ∈ Rn. In particular, if B(x, r) denotes

the CC-ball with center x ∈ Rn and radius r > 0, we have that

B(x,λr) = {y ∈ Rn ∶ dcc(x, y) ≤ λr} = {y ∈ Rn ∶ dcc(δ 1
λ
x, δ 1

λ
y) ≤ r}

= {δλy ∈ Rn ∶ dcc(δ 1
λ
x, y) ≤ r} = δλB(δ1/λx, r), λ > 0.

(1.1.26)

From (1.1.26) and (1.1.24), we deduce that for every r > 0, x ∈ Rn

Ln(B(x,2r)) = 2QLn(B(δ1/2x, r)). (1.1.27)

If X =XG, left and right translations interplay with the Lebesgue measure in the

following way.

Proposition 1.1.15 (Haar measure in Carnot groups). Let G be a Carnot group

identified with Rn. The n-dimensional Lebesgue measure, Ln, is the Haar measure of

G, namely it is invariant with respect to left and right translations on G:

Ln(τx(E)) = Ln(E) = Ln(%x(E)) x ∈ G, E ⊂ G measurable. (1.1.28)
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Proof. The proof is a change of variables - see Proposition 1.3.21 in [19].

Proposition 1.1.15 together with (1.1.27) lead to the doubling property of the

Lebesgue measure in any Carnot group.

Definition 1.1.16 (Doubling measure). A Borel measure µ on a metric space (S, d)
is doubling if there exists a constant CD > 0 such that

µ(B(p,2R)) ≤ CDµ(B(p,R)) for every p ∈ S, R > 0,

where B(p,R) = {q ∈ S ∶ d(p, q) ≤ R}.

For a reference see [72].

Proposition 1.1.17 (Doubling property of the Lebesgue measure - Carnot groups).

Let G be a Carnot group and Q its homogeneous dimension. Then

Ln(BG(x,2r)) = 2QLn(BG(x, r)) for every r > 0, x ∈ G.

Proof. We use (1.1.27) and (1.1.28):

Ln(BG(x,2r)) = 2QLn(BG(δG1/2x, r)) = 2QLn(BG(τxτ−δG
1/2x

δG1/2x, r)) = 2QLn(BG(x, r)).

Since Grushin spaces are not isometrically homogeneous, the doubling property

of the Lebesgue measure is not straightforward, and it is based on the estimates for

CC balls proved in [53] (see (1.1.22)).

Proposition 1.1.18 (Doubling property of the Lebesgue measure - Grushin). Let

h, k ≥ 1 be integers and n = h + k. Then there exists a constant C > 0 such that

Ln(Bα(p,2r)) ≤ CDLn(Bα(p, r)) for every r > 0, p ∈ Rn.

Proof. Let p = (x, y) ∈ Rn = Rh ×Rk and r > 0. From (1.1.27) we have Ln(B(p,2r)) =
2QLn(B(δα

1/2
p, r)), with Q = h + (α + 1)k. We claim that there exists c > 0 such that

Ln(B(δα1/2p, r)) ≤ cLn(B(p, r)).

In fact, from (1.1.22)

Ln(B(δα1/2p, r)) ≤ brnΛα(δα1/2p, r)k ≤ brnΛα(p, r)k =
b2

b
rnΛα(p, r)k ≤ b2Ln(Bα(p, r))

where we used Λα(δα1/2p, r)k ≤ Λα(p, r)k which holds by definition. The statement

follows with CD = b22Q.
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Remark 1.1.19. In 1983, Nagel, Stein and Wainger proved that the Lebesgue measure

is (locally) doubling in any sub-Riemannian space, see [106, Theorem 1]. Namely, if

X = {X1, . . . ,Xr} is a family of vector fields on Rn satisfying the Hörmander condition,

and dXcc is the associated Carnot-Carathéodory distance, for any compact set K ⊂⊂ Rn

there exist constants C = C(K) > 0, R0 = R0(K) > 0 such that

Ln(BX
cc(p,2R)) ≤ CLn(BX

cc(p,R)), p ∈K,0 < R ≤ R0.

1.2 Functions of bounded X-variation and X-perimeter

In this section we recall the basic notions of the theory of perimeters in the setting

of Carnot-Carathéodory structures on Rn, following [28], [65] and [56].

Let X = {X1, . . . ,Xr} be a family Lipschitz continuous vector fields on Rn which

are self adjoint, namely X∗
j =Xj where

∫
Rn
ϕXjψ dx = −∫

Rn
ψX∗

j ϕ dx ϕ,ψ ∈ C∞, j = 1, . . . , r.

If u ∶ Rn → R is a C1(Rn)-function we call the X-gradient or horizontal gardient of u

the following vector field

Xu =
r

∑
i=1

(Xiu)Xi. (1.2.1)

Another notation for the X-gradient of a function u is DXu = Xu. Moreover, given

ϕ = (ϕ1, . . . , ϕr) with C1(Rn)-components such that Xiϕi ∈ L1
loc(Rn) we define the

X-divergence or horizontal divergence as

divXϕ =
r

∑
i=1

Xiϕi. (1.2.2)

Remark 1.2.1 (Horizontal gradient and divergence in Carnot groups). If X = XG

generates a stratified nilpotent Lie algebra, associated to a Carnot group G = (Rn,∗),
the notion of X-gradient depends on the choice of the family X, while the horizontal

divergence only depends on the first layer V1 of the Lie algebra g = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vs.

Henceforth we use the notation divX = divG. Namely, let Y = {Y1, . . . , Yr} be a

set of canonically generating vector fields, different from X and denote by ⟨ , ⟩X
(respectively ⟨ , ⟩Y ) the left-invariant scalar product on the tangent bundle such

that X1, . . . ,Xr (respectively Y1, . . . , Yr) are orthonormal. We have in general Xu =
∑r
i=1(Xiu)Xi ≠ ∑r

i=1(Yiu)Yi = Y u, and the gradients Xu and Y u are equal if X1, . . . ,Xr

are orthonormal with respect to ⟨ , ⟩Y and Y1, . . . , Yr are orthonormal with respect to

⟨ , ⟩X (see [120, Remark 3.9]).
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On the other hand, let y1, . . . , yn denote the the coordinates for the family Y .

Then, by (1.1.9), Yj(x) = ∂yj +∑i≥r+1 qij∂yi . We write ϕ as a vector field in the basis

Y and compare it to the basis ∂y1 , . . . , ∂yn :

ϕ =
r

∑
i=1

ϕjXj =
r

∑
i=1

(ϕj∂yj + ∑
i≥r+1

ϕjqij∂yi) =
r

∑
j=1

ϕj∂yj + ∑
i≥r+1

(
r

∑
j=1

ϕjqij)∂yi .

Using the independence of qji from xi, we obtain that the Y -divergence is equal to

the euclidean divergence as follows:

divϕ =
r

∑
j=1

∂yjϕj +
n

∑
i=r+1

∂yi(
r

∑
j=1

ϕjqij) =
r

∑
j=1

∂yjϕj +
n

∑
i=r+1

r

∑
j=1

qij∂yiϕj

=
r

∑
j=1

(∂yj +
n

∑
i=r+1

qij∂yi)ϕj =
r

∑
j=1

Yjϕj = divY ϕ.

Let Ω ⊂ Rn be an open set. For any m ∈ N, let us define the family of test functions

Fm(Ω) = {ϕ ∈ C1
c (Ω;Rm) ∶ max

x∈Ω
∣ϕ(x)∣ = max

x∈Ω

¿
ÁÁÀ

r

∑
j=1

ϕ2
j(x) ≤ 1}.

Definition 1.2.2 (X-variation). For any u ∈ L1
loc(Ω) the X-variation of u in Ω is

defined as

∣Xu∣(Ω) = sup{∫
Ω
u(x)divXϕ(x) dx ∶ ϕ ∈ Fr(Ω)} (1.2.3)

A function u ∈ L1
loc(Ω) is said to be of bounded X-variation in Ω if ∣Xu∣(Ω) <∞.

Another notation for the X-variation of a function u in Ω is ∣DXu∣(Ω) = ∣Xu∣(Ω).
By Riesz representation theorem, if ∣Xu∣(Ω) < ∞, then the open sets functional

A ↦ ∣Xu∣(A) extends to a finite Radon measure ∣Xu∣ in Ω and there exists a ∣Xu∣-
measurable function σ ∶ Ω → Rr, with ∣σ∣ = 1 ∣Xu∣-a.e. such that for any ϕ ∈ Fr(Ω)
there holds

∫
Ω
udivXϕdx = −∫

Ω
⟨ϕ,σ⟩d∣Xu∣,

where ⟨⋅, ⋅⟩ denotes the standard scalar product in Rr.

The vector space of functions of bounded X-variation is denoted by BVX(Ω). The

space BVX,loc(Ω) is the set of functions belonging to BVX(A) for every A ⊂⊂ Ω.

Remark 1.2.3. The following holds

∣Xu∣(Ω) = ∫
Ω
∣Xu∣(x) dx u ∈W 1,1

X (Ω) (1.2.4)

where for 1 ≤ p ≤∞, W 1,p
X (Ω) is the anisotropic Sobolev space W 1,p

X (Ω) = {u ∈ Lp(Ω) ∶
Xju ∈ Lp(Ω), j = 1, . . . , r} which is a Banach space endowed with the norm

∥u∥W 1,p
X (Ω)

= ∥u∥Lp(Ω) +
r

∑
i=1

∥Xju∥Lp(Ω).
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For u ∈ Lp(Ω), Xju denotes the weak derivative in direction Xj defined through the

equality

∫
Ω
u ⋅Xjψ dx = −∫

Ω
(Xju) ⋅ ψ dx ∀ψ ∈ C∞

c (Ω).

We recall the following approximation result which is proved by Franchi, Serapioni

and Serra Cassano in [56, Theorem 2.2.2].

Theorem 1.2.4 (Approximation of BVX functions). Let u ∈ BVX(Ω). Then there

exists a sequence (uh)h∈N ⊂ C∞(Ω) such that

lim
h→∞

∥uh − u∥L1(Ω) = 0, lim
h→∞

∣Xuh∣(Ω) = ∣Xu∣(Ω).

1.2.1. Lower semicontinuity and compactness of BVX functions

In the Calculus of Variations, a classical technique to prove existence of minimizers

for a minimum problem

CF = inf{F (A) ∶ A ∈ A}

involving a functional F defined on a nonempty class A of measurable sets in Rn, is

to consider a minimizing sequence Ak ∈ A, i.e.,

F (Ak) ≤ CF(1 + 1

k
), k ∈ N

and prove its convergence in the L1-topology to a minimum, i.e., A ∈ A such that

F (A) = CF . The necessary tools to use this strategy are a compactness theorem to

extract a subsequence Akm converging to A ∈ A and lower semi-continuity of the

functional F to obtain

F (A) ≤ lim inf
m→∞

F (Akm) ≤ CF .

We show that the definition of X-variation can be used, in this sense, to address

problems from the Calculus of Variations. The following properties hold.

• Lower semi-continuity of the total X-variation. Let X = {X1, . . . ,Xr} be a

family of Lipschitz continuous and self adjoint vector fields on Rn. Suppose

um ∈ BVX(Ω) for m ∈ N and um → u in L1(Ω) as m→∞. Then

∣Xu∣(Ω) ≤ lim inf
m→∞

∣Xum∣(Ω). (1.2.5)

To prove (1.2.5), let ϕ ∈ Fr(Ω). Then we have:

∫
Ω
udivXϕ dx = lim

m→∞
∫

Ω
um divXϕ dx

≤ lim inf
m→∞

sup{∫
Ω
um divXϕ dx ∶ ϕ ∈ Fr(Ω)} = lim inf

m→∞
∣Xum∣(Ω).
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The claim follows considering the supremum over all ϕ ∈ Fr(Ω) in the left-hand

side.

• Compactness of BVX,loc(Rn) in L1
loc(Rn). Assume that X generates a stratified

nilpotent Lie algebra associated to a Carnot group G or X is the family de-

pending on α ≥ 0 defined in (1.1.15) for Grushin spaces. Then BVX,loc(Rn) is

compactly embedded in Lqloc(Rn) for 1 ≤ q < Q
Q−1 . This result is proved by Garo-

falo and Nhieu for more general families of vector fields X, see [65, Theorem

1.28].

1.2.2. X-perimeter

Given a Lebesgue measurable set E ⊂ Rn, we denote by χE its characteristic

function

χE ∶ Rn → {0,1}, χE(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ E
0 if x /∈ E.

Clearly χE ∈ L1(Rn) if and only if Ln(E) <∞.

Definition 1.2.5 (X-perimeter). We say that a Lebesgue measurable set E ⊂ Rn,

has finite X-perimeter in Ω if χE ∈ BVX(Ω) and we call X-perimeter of E in Ω the

quantity

PX(E; Ω) = ∣XχE ∣(Ω).

If Ω = Rn we say that E has finite X-perimeter and we use the notation PX(E) =
PX(E,Rn).

As in the case of the X-variation defined in (1.2.3), by Riesz representation theo-

rem, if PX(E,Ω) <∞, then the open sets functional A↦ PX(E,A) extends to a finite

Radon measure µE in Ω and there exists a µE-measurable function νE ∶ Ω→ Rr, called

the horizontal normal of E, with ∣νE ∣ = 1 µE-a.e. such that the following Gauss-Green

integration by parts formula

∫
E

divXϕdx = −∫
Ω
⟨ϕ, νE⟩dµE (1.2.6)

holds true for any ϕ ∈ C1
c (Rn;Rr), where ⟨⋅, ⋅⟩ denotes the standard scalar product in

Rr.

Remark 1.2.6. Let ∂E be a C1 surface, i.e., ∂E = S = {p ∈ Rn ∶ u(p) = 0}, for a

smooth function u ∈ C1(Rn) such that ∇u ≠ 0. In this case the horizontal normal is

defined in terms of the outer unit normal outside a subset of S, which is called the
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characteristic set of S. The latter is the set of points where the horizontal hyperplane

and the tangent plane to S coincide:

Σ(S) = {p ∈ S ∶Xu(p) = 0}.

For every p ∈ S ∖Σ(S), we have

νE(p) =
Xu

∣Xu∣
.

Unfortunately, the characteristic set might be “big”. In the paper [13], in fact, the

author shows that in the Heisenberg group H1 for any ε > 0 there exists a surface

S = {t = f(z), z ∈ [−1,1]2} with f ∈ ⋂0<α<1C1,α([−1,1]2) such that L2({z ∈ [−1,1]2 ∶
(z, f(z)) ∈ Σ(S))} > 1 − ε.

The notion of X-perimeter is given according to the De Giorgi definition of perime-

ter in the euclidean space Rn: if X = {∂x1 , . . . ∂xn}, we use the standard notation

P = PX .

Notation: If X = XG generates a stratified nilpotent Lie algebra associated to

a Carnot group G, we denote by PG the X-perimeter and we call it G-perimeter. In

particular if G is an H-type group, we denote PG = PH and we call it H-perimeter.

Moreover, if X =Xα is the family depending on α ≥ 0 defined in (1.1.15) for Grushin

spaces, we denote the X-perimeter as Pα and we call it α-perimeter. Moreover in this

case we call the α-variation the Xα-variation and we denote it with ∣Dαu∣(Ω).

Remark 1.2.7. In the paper [14] the authors prove a Steiner-type formula in the first

Heisenberg group. Here, the H-perimeter appears as the first term of the Taylor

expansion as ε → 0+ of the volume L3(Ωε), where, for a set Ω ⊂ H1, having C∞-

smooth boundary, we let

Ωε = {p ∈ H1 ∶ dHcc(p,Ω) < ε}, dHcc(p,Ω) = inf{dHcc(p, q) ∶ q ∈ Ω}.

We also define the signed distance from the boundary,

δ(p) =
⎧⎪⎪⎨⎪⎪⎩

dcc(p, ∂Ω) if p ∈ H1 ∖Ω

−dcc(p, ∂Ω) if p ∈ Ω̄

The Steiner-type formula proved in [14] asserts that, in a suitable open set Q ⊂ H1,

including no characteristic points of ∂Ω, and for ε ≥ 0 small enough, the following

Taylor expansion holds true:

L3(Ωε ∩Q) = L3(Ω ∩Q) + PH(Ω,Q) ⋅ ε +
∞

∑
i=2

ai
εi

i!
,
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where

ai = ∫
∂Ω∩Q

divH
(i−1)(XHδ)∥∇δ∥−1 dH2,

div
(0)
H (XHδ) = 1, div

(i)
H (XHδ) = divH(divi−1

H (XHδ) ⋅XHδ).

The notation ∥∇δ∥ indicates the Euclidean norm of the Euclidean gradient of δ and

the measure ∥∇δ∥−1 dH2 is the one appearing in the representation of the perimeter

of smooth sets as in (2.2.5) below and [28, Equation (3.2)]. The coefficients ai involve

the intrinsic mean curvatures of the set Ω (see (3.2.5) below).

X-perimeter in Grushin spaces and Carnot groups: dilations and

translations

In the next proposition we show the homogeneity properties of α-perimeter and

G-perimeter.

Proposition 1.2.8. Let X = {X1, . . . ,Xr} be either one of the families X = XG

associated to a Carnot group G or X = Xα for α ≥ 0 and call Q the associated

homogeneous dimension (see (1.1.7), (1.1.19)). Let δλ = δGλ if X = XG and δλ = δαλ
if X = Xα. Then the X-perimeter is δλ-homogeneous of degree Q − 1, i.e., for every

measurable set E ⊂ Rn

PX(δλ(E)) = λQ−1PX(E). (1.2.7)

Proof. Let λ > 0. As in (1.1.25), notice that Jδλp = λQ. Hence

∫
δλ(E)

divXϕ dq = λQ∫
E
(divXϕ)(δλ(p)) dp.

Moreover, it easy to see that the vector fields Xj are δλ-homogeneous of degree 1,

namely

Xj(ϕ ○ δλ) = λ(Xjϕ)(δλ). (1.2.8)

Then divX(ϕ ○ δλ)(p) = λ divXϕ(δλ(p)), therefore

∫
δλ(E)

divXϕ dp = λQ−1∫
E

divX(ϕ ○ δλ)(p) dp

and then, since δλ is a C1-diffeomorphism,

PX(δλ(E)) = λQ−1 sup{∫
E

divX(ϕ ○ δλ) dp ∶ ϕ ∈ Fr(Rn)}

= λQ−1 sup{∫
E

divXϕ dp ∶ ϕ ∈ Fr(Rn)} = λQ−1PX(E).
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If X =XG for a Carnot group G identified with (Rn,∗), the following holds.

Proposition 1.2.9. Let E be a set of finite G-perimeter. Then

PG(τp(E)) = PG(E), p ∈ Rn. (1.2.9)

Proof. For any p ∈ G and ϕ ∈ Fr(Rn) we have by left invariance of Xi:

∫
τp(E)

divGϕ dq = ∫
τp(E)

r

∑
i=1

Xiϕi dq = ∫
E

r

∑
i=1

Xiϕi(τp(w)) dw = ∫
E

r

∑
i=1

Xi(ϕi ○ τp)(w) dw

= ∫
E

divG(ϕ ○ τp) dw.

Hence, since τp is a C1-diffeomorphism,

PG(τp(E)) = sup{∫
E

divG(ϕ ○ τp) dp ∶ ϕ ∈ Fr(Rn)}

= sup{∫
E

divGϕ dp ∶ ϕ ∈ Fr(Rn)} = PG(E).

1.2.3. Relations between sub-Riemannian distance and perimeter

In the euclidean setting (R2, dE), the perimeter of a smooth set and the length of

its boundary as a curve coincide. On one hand, the euclidean metric represented as

a 2-covector on the tangent bundle is ds2 = dx2 + dy2. Hence the length of a smooth

curve γ ∶ [0,1]→ R2 defined in (1.1.3) is `E(γ) = ∫
1

0

√
γ1(t)2 + γ2(t)2 dt. On the other

hand, if E ⊂ R2 is a bounded smooth set and γ ∶ [0,1] → R2 is a parametrization of

its boundary ∂E, by De Giorgi Structure theorem for sets of finite perimeter (see [89,

Theorem 15.9]), P (E) = H1(∂E) where P (E) denotes the euclidean perimeter of E

and H1 denotes the 1-dimensional Hausdorff measure. The connection between these

two sides is given by the Area Formula (see [44, Theorem 1, pag. 96]) as follows.

P (E) =

(De Giorgi ) = H1(∂E)

(Area Formula) = ∫
1

0
∣γ̇∣(t) dt

(definition of `E(γ)) = `E(γ)

(1.2.10)

In a Carnot-Carathéodory structure there is no connection in general between the

length of smooth curves and perimeter. We show it with the next example in the case

of the Grushin plane (R2, dα).
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Example 1.2.10 (Pα(E) ≠ `α(∂E)). We recall that, in the case of the Grushin plane

(R2, dα), the horizontal bundle is given by ∆ = span{∂x, ∣x∣α∂y} where (x, y) denotes

a point in R2. The metric

ds2 = dx2 + 1

∣x∣2α
dy2,

defined for x ≠ 0, is such that ds2(∂x, ∣x∣α∂y) = 0, ds2(∂x, ∂x) = 1, ds2(∣x∣α∂y, ∣x∣α∂y) = 1.

Hence the length of a curve γ = (γ1, γ2) parametrized on [0,1], is defined as

`α(γ) = ∫
1

0

¿
ÁÁÀγ′1(t)2 + γ′2(t)2

γ1(t)2α
dt.

E

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 1.1: The curve γ and a set E having γ as a part of its boundary.

Let γ ∶ [0,1] → R2, γ(t) = (t, t) and suppose γ∗ = γ([0,1]) ⊂ ∂E where E ⊂
{(x, y) ∈ R2 ∶ x > y} is a smooth set with finite α-perimeter. We have γ′(t) = (1,1)
and the outer unit normal to E is NE = (−1/

√
2,1/

√
2) at any point in γ∗. We have

`α(γ) = ∫
1

0

√
1 + 1

t2α
dt = ∫

1

0

1

tα

√
t2α + 1 dt

Using the representation formula for the α-perimeter of a smooth set that we will

prove in Chapter 2, (see Proposition 2.2.1 below), we have for α > 0,

Pα(E;{x ≤ y, 0 < x < 1}) = ∫
∂E∩{x=y, 0<x<1}

√
(NE

1 )2 + ∣x∣2α(NE
2 )2 dH1

= ∫
γ∗

√
1

2
+ ∣x∣2α

2
dH1 = ∫

1

0

√
1

2
+ t

2α

2

√
2 dt

= ∫
1

0

√
1 + t2α dt < ∫

1

0

1

tα

√
1 + t2α = `α(γ).

Notice that when α = 0 we find Pα(E) = `α(E): in this case, in fact, `α = `E and

Pα = P .

The step which fails to hold outside the euclidean setting in (1.2.10) is the struc-

ture theorem for sets of finite X-perimeter: the relations between X-perimeter and

Hausdorff measure in spite of a structure theorem is a current subject of investiga-

tion, see [6], [92], [82], [90], [91], [57], [58]. In particular, some recent literature shows
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that if G is a Carnot group, the sub-Riemannian perimeter measure can be written in

terms of the spherical Hausdorff measure relative to the CC-distance. For 0 ≤ s <∞,

and A ⊂ G, this is defined as

SsG(A) = lim
δ→0
SsG,δ(A),

where for 0 < δ ≤∞

SsG,δ(A) = inf {
∞

∑
n=1

diam(BG(xnrn)) ≤ δ, A ⊂ ⋃
n∈N

BG(xn, rn)},

and for E ⊂ G, diam(E) = inf{dGcc(x, y), x, y ∈ E} is the diameter of E. For any

finite G-perimeter set E ⊂ G the following representation of the perimeter measure

µE holds true:

µE = β(νE) SQ−1
G ∂∗HE,

where Q is the homogeneous dimension of the Carnot group G, ∂∗HE is the so called

reduced boundary, and β is a measurable function of the horizontal normal νE (see

[92, Theorem 1.2]).

The study of the spherical Hausdorff measures relative to the Carnot-Carathéodory

distance in comparison with the Hausdorff measures relative to the Euclidean distance

in Carnot groups is carried out in [15], [16].

1.3 Non-Sharp Isoperimetric Inequalities

We present here the isoperimetric inequality relative to the X-perimeter and the

Lebesgue measure for Grushin spaces and Carnot groups on Rn, which relates the

X-perimeter and the Lebesgue measure through the homogeneous dimension Q, as-

sociated to the dilations. Namely, we show existence of a constant C > 0 such that

Ln(E) ≤ CPX(E)
Q
Q−1 (1.3.1)

for every set E ⊂ Rn of finite Lebesgue measure. In Section 1.1.5, the homogeneous

dimension Q, associated to the dilations of Carnot groups and Grushin spaces, is

involved to prove the doubling property of the Lebesgue measure

Ln(BX
cc(p,2r)) ≤ CDLn(BX

cc(p, r)) r > 0

which explains the behavior of the Lebesgue measure with respect to the metric

structure given by the Carnot-Carathéodory distance. As we will stress in Remark

1.3.5, the main tools to prove an isoperimetric inequality are the doubling condition
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of the Lebesgue measure and a global Poincaré inequality on metric balls. Inequality

(1.3.1) is obtained for Grushin spaces and Carnot groups in Propositions 1.3.4 and

1.3.6 where we review the classical technique presented in [7, Theorem 3.46].

1.3.1. Poincaré inequalities

Let X = {X1, . . . ,Xr} be a Carnot-Carathéodory structure on Rn and denote by

dcc its Carnot-Carthéodory distance. Let Ω ⊂ Rn be an open set. We say that the

space (Rn, dcc,Ln) supports a Poincaré inequality in Ω if every pair u,Xu of a C1

function and its X-gradient (see (1.2.1)) satisfies

∫
B
∣u(p) − uB ∣ dp ≤ CPR∫

B
∣Xu(p)∣ dp (1.3.2)

on each ball B = Bcc(p0,R) ⊂ Ω where CP = CP (Ω) > 0 is a fixed constant and

uB = ⨏
B
u(p) dp = 1

Ln(B) ∫B
u(p) dp.

The notion of Poincaré inequality has been introduced in the wider class of metric

measure spaces using upper gradients, see for instance [72]. A metric measure space

is (S, d, µ) where (S, d) is a metric space and µ is a Borel measure on S. An upper

gradient of a Lipschitz function u is a measurable function g ≥ 0 satisfying

∣u(x) − u(y)∣ ≤ ∫
γ
g ds

for every pair x, y ∈ S and all rectifiable curves joining x to y. In [72, Proposition 11.6]

it is proved that the notion of minimal upper gradient and of X-gradient coincide.

Poincaré inequalities in Carnot-Carathéodory spaces have been first studied moti-

vated by the analysis of second order degenerate elliptic operators L = ∑n
i,j=1 ∂xi(aij∂xj)

where aij are measurable coefficients modeled on the Grushin operator and such that

a Carnot-Carthéodory distance can be constructed, see [54], [55, Theorem 3.2]. If

X = {X1, . . . ,Xr}, is a family of vector fields on Rn satisfying the Hörmander con-

dition, the second order operator L = ∑r
i=1X

∗
jXj is known to be hypoelliptic, as

established by Hörmander in [77]. In this case, a general result by Jerison (see [79])

guarantees the validity of the Poincaré inequality (1.3.2) in every bounded set Ω ⊂ Rn.

The constant CP appearing in (1.3.2) depends on Ω. Poincaré inequalities in bounded

sets Ω ⊂ Rn for non smooth vector fields modeled on the Grushin operator are proved

in [53].

We concentrate our attention on the families X = Xα, defined in (1.1.15), or

X =XG, associated to a Carnot group G. In these cases, global Poincaré inequalities
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are also valid, namely it is possible to replace Ω with Rn in (1.3.2). For a proof we

refer to [83, Section 3] if X = Xα, and [72, Proposition 11.17] if X = XG(see also

[122]).

Remark 1.3.1. We show that passing from local Poincaré inequalities to global ones

is basically due to the presence of dilations.

The constant appearing in the Poincaré inequality in Bcc(0,R), R > 0 is indepen-

dent of R, namely there exists a constant C > 0 depending only on the dimension

such that for any smooth function u

∫
Bcc(0,R)

∣u − (u)Bcc(0,R)∣ dp ≤ CR∫
Bcc(0,R)

∣Xu∣ dq R > 0.

Indeed, let R1,R2 > 0 and λ = R2/R1, so that R2 = λR1. We call Bi = Bcc(0,Ri) for

i = 1,2. Then, by (1.1.26), B2 = δλB1. Let u ∶ Rn → R be a C1 function. We have

uB2 =
1

Ln(B2) ∫B2

u(q) dq = 1

λQLn(B1) ∫B1

u(δλp) λQ dp = (u ○ δλ)B1 ,

hence

∫
B2

∣u − uB2 ∣ dq = λQ∫
B1

∣u(δλ(p)) − (u ○ δλ)B1 ∣ dp = λQ∫
B1

∣u ○ δλ − (u ○ δλ)B1 ∣ dp.

On the other hand, it is easy to see that, by (1.1.15) and (1.1.9), the X-gradient of a

C1-function u is 1-homogeneous with respect to δλ, i.e., X(u○δλ)(p) = λ(Xu)(δλ(p))
for any p ∈ Rn. Then we get

∫
B2

∣Xu∣ dq = λQ∫
B1

∣Xu(δλ(p))∣ dp = λQ−1∫
B1

∣X(u ○ δλ)∣ dp.

Therefore, using the Poincaré inequality in B1, since u ○ δλ is still C1, we have

∫
B2

∣u − uB2 ∣ dq = λQ∫
B1

∣u ○ δλ − (u ○ δλ)B1 ∣ dp ≤ CP (B1)λQR1∫
B1

∣X(u ○ δλ)∣ dp

= CP (B1)R2∫
B2

∣Xu∣(q) dq.

Thanks to this Remark, given any ball Bcc(p, r), we consider Ω = Bcc(0,R) ⊃⊃
Bcc(p, r). Then, the Poincaré inequality (1.3.2) applies on Bcc(p, r) with a constant

CP = CP (Ω) = CP (n), namely

∫
Bcc(p,r)

∣u − uBcc(p,r)∣ dq ≤ CP (n)r∫
Bcc(p,r)

∣Xu∣(q) dq.

Remark 1.3.2. By the approximation theorem forBVX-functions (see Theorem (1.2.4)),

and from the Poincaré inequality on Rn, we deduce the following inequality, which

we still call a Poincaré inequality

∫
B
∣u − uB ∣ dp ≤ CPR∣Xu∣(B), u ∈ BVX(B), (1.3.3)
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for every ball B = BX
cc(p,R) where CP > 0 is a fixed constant only depending on the

dimension n.

1.3.2. Isoperimetric inequality in Grushin spaces and Carnot groups.

In the following proposition we review and adapt to (Rn, dα) the argument given

in [7, Theorem 3.46] to prove the global isoperimetric inequality starting from the

validity of a Poincaré inequality. We recall that in Grushin spaces the global Poincaré

inequality (1.3.3) is valid, implied by [83], and the Lebesgue measure has the following

behavior

Ln(Bα(p,R)) ≥ c1R
Q R > 0 (1.3.4)

from Remark 1.1.13. We start from the following covering Lemma.

Lemma 1.3.3. Let α ≥ 0, h, k ∈ N and n = h + k. Let R̄ > 0. Then there exists a

family of balls of radius R̄ covering Rn, {Bi = Bα(pi, R̄)}i∈N, pi = (xi, yi) ∈ Rn and a

constant M =M(α) > 0 such that

∑
i∈N
Pα(E,Bi) ≤MPα(E)

for any set of finite α-perimeter E ⊂ Rn.

Proof. We give the proof in the case h = k = 1, hence n = 2. We recall (1.1.21):

Boxα(p,R/b) ⊂ Bα(p,R) ⊂ Boxα(p, bR) for every R > 0, p = (x, y) ∈ R2, where for

r > 0,

Boxα(p, r) = BE(x, r) ×BE(y, r(∣x∣ + r)α).

We define the following grid in R2: for i, j ∈ Z, let

pij = (xi, yij), xi = 2i
R̄

b
, yij = 2jD(i)

with

D(i) = (R̄
b
)
α+1

(2∣i∣ + 1)α.

Notice that ⋃i,j∈Z Boxα(pij, R̄/b) = Rn and

Boxα(pij, R̄/b) ∩Boxα(pi′j′ , R̄/b) = ∅ for (i, j) ≠ (i′, j′).

In fact, given (i, j) ≠ (i′, j′), if i ≠ i′

∣xi − xi′ ∣ = 2
R̄

b
∣i − i′∣ ≥ 2

R̄

b
,
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hence Beucl(xi, R̄b ) ∩Beucl(xi′ , R̄b ) = ∅. If i = i′, j ≠ j′,

∣yij − yij′ ∣ = 2D(i)∣j − j′∣ ≥ 2(R̄
b
)
α+1

(2∣i∣ + 1)α = 2
R̄

b
(∣xi∣ +

R

b
)
α

,

hence Beucl(yij, R̄b (∣xi∣ +
R̄
b )

α

) ∩Beucl(yij′ , R̄b (∣xi∣ +
R̄
b )

α

) = ∅.

Now, consider the covering

Bij ∶= Bα(pij, R̄), i, j ∈ Z.

and define for every (i, j) ∈ Z2 the following number

I(i, j) = #{(i′, j′) ∈ Z2 ∶ Bij ∩Bi′j′ ≠ ∅}

which represents the number of the balls of the family intersecting Bij. We claim

that there exists M =M(α) such that

I(i, j) ≤M(α). (1.3.5)

To prove the claim, first notice that

I(i, j) ≤ #{(i′, j′) ∈ Z2 ∶ Boxα(pij, bR) ∩Boxα(pi′j′ , bR) ≠ ∅} =∶ J (i, j).

Observe that any two boxes Boxα(pij, bR̄) and Boxα(pi′j′ , bR̄) have nonempty inter-

section if and only if

∣xi − xi′ ∣ < 2bR̄ and ∣yij − yi′j′ ∣ < R(i) +R(i′) (1.3.6)

where

R(i) = bR(2∣i∣R
b
+Rb)

α

.

The first inequality in (1.3.6) is equivalent to ∣i − i′∣ ≤ b2. If i = i′, from (1.3.6) we

deduce ∣j − j′∣ < b2(α+1) in fact

2(R̄
b
)
α+1

(2∣i∣ + 1)α∣j − j′∣ = ∣yij − yij′ ∣

< 2bR(2∣i∣R̄
b
+ R̄b)

α

< 2bR(2∣i∣bR̄ + R̄b)
α

= 2(bR̄)α+1(2∣i∣ + 1)α.

Notice that the last estimate (for i = i′) corresponds to scan the grid vertically, and

count the number of boxes Boxα(pij′ , bR̄) intersecting the one centered at pij. Since

in this case ∣j − j′∣ has a bound independent on i, to estimate J (i, j) it is sufficient

to multiply such number for the number of stripes such that ∣xi − xi′ ∣ < 2bR̄, namely

J (i, j) < (2b2)(2b2(α+1)) = 4b2(α+2) =M(α)
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and (1.3.5) follows. We deduce that there are at mostM subfamilies {{Bι
ij}i,j∈Z(ι)}ι=1,...,M

such that Bι
ij ∩Bι

i′j′ = ∅ for (i, j) ≠ (i′, j′) and

M

⋃
ι=1

⋃
i,j∈Z(ι)

Bi,j = Rn.

We are ready for the conclusion. Let E ⊂ Rn be a set of finite α-perimeter. Recall

that the map A ↦ Pα(E,A) is a Radon measure measure (see Section 1.2.2), then it

is countably additive. Therefore

∑
i,j∈N

Pα(E,Bij) =
M

∑
ι=1

∑
i,j∈Z(ι)

Pα(E,Bι
ij)

= ∑
i,j∈Z(1)

Pα(E,B1
ij) +⋯ + ∑

i,j∈Z(M)

Pα(E,BM
ij )

= Pα(E, ⋃
i,j∈Z(1)

B1
ij) +⋯ + Pα(E, ⋃

i,j∈Z(M)

BM
ij ) ≤MPα(E).

Proposition 1.3.4. Let h, k ≥ 1 be integers and n = h + k. Let α > 0 and Q =
h + (α + 1)k. Then there exists a constant C > 0 such that

Ln(E) ≤ CPα(E)
Q
Q−1

for every set E ⊂ Rn with finite α-perimeter.

Proof. Let E ⊂ Rn be as in the statement. By assumption, χE is a function of bounded

α-variation. Let p = (x, y) ∈ Rn and R > 0. Then, calling βαR(p) = (χE)Bα(p,R),

βαR(p) =
1

Ln(Bα(p,R)) ∫Bα(p,R)
χE dq =

Ln(E ∩Bα(p,R))
Ln(Bα(p,R))

,

we have

∫
Bα(p,R)

∣χE(q) − (χE)Bα(p,R))∣ dq

= ∫
E∩Bα(p,R)

∣1 − βαR(p)∣ dq + ∫
Bα(p,R)∖E

βαR(p) dq

= Ln(E ∩Bα(p,R))(1 − βαR(p)) + βαR(p)[Ln(Bα(p,R)) −Ln(E ∩Bα(p,R))]

= Ln(Bα(p,R))[2βαR(p)(1 − βαR(p))].

Hence, using the Poincaré inequality (1.3.3), since min{a,1−a} ≤ 2a(1−a) for a ∈ [0,1]
and βαR(p) ∈ [0,1], we obtain

min{βαR(p),1 − βαR(p)} ≤ 2βαR(p)(1 − βαR(p)) ≤
CPR

Ln(Bα(p,R))
Pα(E,Bα(p,R)) (1.3.7)
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for every p ∈ Rn and R > 0. Let

R̄ = (3
Cp
c1

Pα(E))
1

Q−1

where c1 is the constant appearing in (1.3.4). Using (1.3.4) with R = R̄, we deduce

from (1.3.7) that

min{βα
R̄
(p),1 − βα

R̄
(p)} ≤ CP R̄

Ln(Bα(p, R̄))
Pα(E,Bα(p, R̄))

≤ CP
C1R̄Q−1

Pα(E,Bα(p, R̄))

= CPPα(E,Bα(p, R̄))
C1 (3

Cp
c1
Pα(E))

≤ 1

3
.

(1.3.8)

By a continuity argument, either βα
R̄
(p) ∈ [0,1/2) for every p ∈ Rn or βα

R̄
(p) ∈ (1/2,1]

for every p ∈ Rn. Assume βα
R̄
(p) ∈ [0,1/2) for every p ∈ Rn. Then, by (1.3.7) for R = R̄

Ln(E ∩Bα(p, R̄))
Ln(Bα(p, R̄))

= βα
R̄
(p) ≤ CP R̄

Ln(Bα(p, R̄))
Pα(E,Bα(p, R̄)).

Therefore

Ln(E ∩Bα(p, R̄)) ≤ CP R̄Pα(E,Bα(p, R̄)), for all p ∈ Rn. (1.3.9)

Choosing the covering {Bi}i∈N given by Lemma 1.3.3, we have

Ln(E) ≤∑
i∈N
Ln(E ∩Bα(pi, R̄)) ≤ CP R̄∑

i∈N
Pα(E,Bi)

≤ CP(
3CP
c1

)
1

Q−1
Pα(E)

1
Q−1MPα(E) = CPα(E)

Q
Q−1 .

Remark 1.3.5. To prove the isoperimetric inequality we used:

(i) the validity of a global Poincaré inequality in Rn to obtain (1.3.7);

(ii) the lower bound for the Lebesgue measure of CC-balls

Ln(B(p,R)) ≥ C1R
Q (1.3.10)

to obtain (1.3.8);

(iii) a covering with bounded overlap.
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The same computation can be therefore performed in a metric measure space (Rn, d, µ)
when a Poincaré inequality holds for the elements of a disjoint covering of Rn, and the

measure µ satisfies (1.3.10). In particular if µ is a doubling measure on Rn, condition

(1.3.10) is obtained as a consequence.

Proposition 1.3.6. Let G be a Carnot group identified with Rn and Q its homoge-

neous dimension. Then

Ln(E) ≤ CPG(E)
Q
Q−1

for any set E ⊂ G of finite G-perimeter.

Proof. The proof is the same as in Propostion 1.3.4, where Ln(Bα(p, R̄)) ≥ C1RQ in

(1.3.8) has to be replaced by Ln(BG(p, R̄)) = C1RQ. The validity of a global Poincaré

inequality in Carnot groups is established by Varopoulos in [122].

Propositions 1.3.4 and 1.3.6 are related to some well known isoperimetric inequal-

ities. In particular we recover the isoperimetric inequality in H1, due to Pierre Pansu

in 1982, see [108], [111].

Corollary 1.3.7 (Pansu’s isoperimetric inequality). There exists a constant C > 0

such that

L3(E) ≤ CPH(E) 4
3

for any set E ⊂ H1 of finite H-perimeter.

Pansu’s proof of the isoperimetric inequality is based on a Santaló type formula

in H1. Santaló type formulas with applications to isoperimetric inequalities in sub-

Riemannian spaces are proved in [112].

In 1994, Franchi, Gallot and Wheeden proved the isoperimetric inequality for

bounded sets in a class of Carnot-Carathéodory spaces, including Grushin spaces, see

[52, Theorem 3.1]. Their proof is based on the weighted Sobolev-Poincaré inequality

proved by Franchi, Gutierréz and Wheeden in [53]: the latter holds for generalized

Grushin spaces where a weight λ = λ(x) satisfying some regularity and growth as-

sumptions is involved instead of ∣x∣α. Finally, we recall a result due to Garofalo

and Nhieu in 1996, who proved an isoperimetric inequality for Carnot-Carathéodory

spaces in [65, Theorem 1.18]. In this Theorem, a proof of a relative isoperimetric in-

equality for the X-perimeter and the Lebesgue measure is also given, i.e., there exists

R1 > 0 such that for any CC ball B = Bcc(x0,R) with 0 < R < R1, one has

min{Ln(E ∩B),Ln(B ∖E)} ≤ CR∣B∣
−1
Q PX(E,B).
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1.4 Isoperimetric problem

1.4.1. Sub-Riemannian isoperimetric problem

Given v > 0, the minimization problem

min{PX(E) ∶ E ⊂ Rn,measurable, Ln(E) = v} (1.4.1)

is called the isoperimetric problem relative to the X-perimeter and the Lebesgue

measure. A solution to (1.4.1) is a measurable set E ⊂ Rn such that Ln(E) = v and

PX(E) ≤ PX(F ) for any measurable set F ⊂ Rn such that Ln(F ) = v. We call such a

set E an isoperimetric set.

Let X =XG be the family of canonical generators for a Carnot group G or X =Xα

for α ≥ 0. In this case the Lebesgue measure and the X-perimeter are homogeneous

with respect to a family of dilations δλ as we showed in Propositions 1.1.14 and 1.2.8.

This allows us to formulate the isoperimetric problem (1.4.1) in a scale invariant form

min{IX(E) = PX(E)Q
Ln(E)Q−1

∶ 0 < Ln(E) <∞} (1.4.2)

where Q is the homogeneous dimension. Notice that the isoperimetric ratio IX is

δλ-homogeneous of degree zero:

IX(δλ(E)) = PX(δλ(E))Q
Ln(δλ(E))Q−1

= λQ(Q−1)PX(E)Q
λQ(Q−1)Ln(E)Q−1

= IX(E).

In this case, isoperimetric sets induce a sharp isoperimetric inequality. Namely,

defining the sharp isoperimetric constant

CI = inf{PX(E) ∶ Ln(E) = 1},

existence of isoperimetric sets in the class of Lebesgue measurable sets implies the

following inequality for any Lebesgue measurable E ⊂ Rn:

PX(E) ≥ CILn(E)
Q−1
Q . (1.4.3)

Equality holds if and only if E is an isoperimetric set. The characterization of

the equality case in the sharp isoperimetric inequality is therefore equivalent to the

isoperimetric problem.

Studying isoperimetric problems means to prove existence of isoperimetric sets,

identifying their geometric or topological properties and, if possible, to characterize

them.
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In Carnot groups, existence of isoperimetric sets is proved by Leonardi and Rigot

in [87, Theorem 3.2] using lower semicontinuity and compactness of functions of

bounded X-variation as explained in Section 1.2.1. In particular, the compactness

theorem gives a minimum once shown that a minimizing sequence can be assumed to

be essentially bounded. This is proved in [87] via a concentration-compactness-type

argument, based on the invariance of the perimeter with respect to left-translations.

The Heisenberg Isoperimetric Problem

The only sub-Riemannian spaces where the isoperimetric problem has been solved

are some types of Grushin structures. The first result is in the Grushin plane: in [99,

Theorem 1.1], the authors prove existence of solutions to

min{Pα(E) ∶ E ⊂ R2,L2(E) = v}, for v > 0 fixed,

and they characterize them. Namely, minimizers are unique up to vertical translations

and they are obtained through a dilation δαλ of the following set

Eα
isop = {(x, y) ∈ R2 ∶ ∣y∣ < ϕα(∣x∣) = ∫

π
2

arcsin ∣x∣
sinα+1(t) dt, ∣x∣ < 1}. (1.4.4)

In Chapter 2 we generalize this result to Grushin structures on Rn = Rh×Rk for k = 1

(see Theorem 2.1.4 and Remark 2.5.2) and to H-type groups.

There is a famous conjecture about the shape of isoperimetric sets in the Heisen-

berg groups, which was formulated by Pansu in 1982 in H1, see [108], [111]. Pansu’s

conjecture is the following: up to a null set, a left translation, and a dilation, the only

isoperimetric set in H1 is

Eisop = {(z, t) ∈ H1 ∶ ∣t∣ < arccos ∣z∣ + ∣z∣
√

1 − ∣z∣2, ∣z∣ < 1}. (1.4.5)

Pansu didn’t write the formula (1.4.5) for the set Eisop, but he described how to

construct it as the surface obtained by rotating a geodesic with respect to the distance

dH
1

cc between the origin and the point (0, π) ∈ C ×R. Formula (1.4.5) makes sense in

Hn for any n ∈ N and the conjecture can be naturally extended Heisenberg groups of

any dimensions.

Only partial proofs of the Pansu’s conjecture are known in the literature. The first

results on the Heisenberg isoperimetric problem date back to 2008. In [96, Theorem

1.2], the conjecture is confirmed in the class

R = {E ⊂ Hn ∶ if (z, t) ∈ E, then (ζ, t) ∈ E for ∣ζ ∣ = ∣z∣} (1.4.6)
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of axially symmetric sets. Namely, it is proved that the infimum

Isop(R) = inf { PH(E)2n+2

L2n+1(E)2n+1
∶ E ∈R}

is attained. Moreover, up to a dilation, a vertical translation and a L2n+1-negligible

set, any axially symmetric isoperimetric set (i.e., a set E ∈ R such that the infimum

in Isop(R) is attained) coincides with Eisop. On the other hand, in [118, Theorem

7.2] it is proved that if E ⊂ H1 is an isoperimetric set, whose boundary is a C2 smooth

surface, then up to a dilation and a left translation, E = Eisop.

In [100, Theorem 1.1] Pansu’s conjecture is proved in H1 assuming convexity of

the isoperimetric set.

In [116, Theorem 3.1], the following geometric situation is considered. For any

r > 0, let Dr = {(z,0) ∈ Hn ∶ ∣z ≤ r∣} be the closed Euclidean disk of radius r contained

in {z = 0}, and Cr = {(z, t) ∈ Hn ∶ ∣z∣ ≤ r} be the vertical cylinder over Dr. Let E ⊂ Hn

be a finite H-perimeter set such that Dr ⊂ E ⊂ Cr for some r > 0. The author uses

a calibration argument to prove that PH(E) ≥ PH(Eisop), and equality holds if and

only if E = Eisop. In Chapter 3 we refine this argument to prove a stability result for

the isoperimetric inequality in Hn.

For a detailed review on the Heisenberg isoperimetric problem we refer to the book

[31] and to the lecture notes [97].
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CHAPTER 2

Isoperimetric problem in Grushin spaces and H-type

groups

In this chapter, we study the isoperimetric problem relative to the Lebesgue measure

and the sub-Riemannian perimeter associated to H-type groups and Grushin spaces (see

Section 1.1.4 for the notation). For h, k ≥ 1 integers and n = h+ k, we consider Rn endowed

with the Carnot-Carathéodory distance associated with the family X =Xα, for some α ≥ 0,

or with the family X = XH of canonical generators of an H-type group H. We recall from

Section 1.1.4 that Xα is the family

Xα = {X1, . . . ,Xh, Y1, . . . , Yk}, Xi = ∂xi , Yj = ∣x∣α∂yj

while XH is defined through (1.1.13). For any v > 0 we consider the minimization problem

inf{PX(E) ∶ E ⊂ Rn measurable, Ln(E) = v}

where PX is the X-perimeter, denoted by Pα if X = Xα and by PH if X = XH (see Section

1.2 for more details on perimeters).

As Example 1.1.9 shows, the m-dimensional Heisenberg group Hm is itself an H-type

group with h = 2m and k = 1, then the isoperimetric problem associated to its perimeter is

included in our study.

A first connection between the isoperimetric problem relative to Pα and PH is stressed

in [99] (see Subsection 1.4.1). The relation between Pα and PH comes out noticing that,

when α = 1, the profile function introduced in (1.4.4)

r ↦ ϕα(r) = ∫

π
2

arcsin r
sinα+1

(t) dt, r ∈ [0,1]

is 1
2 arccos r+r

√
1 − r2 which is the profile function of the Pansu ball (up to a multiplicative

constant 1/2). Moreover, the boundary of Eαisop consists of two geodesics in the metric dα

41
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for α = 1: this facts corresponds to the conjectured property of the Heisenberg isoperimetric

set to be foliated by geodesics.

Another point of view is proposed in [12]. Inspired by the lifting technique introduced by

Rotschild and Stein (see Section 1.1.4.III), the authors prove a connection between geodesics

in H1 and the following geodesic problems in (R2, dα). Let A > 0, (a,0), (b,0) ∈ R2, 0 < a ≤ b.

If γ ∶ [0,1] → R2 connects (a,0) and (b,0), denote by Ω ⊂ R2 the set whose boundary

is composed by γ and the segment connecting (a,0) and (b,0). Consider the minimum

problems

inf{`α(γ) ∶ γ ∶ [0,1]→ R2,absolutely continuous (AB1)

γ(0) = (a,0), γ(1) = (b,0), ∫
Ω

dx dy

x2
= A},

inf{`α(γ) ∶ γ ∶ [0,1]→ R2,absolutely continuous (AB2)

γ(0) = (a,0), γ(1) = (b,0), −∫
γ

dy

x
= A},

where `α is defined in (1.1.17). The result in [12] is the following: if Γ is the geodesic in

H1 connecting (0, a,0) to (A, b,0), then the solution to (AB2) is the projection of Γ on the

Grushin plane (identified with X, the metric quotient of H introduced in Section 1.1.4.III).

Moreover, under some further geometrical assumptions on A, Problem (AB1) has the same

unique solution of problem (AB2). The problems addressed here, are not of the same type

of the isoperimetric problem considered in [99]: even for a smooth set E, Pα(E) is different

from the length of ∂E as a curve in (R2, dα) (see Example 1.2.10) and the volumes in

(AB1)-(AB2) are not the Lebesgue measure (neither the Riemannian one).

2.1 Symmetries and statement of the main result

Our approach starts from the analysis of the relation between Pα and PH , introduced

in Section 1.2.2, under some symmetry assumptions. To this purpose we introduce the

following notation. Let Rn = Rh × Rk where h, k ≥ 1 are integers and n = h + k. A point

in Rn is denoted by (x, y) with x ∈ Rh and y ∈ Rk: in the following we use the notation

Rn = Rhx ×Rky .

Definition 2.1.1 (x-spherical symmetry). We say that a set E ⊂ Rhx ×Rky is x-spherically

symmetric if there exists a set F ⊂ R+ ×Rk, called generating set of E, such that

E = {(x, y) ∈ Rn ∶ (∣x∣, y) ∈ F}.

We denote by Sx the class of Ln-measurable, x-spherically symmetric sets in Rn = Rh ×Rk.
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In Proposition 2.2.3, we prove that if E ∈ Sx, then PH(E) = Pα(E) for α = 1. This equality

leads us to focus on two families of isoperimetric problems involving only the α-perimeter.

Given v > 0, we set up the isoperimetric problem for the α-perimeter in two different classes:

if h = 1, k ≥ 1 and n = h + k min{Pα(E) ∶ L
n
(E) = v}, (2.1.1a)

if h, k ≥ 1 and n = h + k min{Pα(E) ∶ E ∈ Sx, L
n
(E) = v}. (2.1.1b)

Notice that Problem (2.1.1b) includes (in the case α = 1, h = 2m and k = 1) the axially

symmetric case of the isoperimetric problem in Heisenberg group (see [96]).

Recalling the notion of homogeneous dimension Q = h+(α+1)k (see (1.1.19)), we notice

that, for any measurable set E ⊂ Rn and for all λ > 0 we have Ln(δαλ(E)) = λQLn(E) and

Pα(δ
α
λ(E)) = λQ−1Pα(E). Then the isoperimetric ratio

Iα(E) =
Pα(E)Q

Ln(E)Q−1

is homogeneous of degree 0 and the isoperimetric problems (2.1.1a) and (2.1.1b) can be

formulated in a scale invariant form as follows

if h = 1, k ≥ 1 and n = h + k min{Iα(E) ∶ 0 < Ln(E) <∞}, (2.1.2a)

if h, k ≥ 1 and n = h + k min{Iα(E) ∶ E ∈ Sx, 0 < Ln(E) <∞}. (2.1.2b)

In Sections 2.3-2.5, we study existence, symmetry and regularity of the solutions to Problems

(2.1.2a) and (2.1.2b). We call the solutions isoperimetric sets. We introduce the following

notion.

Definition 2.1.2 (Schwarz symmetry). Let E ⊂ Rhx × Rky . We say that E is x-Schwarz

symmetric if for any y ∈ Rk the section of E at y, Ey = {x ∈ Rh ∶ (x, y) ∈ E}, is a ball

centered at 0 in Rh. Namely if for any y ∈ Rk there is r(y) ≥ 0 such that

Ey = {x ∈ Rh ∶ ∣x∣ < r(y)}.

Equivalently, we say that E is y-Schwarz symmetric if for any x ∈ Rh there exists s(x) ≥ 0

such that

Ex ∶= {y ∈ Rk ∶ (x, y) ∈ E} = {y ∈ Rk ∶ ∣y∣ < s(x)}.

Remark 2.1.3. A set E ⊂ Rh ×Rk is x- and y- Schwarz symmetric if and only if there exists

a decreasing function f ∶ [0,∞)→ [0,∞) such that E = {(x, y) ∈ Rn ∶ ∣y∣ < f(∣x∣)}.

Indeed, let us first assume that E = {(x, y) ∈ Rn ∶ ∣y∣ < f(∣x∣)}. Let y0 ∈ Rk, x0 ∈ Rh. For

every x ∈ Rh such that ∣x∣ < ∣x0∣ there holds f(∣x∣) ≥ f(∣x0∣). Hence

x0 ∈ E
y0 ⇐⇒ (x0, y0) ∈ E ⇐⇒ ∣y0∣ < f(∣x0∣) Ô⇒ ∣y0∣ < f(∣x∣) ⇐⇒ x ∈ Ey0 ,
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which proves that E is x-Schwarz symmetric. On the other hand, for any y ∈ Rk such that

∣y∣ < ∣y0∣ we have

y0 ∈ E
x0 ⇐⇒ ∣y0∣ < (∣x0∣) Ô⇒ ∣y∣ < f(∣x0∣) ⇐⇒ y ∈ Ex0 ,

which proves that E is y-Schwarz symmetric.

If E is x- and y- Schwarz symmetric, then, for every x ∈ Rh there exists s(x) such

that Ex = {∣y∣ ≤ s(∣x∣)}. We define f(∣x∣) = s(x). We are left to prove that r ↦ f(r) is

decreasing. Let 0 < r1 < r2. Assume by contradiction that f(r1) < f(r2). Let y ∈ Rk be

such that ∣y∣ = f(r2). Then the closed set E
y

contains {x ∈ Rh ∶ ∣x∣ = r2}. Since r2 > r1, it

also contains {x ∈ Rh ∶ ∣x∣ = r1}, hence (x, y) ∈ E for every ∣x∣ = r1 and ∣y∣ = f(r2). Namely,

∣y∣ = f(r2) ≤ f(r1) = f(∣x∣), which contradicts f(r1) < f(r2).

The main result of this chapter is the following theorem (see [60]).

Theorem 2.1.4. Let h, k ≥ 1 and n = h + k. There exist x- and y-Schwarz symmetric

minimizers for the isoperimetric problems (2.1.2a) and (2.1.2b). Moreover, up to a vertical

translation and a null set, any isoperimetric set E ⊂ Rn is of the form

E = {(x, y) ∈ Rn ∶ ∣y∣ < f(∣x∣)}.

for a decreasing function f ∈ C([0, r0]) ∩C
∞(0, r0) ∩C

2([0, r0)), for some 0 < r0 <∞. The

function f satisfies the following equation

f ′
√
r2α + f ′2

= r1−h
∫

r

0
s2α+h−1 k − 1

f
√
s2α + f ′2

ds −
Chkα
h

r (2.1.3)

with Chkα =
QPα(E)

(Q−1)Ln(E)
.

The proof of Theorem 2.1.4 is given in Theorem 2.4.3 and Proposition 2.5.3.

Notice that equation (2.1.3) is scale invariant, as isoperimetric problems (2.1.2a) (2.1.2b)

are formulated in a scale invariant form. In fact, equation (2.1.3) will be derived from the

following (see Subsection 2.5.2):

f ′′ =
αf ′

r
+ (f ′

2
+ r2α

)(
k − 1

f
− (h − 1)

f ′

r2α+1
) −Chkα

(f ′
2
+ r2α)

3
2

r2α
. (2.1.4)

It easy to check that, given C1,C2 > 0 and a solution f of (2.1.4) for C = C1, the function

fλ(r) = λ
α+1f(

r

λ
), λα =

C1

C2
.

is a solution to (2.1.4) for C = C2. Thanks to this property, in the special case k = 1,

equation (2.1.3) can be integrated and we have an explicit formula for isoperimetric sets.

Namely, using scale invariance of the equation, we can choose the normalization Chkα = h,
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that implies r0 = 1, and in this case the profile function solving (2.1.3) gives the isoperimetric

set

Eαisop = {(x, y) ∈ Rn ∶ ∣y∣ < ∫
π/2

arcsin ∣x∣
sinα+1

(s) ds, ∣x∣ < 1}.

This formula generalizes to dimensions h ≥ 2 the result of [99]. When k = 1 and α = 1,

the profile function satisfying the final condition f(1) = 0 is f(r) = 1
2(arccos r + r

√
1 − r2),

r ∈ [0,1]. This is the profile function of the Pansu’s ball in the Heisenberg group.

With a careful study of the geometric equation (2.1.3) we will highlight some important

properties of isoperimetric sets (see Figure 2.1 below and Proposition 2.5.3).

-1.0 -0.5 0.5 1.0

-0.5

0.5

-1.0 -0.5 0.5 1.0

-0.5

0.5

Figure 2.1: The profile of any isoperimetric set closes vertically at r0, namely f(r0) =

0, limr→r−0 f
′(r) = −∞. Moreover f has the following asymptotic behavior around zero

lim
r→0+

f ′(r)

rα+1
= −

Chkα

h
. In particular, from this asymptotic behavior we deduce that f is

concave around zero (see Section 2.6.1).

In Section 2.6 we comment on the problem of uniqueness of isoperimetric sets.

2.2 Representation and reduction formulas

In this section, we derive some formulas for the representation of α- and H-perimeter of

smooth sets and of sets with symmetry. For any open set A ⊂ Rn and m ∈ N, let us define

the family of test functions

Fm(A) = {ϕ ∈ C1
c (A;Rm) ∶ max

(x,y)∈A
∣ϕ(x, y)∣ ≤ 1} .

2.2.1. Relation between H-perimeter and α-perimeter

For an open set E ⊂ Rn with Lipschitz boundary, the Euclidean outer unit normal

NE ∶ ∂E → Rn is defined at Hn−1-a.e. point of ∂E, and it can be split in the following way

NE
= (NE

x ,N
E
y ) with NE

x ∈ Rh and NE
y ∈ Rk.
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For any α > 0, we call the mapping NE
α ∶ ∂E → Rn

NE
α = (NE

x , ∣x∣
αNE

y ) (2.2.1)

the α-normal to ∂E.

Proposition 2.2.1. If E ⊂ Rn is a bounded open set with Lipschitz boundary then the

α-perimeter of E in Rn is

Pα(E) = ∫
∂E

∣NE
α (x, y)∣dHn−1, (2.2.2)

where Hn−1 is the standard (n − 1)-dimensional Hausdorff measure in Rn.

Proof. The inequality

Pα(E) ≤ ∫
∂E

∣NE
α (x, y)∣dHn−1, (2.2.3)

follows from Cauchy-Schwarz inequality and the divergence theorem as follows: for any

ϕ ∈ Fn(Rn)

∫
E

h

∑
i=1

∂xiϕi + ∣x∣α
k

∑
j=1

∂yjϕh+j dxdy = ∫
∂E

h

∑
i=1

ϕiN
E
xi + ∣x∣α

k

∑
j=1

NE
yh+jϕh+j dH

k
(x, y)

= ∫
∂E

⟨Nα(x, y), ϕ⟩ dH
k
(x, y) ≤ ∫

∂E
∣Nα(x, y)∣ dH

k
(x, y).

By taking the supremum over all ϕ ∈ Fn(Rn) we obtain (2.2.3).

The opposite inequality follows by approximatingNE
α /∣NE

α ∣ with functions in Fn(Rn). In

fact, by a Lusin-type and Tietze-extension argument, for any ε > 0 there exists ϕ ∈ Fn(Rn)
such that

∫
∂E

⟨NE
α , ϕ⟩dH

n−1
≥ ∫

∂E
∣NE

α (x, y)∣dHn−1
− ε.

The proof of this fact is rather classical and we write it here just for the sake of completeness.

By the monotone convergence theorem, it is sufficient to prove that for any ε > 0 and R > 0

there exist ϕ ∈ Fn(Rn) such that

∫
∂E∩BR

⟨NE
α , ϕ⟩ dH

n−1
≥ ∫

∂E∩BR
∣NE

α ∣ dHn−1
− ε, (2.2.4)

where BR is the open ball centered at 0 with radius R. Given R > 0 we define the sets

N = {(x, y) ∈ ∂E ∩BR ∶ NE is defined} ,

Z = {(x, y) ∈ N ∶ x = 0 and NE
x (x, y) = 0}.

Define on N ∖Z the measurable function

ν̃α ∶ N ∖Z → Rn, ν̃α(x, y) =
NE
α (x, y)

∣∣NE
α (x, y)∣∣
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and extend it to 0 on ((E ∩BR) ∖N ) ∪ Z. This gives a function να ∶ ∂E → Rn, which is

measurable because it differs from ν̃α on a set of measure zero. Since ∂E ∩BR has finite

Hn−1-measure we can apply Lusin’s Theorem to get that, given ε > 0, there exists a compact

set Kε ⊂ ∂E ∩BR such that Hn−1((∂E ∩BR) ∖Kε) < ε and (να)∣Kε is continuous.

Now consider a homeomorphism g ∶ B → Q, where B is the unit ball in Rn and Q =

[−1,1]n. By Tietze-Uryshon Theorem applied to each component of να, we can extend the

map g ○ να ∶ Kε → Q to a continuous function from Rn to Q with compact support in BR.

Composing it with g−1 yields a continuous function ψ ∈ C0(BR,B) such that ψ = να on Kε.

Write

∫
∂E∩BR

∣NE
α (x, y)∣ dHn−1

(x, y) = ∫
Kε

⟨να,N
E
α ⟩dHn−1

+ ∫
(∂E∩BR)∖Kε

∣NE
α ∣ dHn−1

= ∫
(∂E∩BR)

⟨ψ,NE
α ⟩dHn−1

− ∫
(∂E∩BR)∖Kε

(⟨ψ,NE
α ⟩ − ∣NE

α ∣)dHn−1.

Since Hn−1((∂E ∩BR) ∖Kε) ≤ ε, ∣∣ψ∣∣∞ ≤ 1 and ∣∣NE
α ∣∣∞ is bounded, there exists C > 0 such

that

∫
(∂E∩BR)∖Kε

∣⟨ψ,NE
α ⟩ − ∣NE

α ∣∣dHn−1
≤ Cε.

Then it follows that

∫
(∂E∩BR)

⟨ψ,NE
α ⟩dHn−1

≥ ∫
∂E∩BR

∣NE
α (x, y)∣ dHn−1

(x, y) −Cε.

If we approximate uniformly ψ with {ψs}s∈N ∈ C∞
0 (BR,Rn), by using Friederichs mollifiers,

we can then fix a test function ϕ = ψs ∈ Fn(BR) for s which satisfies (2.2.4).

If X1, . . . ,Xh are the generators of an H-type Lie algebra, thought of as left-invariant

vector fields in Rn as in (1.1.14), for a set E ⊂ Rn with Lipschitz boundary we define the

mapping NE
H ∶ ∂E → Rh

NE
H = (⟨NE ,X1⟩, . . . , ⟨N

E ,Xh⟩).

Here, ⟨⋅, ⋅⟩ is the standard scalar product of Rn and Xi is thought of as an element of Rn

with respect to the standard basis ∂1, . . . , ∂n. The same argument used to prove (2.2.2) also

shows that

PH(E) = ∫
∂E

∣NE
H(x, y)∣dHn−1, (2.2.5)

for any set E ⊂ Rn with Lipschitz boundary.

Remark 2.2.2. Formulas (2.2.5) and (2.2.2) hold also when ∂E is Hn−1-rectifiable.

Proposition 2.2.3. For any x-spherically symmetric set E ∈ Sx there holds PH(E) = Pα(E)

with α = 1.



48 CHAPTER 2. GRUSHIN AND H-TYPE ISOPERIMETRIC PROBLEM

Proof. By a standard approximation, using the results of [56], it is sufficient to prove the

claim for smooth sets, e.g., for a bounded set E ⊂ Rn with Lipschitz boundary. By (2.2.5)

and (2.2.2), the claim PH(E) = Pα(E) with α = 1 reads

PH(E) = ∫
∂E

√
∣NE

x ∣2 + ∣x∣2∣NE
y ∣2dHn−1, (2.2.6)

where NE = (NE
x ,N

E
y ) ∈ Rh×Rk is the unit Euclidean normal to ∂E. By the representation

formula (2.2.5), we have

PH(E) = ∫
∂E

(
h

∑
i=1

⟨Xi,N
E
⟩
2
)

1/2
dHn−1,

where, by (1.1.14), for any i = 1, . . . , h

⟨Xi,N
E
⟩
2
= (NE

xi −
k

∑
`=1

h

∑
j=1

Q`ijxjN
E
y`
)

2

= (NE
xi)

2
− 2NE

xi

k

∑
`=1

h

∑
j=1

Q`ijxjN
E
y`
+ (

k

∑
`=1

h

∑
j=1

Q`ijxjN
E
y`
)

2
,

and thus

h

∑
i=1

⟨Xi,N
E
⟩
2
= ∣NE

x ∣
2
− 2

k

∑
`=1

h

∑
i,j=1

Q`ijxjN
E
xiN

E
y`
+

h

∑
i=1

k

∑
`,m=1

h

∑
j,p=1

Q`ijQ
m
ipxjxpN

E
y`
NE
ym . (2.2.7)

Since the set E is x-spherically symmetric, the component NE
x of the normal satisfies

the identity

NE
x =

x

∣x∣
∣NE

x ∣. (2.2.8)

The bilinear form Q ∶ Rh×Rh → Rk is skew-symmetric, i.e., we have Q(x,x′) = −Q(x′, x) for

all x,x′ ∈ Rh or, equivalently, Q`ij = −Q
`
ji. Using (2.2.8), it follows that for any ` = 1, . . . , k

we have
h

∑
i,j=1

Q`ijxjN
E
xi =

∣NE
x ∣

∣x∣

h

∑
i,j=1

Q`ijxixj = 0. (2.2.9)

Next, we insert into identity (1.1.13), that defines an H-type group, the vector fields

X =X ′
=

h

∑
i=1

xiXi, Y =
k

∑
`=1

NE
y`
Y`,

where x ∈ Rh, NE
y = (NE

y1 , . . . ,N
E
yk
), and Xi, Yj are the orthonormal vector fields in (1.1.14).

We obtain, together with the definition (1.1.12) of H-type algebra

∣x∣2∣NE
y ∣

2
= ⟨X,X ′

⟩∣Y ∣
2
= ⟨JY (X), JY (X ′

)⟩.

We write

JY (X ′
) = JY (X) =

h

∑
j=1

⟨JY (X),Xj⟩Xj =
h

∑
j=1

⟨Y, [X,Xj]⟩Xj .
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where, for any j = 1, . . . , h

[X,Xj] =
h

∑
i=1

[xi(∂xi −
k

∑
`=1

h

∑
p=1

Q`ipxp∂y`), ∂xj −
k

∑
m=1

h

∑
s=1

Qmjsxs∂ym]

=
h

∑
i=1

{xi( −
k

∑
m=1

Qmji∂ym) − δijXi − xi( −
k

∑
`=1

Q`ij∂y`)}

= 2
h

∑
i=1

k

∑
m=1

xiQ
m
ij∂ym −Xj ,

hence

⟨Y, [X,Xj]⟩ = ⟨
k

∑
`=1

NE
y`
∂y` ,2

h

∑
i=1

k

∑
m=1

xiQ
m
ij∂ym⟩ − ⟨

k

∑
`=1

NE
y`
∂y` ,−

h

∑
i=1

k

∑
m=1

Qmjixi∂ym⟩

= ⟨
k

∑
`=1

NE
y`
∂y` ,

h

∑
i=1

k

∑
m=1

xiQ
m
ij∂ym⟩ =

k

∑
`=1

h

∑
i=1

Ny`Q
`
ijxi

Therefore

JY (X) =
h

∑
i,j=1

k

∑
`=1

Ny`Q
`
ijxiXj

and we obtain the identity

∣x∣2∣NE
y ∣

2
=

k

∑
`,m=1

h

∑
i,j,p=1

Q`ijQ
m
ipN

E
y`
NE
ymxjxp. (2.2.10)

From (2.2.7), (2.2.9), and (2.2.10) we deduce that

h

∑
i=1

⟨Xi,N
E
⟩
2
= ∣NE

x ∣
2
+ ∣x∣2∣NE

y ∣
2,

and formula (2.2.6) follows.

2.2.2. α-Perimeter for symmetric sets

Thanks to Proposition 2.2.3, from now on we will consider only α-perimeter.

We say that a set E ⊂ Rn = Rh ×Rk is x- and y-spherically symmetric if there exists a

set G ⊂ R+ ×R+ such that

E = {(x, y) ∈ Rn ∶ (∣x∣, ∣y∣) ∈ G}.

We call G the generating set of E. In the following we will use the constant

chk = hkωhωk,

where ωm = Lm({x ∈ Rm ∶ ∣x∣ < 1}), for m ∈ N.
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Proposition 2.2.4. Let E ⊂ Rn be a bounded open set with finite α-perimeter that is x-

and y-spherically symmetric with generating set G ⊂ R+ ×R+. Then we have:

Pα(E) = chk sup
ψ∈F2(R+×R+)

∫
G
(sk−1∂r(r

h−1ψ1) + r
h−1+α∂s(s

k−1ψ2))drds. (2.2.11)

In particular, if E has Lipschitz boundary then we have:

Pα(E) = chk ∫
∂G

∣(NG
r , r

αNG
s )∣rh−1sk−1 dH1

(r, s), (2.2.12)

where NG = (NG
r ,N

G
s ) ∈ R2 is the outer unit normal to the boundary ∂G ⊂ R+ ×R+.

Proof. We prove a preliminary version of (2.2.11). We claim that if E is of finite α-perimeter

and x-spherically symmetric with generating set F ⊂ R+ ×Rk, then we have:

Pα(E) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F
(∂r(r

h−1ψ1) + r
h−1+α

k

∑
j=1

∂yjψ1+j)drdy = Q(F ), (2.2.13)

where Q is defined via the last identity. For any test function ψ ∈ F1+k(R+ ×Rk) we define

the test function ϕ ∈ Fn(Rn)

ϕ(x, y) = (
x

∣x∣
ψ1(∣x∣, y), ψ2(∣x∣, y), . . . , ψ1+k(∣x∣, y)) for ∣x∣ ≠ 0, (2.2.14)

and ϕ(0, y) = 0. For any i = 1, . . . , h, j = 1, . . . , k, and x ≠ 0, we have the identities

∂xiϕi(x, y) = (
1

∣x∣
−
x2
i

∣x∣3
)ψ1(∣x∣, y) +

x2
i

∣x∣2
∂rψ1(∣x∣, y),

∂yjϕh+j(x, y) = ∂yjψ1+j(∣x∣, y),

and thus, the α-divergence defined by

divαϕ(x, y) =
h

∑
i=1

∂ϕi(x, y)

∂xi
+ ∣x∣α

k

∑
j=1

∂ϕh+j(x, y)

∂yj
(2.2.15)

satisfies

divαϕ(x, y) =
h − 1

∣x∣
ψ1(∣x∣, y) + ∂rψ1(∣x∣, y) + ∣x∣α

k

∑
j=1

∂yjψ1+j(∣x∣, y). (2.2.16)

For any y ∈ Rk we define the section F y = {r > 0 ∶ (r, y) ∈ F}. Using Fubini-Tonelli

theorem, spherical coordinates in Rh, the symmetry of E, and (2.2.16) we obtain

∫
E

divαϕ dxdy = ∫
Rk
∫
F y
∫
∣x∣=r

(
h − 1

r
ψ1 + ∂rψ1 + r

α
k

∑
j=1

∂yjψ1+j) dH
h−1

(x)drdy

= hωh∫
Rk
∫
F y
rh−1

(
h − 1

r
ψ1 + ∂rψ1 + r

α
k

∑
j=1

∂yjψ1+j) drdy

= hωh∫
F
∂r(r

h−1ψ1) + r
α+h−1

k

∑
j=1

∂yjψ1+j drdy.

(2.2.17)
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Because ψ is arbitrary, this proves the inequality ≥ in (2.2.13).

We prove the opposite inequality when E ⊂ Rn is an x-symmetric bounded open set

with smooth boundary. The unit outer normal NE = (NE
x ,N

E
y ) is continuously defined on

∂E. At points (0, y) ∈ ∂E, however, we have NE
x (0, y) = 0 and thus NE

α (0, y) = 0. For any

ε > 0 we consider the compact set K = {(x, y) ∈ ∂E ∶ ∣x∣ ≥ δ}, where δ > 0 is such that

Pα(E;{∣x∣ = δ}) = 0 and

∫
∂E∖K

∣NE
α (x, y)∣dHn−1

< ε. (2.2.18)

Let H ⊂ R+ × Rk be the generating set of K. By standard extension theorems, there

exists ψ ∈ F1+k(R+ ×Rk) such that

ψ(r, y) =
(NF

r (r, y), rαNF
y (r, y))

∣(NF
r (r, y), rαNF

y (r, y)∣
for (r, y) ∈H.

The mapping ϕ ∈ Fn(Rn) introduced in (2.2.14) satisfies

ϕ(x, y) =
NE
α (x, y)

∣NE
α (x, y)∣

, for (x, y) ∈K. (2.2.19)

Then, by identity (2.2.17), the divergence theorem, (2.2.19), (2.2.18), and (2.2.2) we

have

Q(F ) ≥ ∫
F
(∂r(r

h−1ψ1) + r
h−1+α

k

∑
j=1

∂yjψ1+j)drdy

= ∫
E

divαϕdxdy = ∫
∂E

⟨ϕ,NE
α ⟩dHn−1

= ∫
K

∣NE
α (x, y)∣dHn−1

+ ∫
∂E∖K

⟨ϕ,NE
α ⟩dHn−1

≥ Pα(E) − 2ε.

This proves (2.2.13) when ∂E is smooth. The general case follows by approximation. Let

E ⊂ Rn be a set of finite α-perimeter and finite Lebesgue measure that is x-symmetric with

generating set F ⊂ R+ × Rk. By [56, Theorem 2.2.2], there exists a sequence (Ej)j∈N such

that each Ej is of class C∞

lim
j→∞
L
n
(Ej∆E) = 0 and lim

j→∞
Pα(Ej) = Pα(E).

Each Ej can be also assumed to be x-spherically symmetric with generating set Fj ⊂ R+×Rk.
Then we also have

lim
j→∞
L

1+k
(Fj∆F ) = 0.

By lower semicontinuity and (2.2.13) for the smooth case, we have

Q(F ) ≤ lim inf
j→∞

Q(Fj) = lim
j→∞

Pα(Ej) = Pα(E).
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This concludes the proof of (2.2.13) for any set E with finite α-perimeter.

The general formula (2.2.11) for sets that are also y-spherically symmetric can be proved

in a similar way and we can omit the details.

Formula (2.2.12) for sets E with Lipschitz boundary follows from (2.2.11) with the same

argument sketched in the proof of Proposition 2.2.2.

2.2.3. α-Perimeter in the case h = 1

When h = 1 there exists a change of coordinates that transforms α-perimeter into the

standard perimeter (see [99] for the case of the plane h = k = 1). Let n = 1 + k and consider

the mappings Φ,Ψ ∶ Rn → Rn

Ψ(x, y) = (sgn(x)
∣x∣α+1

α + 1
, y) and Φ(ξ, η) = (sgn(ξ)∣(α + 1)ξ∣

1
α+1 , η) .

Then we have Φ ○Ψ = Ψ ○Φ = IdRn .

Proposition 2.2.5. Let h = 1 and n = 1 + k. For any measurable set E ⊂ Rn we have

Pα(E) = sup{∫
Ψ(E)

divψ dξdη ∶ ψ ∈ Fn(Rn)}. (2.2.20)

Proof. First notice that the supremum in the right hand side can be equivalently computed

over all vector fields ψ ∶ Rn → Rn in the Sobolev space W 1,1
0 (Rn;Rn) such that ∥ψ∥∞ ≤ 1.

For any ϕ ∈ Fn(Rn), let ψ = ϕ ○Φ. Then for any j = 1, . . . , k = n − 1, we have

∂ξψ1(ξ, η) = ∂ξ(ϕ1 ○Φ)(ξ, η) = ∣(α + 1)ξ∣−
α
α+1∂xϕ1(Φ(ξ, η)),

∂ηjψ1+j(ξ, η) = ∂ηj(ϕ1+j ○Φ)(ξ, η) = ∂yjϕ1+j(Φ(ξ, η)).
(2.2.21)

In particular, we have ψ ∈W 1,1
0 (Rn;Rn) and ∥ψ∥∞ ≤ 1. Then, the standard divergence of ψ

satisfies

divψ(ξ, η) = ∣(α + 1)ξ∣−
α
α+1 divαφ(Φ(ξ, η)).

The determinant Jacobian of the change of variable (x, y) = Φ(ξ, η) is

∣detJΦ(ξ, η)∣ = ∣(α + 1)ξ∣−
α
α+1 . (2.2.22)

and thus we obtain

∫
E

divαϕ(x, y) dxdy = ∫
Ψ(E)

divαϕ(Φ(ξ, η))∣detJΦ(ξ, η)∣dξdη

= ∫
Ψ(E)

divψ(ξ, η) dξdη.
(2.2.23)

The claim follows.
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2.3 Rearrangements

In this section, we prove various rearrangement inequalities for α-perimeter in Rn. We

consider first the case h = 1. In this case, there are a Steiner type rearrangement in the

x-variable and a Schwarz rearrangement in the y variables that reduce the isoperimetric

problem in Rn to a problem for Lipschitz graphs in the first quadrant R+ × R+. Then we

consider dimensions h ≥ 2, where we can rearrange sets in Rh that are already x-spherically

symmetric.

2.3.1. Rearrangement in the case h = 1

Let h = 1 and n = 1 + k. We say that a set E ⊂ Rn is x-symmetric if (x, y) ∈ E implies

(−x, y) ∈ E; we say that E is x-convex if the section Ey = {x ∈ R ∶ (x, y) ∈ E} is an interval

for every y ∈ Rk; finally, we say that E is y-Schwarz symmetric if for every x ∈ R the section

Ex = {y ∈ Rk ∶ (x, y) ∈ E} is an (open) Euclidean ball in Rk centered at the origin.

Theorem 2.3.1. Let h = 1 and n = 1 + k. For any set E ⊂ Rn such that Pα(E) < ∞

and 0 < Ln(E) < ∞ there exists an x-symmetric, x-convex, and y-Schwarz symmetric set

E∗ ⊂ Rn such that Pα(E
∗) ≤ Pα(E) and Ln(E∗) = Ln(E).

Moreover, if Pα(E
∗) = Pα(E) then E is x-symmetric, x-convex and there exist functions

c ∶ [0,∞)→ Rk and f ∶ [0,∞)→ [0,∞] such that for L1-a.e. x ∈ R we have

Ex = {y ∈ Rk ∶ ∣y − c(∣x∣)∣ < f(∣x∣)}. (2.3.1)

Proof. By Proposition 2.2.5, the set F = Ψ(E) ⊂ Rn satisfies P (F ) = Pα(E), where P stands

for the standard perimeter in Rn. We define the measure µ on Rn

µ(F ) = ∫
F
∣(α + 1)ξ∣−

α
α+1 dξdη. (2.3.2)

Then, by (2.2.22) we also have the identity µ(F ) = Ln(E).

We rearrange the set F using Steiner symmetrization in direction ξ. Namely, we let

F1 = {(ξ, η) ∈ Rn ∶ ∣ξ∣ < L1
(F η)/2},

where F η = {ξ ∈ R ∶ (ξ, η) ∈ F}. The set F1 is ξ-symmetric and ξ-convex. By classical results

on Steiner symmetrization we have P (F1) ≤ P (F ) and the equality P (F1) = P (F ) implies

that F is ξ-convex: namely, a.e. section F η is (equivalent to) an interval.

The µ-volume of F1 is

µ(F1) = ∫
F1

∣(α + 1)ξ∣−
α
α+1dξdη = ∫

Rk
(∫

F η1

∣(α + 1)ξ∣−
α
α+1dξ)dη.
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For any measurable set I ⊂ R with finite measure, the symmetrized set I∗ = (−L1(I)/2,L1(I)/2)

satisfies the following inequality (see [99], page 361)

∫
I
∣ξ∣−

α
α+1dξ ≤ ∫

I∗
∣ξ∣−

α
α+1dξ. (2.3.3)

Moreover, if L1(I∆I∗) > 0 then the inequality is strict. This implies that µ(F1) ≥ µ(F ) and

the inequality is strict if F is not equivalent to an ξ-symmetric and ξ-convex set.

We rearrange the set F1 using Schwarz symmetrization in Rk, namely we let

F2 = {(ξ, η) ∈ Rn ∶ ∣η∣ < (
Lk(F ξ1 )

ωk
)

1
k
}.

By classical results on Schwarz rearrangement, we have P (F2) ≤ P (F1) and the equality

P (F2) = P (F1) implies that a.e. section F ξ1 is an Euclidean ball

F ξ1 = {η ∈ Rk ∶ ∣η − d(∣ξ∣)∣ < %(∣ξ∣)} (2.3.4)

for some d(∣ξ∣) ∈ Rk and %(∣ξ∣) ∈ [0,∞]. By Fubini-Tonelli theorem, the µ-volume is pre-

served:

µ(F2) = ∫
R
∣(α + 1)ξ∣−

α
α+1Lk(F ξ2 )dξ = ∫R

∣(α + 1)ξ∣−
α
α+1Lk(F ξ1 )dξ = µ(F1). (2.3.5)

Recall that δαλ(x, y) = (λx,λα+1y). The set E∗ = δαλ(Φ(F2)), with λ > 0 such that

Ln(E∗) = Ln(E), satisfies the claims in the statement of the theorem. In fact, we have

0 < λ ≤ 1 because

L
n
(Φ(F2)) = µ(F2) = µ(F1) ≥ µ(F ) = L

n
(E),

and then, by the scaling property of α-perimeter we have

Pα(E
∗
) = λQ−1Pα(Φ(F2)) ≤ Pα(Φ(F2)) = P (F2) ≤ P (F1) ≤ P (F ) = Pα(E).

This proves the first part of the theorem.

If Pα(E
∗) = Pα(E) then we have P (F2) = P (F1) and λ = 1. From the first equality we

deduce that the sections F ξ1 are of the form (2.3.4) and claim (2.3.1) holds with c(∣x∣) =

d(∣x∣α+1/(α + 1)) and f(∣x∣) = %(∣x∣α+1/(α + 1)). From λ = 1 we deduce that

µ(F ) = L
n
(E) = L

n
(E∗

) = L
n
(Φ(F2)) = µ(F2) = µ(F1),

and thus F is ξ-symmetric and ξ-convex. The same holds then for E.
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2.3.2. Rearrangement in the case h ≥ 2

We prove the analogous of Theorem 2.3.1 when h ≥ 2. We need to start from a set

E ⊂ Rn that is x-spherically symmetric

E = {(x, y) ∈ Rn ∶ (∣x∣, y) ∈ F}

for some generating set F ⊂ R+ ×Rk.
By the proof of Proposition 2.2.4, see (2.2.13), we have the identity Pα(E) = Q(F ),

where

Q(F ) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F
(∂r(r

h−1ψ1) + r
h−1+α

k

∑
j=1

∂yjψ1+j)drdy. (2.3.6)

Our goal is to improve the x-spherical symmetry to the x-Schwarz symmetry. To obtain

the Schwarz symmetry, we use the radial rearrangement technique introduced in [98].

Theorem 2.3.2. Let h ≥ 2, k ≥ 1 and n = h + k. For any set E ⊂ Rn that is x-spherically

symmetric and such that Pα(E) <∞ and 0 < Ln(E) <∞ there exists an x- and y-Schwarz

symmetric set E∗ ⊂ Rn such that Pα(E
∗) ≤ Pα(E) and Ln(E∗) = Ln(E).

Moreover, if Pα(E
∗) = Pα(E) then E is x-Schwarz symmetric and there exist functions

c ∶ [0,∞)→ Rk and f ∶ [0,∞)→ [0,∞] such that, up to a negligible set, we have

E = {(x, y) ∈ Rn ∶ ∣y − c(∣x∣)∣ < f(∣x∣)}. (2.3.7)

Proof. Let F ⊂ R+ × R be the generating set of E. We define the volume of F via the

following formula

V (F ) = ωh∫
F
rh−1drdy = Ln(E).

We rearrange F in the coordinate r using the linear density rh−1+α that appears, in

(2.3.6), in the part of divergence depending on the coordinates y. Namely, we define the

function g ∶ Rk → [0,∞] via the identity

1

h + α
g(y)h+α = ∫

g(y)

0
rh−1+αdr = ∫

Fy
rh−1+αdr, (2.3.8)

and we let

F ♯
= {(r, y) ∈ R+

×Rk ∶ 0 < r < g(y)}.

We claim that Q(F ♯) ≤ Q(F ) and V (F ♯) ≥ V (F ), with equality V (F ♯) = V (F ) holding

if and only if F ♯ = F , up to a negligible set.

For any open set A ⊂ R+ ×Rk, we define

Q0(F ;A) = sup
ψ∈F1(A)

∫
F
∂r(r

h−1ψ)drdy,

Qj(F ;A) = sup
ψ∈F1(A)

∫
F
rh−1+α∂yjψ drdy, j = 1, . . . , k.

(2.3.9)
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The open sets mappings A ↦ Qj(F ;A), j = 0,1, . . . , k, extend to Borel measures. For any

Borel set B ⊂ Rk and j = 0,1, . . . , k, we define the measures

µj(B) = Qj(F ;R+
×B),

µ♯j(B) = Qj(F
♯;R+

×B).

By Step 1 and Step 2 of the proof of Theorem 1.5 in [98], see page 106, we have µ♯j(B) ≤

µj(B) for any Borel set B ⊂ Rk and for any j = 0,1, . . . , k. It follows that the vector valued

Borel measures µ = (µ0, . . . , µk) and µ♯ = (µ♯0, . . . , µ
♯
k) satisfy

∣µ♯∣(Rk) ≤ ∣µ∣(Rk),

where ∣ ⋅ ∣ denotes the total variation. This is equivalent to Q(F ♯) ≤ Q(F ).

We claim that for any y ∈ Rk we have

1

h
g(y)h = ∫

F ♯y
rh−1 dr ≥ ∫

Fy
rh−1 dr, (2.3.10)

with strict inequality unless F ♯
y = Fy up to a negligible set. From (2.3.10), by Fubini-Tonelli

theorem it follows that V (F ♯) ≥ V (F ) with strict inequality unless F ♯ = F up to a negligible

set. By (2.3.8), claim (2.3.10) is equivalent to

((h + α)∫
Fy
rh−1+αdr)

1
h+α

≥ (h∫
Fy
rh−1dr)

1
h
, (2.3.11)

and this inequality holds for any measurable set Fy ⊂ R+, for any h ≥ 2, and α > 0, by

Example 2.5 in [98]. Moreover, we have equality in (2.3.11) if and only if Fy = (0, g(y)).

Let E♯
1 ⊂ Rn be the x-Schwarz symmetric set with generating set F ♯. Then we have

L
n
(E♯

1) = V (F ♯
) ≥ V (F ) = L

n
(E),

with strict inequality unless F ♯ = F . Then there exists 0 < λ ≤ 1 such that the set E♯ =

δαλ(E
♯
1) satisfies Ln(E♯) = Ln(E). Since λ ≤ 1, we also have

Pα(E
♯
) = λQ−1Pα(E

♯
1) ≤ Pα(E

♯
1) = Q(F ♯

) ≤ Q(F ) = Pα(E).

If Pα(E
♯) = Pα(E) then it must be λ = 1 and thus F ♯ = F , that in turn implies E♯ = E, up

to a negligible set.

Now the theorem can be concluded applying to E♯ a Schwarz rearrangement in the

variable y ∈ Rk. This rearrangement is standard, see the general argument in [98]. The

resulting set E∗ ⊂ Rn satisfies Pα(E
∗) ≤ Pα(E) and also the other claims in the theorem.
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2.4 Existence of isoperimetric sets

In this section, we prove existence of solutions to the isoperimetric problem for α-

perimeter and H-perimeter. When h ≥ 2, we prove the existence of solutions in the class of

x-spherically symmetric sets. The proof is based on a concentration-compactness argument.

This is a classical tool to prove existence of solutions to variational problems, used for

example by Leonardi and Rigot to prove existence of isoperimetric sets in Carnot groups in

[87]. Differently from their proof, in the case of Grushin spaces we have to deal with the

lack of left-translations: we use the same “cutting technique” as Fusco Maggi and Pratelli

in [63, Lemma 5.1], where invariance under left translations of the perimeter measure is not

necessary.

For any set E ⊂ Rn and t > 0, we let

Ext− = {(x, y) ∈ E ∶ ∣x∣ < t} and Ext = {(x, y) ∈ E ∶ ∣x∣ = t} ,

Eyt− = {(x, y) ∈ E ∶ ∣y∣ < t} and Eyt = {(x, y) ∈ E ∶ ∣y∣ = t} .
(2.4.1)

We also define

vxE(t) =H
n−1

(Ext ), (2.4.2)

and

vyE(t) = ∫
Eyt

∣x∣αdHn−1. (2.4.3)

In the following, we use the short notation {∣x∣ < t} = {(x, y) ∈ Rn ∶ ∣x∣ < t} and {∣y∣ < t} =

{(x, y) ∈ Rn ∶ ∣y∣ < t}.

Proposition 2.4.1. Let E ⊂ Rn be a set with finite measure and finite α-perimeter. Then

for a.e. t > 0 we have

Pα(E
x
t−) = Pα(E;Ext−) + v

x
E(t) and Pα(E

y
t−) = Pα(E;Eyt−) + v

y
E(t). (2.4.4)

Proof. We prove the claim for Eyt−. Let {φε}ε>0 be a standard family of mollifiers in Rn and

let

fε(z) = ∫
E
φε(∣z −w∣)dw, z ∈ Rn.

Then fε ∈ C
∞(Rn) and fε → χE in L1(Rn) for ε → 0. Therefore, by the coarea formula we

also have, for a.e. t > 0 and possibly for a suitable infinitesimal sequence of ε’s,

lim
ε→0

∫
{∣y∣=t}

∣fε − χE ∣dH
n−1

= 0. (2.4.5)

Since E has finite α-perimeter, the set {t > 0 ∶ Pα(E;{∣y∣ = t}) > 0} is at most countable,

and thus

Pα(E;{∣y∣ = t}) = 0 for a.e. t > 0. (2.4.6)
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We use the notation ∇αfε = (X1fε, . . . ,Xhfε, Y1fε, . . . Ykfε), where Xi, Yj are the vector

fields (1.1.15). By the divergence Theorem, for any ϕ ∈ C1
c (Rn,Rn) we have

∫
{∣y∣<t}

fε(z)divαϕ(z)dz = ∫
{∣y∣<t}

(divα(fεϕ) − ⟨∇αfε, ϕ⟩)dz

= −∫
{∣y∣=t}

fε(z)∣x∣
α
⟨N,ϕ(z)⟩dHn−1

− ∫
{∣y∣<t}

⟨∇αfε, ϕ⟩dz,
(2.4.7)

where N = (0,−y/∣y∣) is the inner unit normal of {∣y∣ < t}. For any t > 0, we have

lim
ε→0

∫
{∣y∣<t}

fε(z)divαϕ(z)dz = ∫
Eyt−

divαϕ(z)dz, (2.4.8)

and, for any t > 0 satisfying (2.4.5),

lim
ε→0

∫
{∣y∣=t}

fε(z)∣x∣
α
⟨N,ϕ(z)⟩dHn−1

= ∫
Eyt

∣x∣α⟨N,ϕ(z)⟩dHn−1. (2.4.9)

On the other hand, we claim that

lim
ε→0

∫
{∣y∣<t}

⟨∇αfε, ϕ⟩dz = ∫
{∣y∣<t}

{
h

∑
i=1

ϕidµ
xi
E +

k

∑
`=1

ϕh+`∣x∣
αdµy`E }, (2.4.10)

where µxiE and µy`E are the distributional partial derivatives of χE , that are Borel measures

on Rn, because E has finite α-perimeter. For the coordinate y`, we have

∫
{∣y∣<t}

ϕh+`(z)∣x∣
α∂y`fε(z)dz = ∫

{∣y∣<t}
ϕh+`(z)∣x∣

α
∫
E
∂y`φε(∣z −w∣)dw dz

= −∫
{∣y∣<t}

ϕh+`(z)∣x∣
α
∫
E
∂η`φε(∣z −w∣)dw dz

= ∫
{∣y∣<t}

ϕh+`(z)∣x∣
α
∫
Rn
φε(∣z −w∣)dµy`E (w)dz

= ∫
Rn
∫
{∣y∣<t}

ϕh+`(z)∣x∣
αφε(∣z −w∣)dz dµy`E (w),

where we let w = (ξ, η) ∈ Rh ×Rk. By (2.4.6), the measure µy`E is concentrated on {∣y∣ ≠ t}.

It follows that

lim
ε→0

∫
Rn
∫
{∣y∣<t}

ϕh+`(z)∣x∣
αφε(∣z −w∣)dz dµy`E (w) = ∫

{∣η∣<t}
ϕh+`(w)∣ξ∣αdµy`E (w).

This proves (2.4.10).

Now, from (2.4.7)–(2.4.10) we deduce that

∫
E∩{∣y∣<t}

divαϕ(z)dz = −∫
E∩{∣y∣=t}

∣x∣α⟨N,ϕ(z)⟩dHn−1

− ∫
{∣y∣<t}

{
h

∑
i=1

ϕidµ
xi
E + ∣x∣α

k

∑
`=1

ϕh+`dµ
y`
E },

(2.4.11)

and the claim follows by optimizing the right hand side over ϕ ∈ Fn(Rn).
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Proposition 2.4.2. Let E ⊂ Rn be a set with finite measure and finite α-perimeter. For

a.e. t > 0 we have Pα(E
x
t−) ≤ Pα(E) and Pα(E

y
t−) ≤ Pα(E).

Proof. The proof is a calibration argument. Notice that

Pα(E
y
t−) = Pα(E

y
t−;{∣y∣ < t}) + Pα(E

y
t−;{∣y∣ ≥ t})

= Pα(E;{∣y∣ < t}) + Pα(E
y
t−;{∣y∣ = t}).

Let t > 0 be such that Pα(E;{∣y∣ = t}) = 0; a.e. t > 0 has this property, see (2.4.6). It is

sufficient to show that

Pα(E
y
t−;{∣y∣ = t}) ≤ Pα(E;{∣y∣ ≥ t}) = Pα(E;{∣y∣ > t}).

The function ϕ(x, y) = (0,−y/∣y∣) ∈ Rn, ∣y∣ ≠ 0, has negative divergence:

divαϕ(x, y) = −∣x∣
α

k

∑
`=1

(
1

∣y∣
−
y2
`

∣y∣3
) = −

(k − 1)∣x∣α

∣y∣
≤ 0.

As in the proof of (2.4.11), we have

0 ≥ ∫
E∩{∣y∣>t}

divαϕdz = ∫
Eyt

∣x∣αdHn−1
− ∫

{∣y∣>t}
∣x∣α

k

∑
`=1

ϕh+`dµ
y`
E

≥ ∫
E∩{∣y∣=t}

∣x∣αdHn−1
− Pα(E;{∣y∣ > t}).

By the representation formula (2.2.2), we obtain

Pα(E
y
t−;{∣y∣ = t}) = ∫

Eyt

∣x∣αdHn−1
≤ Pα(E;{∣y∣ > t}).

This ends the proof.

We prove the existence of isoperimetric sets using the validity of the following isoperi-

metric inequality, holding for any Ln-measurable set E ⊂ Rn with finite measure

Pα(E) ≥ CLn(E)
Q−1
Q (2.4.12)

for some geometric constant C > 0, see Proposition 1.3.4.

By the homogeneity properties of Lebesgue measure and α-perimeter, we can define the

constant

CI = inf{Pα(E) ∶ L
n
(E) = 1 and E ∈ Sx, if h ≥ 2}. (2.4.13)

Only when h ≥ 2 we are adding the constraint E ∈ Sx. We have CI > 0 by the validity of

(2.4.12) for some C > 0. Our goal is to prove that the infimum in (2.4.13) is attained.

Theorem 2.4.3. Let h, k ≥ 1 and n = h + k. There exists an x- and y-Schwarz symmetric

set E ⊂ Rn realizing the infimum in (2.4.13).
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Proof. Let (Em)m∈N be a minimizing sequence for the infimum in (2.4.13), with the addi-

tional assumption that the sets involved in the minimization are x-spherically symmetric

when h ≥ 2. Namely,

L
n
(Em) = 1 and Pα(Em) ≤ CI (1 +

1

m
) , m ∈ N. (2.4.14)

By Theorems 2.3.1 and 2.3.2, we can assume that every set Em is x- and y-Schwarz

symmetric. We claim that the minimizing sequence can be also assumed to be in a bounded

region of Rn.

Fix m ∈ N and let E = Em. For any t > 0 such that (2.4.4) holds we consider the set

Ext− = E ∩ {∣x∣ < t} ∈ Sx.

We apply the isoperimetric inequality (2.4.12) with the constant CI > 0 in (2.4.13) to

the sets Ext− and E ∖Ext−, and we use Proposition 2.4.1:

CIL
n
(Ext−)

Q−1
Q ≤ Pα(E

x
t−) = Pα(E;{∣x∣ < t}) + vxE(t)

CI(1 −L
n
(Ext−))

Q−1
Q ≤ Pα(E ∖Ext−) = Pα(E;{∣x∣ > t}) + vxE(t).

(2.4.15)

As in (2.4.2), we let vxE(t) =H
n−1(Ext ). Adding up the two inequalities we get

CI(L
n
(Ext−)

Q−1
Q + (1 −Ln(Ext−))

Q−1
Q ) ≤ Pα(E) + 2vxE(t). (2.4.16)

The function g ∶ [0,∞) → R, g(t) = Ln(Ext−) is continuous, (0,1) ⊂ g([0,∞)) ⊂ [0,1], and it

is increasing. In particular, g is differentiable almost everywhere. For any t > 0 such that

Pα(E;{∣x∣ = t}) = 0, also the standard perimeter vanishes, namely P (E;{∣x∣ = t}) = 0. With

the vector field ϕ = (x/∣x∣,0), and for t < s satisfying Pα(E;{∣x∣ = t}) = Pα(E;{∣x∣ = s}) = 0,

we have

∫
Exs−∖Ext−

h − 1

∣x∣
dz = ∫

Exs−∖Ext−
divϕdz

=H
n−1

(Exs ) −H
n−1

(Ext ) + ∫
∂∗E∩{s<∣x∣<t}

⟨ϕ, νE⟩dH
n−1

where ∂∗E is the reduced boundary of E, see [89, Chapter 15] for a definition. This implies

that

lim
s→t
H
n−1

(Exs ) =H
n−1

(Ext ),

with limit restricted to s satisfying the above condition, and thus

g′(t) = lim
s→t

1

s − t
∫

s

t
H
n−1

(Exτ )dτ =H
n−1

(Ext ). (2.4.17)

At this point, by (2.4.14), inequality (2.4.16) gives

CI(g(t)
Q−1
Q + (1 − g(t))

Q−1
Q − 1 −

1

m
) ≤ 2g′(t). (2.4.18)
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The function ψ ∶ [0,1] → R, ψ(s) = s
Q−1
Q + (1 − s)

Q−1
Q − 1 is concave, it attains its maximum

at s = 1/2 with ψ(1/2) = 2
1
Q −1, and it satisfies ψ(s) = ψ(1−s), ψ(0) = ψ(1) = 0. By (2.4.18)

we have

g′(t) ≥
CI
2

(ψ(g(t)) −
1

m
) ≥

CI
4
ψ(g(t)) +

CI
4

(ψ(g(t)) −
2

m
), (2.4.19)

for almost every t ∈ R and every m ∈ N. Provided that m ∈ N is such that 2/m ≤ maxψ =

21/Q − 1, we show that there exist constants 0 < am < bm <∞ such that inequality (2.4.19)

implies the following:

g′(t) ≥
CI
4
ψ(g(t)) for a.e. t ∈ [am, bm]. (2.4.20)

In fact, by continuity of g and ψ, and by symmetry of ψ with respect to the line {s = 1/2},

for m large enough, there exist 0 < am < bm <∞ such that

0 < g(am) = 1 − g(bm) <
1

2
and ψ(g(am)) = ψ(g(bm)) =

2

m
.

By concavity of ψ and monotonicity of g, it follows that ψ(g(t)) ≥ 2
m for every t ∈ [am, bm],

and (2.4.20) follows. As m→∞ we have g(bm)→ 1, that implies

lim
m→∞

bm = sup{b > 0 ∶ g(b) < 1} > 0.

Moreover, as m → ∞ we also have g(am) → 0. Since the set E is x-Schwarz symmetric,

there holds g(a) > 0 for all a > 0. Therefore, we deduce that am → 0.

We infer that, for m large enough, we have am < bm/2. Integrating inequality (2.4.20)

on the interval [bm/2, bm], we find

bm
2

≤
4

CI
∫

bm

bm/2

g′(t)

ψ(g(t))
dt ≤

4

CI
∫

g(bm)

g(bm/2)

1

ψ(s)
ds ≤

4

CI
∫

1

0

1

ψ(s)
ds = `1. (2.4.21)

We consider the set Êm = Exbm−. By (2.4.21), Êm is contained in the cylinder {∣x∣ < 2`1}

and, by Proposition 2.4.2, it satisfies Pα(Êm) ≤ Pα(Em). Define the set E†
m = δλm(Êm),

where λm ≥ 1 is chosen in such a way that Ln(Ê†
m) = 1; namely, λm is the number

λm = (
1

Ln(Êm)
)

1
Q
,

where

L
n
(Êm) = L

n
(Em ∩ {∣x∣ < bm}) = g(bm) = 1 − g(am). (2.4.22)

By concavity of ψ, for 0 < s < 1/2 the graph of ψ lays above the straight line through

the origin passing through the maximum (1/2, ψ(1/2)), i.e., ψ(s) > 2(21/Q −1)s. Therefore,

since g(am) < 1/2 and ψ(g(am)) = 2/m, then

g(am) ≤
1

m(21/Q − 1)
,
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and thus

λm ≤ (
1

1 − 1
m(21/Q−1)

)
1/Q

= (
m

m − 1
21/Q−1

)
1/Q

.

By homogeneity of α-perimeter,

Pα(E
†
m) = λQ−1

m Pα(Êm) ≤ λQ−1
m Pα(Em) ≤ λQ−1

m CI(1 +
1

m
)

≤ CI(1 +
1

m
)(

m

m − 1
21/Q−1

)

Q−1
Q
.

In conclusion, (E†
m)m∈N is a minimizing sequence for CI and, for m large enough, it is

contained in the cylinder {∣x∣ < `}, where ` = 21/Q+1`1.

Now we consider the case of the y-variable. We start again from (2.4.15) for the sets

Eyt− for t > 0. Now the set E can be assumed to be contained in the cylinder {∣x∣ < `}. In

this case, we have

vyE(t) = ∫
Eyt

∣x∣α dHn−1
≤ `αHn−1

(Eyt ) = `
αg′(t).

So inequality (2.4.16) reads

CI(g(t)
Q−1
Q + (1 − g(t))

Q−1
Q − 1 −

1

m
) ≤ 2`αg′(t). (2.4.23)

Now the argument continues exactly as in the first case. The conclusion is that there exists

a minimizing sequence (Em)m∈N for (2.4.13) and there exists ` > 0 such that we have:

i) Ln(Em) = 1 for all m ∈ N;

ii) Pα(Em) ≤ CI(1 + 1/m) for all m ∈ N;

iii) Em ⊂ {(x, y) ∈ Rn ∶ ∣x∣ < ` and ∣y∣ < `} for all m ∈ N;

iv) Each Em is x- and y-Schwarz symmetric.

By the compactness theorem for sets of finite α-perimeter (see [65] for a general state-

ment that covers our case), there exists a set E ⊂ Rn of finite α-perimeter which is the

L1-limit of (a subsequence of) the sequence (Em)m∈N. Then we have

L
n
(E) = lim

m→∞
L
n
(Em) = 1.

Moreover, by lower semicontinuity of α-perimeter

Pα(E) ≤ lim inf
m→∞

Pα(Em) = CI .

The set E is x- and y-Schwarz symmetric, because these symmetries are preserved by the

L1-convergence. This concludes the proof.
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2.5 Profile of isoperimetric sets

In Theorem 2.4.3, we proved existence of isoperimetric sets, in fact in the class of x-

spherically symmetric sets when h ≥ 2. By the characterization of the equality case in

Theorems 2.3.1 and 2.3.2, any isoperimetric set E is x-Schwarz symmetric and there are

functions c ∶ [0,∞)→ Rk and f ∶ [0,∞)→ [0,∞) such that

E = {(x, y) ∈ Rn ∶ ∣y − c(∣x∣)∣ < f(∣x∣)}. (2.5.1)

The function f is decreasing. We will prove in Proposition 2.5.5 that, for isoperimetric sets,

the function c is constant.

We start with the characterization of an isoperimetric set E with constant function c = 0.

Let F ⊂ R+ ×R+ be the generating set of E

E = {(x, y) ∈ Rn ∶ (∣x∣, ∣y∣) ∈ F}.

The set F is of the form

F = {(r, s) ∈ R+
×R+

∶ 0 < s < f(r), r ∈ (0, r0)}, (2.5.2)

where f ∶ (0, r0)→ (0,∞) is a decreasing function, for some 0 < r0 ≤∞.

By the regularity theory of Λ-minimizers of perimeter, the boundary ∂E is a C∞ hy-

persurface where x ≠ 0, see Theorems 26.3, 27.4 [89, Part III]. We do not need the general

regularity theory, and we prove this fact in our case by an elementary method that gives

also the C∞-smoothness of the function f in (2.5.2).

2.5.1. Smoothness of f

We prove that the boundary ∂F ⊂ R+ ×R+ is the graph of a smooth function s = f(r).

We rotate clockwise by 45 degrees the coordinate system (r, s) ∈ R2 and we call the new

coordinates (%, σ); namely, we let

r =
σ + %
√

2
, s =

σ − %
√

2
.

There exist −∞ ≤ a < 0 < b ≤ ∞ and a function g ∶ (a, b) → R such that the boundary

∂F ⊂ R+ ×R+ is a graph σ = g(%); namely, we have

∂F = {(r(%), s(%)) = (
g(%) + %

√
2

,
g(%) − %

√
2

) ∶ % ∈ (a, b)}. (2.5.3)

Since the function f is decreasing, the function g is 1-Lipschitz continuous.
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By formula (2.2.12) and by the standard length formula for Lipschitz graphs, the α-

perimeter of E is

Pα(E) = chk ∫
b

a

√

s′2 + r2αr′2 rh−1sk−1 d%,

where chk = hkωhωk. On the other hand, the volume of E is

L
n
(E) = chk ∫

b

a

⎛

⎝
∫

g(%)

∣%∣
(
σ + %
√

2
)

h−1

(
σ − %
√

2
)

k−1

dσ
⎞

⎠
d%.

For ε ∈ R and ψ ∈ C∞
c (a, b), let gε = g + εψ, sε = s + ε

ψ
√

2
, rε = r + ε

ψ
√

2
and let Fε ⊂ R+ ×R+

be the subgraph in σ > ∣%∣ of the function gε. The set Eε ⊂ Rn with generating set Fε has

α-perimeter

p(ε) = Pα(Eε)

= chk ∫
b

a

¿
Á
ÁÀ(s′ + ε

ψ′
√

2
)

2

+ (r + ε
ψ
√

2
)

2α
(r′ + ε

ψ′
√

2
)

2

(r + ε
ψ
√

2
)
h−1

(s + ε
ψ
√

2
)
k−1

d%,

and volume

v(ε) = Ln(Eε) = chk ∫
b

a

⎛

⎝
∫

g(%)+εψ(%)

∣%∣
(
σ + %
√

2
)

h−1

(
σ − %
√

2
)

k−1

dσ
⎞

⎠
d%.

Since E is an isoperimetric set, we have

0 =
d

dε

p(ε)Q

v(ε)Q−1
∣
ε=0

=
QpQ−1p′vQ−1 − pQ(Q − 1)vQ−2v′

v2Q−2
∣
ε=0

,

that gives

p′(0) −Chkαv
′
(0) = 0, where Chkα =

Q − 1

Q

Pα(E)

Ln(E)
. (2.5.4)

After some computations, we find

p′(0) =
chk
√

2
∫

b

a
{
(r2αr′ + s′)ψ′ + αr2α−1r′

2
ψ

√
s′2 + r2αr′2

+

+

√

s′2 + r2αr′2[
h − 1

r
+
k − 1

s
]ψ}rh−1sk−1 d%,

(2.5.5)

and

v′(0) = chk ∫
b

a
rh−1sk−1ψ d%. (2.5.6)

From (2.5.4), (2.5.5), and (2.5.6) we deduce that g is a 1-Lipschitz function that, via

the auxiliary functions r and s, solves in a weak sense the ordinary differential equation

d

d%
(rh−1sk−1 r2αr′ + s′

√
s′2 + r2αr′2

) = rh−1sk−1
{

αr2α−1r′
2

√
s′2 + r2αr′2

+

+

√

s′2 + r2αr′2[
h − 1

r
+
k − 1

s
] −

√
2Chkα}.

(2.5.7)

By an elementary argument, if follows that g ∈ C∞(a, b). We show this statement in the

next proposition.
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Proposition 2.5.1. Let r, s ∶ (a, b) → R are Lipschitz functions solving (2.5.7). Then the

Lipschitz function g defined via r, s through (2.5.3) is of class C∞(a, b).

Proof. Fix a test function χ ∈ C∞
c (a, b) which has zero mean: ∫

b
a χ(%)d% = 0. Define a test

function ψ ∈ F1((a, b)) as the integral of χ:

ψ(%) = ∫
%

a
χ(t)dt,

hence ψ′(%) = χ(%) and ψ ∈ C∞
c ((a, b)). Equation (2.5.7) reads

0 = ∫
b

a
η(%)ψ′(%) + ξ(%)ψ(%) d% (2.5.8)

where

η(%) =
r2αr′ + s′

√
s′2 + r2αr′2

rh−1sk−1,

ξ(%) = {
αr2α−1r′2

√
s′2 + r2αr′2

+
√
s′2 + r2αr′2[

h − 1

r
+
k − 1

s
] −

√
2Chkα}r

h−1sk−1

Applying (2.5.8) to ψ gives the following, where I[p,q] denotes the characteristic function of

[p, q] ⊂ R

0 = ∫
b

a
(η(%)χ(%) + ξ(%)∫

%

a
χ(t)dt)d%

= ∫

b

a
η(%)χ(%)d% + ∫

b

a
(∫

b

a
I[a,%]ξ(%)χ(t)dt)d%

= ∫

b

a
η(t)χ(t)dt + ∫

b

a
(∫

b

a
I[t,b]ξ(%)χ(t)d%)dt

= ∫

b

a
(η(t) + ∫

b

t
ξ(%)d%)χ(t)dt.

By arbitrariness of χ in the set of zero mean value test functions we deduce that there exists

a constant c ∈ R such that η(t) + ∫
b
t ξ(%)d% = c. Notice that the function

φ(t) = ∫
b

t
{

αr2α−1r′2
√
s′2 + r2αr′2

+
√
s′2 + r2αr′2[

h − 1

r
+
k − 1

s
] −

√
2Chkα}r

h−1sk−1d%

is Lipschitz because φ′ is bounded, being r, s Lipschitz functions. Moreover, using the

definition of r and s in (2.5.3), we write

η(t) = c − φ ⇐⇒
r2α(g′ + 1) + (g′ − 1)

√
(g′ − 1)2 + r2α(g′ + 1)2

rh−1sk−1
= c − φ.

Squaring both sides we obtain a second order equation in g′. Solving this equation we write

g′ as a product of Lipschitz functions. We conclude that g′ is Lipschitz, hence g ∈ C1,1.
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We claim that for all % ∈ (a, b) there holds g′(%) ≠ −1. By contradiction, assume that

there exists %̄ ∈ (a, b) such that g′(%̄) = −1, i.e., r′(%̄) = 0 and s′(%̄) = −
√

2. Inserting these

values into the differential equation (2.5.7) we can compute g′′(%̄) as a function of g(%̄);

namely, we obtain

g′′(%̄) = 2α+1 2(h − 1) −
√

2Chkαr(%̄)

r(%̄)2α+1
. (2.5.9)

Now there are three possibilities:

(1) g′′(%̄) < 0. In this case, g is strictly concave at %̄ and this contradicts the fact that E

is y-Schwarz symmetric.

(2) g′′(%̄) > 0. In this case, g′ is strictly increasing at %̄ and since g′(%̄) = −1 this contradicts

the fact the g is 1-Lipschitz, equivalently, the fact that E is x-Schwarz symmetric.

(3) g′′(%̄) = 0. In this case, the value of g at %̄ is, by (2.5.9),

g(%̄) = −%̄ +

√
2(h − 1)

Chkα
. (2.5.10)

The function ĝ(%) = −% +

√
2(h − 1)

Chkα
, % ∈ R, is the unique solution to the ordinary

differential equation (2.5.7) with initial conditions g(%̄) given by (2.5.10) and g′(%̄) =

−1. It follows that g = ĝ and this contradicts the boundedness of the isoperimetric

set; namely, the fact that isoperimetric sets have finite volume.

This proves that g′(%) ≠ −1 for all % ∈ (a, b).

2.5.2. Differential equations for the profile function

By the discussion in the previous section, the function f appearing in the definition

of the set F in (2.5.2) is in C∞(0, r0). The function f is decreasing, f ′ ≤ 0. By formula

(2.2.12), the perimeter of the set E with generating set F is

Pα(E) = chk ∫
r0

0

√
f ′(r)2 + r2α rh−1f(r)k−1dr, (2.5.11)

and the volume of E is

L
n
(E) =

chk
k
∫

r0

0
rh−1f(r)kdr. (2.5.12)

As in the previous section, for ψ ∈ C∞
c (0, r0) and ε ∈ R, we consider the perturbation f + εψ

and we define the set

Eε = {(x, y) ∈ Rn ∶ ∣y∣ < f(∣x∣) + εψ(∣x∣)}.
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Then we have

p(ε) = Pα(Eε) = chk ∫
r0

0

√
(f ′ + εψ′)2 + r2α (f + εψ)k−1rh−1dr,

v(ε) = Ln(Eε) =
chk
k
∫

r0

0
(f + εψ)krh−1dr,

and from these formulas we compute the first derivatives at ε = 0:

p′(0) = chk ∫
r0

0
[

fk−1f ′
√
f ′2 + r2α

ψ′ + (k − 1)fk−2
√
f ′2 + r2αψ] rh−1 dr,

v′(0) = chk ∫
r0

0
fk−1ψ rh−1 dr.

The minimality equation (2.5.4) reads

∫

r0

0
(

f ′fk−1

√
f ′2 + r2α

ψ′ + [(k − 1)fk−2
√
f ′2 + r2α −Chkαf

k−1
]ψ) rh−1 dr = 0. (2.5.13)

Integrating by parts the term with ψ′ and using the fact that ψ is arbitrary, we deduce that

f solves the following second order ordinary differential equation:

−
d

dr

⎛

⎝
rh−1 f ′fk−1

√
f ′2 + r2α

⎞

⎠
+ rh−1

[(k − 1)
√
f ′2 + r2α fk−2

−Chkαf
k−1

] = 0. (2.5.14)

The normal form of this differential equation is

f ′′ =
αf ′

r
+ (f ′

2
+ r2α

)(
k − 1

f
− (h − 1)

f ′

r2α+1
) −Chkα

(f ′
2
+ r2α)

3
2

r2α
, (2.5.15)

and it can be rearranged in the following ways:

∂

∂r
(
f ′

rα
) = (f ′

2
+ r2α

)(
k − 1

frα
− (h − 1)

f ′

r3α+1
) −Chkα

(f ′2 + r2α)
3
2

r3α

= rα((
f ′

rα
)

2
+ 1)(

k − 1

f
−

(h − 1)

rα+1

f ′

rα
) −Chkα((

f ′

rα
)

2
+ 1)

3
2
.

(2.5.16)

Call θ = arctan f ′
rα . Hence

tanϑ =
f ′

rα
Ô⇒ sinϑ =

f ′
√
f ′2 + r2α

, cosϑ =
rα

√
f ′2 + r2α

.

With the substitution

z = sin arctan (
f ′

rα
) =

f ′
√
r2α + f ′2

, (2.5.17)
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equation (2.5.16) transforms as follows

(rh−1z)′ = (h − 1)rh−2z + rh−1
(

rα
√
f ′2 + r2α

r2α

f ′2 + r2α
∂r(

f ′2

rα
))

= (h − 1)rh−2 f ′
√
f ′2 + r2α

+ rh−1
(

r3α

(f ′2 + 32α)
3
2

⋅

⋅ {
f ′ + r2α

rα
(
k − 1

f
−
h − 1

r2α+1
f ′) −Chkα

(f ′2 + r2α)
3
2

r3α
})

= rh−1
{
h − 1

r

f ′
√
f ′2 + r2α

−
(h − 1)r3α

(f ′2 + r2α)
3
2

(f ′2 + r2α)

rα
f ′

r2α+1

−Chkα
r3α

(f ′2 + r2α)
3
2

(f ′2 + r2α)
3
2

r3α
+

r3α

(f ′2 + r2α)
3
2

f ′2 + r2α

rα
k − 1

f
}

= rh−1
{ −Chkα + r

α (k − 1)

f

rα
√
f ′2 + r2α

}

Hence we get an equivalent equation for f :

(rh−1z)′ = rα+h−1k − 1

f

√
1 − z2 −Chkαr

h−1. (2.5.18)

We integrate equation (2.5.18) on the interval (0, r). When h > 1 we use the fact that

rh−1z = 0 at r = 0. When h = 1 we use the fact that z has a finite limit as r → 0+. In both

cases, we deduce that there exists a constant D ∈ R such that

z(r) = r1−h
∫

r

0
sα+h−1k − 1

f

√
1 − z2 ds −

Chkα
h

r +Dr1−h. (2.5.19)

Inserting (2.5.17) into (2.5.19), we get

f ′
√
r2α + f ′2

= r1−h
∫

r

0
s2α+h−1 k − 1

f
√
s2α + f ′2

ds −
Chkα
h

r +Dr1−h. (2.5.20)

If h ≥ 2, from (2.5.20) we deduce that D = 0. In fact, the left-hand side of (2.5.20) is

bounded as r → 0+, while the right-hand side diverges to ±∞ according to the sign of D ≠ 0.

In the next section, we prove that D = 0 also when h = 1, provided that f is the profile of

an isoperimetric set.

Remark 2.5.2 (Computation of the solution when k = 1). When k = 1 and D = 0, equation

(2.5.20) reads
f ′

√
r2α + f ′2

= −
Chkα
h

r.

and this is equivalent to

f ′(r) = −
Chkαr

α+1

√
h2 −C2

hkαr
2
, r ∈ [0, r0). (2.5.21)
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Without loss of generality we can assume that r0 = 1 and this holds if and only if Chkα = h.

Integrating (2.5.21) with f(1) = 0 we obtain the solution

f(r) = ∫
1

r

sα+1

√
1 − s2

ds = ∫
π/2

arcsin r
sinα+1

(s)ds.

This is the profile function for the isoperimetric set when k = 1.

2.5.3. Proof that D = 0.

We prove that D = 0 in (2.5.20) in the case h = 1. We assume by contradiction that

D ≠ 0. For a small parameter s > 0, let fs ∶ [0, r0)→ R+ be the function

fs(r) =

⎧⎪⎪
⎨
⎪⎪⎩

f(s) for 0 < r ≤ s

f(r) for r > s,

and define the set

Es = {(x, y) ∈ Rn ∶ ∣y∣ < fs(∣x∣)}.

Recall that the isoperimetric ratio is Iα(E) = Pα(E)Q/Ln(E)Q−1. We claim that for s > 0

small, the difference of isoperimetric ratios

Iα(Es) − Iα(E) =
Pα(Es)

Q

Ln(Es)Q−1
−

Pα(E)Q

Ln(E)Q−1

=
Pα(Es)

QLn(E)Q−1 − Pα(E)QLn(Es)
Q−1

Ln(Es)Q−1Ln(E)Q−1

(2.5.22)

is strictly negative.

The α-perimeter of Es is

Pα(Es) = chk ∫
∞

0

√

f ′s
2 + r2αfk−1

s rh−1 dr

= chk[f(s)
k−1
∫

s

0
rα+h−1 dr + ∫

∞

s

√
f ′2 + r2αfk−1 rh−1 dr]

= Pα(E) + chk ∫
s

0
[rαf(s)k−1

−
√
f ′2 + r2αfk−1

]rh−1 dr,

and its volume is

L
n
(Es) =

chk
k
∫

∞

0
fks r

h−1 dr =
chk
k

(∫

s

0
f(s)krh−1 dr + ∫

∞

s
f(r)k rh−1 dr)

= L
n
(E) +

chk
k
∫

s

0
(f(s)k − f(r)k) rh−1 dr,

so, by elementary Taylor approximations, we find

L
n
(E)

Q−1Pα(Es)
Q
=

= L
n
(E)

Q−1
{Pα(E) + chk ∫

s

0
[rαf(s)k−1

−
√
f ′2 + r2αfk−1

] rh−1 dr}
Q

= L
n
(E)

Q−1
{Pα(E)

Q
+ dchkPα(E)

Q−1
(∫

s

0
[rαf(s)k−1

−
√
f ′2 + r2αfk−1] rh−1 dr)

+R1(s)},
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where R1(s) is a higher order infinitesimal as s→ 0, and

Pα(E)
d
L
n
(Es)

Q−1
= Pα(E)

Q
{L

n
(E) +

chk
k
∫

s

0
(f(s)k − f(r)k) rh−1 dr}

Q−1

= Pα(E)
Q
{L

n
(E)

Q−1
+
chk(Q − 1)

k
L
n
(E)

d−2
∫

s

0
(f(s)k − f(r)k) rh−1 dr +R2(s)},

where R2(s) is a higher order infinitesimal as s→ 0. The difference is thus

∆(s) = P (Es)
Q
L
n
(E)

Q−1
− Pα(E)

Q
L
n
(Es)

Q−1

= chkPα(E)
Q
L
n
(E)

Q−1
{d

A(s)

Pα(E)
− (Q − 1)

B(s)

kLn(E)
},

where we let

A(s) = ∫
s

0
[rαf(s)k−1

−
√
f ′2 + r2αfk−1] rh−1 dr +R1(s)

B(s) = ∫
s

0
(f(s)k − f(r)k) rh−1 dr +R2(s).

Now we let h = 1 and we observe that the differential equation (2.5.19) or its equivalent

version (2.5.20) imply that

lim
r→0+

f ′(r)

rα
=D.

So for D ≠ 0 and, in fact, for D < 0 (because f is decreasing) we have

lim
s→0+

A(s)

sα+h
= f(0)k−1 1 −

√
D2 + 1

α + h
< 0,

and

lim
s→0+

B(s)

sα+h
= 0.

It follows that for s > 0 small there holds

∆(s)

sh+α
= f(0)k−1 1 −

√
D2 + 1

α + h
dchkPα(E)

Q−1
L
n
(E)

Q−1
+ o(1) < 0.

Then E is not an isoperimetric set. This proves that D = 0.

2.5.4. Initial and final conditions for the profile function

In this section, we study the behavior of f at 0 and r0.

Proposition 2.5.3. The profile function f of an x- and y-Schwarz symmetric isoperimetric

set E ⊂ Rn satisfies f ∈ C∞(0, r0) ∩ C([0, r0]) ∩ C
2([0, r0)) for some 0 < r0 < ∞, f ′ ≤ 0,

f(r0) = 0, it solves the differential equation (2.5.20) with D = 0, and

lim
r→r−0

f ′(r) = −∞, and lim
r→0+

f ′(r)

rα+1
= −

Chkα
h

.
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Proof. By Remark 2.5.2, it is sufficient to prove that r0 < ∞ when k > 1. Assume by

contradiction that r0 =∞. In this case, it must be

lim
r→∞

f(r) = 0, (2.5.23)

otherwise the set E with profile f would have infinite volume.

For ε > 0 and M > 0, let us consider the set

KM = {r ≥M ∶ f ′(r) ≥ −ε}.

Recall that in our case we have f ′ ≤ 0. The set KM is closed and nonempty for any M . If

KM = ∅ for some M , then this would contradict (2.5.23).

Let r̄ ∈KM . From (2.5.15) we have

f ′′(r̄) ≥ −
αε

r̄
+ r̄2αk − 1

f(r̄)
−Chkα

(ε2 + r̄2α)3/2

r̄2α

≥
1

2
M2α k − 1

f(M)
> 0,

(2.5.24)

provided that M is large enough. We deduce that there exists δ > 0 such that f ′(r) ≥ −ε

for all r ∈ [r̄, r̄ + δ). This proves that KM is open to the right. It follows that it must be

KM = [M,∞). This proves that

lim
r→∞

f ′(r) = 0,

and this in turn contradicts (2.5.24).

Now we have r0 <∞ and we also have

L = lim
r→r−0

f(r) = 0.

If it were L > 0, then the isoperimetric set would have a “vertical part”. We would get a

contradiction by the argument at point (3) at the end of Section 2.5.1.

We claim that

lim
r→r−0

f ′(r) = −∞.

For M > 0 and 0 < s < r0, consider the set

Ks = {s ≤ r < r0 ∶ f
′
(r) ≥ −M}.

By contradiction assume that there exists M > 0 such that Ks ≠ ∅ for all 0 < s < r0. If

r̄ ∈ Ks, we have as above f ′′(r̄) ≥ 1
2(k − 1)s2α/f(s) > 0. We deduce that there exists s < r0

such that 0 ≥ f ′(r) ≥ −M for all r ∈ [s, r0). From (2.5.15), we deduce that there exists a

constant C > 0 such that

f ′′(r) ≥
C

f(r)
.
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Multiplying by f ′ ≤ 0 and integrating the resulting inequality we find

f ′(r)2
≤ 2C log ∣f(r)∣ +C0,

for some constant C0 ∈ R. This is a contradiction because lim
r→r−0

log ∣f(r)∣ = −∞.

To prove that f is C1 at 0, it is sufficient to use de l’Hopital Theorem. Since f is smooth

away from 0 and continuous at 0,

f ′(0) = lim
r→0+

f(r) − f(0)

r
= lim
r→0+

f ′(r),

Moreover, by Section 2.5.2, we have D = 0 in (2.5.20). In this case, by (2.5.19) we can

compute the limit

lim
r→0+

f ′(r)

rα+1
= lim
r→0+

−
Chkα
h

+ r−h∫
r

0
sα+h−1k − 1

f

√
1 − z2 ds = −

Chkα
h

.

In particular,

f ′(0) = lim
r→0+

f ′(r) = lim
r→0+

f ′(r)

rα+1
rα+1

= 0.

In the same way

f ′′(0) = lim
r→0+

f ′(r) − f ′(0)

r
= lim
r→0+

f ′′(r),

hence f ∈ C2([0, r0)). This concludes the proof.

Remark 2.5.4. If α = 0 we are in the euclidean case and the unique minimizers are balls. If

α > 0 we can compute f ′′(0) as follows

f ′′(0) = lim
r→0+

f ′(r) − f ′(0)

r
= lim
r→0+

f ′(r)

r
= lim
r→0+

f ′(r)

rα+1
rα = 0.

We deduce that any isoperimetric set E ⊂ Rn has a C2 boundary. In fact, since f ′(0) =

f ′′(0) = 0, the even function

[−1,1] ∋ r ↦
f(r) if r ≥ 0

f(−r) if r < 0

is C2 smooth.

On the other hand, this regularity can not be improved, in general. For instance, in the

case α = 1, there holds f ′′′(0) = −2, hence the boundary of E is not a C3 surface at the

point (0, f(0)). This fact will be clarified later (see Proposition 3.3.3).

Isoperimetric sets are y-Schwarz symmetric

To conclude the proof of Theorem 2.1.4 we are left to show that for an isoperimetric set

E of the type (2.5.1), the function c of the centers is constant.
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Proposition 2.5.5. Let h, k ≥ 1 and n = h + k. Let E ⊂ Rn be a set of the form

E = {(x, y) ∈ Rn ∶ ∣y − c(∣x∣)∣ < f(∣x∣)}

for measurable functions c ∶ [0,∞) → Rk and f ∶ [0,∞) → [0,∞]. If E is an isoperimetric

set for the problem (2.4.13) then the function c is constant.

Proof. If E is isoperimetric, then also its y-Schwarz rearrangement E∗ = {(x, y) ∈ Rn ∶ ∣y∣ <
f(∣x∣)} is an isoperimetric set, see Theorems 2.3.1 and 2.3.2. Then, by Proposition 2.5.3,

we have f ∈ C∞(0, r0)∩C([0, r0]) with f(r0) = 0 and f ′ ≤ 0. In particular, f ∈ Liploc(0, r0).

We claim that c ∈ Liploc(0, r0).

Since E is x-Schwarz symmetric, for any 0 < r1 < r2 < r0 we have the inclusion

{y ∈ Rk ∶ ∣y − c(r2)∣ ≤ f(r2)} ⊂ {y ∈ Rk ∶ ∣y − c(r1)∣ ≤ f(r1)}.

Assume c(r2) ≠ c(r1) and let ϑ = c(r2) − c(r1)/∣c(r2) − c(r1)∣. Then we have

c(r2) + ϑf(r2) ∈ {y ∈ Rk ∶ ∣y − c(r1)∣ ≤ f(r1)},

and therefore

∣c(r2) − c(r1)∣ + f(r2) = ∣c(r2) + ϑf(r2) − c(r1)∣ ≤ f(r1).

This implies that c is locally Lipschitz on (0, r0).

Let F ⊂ R+ ×Rk be the generating set of E:

E = {(x, y) ∈ Rn ∶ (∣x∣, y) ∈ F}.

By the discussion above, the set E and thus also the set F have locally Lipschitz boundary

away from a negligible set. By the representation formula (2.2.13), we have

Pα(E) = Q(F ) = hωh∫
∂F

√

N2
r + r

2α∣Ny ∣
2 rh−1 dHk,

where (Nr,Ny) ∈ R1+k is the unit normal to ∂F in R+ × Rk, that is defined Hk almost

everywhere on the boundary. By the coarea formula (see [25]) we also have

Q(F ) = hωh∫
∞

0
rh−1

∫
∂Fr

√
N2
r + r

2α∣Ny ∣
2

√
1 −N2

r

dHk−1 dr,

where ∂Fr = ∂{y ∈ Rk ∶ (r, y) ∈ F} = {y ∈ Rk ∶ ∣y − c(r)∣ = f(r)}.

A defining equation for ∂F is ∣y − c(r)∣2 − f(r)2 = 0. From this equation, we find

Nr = −
⟨y − c, c′⟩ + ff ′

√
(⟨y − c, c′⟩ + ff ′)2 + ∣y − c∣2

,

Ny =
y − c

√
(⟨y − c, c′⟩ + ff ′)2 + ∣y − c∣2

,
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and thus, by translation and scaling in the inner integral,

Q(F ) = hωh∫
∞

0
rh−1

∫
∣y−c(r)∣=f(r)

¿
Á
ÁÀ{

⟨y − c(r), c′(r)⟩

f(r)
+ f ′(r)}

2
+ r2α dHk−1

(y)dr

= hωh∫
∞

0
rh−1f(r)k−1

∫
∣y∣=1

√

{⟨y, c′(r)⟩ + f ′(r)}
2
+ r2α dHk−1

(y)dr.

For any r > 0, the function Φ ∶ Rh → R+

Φ(z) = ∫
∣y∣=1

√

(⟨y, z⟩ + f ′(r))
2
+ r2α dHk−1

(y)

is strictly convex. This follows from the strict convexity of t↦
√
r2α + t2. The function Φ is

also radially symmetric because the integral is invariant under orthogonal transformations.

It follows that Φ attains the minimum at the point z = 0 and that this minimum point is

unique.

Denoting by F ∗ the generating set of E∗, we deduce that if c′ is not 0 a.e., then we have

the strict inequality Pα(E
∗) = Q(F ∗) < Q(F ) = Pα(E), and E is not isoperimetric. Hence,

c is constant and this concludes the proof.

2.6 Remarks about uniqueness and convexity

Let α ≥ 0, h, k ≥ 1 be integers and n = h + k. When α = 0 or α ≥ 0 and k = 1 the

isoperimetric set is unique and it is convex (see Remark 2.5.2). In this section we prove

that any isoperimetric set is convex in a neighborhood of the origin using its profile function,

which satisfies equation (2.5.15):

f ′′ =
αf ′

r
+ (f ′

2
+ r2α

)(
k − 1

f
− (h − 1)

f ′

r2α+1
) −Chkα

(f ′
2
+ r2α)

3
2

r2α
.

2.6.1. Convexity

By Proposition 2.5.3 we know that, if f is the profile function of an isoperimetric set

E ⊂ Rn,

f ′(r) = −
Chkα
h

rα+1
+ o(rα+1

) as r → 0.
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Inserting the latter asymptotics in (2.5.15), we obtain, as r → 0+

f ′′(r) =
α

r
( −

Chkα
h

rα+1
+ o(rα+1

)) + (
C2
hkα

h2
r2α+2

+ r2α
+ o(r2α+2

))

⋅ (
k − 1

f
−
h − 1

rα
⋅
−
Chkα
h rα+1 + o(rα+1)

rα+1
) −

Chkα
r2α

(
C2
hkα

h2
r2α+2

+ r2α
+ o(r2α+2

))

3
2

= −
Chkαα

h
rα +⋯ + r2α

(1 +
C2
hkα

h2
r2
+⋯) ⋅

1

rα
(
(k − 1)rα

f
+ (h − 1)

Chkα
h

+⋯)

−
Chkαr

3α

r2α
(1 +

C2
hkα

h2
r2
+⋯)

3
2

= −
Chkαα

h
rα +⋯ + rα

(h − 1)Chkα
h

+⋯ −Chkαr
α
+⋯

= (
−Chkαα +Chkαh −Chkα −Chkαh

h
)rα + o(rα) = −

Chkα(α + 1)

h
rα + o(rα).

Therefore we deduce that in a neighborhood of 0, the profile function f is concave, since

the second order derivative has negative sign.

Remark 2.6.1. According to the behavior of the solution in the case k = 1, we expect that

the profile function of an isoperimetric set is globally concave.

2.6.2. Uniqueness

The Cauchy Problem for the differential equation (2.5.15), with the initial conditions

f(0) = 1 and f ′(0) = 0 has a unique decreasing solution on some interval [0, δ], with δ > 0,

in the class of functions f ∈ C1([0, δ]) ∩C∞((0, δ]) such that

lim
r→0+

f ′(r)

rα+1
= −

Chkα
h

.

This can be proved using the Banach fixed point Theorem with the norm

∥f∥ = max
r∈[0,δ]

∣f(r)∣ + max
r∈[0,δ]

∣f ′(r)∣

rα+1
,

as shown in the following proposition.

Proposition 2.6.2. Let C > 0. There exist δ > 0 and f ∶ [0, δ] → R that solve the Cauchy

problem
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ode (2.5.15) in (0, δ)

f(0) = 1

f ′(0) = 0.

(CP)

Moreover, the solution is unique.
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To prove Proposition 2.6.2 we need to use another equivalent formulation of equation

(2.5.15):

− f ′′ +
αf ′

ρ
+ (f ′

2
+ ρ2α

)(
k − 1

f
− (h − 1)

f ′

ρ2α+1
) −Chkα

(f ′2 + ρ2α)
3
2

ρ2α
= 0

⇐⇒ −f ′′ +
αf ′

ρ
− (h − 1)

f ′

ρ
+ ρ2αk − 1

f

+ f ′2 (
k − 1

f
− (h − 1)

f ′

ρ2α+1
) −Chkα

(f ′2 + ρ2α)
3
2

ρ2α
= 0 ⇐⇒

(ρh−1−αf ′)
′
= ρh−1−α ⎛

⎝
ρ2αk − 1

f
+ f ′2 (

k − 1

f
− (h − 1)

f ′

ρ2α+1
) −Chkα

(f ′2 + ρ2α)
3
2

ρ2α

⎞

⎠

Integrating the differential equation on the interval with end points 0 and ρ ∈ (0, ρ0] we get

f ′(ρ) =
1

ρh−1−α ∫

ρ

0
th−1+αk − 1

f
+ th−1−αf ′2(

k − 1

f
− (h − 1)

f ′

t2α+1
)−Chkαt

h−1−3α
(f ′2 + t2α)

3
2dt.

(2.6.1)

On the other hand

f(ρ) = f(0) + ∫
ρ

0
f ′ dt = 1 − ∫

ρ

0
∣f ′∣ dt. (2.6.2)

Proof. To prove Proposition 2.6.2 we use Banach fixed point Theorem. Let δ > 0. The

space of functions C([0, δ]) ×C([0, δ]) endowed with the sup-norm

∣∣(f, g)∣∣ = ∥f∥∞ + ∥
g

ρα+1
∥
∞

=∶ ∥f∥∞ + ∥g∥∗

is a complete metric space. The subset X of C([0, δ])2

X ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f, g) ∈ (C([0, δ]))2
∶

(H1) f(0) = 1

(H2) ∃ lim
ρ→0+

g(ρ)

ρα+1
= −

Chkα
h

(H3) f(ρ) ≥
1

2
for ρ ∈ [0, δ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6.3)

is closed under uniform convergence: clearly, conditions (H1) and (H3) are preserved. To

prove that (H2) is also preserved under uniform convergence, let (gj)j∈N be a sequence of

continuous functions defined on [0, δ] which converges uniformly with respect to the norm

∥ ⋅ ∥∗ to a continuous function g. Therefore we can exchange the two limits as follows

lim
ρ→0+

lim
j→∞

gj(ρ)

ρα+1
= lim
j→∞

lim
ρ→0+

gj(ρ)

ρα+1
= lim
j→∞

(−
Chkα
h

) = −
Chkα
h

and prove that condition (H2) is stable under uniform convergence. Therefore the metric

space (X,d) is complete with respect to the metric d((f, g), (f̂ , ĝ)) = ∣∣(f − f̂ , g− ĝ)∣∣. Notice

that condition (H2) implies g(0) = 0.
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We define the mapping T ∶X →X, T (f, g)(ρ) =∶ (fT (ρ), gT (ρ))

fT (ρ) = 1 − ∫
ρ

0
∣g∣ dt,

gT (ρ) = ρα+1−h
∫

ρ

0
th−1+αk − 1

f
+ th−1−αg2

(
k − 1

f
− (h − 1)

g

t2α+1
)

−Chkαt
h−1−3α

(g2
+ t2α)

3
2dt

(2.6.4)

for ρ ∈ (0, ρ0], the maximal interval of definition of (f, g). If f is a solution to the Cauchy

Problem (CP), there exists δ > 0 such that (f, f ′) ∈ X. In fact, (H1) is obviously satisfied.

Moreover arguing as in Propostition 2.5.1 we deduce f ∈ C1([0, δ]). Hence, (H3) is satisfied

for a suitable δ > 0. In conclusion, assumption (H2) follows as in Proposition 2.5.3. By

definition of the mapping T and equations (2.6.1) and (2.6.2), the couple (f, f ′) is therefore

a fixed point of the mapping T . On the other hand, if a couple of continuous function (f, g)

solves the fixed point equation T (f, g) = (f, g) then g = f ′, f is of class C2 and solves the

Cauchy Problem (CP). To show uniqueness of the solution we apply the Banach fixed point

Theorem. We shall see that, for a suitable choice of δ, T (f, g) ∈X for all (f, g) ∈X.

(H1) ∶ fT (0) = 1.

(H3) ∶ Since
g(ρ)

ρα+1
→ −

Chkα
h

for ρ→ 0+, there exists δ > 0 ∶

∣
g(t)

tα+1
∣ ≤

Chkα
h

+ 1 for every t ∈ [0, δ]. Therefore

fT (ρ) = 1 − ∫
ρ

0
∣g(t)∣ dt ≥ 1 − (

Chkα
h

+ 1)∫
ρ

0
tα+1 dt = 1 − (

Chkα
h

+ 1)[
tα+2

α + 2
]

ρ

0

= 1 − (
Chkα
h

+ 1)
ρα+2

α + 2
≥ 1 − (

Chkα
h

+ 1)
δα+2

α + 2

which is greater than
1

2
if and only if δα+2

≤
1

2
(α + 2)

1
Chkα
h + 1

.

We are left to see that (H2) holds for gT . Let ρ ∈ [0, δ]. We are going to use (H2) for g,

(H3) for f and the de l’Hôpital rule. We have:

lim
ρ→0+

gT (ρ)

ρα+1

= lim
ρ→0+

1

ρh
∫

ρ

0
th−1+αk − 1

f
+ th−1−αg2

(
k − 1

f
− (h − 1)

g

t2α+1
) −Chkαt

h−1−3α
(g2

+ t2α)
3
2dt

H
= lim
ρ→0+

1

hρh−1
(ρh−1+αk − 1

f
+ ρh−1−αg2

(
k − 1

f
− (h − 1)

g

ρ2α+1
) −Chkαρ

h−1−3α
(g2

+ ρ2α
)

3
2 )

= lim
ρ→0+

1

h

⎡
⎢
⎢
⎢
⎢
⎣

k − 1

f
(ρα +

g2

ρα
) − (h − 1)

g3

ρ3α+1
−Chkα ((

g

ρα
)

2

+ 1)

3
2
⎤
⎥
⎥
⎥
⎥
⎦

= lim
ρ→0+

1

h

⎡
⎢
⎢
⎢
⎢
⎣

ρα
k − 1

f
((

g

ρα
)

2

+ 1) − (h − 1)
g3

ρ3α+1
−Chkα ((

g

ρα
)

2

+ 1)

3
2
⎤
⎥
⎥
⎥
⎥
⎦

= −
Chkα
h
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where we have used

lim
ρ→0+

g

ρα
= lim
ρ→0+

g

ρα+1
ρ = 0

lim
ρ→0+

g3

ρ3α+1
= lim
ρ→0+

g

ρα+1
(
g

ρα
)

2

= 0.

In conclusion, we may choose δ small enough to define T ∶X →X.

To apply Banach fixed point Theorem we are left to show that T is a contraction, namely

that there exists λ < 1 such that, given (f, g) and (f̂ , ĝ) in X,

∥fT − f̂T ∥∞ + ∥gT − ĝT ∥∗ ≤ λ(∥f − f̂∥∞ + ∥g − ĝ∥∗)

We have, given ρ ∈ [0, δ],

∣fT (ρ) − f̂T (ρ)∣ = ∣∫

ρ

0
∣ĝ(t)∣ − ∣g(t)∣ dt∣ ≤ ∫

ρ

0
∣ ∣ĝ(t)∣ − ∣g(t)∣ ∣ dt

≤ ∫

ρ

0
∣ĝ(t) − g(t)∣ dt = ∫

ρ

0
∣
ĝ(t) − g(t)

tα+1
∣ tα+1 dt ≤ ∥g − ĝ∥∗ [

tα+2

α + 2
]

ρ

0

≤
δα+2

α + 2
∥g − ĝ∥∗ ≤

δα+2

α + 2
(∥f − f̂∥∞ + ∥g − ĝ∥∗).

By arbitrariness of ρ ∈ [0, δ], we get ∣∣fT − f̂T ∣∣ ≤
δα+2

α + 2
∥(f − f̂ , g − ĝ)∥. Let’s now see that

the same holds for ∥g − ĝ∥∗ for a proper λ < 1. We have

∣
gT − ĝT

ρα+1
∣ =

1

ρh
∣∫

ρ

0
(k − 1) [

th−1+α

f
−
th−1+α

f̂
+
g2th−1−α

f
−
ĝ2th−1−α

f̂
] dt

+∫

ρ

0
(h − 1) [

ĝ3 − g3

t3α+2−h
]dt +Chkα∫

ρ

0

(ĝ2 + t2α)
3
2 − (g2 + t2α)

3
2

t3α+1−h
dt

RRRRRRRRRRR

≤
(k − 1)

ρh
∫

ρ

0

∣th−1+α(f̂ − f)∣ + ∣th−1−α(g2f̂ − ĝ2f)∣

ff̂
dt

+
(h − 1)

ρh
∫

ρ

0
∣
ĝ3 − g3

t3α+2−h
∣dt +

Chkα
ρh

∫

ρ

0

∣(ĝ2 + t2α)
3
2 − (g2 + t2α)

3
2 ∣

t3α+1−h
dt

=∶A +B +C,

where A and B can be estimated as follows:

A =
(k − 1)

ρh
∫

ρ

0

∣th−1+α(f̂ − f)∣ + ∣th−1−α(g2f̂ − ĝ2f)∣

ff̂
dt

≤
4(k − 1)

ρh
∫

ρ

0
th−1+α ∣f̂ − f ∣ + th−1−α ∣g2f̂ − f̂ ĝ2

+ f̂ ĝ2
− ĝ2f ∣dt

≤
4(k − 1)

ρh
{[

th+α

h + α
]

ρ

0

∥f − f̂∥∞ + ∫

ρ

0
th−1−α [∣f̂ ∣ ∣ĝ2

− g2
∣ + ∣ĝ2

∣ ∣f̂ − f ∣]dt}

≤
4(k − 1)

h + α
ρα∥f − f̂∥∞ +

4(k − 1)

ρh
∥f̂∥∞ ∥

g + ĝ

ρα+1
∥
∞

∥
g − ĝ

ρα+1
∥
∞
∫

ρ

0
th−1−α+2α+2dt
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+
4(k − 1)

ρh

XXXXXXXXXXX

(
ĝ2

ρα+1
)

2XXXXXXXXXXX∞

∥f − f̂∥∞∫
ρ

0
th+α+1dt

≤4(k − 1)

⎧⎪⎪
⎨
⎪⎪⎩

δα∥f − f̂∥∞
h + α

+
[∥f̂∥∞ ∥g + ĝ∥∗ ∥g − ĝ∥∗ ρα+2 + ∥ĝ∥∗

2
∥f − f̂∥∞ρ

α+2

h + α + 2

⎫⎪⎪
⎬
⎪⎪⎭

≤
4(k − 1)δα

h + α
∥f − f̂∥∞ +

[∥f̂∥∞ ∥g + ĝ∥∗ δα+2

h + α + 2
∥g − ĝ∥∗ +

∥ĝ∥∗
2
δα+2

h + α + 2
∥f − f̂∥∞,

and

B =
h − 1

ρh
∫

ρ

0

∣ĝ − g∣ ∣ĝ2 + ĝg + g2∣

t3α+2−h
dt =

h − 1

ρh
∫

ρ

0
th+1 ∣ĝ − g∣

tα+1

∣ĝ2 + ĝg + g2∣

t2α+2
dt

≤
h − 1

ρh
∥ĝ2

+ ĝg + g2
∥
∗
∥ĝ − g∥∗ [

th+2

h + 2
]

ρ

0

≤
h − 1

h + 2
∥ĝ2

+ ĝg + g2
∥
∗δh+2

∥ĝ − g∥∗.

Therefore we can choose δ sufficiently small to have ∣gT (x)− ĝT (x)∣ ≤ ∥(f − f̂ , g − ĝ)∥ which

leads to the conclusion that T is a contraction.

We deduce that there exists a unique fixed point for the equation T (f, g) = (f, g),

which corresponds to a unique solution of the Cauchy Problem (CP). Moreover, we deduce

that (CP) has a unique maximal solution f satisfying the initial conditions f(0) = 1 and

f ′(0) = 0.

Remark 2.6.3. From Theorem 2.4.3 and Proposition 2.5.3, there exists a value of the con-

stant Chkα > 0 such that the maximal decreasing solution of the Cauchy Problem (CP) has

a maximal interval [0, r0] such that f(r0) = 0. We expect that there exists only one C, such

that the unique soultion to (CP) is the profile function of an isoperimetric set, namely we

expect that for only one C > 0 the solution closes at r0. If a characterization of constant

mean curvature surfaces in this context were available, we could probably use it to deduce

this uniqueness property, as it is done in the case of the Heisenberg group (see page 119 in

[96], using [117]).
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CHAPTER 3

Quantitative Isoperimetric Inequalities via

Subcalibrations

A classical tool to prove minimality of the perimeter measure of minimal surfaces in Rn

is the technique of calibrations. For instance, the original proof of the minimality of the

Simons cone S ⊂ R8 by Bombieri, De Giorgi and Giusti [18] is based on finding a suitable

calibration, i.e., a divergence free vector field with norm less then or equal to 1, which extends

the unit normal to the surface S to the whole Rn. The “model computation” that proves

minimality through calibrations is the following. If g is a calibration for the boundary of a

set E ⊂ Rn we formally apply the divergence theorem and use Cauchy-Schwartz inequality:

for any competitor F ⊂ Rn such that E △ F ⊂⊂ BR

0 = ∫
E∖F

divg dx = ∫
(∂E∖F )∩BR

⟨g,NE
⟩dHn−1

− ∫
(∂F∩E)∩BR

⟨g,NF
⟩dHn−1

=H
n−1

(∂E ∖ F ) − ∫
(∂F∩E)∩BR

⟨g,NF
⟩dHn−1

≥H
n−1

(∂E ∖ F ) −H
n−1

(∂F ∩E),

(Cal)

where NE (resp. NF ) denotes the outer unit normal to E (resp. F). Equivalently, integrat-

ing on F ∖E, 0 ≤Hn−1(∂F ∖E) −Hn−1(∂E ∩ F ), hence

H
n−1

(∂E) ≤H
n−1

(∂F ).

In [42] and [43], the authors notice that to perform such a computation it is enough to

consider a vector field g whose divergence has a sign inside E and outside E, according

to the inequalities in the model computation above (see (Cal)). Namely, it is enough to

consider g ∈ C1(Rn,Rn)

• g(x) = NE(x) is the outer unit normal to ∂E for every x ∈ ∂E;

• divg(x) ≤ 0 for x ∈ E, divg(x) ≥ 0 for x ∈ Rn ∖E;

81
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• ∣g∣ ≤ 1 in Rn.

Such a vector field is called a sub-calibration (also “quantitative calibration”) for E. As De

Philippis and Maggi show in [42], sub-calibrations also provide estimates for the difference

Hn−1(∂F ) −Hn(∂E) in terms of the Lebesgue measure of the symmetric difference E△F ,

also known as quantitative estimates.

More generally, given a bounded set E whose boundary has constant mean curvature

H, we can look for a a vector field g ∈ C1 satisfying divg =H, also called calibration for E.

If such a calibration exists for E ⊂ Rn, the computation (Cal) can be reformulated to prove

that the set E is isoperimetric.

Ritoré in [116] uses this approach to prove that the Pansu ball

Eisop = {(z, t) ∈ Hn
= Cn ×R ∶ ∣t∣ < arccos ∣z∣ + ∣z∣

√
1 − ∣z∣2, ∣z∣ < 1}

is isoperimetric in the class of sets E ⊂ Hn of finite H-perimeter, such that

{(z,0) ∈ Hn
∶ ∣z∣ < 1} ⊂ E ⊂ {(z, t) ∈ Hn

∶ ∣z∣ < 1}.

In this chapter we show how to refine the argument of Ritoré via a sub-calibration to obtain

quantitative isoperimetric inequalities in Hn (see Theorem 3.2.1). Moreover we show how

to use this technique to prove quantitative inequalities in Rn and in Grushin spaces (see

Sections 3.4, 3.3).

3.1 Isoperimetric deficit and asymmetry

Given a Lebesgue measurable set E ⊂ Rn, we denote by P (E) its euclidean perimeter.

The standard isoperimetric deficit of E is defined as the quantity

D(E) =
P (E) − P (BE(0, r(E)))

P (BE(0, r(E)))
(3.1.1)

where r(E) = (Ln(E)/ωn)
1/n satisfies Ln(BE(0, r(E))) = ωnr(E)n = Ln(E). The quantity

D(E) describes the gap between the perimeter of E and the perimeter of an isoperimetric

set with the same volume. The Fraenkel asymmetry measures how far a set is from being

isoperimetric through its volume: given E ⊂ Rn, the latter is defined as

A(E) = min
x∈Rn

Ln(E △BE(x, r(E)))

Ln(E)
. (3.1.2)

A quantitative isoperimetric inequality is an estimate of the Fraenkel asymmetry in terms

of the isoperimetric deficit, see for instance [62], [73], [74], [63], [35], [36], and the review in

[64].
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In [73, Theorem 2], Hall proves a quantitative isoperimetric inequality for axially sym-

metric sets: for any set E ⊂ Rn which has an axis of symmetry and such that all the

non-empty cross sections of E perpendicular to this axis are (n − 1)-dimensional balls,

D(E) ≥ C(n)A(E)
2 (3.1.3)

where C = C(n) > 0 is a dimensional constant. The exponent 2 is sharp (it cannot be

improved). In [63], the sharp quantitative isoperimetric inequality for all sets of finite

perimeter is proved, i.e., (3.1.3) holds true for any Borel set E ⊂ Rn with finite Lebesgue

measure. We refer to Section 4.2 for a review of the proof given in [63] of Hall’s inequality.

Remark 3.1.1. For any measurable set E ⊂ Rn, we have

A(E) ≤
Ln(E △B(0, r(E)))

Ln(E)
≤
Ln(E) +Ln(BE(0, r(E)))

Ln(E)
= 2.

Hence, to prove (3.1.3) it is possible to assume without loss of generality that D(E) ≤ δ(n)

for some dimensional constant δ = δ(n) > 0. In fact, if D(E) ≥ δ, we have

A(E) ≤ 2 =
2
√
δ

√
δ ≤ C(n)

√
D(E)

and (3.1.3) holds true for C ≥ 2/
√
δ.

3.1.1. Isoperimetric deficit and asymmetry in Hn

As the sharp isoperimetric inequality is not established in full generality (see Subsection

1.4.1), our techniques will give results in a class of sets satisfying certain assumptions.

We introduce the H-isoperimetric deficit, and the H-asymmetry of a Lebesgue measur-

able set E ⊂ Hn with respect to the Pansu ball Eisop = {(z, t) ∈ Hn ∶ ∣t∣ < ϕ(∣z∣), ∣z∣ < 1},

where

ϕ(r) = arccos r + r
√

1 − r2. (3.1.4)

Given E ⊂ Hn, we set

B(E) = δλ(E)(Eisop), λ(E) = (
L2n+1(E)

L2n+1(Eisop)
)

1
Q

the dilation of the Pansu ball such that L2n+1(B(E)) = L2n+1(E).

Definition 3.1.2 (H-isoperimetric deficit and asymmetry). We call H-isoperimetric deficit

of E with respect to the Pansu ball, the quantity

DH(E) =
PH(E) − PH(B(E))

PH(B(E))
=

PH(E)

PH(Eisop)
(
L2n+1(Eisop)

L2n+1(E)
)

Q−1
Q

− 1. (3.1.5)

We also define the H-asymmetry with respect to the Pansu ball, as

AH(E) = min
p∈Hn

L2n+1(E △ τp(B(E)))

L2n+1(E)
. (3.1.6)
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By the homogeneity properties of PH and L2n+1 with respect to the dilations δλ(z, t) =

(λz, λ2t) (see Proposition 1.1.14 and Proposition 1.2.9), both the asymmetry and the isoperi-

metric deficit are scale invariant, namely

DH(δλ(E)) =
PH(δλ(E)) − PH(B(δλ(E))

PH(B(δλ(E))
=
PH(δλ(E)) − PH(δλ(B(E))

PH(δλ(B(E))
=DH(E)

AH(δλ(E)) = min
p∈Hn

L2n+1(δλ(E)△B(δλ(E)))

L2n+1(δλ(E))
= min
p∈Hn

L2n+1(δλ(E △B(E)))

L2n+1(δλ(E))
= AH(E).

(3.1.7)

This allows us to consider only sets E ⊂ Hn with L2n+1(E) = L2n+1(Eisop), so that

B(E) = Eisop.

The result that we would like to prove is the existence of a constant C = C(n) such that

AH(E)
2
≤ C(n)DH(E) for all sets E ⊂ Hn (3.1.8)

satisfying appropriate conditions. In what follows we show some properties of deficit and

asymmetry that are listed in view of showing optimality of the exponent 2 in (3.1.8), in

Example 3.1.8.

Figure 3.1: Left translations of the Pansu ball, τp(Eisop). In orange p = 0, in red p = (0,0,4),

in blue p = (1,0,0), in light blue p = (0,1,0).

Remark 3.1.3. In this remark we collect some facts that help us in understanding the

asymmetry in the sub-Riemannian setting.
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First of all, notice that for every p ∈ Hn, τp(Eisop) has the same perimeter of Eisop

since the H-perimeter is invariant under left-translation (see Proposition 1.2.9). Moreover,

since the Lebesgue measure is the Haar measure of every Carnot group, also the volume is

preserved under left-translation.

On the other hand, a left translation of Eisop, τp(Eisop) is a euclidean translation of it

if and only if p = (0,0, t) for some t ∈ R: roughly speaking the shape of isoperimetric sets

changes while left-translating them (see Figure 3.1). Namely, if p = (x, y, t) = (z, t) ∈ Hn

τp(Eisop) = {(z′, t′) ∈ Hn
∶ ∣t′ − t − 2(xy′ − x′y)∣ < ϕ(∣z′ − z∣),},

hence, if p = (0,0, t) τp(Eisop) = Eisop + p, otherwise τp(Eisop) is not obtained through

euclidean translations or rotations of Eisop. Nonetheless, the “shape” of isoperimetric sets

is preserved under a certain type of translations, as we show in the next proposition.

We say that a map T ∶ Hn → Hn is measure preserving if L2n+1(T (E)) = L2n+1(E) for

any measurable set E ⊂ Hn.

Proposition 3.1.4. Let p = (z, t) ∈ Cn × R = Hn, q = (ζ, τ) ∈ Hn be such that ∣z∣ = ∣ζ ∣

and τ = −t. Then there exists a measure preserving automorphism T ∶ Hn → Hn such that

τq(Eisop) = T (τp(Eisop)).

Figure 3.2: τp(Eisop) for p = (1,0,3) and (−1,0,−3).

Proof. Since ∣z∣ = ∣ζ ∣, there exists a unitary transformation U ∈ U (n) such that U(z) = ζ.
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We recall that the unitary group in Cn, U (n), is defined as the set of complex n×n matrices

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11 u12 . . . u1n

u21 u22 . . . u2n

⋮ ⋱ ⋮

un1 un2 . . . unn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

uij ∈ C

such that UU † = U †U = In, In is the identity matrix and U † = (U)T is the conjugate

transposed of U . Notice that the maps

I ∶ Hn
→ Hn, I(ξ, η) = (ξ,−η)

W ∶ Hn
→ Hn, W (ξ, η) = (U(ξ), η)

(ξ, η) ∈ Hn

are automorphisms of Hn, i.e., I((ξ, η)∗(ξ′, η′)) = I(ξ, η)∗I(ξ′, η′) and W ((ξ, η)∗(ξ′, η′)) =

W (ξ, η)∗W (ξ′, η′) for every (ξ, η), (ξ′, η′) ∈ Hn. Then the map T = I○W is an automorphism

of Hn itself. Moreover,

T ∶ Hn
→ Hn, T (ξ, η) = (U(ξ),−η), (ξ, η) ∈ Hn,

hence it is measure preserving, (ζ, τ) = T (z, t) and for every (ξ, η) ∈ Hn

T (τp(ξ, η)) = T ((z, t) ∗ (ξ, η)) = T (z, t) ∗ T (ξ, η) = (ζ, τ) ∗ T (ξ, η) = τq(T (ξ, η)). (3.1.9)

Notice also that, by symmetry properties of Eisop, (z0, t0) ∈ Eisop if and only if T (z0, t0) ∈

Eisop, hence T (Eisop) = Eisop. We conclude from (3.1.9) that T (τp(Eisop)) = τq(Eisop).

Corollary 3.1.5. Let p = (z, t), q = (ζ, τ) ∈ Hn be such that ∣z∣ = ∣ζ ∣, ∣t∣ = ∣τ ∣. Then there

exists a measure preserving automorphism T ∶ Hn → Hn such that

τq(Eisop) = T (τp(Eisop)) (3.1.10)

Proof. If t = −τ , T is the one given by Proposition 3.1.4. If t = τ , recalling that there exists

U ∈ U(n) such that ζ = U(z), we compose the transformation in Proposition 3.1.4 with

W ∶ Hn → Hn, W (ξ, η) = (U(ξ), η).

We recall Definition 2.1.1 in the case of Hn. We say that a set E ⊂ Hn = Cnz ×Rt is z-

spherically symmetric if there exists a set F ⊂ R+×R such that E = {(z, t) ∈ Hn ∶ (∣z∣, t) ∈ F}.

Moreover, we say that E is t-symmetric if (z, t) ∈ E ⇐⇒ (z,−t) ∈ E.

In the case of a z-Schwartz and t-symmetric set E, the transformation involved in

Corollary 3.1.5 is such that T (E) = E. Hence the following holds.
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Lemma 3.1.6. If p0 = (z0, t0) ∈ Hn is such that

AH(E) =
L2n+1(E △ τp0(B(E))

L2n+1(E)
,

then we also have

AH(E) =
L2n+1(E △ τp(B(E))

L2n+1(E)
(3.1.11)

for every p = (z, t) ∈ Hn such that ∣z∣ = ∣z0∣ and ∣t∣ = ∣t0∣.

Proof. Since the asymmetry is scale invariant, it is enough to prove it for sets such that

L2n+1(E) = L2n+1(Eisop). Given p ∈ Hn as above,

L
2n+1

(E △ τp(Eisop)) = 2L2n+1
(E ∖ τp(Eisop)) = 2(L2n+1

(E) −L
2n+1

(τp(Eisop) ∩E)).

Let T ∶ Hn → Hn be as in (3.1.10), such that T (τp(Eisop)) = τp0(E). Recall that T is volume

preserving and notice that, by symmetry of E, T (E) = E. Then

L
2n+1

(τp(Eisop) ∩E) = L
2n+1

(T (τp(Eisop) ∩E)) = L
2n+1

(τp0(Eisop) ∩E),

hence L2n+1(E ∖ τp(Eisop)) = L
2n+1(E ∖ τp0(Eisop)). We conclude

L2n+1(E △ τp(Eisop))

L2n+1(E)
=
L2n+1(E △ τp0(Eisop))

L2n+1(E)
= AH(E).

In the next proposition we prove a property of symmetric sets using Lemma 3.1.6 and

following Lemma 2.2 in [63]: the asymmetry with respect to the Pansu ball is equivalent to

the symmetric difference with the Pansu ball itself.

Proposition 3.1.7. Let E ⊂ Hn = Cnz ×Rt be a z-spherically symmetric and t-symmetric,

set. Then
L2n+1(E △B(E))

L2n+1(E)
≥ AH(E) ≥

1

22n+1

L2n+1(E △B(E))

L2n+1(E)
.

Proof. The first inequality comes from the definition of asymmetry.

To prove the other one, we let Q+ = {(z, t) ∈ Hn ∶ xi ≥ 0, yi ≥ 0, t ≥ 0, for i = 1, . . . , n} and

Q− = {(z, t) ∈ Hn ∶ xi ≤ 0, yi ≤ 0, t ≤ 0, for i = 1, . . . , n}. By definition and by Lemma 3.1.6,

there exist p0 = (x0,0, . . . ,0, t0) ∈ Q
− such that

AH(E) =
L2n+1(E △ τp0(B(E)))

L2n+1(E)
.
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Moreover (E ∖B(E)) ∩Q+ ⊂ (E ∖ τp0(B(E))) ∩Q+. Hence, we have

L2n+1(E △B(E))

L2n+1(E)
=

2L2n+1(E ∖B(E))

L2n+1(E)
=

2 ⋅ 22n+1L2n+1((E ∖B(E)) ∩Q+)

L2n+1(E)

≤ 22n+2L
2n+1((E ∖ τp0(B(E))) ∩Q+)

L2n+1(E)
≤ 22n+2L

2n+1(E ∖ τp0(B(E)))

L2n+1(E)

= 22n+1L
2n+1(E △ τp0(B(E)))

L2n+1(E)
= 22n+1AH(E).

The next example is concerned with the optimality of the exponent 2 in (3.1.8). The

following construction is based on the one introduced by Maggi in [88, page 382] for the

euclidean quantitative isoperimetric inequality.

Example 3.1.8 (Sharpness of the exponent 2). Let 0 < γ ≤ 1/3. For any ε ≥ 0 we consider

the set Eε = {(z, t) ∈ Hn ∶ ∣t∣ < fε(∣z∣), ∣z∣ < 1}, with

fε(r) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ε(1 − ( r
εγ

)
2
) + ϕ(εγ) if 0 ≤ r < εγ

ϕ(r) if εγ ≤ r < 1.

The function ϕ is the profile function of the Pansu set, defined in (3.1.4). We show that,

given any 0 < σ < 2, it is possible to choose the parameter γ ∈ (0,1/3] in such a way that

lim
ε→0

AH(Eε)
2−σ

DH(Eε)
=∞. (3.1.12)

This implies that the exponent 2 in (3.1.8) is optimal.

Notice that for every ε > 0, Eε is a z- and t-symmetric set, hence Propositions 2.2.3 and

2.2.4 apply to calculate the H-perimeter of Eε. The euclidean unit normal to the generating

set of Eε is N(r, t) = (−f ′ε(r),1), where

f ′ε(r) =

⎧⎪⎪
⎨
⎪⎪⎩

−2ε1−2γr if 0 ≤ r < εγ

ϕ′(r) if εγ ≤ r < 1.

Hence, using a Taylor expansion as ε→ 0, we obtain

PH(Eε) = 4nω2n∫

1

0

√
f ′ε(r)

2 + r2 r2n−1 dr

= 4nω2n[∫

εγ

0

√
4ε2−4γr2 + r2 r2n−1 dr + ∫

1

εγ

√
ϕ′(r)2 + r2 r2n−1 dr]

= PH(Eisop) + 4nω2n[
√

4ε2−4γ + 1∫
εγ

0
r2n dr − ∫

εγ

0

√
ϕ′(r)2 + r2 r2n−1 dr]

≤ PH(Eisop) + 4nω2n[(1 + 2ε2−4γ
+ o(ε2−4γ

))
εγ(2n+1)

2n + 1
−
εγ(2n+1)

2n + 1
]

= PH(Eisop) +
8nω2n

2n + 1
ε2−4γ+γ(2n+1)

+ o(ε2−4γ+γ(2n+1)
)

,
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and as ε→ 0+, we therefore have

DH(Eε) ≤ c1ε
2−3γ+2nγ

+ o(ε2−3γ+2nγ
), (3.1.13)

with c1 = c1(n) > 0. In the following ci = ci(n) > 0.

Now, the function ϕ has the following Taylor expansion

ϕ(%) =
π

2
− 4%3

+ o(%3
), as %→ 0+.

We deduce the behavior of the Lebesgue measure of Eε as ε→ 0+ as follows:

L
2n+1

(Eε) = 4nω2n∫

1

0
fε(r)r

2n−1 dr

= 4nω2n[∫

εγ

0
(ε(1 −

r2

ε2γ
) + ϕ(εγ))r2n−1 dr + ∫

1

εγ
ϕ(r)r2n−1 dr]

= L
2n+1

(Eisop) + 4nω2n∫

εγ

0
(ε + ϕ(εγ) − r2ε1−2γ

− ϕ(r))r2n−1 dr

= L
2n+1

(Eisop) + 4nω2n[(ε +
π

2
− 4ε3γ

+ o(ε3γ
))
ε2nγ

2n
− ε1−2γ ε

γ(2n+2)

2n + 2

−
π

2

ε2nγ

2n
+ 4

εγ(2n+3)

2n + 3
+ o(εγ(2n+3)

)]

= L
2n+1

(Eisop) + 4nω2n[ε
2nγ+1

(
1

2n
−

1

2n + 2
) + ε(2n+3)γ

(
4

2n + 3
−

2

n
) +o(εγ(2n+3)

)].

Since γ ≤ 1/3, then ε2nγ+1 = o(ε(2n+3)γ), as ε→ 0, hence

L
2n+1

(Eε) = L
2n+1

(Eisop) + 16nω2n(
1

2n + 3
−

1

2n
)εγ(2n+3)

+ o(εγ(2n+3)
), (3.1.14)

which implies, by Proposition 3.1.7,

AH(Eε) ≥
1

22n+1

L2n+1(Eε△B(Eε))

L2n+1(Eε)
≥ c2ε

γ(2n+3)
+ o(εγ(2n+3)

), as ε→ 0. (3.1.15)

Then, by (3.1.13) and (3.1.15), we get for ε > 0 small enough

AH(Eε)
2−σ

DH(Eε)
≥ c3(n)

ε(2−σ)γ(2n+3)

ε2+(2n−3)γ
.

In conclusion, the limit in (3.1.12) follows by choosing

γ <
2

(2 − σ)(2n + 3) − (2n − 3)
.

3.2 Subcalibration in Hn

In this section we refine the calibration argument used by Ritoré in [116] via a sub-

calibration to prove a quantitative isoperimetric inequality for competitors of Eisop in half-

cylinders.
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For any 0 ≤ ε < 1 we define the half-cylinder

Cε = {(z, t) ∈ Hn
∶ ∣z∣ < 1 and t > tε}, (3.2.1)

where tε = ϕ(1− ε) with ϕ(r) = arccos(r)+ r
√

1 − r2. The proof provides an inequality with

a variable structure, according to whether ε = 0 or ε > 0. The main result of this chapter is

the following

Theorem 3.2.1. Let F ⊂ Hn, n ≥ 1, be any measurable set with L2n+1(F ) = L2n+1(Eisop).

i) If F∆Eisop ⊂⊂ C0 then

PH(F ) − PH(Eisop) ≥
n

240ω2
2n

L
2n+1

(F∆Eisop)
3. (3.2.2)

ii) If F∆Eisop ⊂⊂ Cε for 0 < ε < 1, then

PH(F ) − PH(Eisop) ≥
n
√
ε

16ω2n
L

2n+1
(F∆Eisop)

2. (3.2.3)

Above, ω2n denotes the Lebesgue measure of the Euclidean unit ball in R2n.

Clearly, since by definition of H-asymmetry L2n+1(F∆Eisop) ≥ AH(F ), Theorem 3.2.1

implies the quantitative isoperimetric inequalities

DH(F ) ≥
nPH(Eisop)

240ω2
2n

AH(F )
3 if F ⊂⊂ C0

DH(F ) ≥
nPH(Eisop)

√
ε

16ω2n
AH(F )

2 if F ⊂⊂ Cε.

In (3.2.2), the asymmetry index L2n+1(F∆Eisop) appears with the power 3. In (3.2.3), the

power is 2 but there is a constant that vanishes with ε.

The sub-calibration is constructed in the following way. The set Eisop∩Cε can be foliated

by a family of hypersurfaces with constant H-mean curvature that decreases from 1, the

H-curvature of ∂Eisop, to 0, the curvature of the surface {t = tε}. The velocity of the

decrease depends on the parameter ε. The horizontal unit normal to the leaves gives the

sub-calibration.

The H-mean curvature is defined in the following way. Let Σ ⊂ Hn be a hypersurface

that is locally given by the zero set of a function u ∈ C1 such that ∣∇Hu∣ ≠ 0 on Σ, where

∇Hu = (X1u, . . . ,Xnu,Y1u, . . . , Ynu) (3.2.4)

is the horizontal gradient of u. Then we define the H-mean curvature of Σ at the point

(z, t) ∈ Σ as

HΣ(z, t) =
1

2n
divH(

∇Hu(z, t)

∣∇Hu(z, t)∣
) (3.2.5)
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where for any given vector field W = ∑
n
i=1wiXi+ωiYi the H-divergence of W is (see Remark

1.2.1)

divHW =
n

∑
i=1

Xiwi + Yiωi.

The definition (3.2.5) depends on a choice of sign. We shall work with orientable embed-

ded hypersurfaces and so we can choose the positive sign, H(z, t) ≥ 0. Then, the boundary

of Eisop has constant H-mean curvature 1. For a set E = {(z, t) ∈ Hn ∶ u(z, t) > 0} the

horizontal normal νE is given on ∂E by the vector

νE =
∇Hu

∣∇Hu∣
.

The proof of Theorem 3.2.1 relies on the construction described in the following result.

Theorem 3.2.2. Let 0 ≤ ε < 1. There exists a continuous function u ∶ Cε → R with level

sets Σs = {(z, t) ∈ Cε ∶ u(z, t) = s}, s ∈ R, such that:

i) u ∈ C1(Cε∩Eisop)∩C
1(Cε∖Eisop) and ∇Hu/∣∇Hu∣ is continuously defined on Cε∖{z =

0};

ii) ⋃s>1 Σs = Cε ∩Eisop and ⋃s≤1 Σs = Cε ∖Eisop;

iii) Σs is a hypersurface of class C2 with constant H-mean curvature HΣs = 1/s for s > 1

and HΣs = 1 for s ≤ 1;

iv) For any point (z,ϕ(∣z∣) − t) ∈ Σs with s > 1 we have

1 −HΣs(z,ϕ(∣z∣) − t) ≥
1

20
t2 when ε = 0. (3.2.6)

and

1 −HΣs(z,ϕ(∣z∣) − t) ≥

√
ε

4
t when 0 < ε < 1, (3.2.7)

The estimates (3.2.6) and (3.2.7) are the basis of the two inequalities (3.2.2) and (3.2.3),

respectively.

3.2.1. Proof of Theorem 3.2.2

In Cε ∖ Eisop, the leaves Σs are vertical translations of the top part of the boundary

∂Eisop. In Cε ∩Eisop, the leaves Σs are constructed in the following way: the surface ∂Eisop

is first dilated by a factor larger than 1, and then it is translated downwards in such a way

that, after the two operations, the sphere Sε = {(z, t) ∈ ∂Eisop ∶ t = tε} with tε = ϕ(1 − ε)

remains fixed.
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The profile function of the set Eisop is the function ϕ ∶ [0,1]→ R

ϕ(r) = arccos(r) + r
√

1 − r2 0 ≤ r ≤ 1. (3.2.8)

Its first and second order derivatives are

ϕ′(r) =
−2r2

√
1 − r2

and ϕ′′(r) =
2r(r2 − 2)

(1 − r2)3/2
, 0 ≤ r < 1. (3.2.9)

Notice that ϕ′′′(0) = −4. We also need the function ψ ∶ [0,1)→ R

ψ(r) = 2ϕ(r) − rϕ′(r) = 2(
r

√
1 − r2

+ arccos(r)) . (3.2.10)

Its derivative is

ψ′(r) = ϕ′(r) − rϕ′′(r) =
2r2

(1 − r2)3/2
. (3.2.11)

We start the construction of the function u. On the set Cε ∖Eisop we let

u(z, t) = ϕ(∣z∣) − t + 1, (z, t) ∈ Cε ∖Eisop. (3.2.12)

Notice that u(z,ϕ(∣z∣)) = 1 for all ∣z∣ < 1 (see Figure 3.2.1 on the left).

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.5 1.0

0.5

1.0

1.5

Figure 3.3: The foliation above and below the Pansu ball.

We define the function u in the set

Dε = Cε ∩Eisop = {(z, t) ∈ Eisop ∶ ∣z∣ < 1 − ε, tε < t < ϕ(∣z∣)}.

as the restriction of a function defined on its closure (still denoted by u) satisfying

Sε ⊂ {(z, t) ∈Dε ∶ u(z, t) = s} for any s > 1. (3.2.13)

We use the short notation r = ∣z∣ and rε = 1 − ε.
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Figure 3.4: The foliation below the Pansu ball is constructed fixing the circle {(z, tε) ∈ Hn ∶

∣z∣ = rε} on every leaf.

We define the auxiliary function Fε ∶ Dε × (1,∞) → R in such a way that Fε(z, t, s) = 0

if and only if

t = s2ϕ(r/s) + tε − s
2ϕ(rε/s),

where, for any s > 1, the function of r ∈ [0, rε) on the right hand side describes the boundary

of a dilated Pansu ball after a left translation that overlaps the points {(z, s2ϕ(rε/s)), ∣z∣ =

rε} and Sε. For instance,

Fε(z, t, s) = s
2(ϕ(r/s) − ϕ(rε/s)) + tε − t.

We claim that for any point (z, t) ∈ Dε there exists a unique s > 1 such that Fε(z, t, s) = 0.

In this case, we can define the function u(z, t) ∶Dε → R letting

s = u(z, t) if and only if Fε(z, t, s) = 0. (3.2.14)

If this holds, of course (3.2.13) is satisfied, in fact

u(z, tε) = s ⇐⇒ Fε(z, tε, s) = 0 ⇐⇒ s2
(ϕ(r/s) − ϕ(rε/s)) + tε − t = 0.

We prove the claim. For any (z, t) ∈Dε we have

lim
s→1+

Fε(z, t, s) = ϕ(r) − t > 0. (3.2.15)

Moreover, with a second order Taylor expansion of ϕ based on (3.2.9) we see that

lim
s→∞

Fε(z, t, s) = lim
s→∞

(s2[ϕ(0) + o(
r2

s2
) − ϕ(0) + o(

r2
ε

s2
)]) + tε − t = tε − t < 0.

Since s ↦ Fε(z, t, s) is continuous, this proves the existence of a solution of Fε(z, t, s) = 0.

By (3.2.10), the derivative in s of Fε is

∂sFε(z, t, s) = s(ψ(r/s) − ψ(rε/s)), (3.2.16)
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and thus by (3.2.11) we deduce that ∂sFε(z, t, s) < 0. This proves the uniqueness.

We prove claim iii). Namely, we prove that for any point (z, t) ∈ Σs with s > 1 and z ≠ 0,

the H-mean curvature of Σs at (z, t) is

HΣs(z, t) = −
1

2n
divH(

∇Hu

∣∇Hu∣
) =

1

s
. (3.2.17)

We are using definition (3.2.4). The claim when s ≤ 1 is analogous because Σs is a vertical

translation of the top part of ∂Eisop.

By the implicit function theorem, the derivatives of u can be computed from the partial

derivatives of Fε. Using ∂xir = xi/r and ∂yir = yi/r, with i = 1, . . . , n and z = (x1+iy1, . . . , xn+

iyn), we find

∂xiFε(z, t, s) =
sxi
r
ϕ′(r/s) and ∂yiFε(z, t, s) =

syi
r
ϕ′(r/s). (3.2.18)

Letting s = u(z, t), thanks to (3.2.14), (3.2.16), (3.2.18), and (3.2.9) we obtain

∂xiu(z, t) = −
∂xiFε(z, t, s)

∂sFε(z, t, s)
=

2rxi

s
√
s2 − r2(ψ(r/s) − ψ(rε/s))

, (3.2.19)

∂yiu(z, t) = −
∂xiFε(z, t, s)

∂sFε(z, t, s)
=

2ryi

s
√
s2 − r2(ψ(r/s) − ψ(rε/s))

, (3.2.20)

∂tu(z, t) = −
∂tFε(z, t, s)

∂sFε(z, t, s)
=

1

s(ψ(r/s) − ψ(rε/s))
, (3.2.21)

and thus

∂xiu = 2xi
r

√
s2 − r2

∂tu and ∂yiu = 2yi
r

√
s2 − r2

∂tu. (3.2.22)

It is then immediate to compute

Xiu = ∂xiu + 2yi∂tu =
2rxi + 2yi

√
s2 − r2

s
√
s2 − r2(ψ(r/s) − ψ(rε/s))

,

Yiu = ∂yiu − 2xi∂tu =
2ryi − 2xi

√
s2 − r2

s
√
s2 − r2(ψ(r/s) − ψ(rε/s))

,

and the squared length of the horizontal gradient of u in Dε is

∣∇Hu∣
2
=

n

∑
i=1

(Xiu)
2
+ (Yiu)

2

=
n

∑
i=1

4r2(x2
i + y

2
i ) + 4(x2

i + y
2
i )(s

2 − r2)

s2(s2 − r2)(ψ(r/s) − ψ(rε/s))
2

=
4r2

(s2 − r2)(ψ(r/s) − ψ(rε/s))
2
.

Note that ∣∇Hu(z, t)∣ = 0 if and only if z = 0. So for any (z, t) ∈Dε with z ≠ 0 we have

ai(z, t) = −
Xiu

∣∇Hu∣
=
rxi + yi

√
s2 − r2

rs
=
xi
s
+ yi

√
s2 − r2

rs
(3.2.23)
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and

bi(z, t) = −
Yiu

∣∇Hu∣
=
ryi − xi

√
s2 − r2

rs
=
yi
s
− xi

√
s2 − r2

rs
. (3.2.24)

If (z, t) ∈ Eisop tends to (z̄, t̄) ∈ ∂Eisop with t̄ > 0 and z̄ ≠ 0, then s = u(z, t) converges to

1, and from (3.2.23) and (3.2.24) we see that

lim
(z,t)→(z̄,t̄)

∇Hu(z, t)

∣∇Hu(z, t)∣
= −(x̄ + ȳ

√
1 − ∣z̄∣2

∣z̄∣
, ȳ − x̄

√
1 − ∣z̄∣2

∣z̄∣
) =

∇Hu(z̄, t̄)

∣∇Hu(z̄, t̄)∣
,

where the right hand side is computed using the definition (3.2.12) of u. This ends the

proof of claim i).

Claim ii) is clear. We prove claim iii). The auxiliary function w(r, s) =
√
s2 − r2/rs

satisfies

∂xiw =
xi
r
∂rw + ∂xiu∂sw, ∂yiw =

yi
r
∂rw + ∂yiu∂sw, ∂sw =

r

s2
√
s2 − r2

. (3.2.25)

By (3.2.23), (3.2.24), (3.2.22), and (3.2.25) we obtain

Xiai + Yibi = ∂xiai + 2yi∂tai + ∂yibi − 2xi∂tbi

=
1

s
−
xi
s2
∂xiu + yi(

xi
r
∂rw + ∂xiu∂sw) + 2yi( −

xi
s2
∂tu + yi∂sw∂tu)

+
1

s
−
yi
s2
∂yiu − xi(

yi
r
∂rw + ∂yiu∂sw) − 2xi( −

yi
s2
∂tu − xi∂sw∂tu)

=
2

s
−
xi∂xiu + yi∂yiu

s2
+ 2(x2

i + y
2
i )∂sw∂tu

=
2

s
−
xi∂xiu + yi∂yiu

s2
+

2r(x2
i + y

2
i )∂tu

s2
√
s2 − r2

=
2

s
.

Summing over i = 1, . . . , n and dividing by 2n, we obtain (3.2.17).

We prove claim iv). We fix a point z with ∣z∣ < 1 − ε and for 0 ≤ t < ϕ(∣z∣) − tε we define

the function

fz(t) = u(z,ϕ(∣z∣) − t) = s =
1

HΣs

, (3.2.26)

where s ≥ 1 is uniquely determined by (z,ϕ(∣z∣)−t) ∈ Σs. The function t↦ fz(t) is increasing

and fz(0) = 1

By (3.2.21), the function fz solves the differential equation

f ′z(t) = −∂tu(z,ϕ(∣z∣) − t) =
1

fz(t)(ψ(rε/fz(t)) − ψ(r/fz(t)))

for all 0 < t < ϕ(∣z∣) − tε, and since, by (3.2.11), ψ is strictly increasing, fz solves the

differential inequality

f ′z(t) ≥
1

fz(t)(ψ(rε/fz(t)) − π)
.
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On the other hand, for any s > 1 we have

s(ψ(rε/s) − π) = s∫
rε/s

0
ψ′(r)dr

= s∫
rε/s

0

2r2

(1 − r2)3/2
dr

≤ rε∫
rε/s

0

2r

(1 − r2)3/2
dr

= 2rε((1 − (rε/s)
2
)
−1/2

− 1)

≤
2

√
s − rε

.

(3.2.27)

In the case ε = 0 we have rε = 1 and inequality (3.2.27) reads

s(ψ(1/s) − π) ≤
2

√
s − 1

.

Hence, the function fz satisfies the differential inequality

f ′z(t) ≥
1

2

√
fz(t) − 1, t > 0.

An integration with fz(0) = 1 gives

∫

t

0

f ′z(τ)√
fz(τ) − 1

dτ ≥ ∫
t

0

1

2
dτ ⇐⇒ [2

√
fz(τ) − 1]

t

0
≥
t

2
Ô⇒ fz(t) ≥ 1 + t2/16,

and thus by the relation (3.2.26) and by the bound t < π/2 we find

1 −HΣs(z,ϕ(∣z∣) − t) = 1 −
1

fz(t)
≥

t2

16 + t2
≥

1

20
t2.

This is claim (3.2.6).

When 0 < ε < 1, inequality (3.2.27) implies

s(ψ(rε/s) − π) ≤
2
√
ε
,

and thus f ′z(t) ≥
√
ε/2, that gives fz(t) ≥ 1 + t

√
ε/2. In this case, we find

1 −HΣs(z,ϕ(∣z∣) − t) = 1 −
1

fz(t)
≥

2
√
εt

4 + π
≥

√
ε

4
t.

This is claim (3.2.7). This finishes the proof of Theorem 3.2.2.

3.2.2. Proof of Theorem 3.2.1

In this section, we prove the quantitative isoperimetric estimates (3.2.2) and (3.2.3).
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Let u ∶ Cε → R, 0 ≤ ε < 1, be the function given by Theorem 3.2.2 and let Σs = {(z, t) ∈

Cε ∶ u(z, t) = s} be the leaves of the foliation, s ∈ R. On Cε ∖ {∣z∣ = 0} we define the vector

field X ∶ Cε ∖ {∣z∣ = 0}→ R2n by

X = −
∇Hu

∣∇Hu∣
.

Both u and X depend on ε. In particular, X satisfies the following properties:

i) ∣X ∣ = 1;

ii) for (z, t) ∈ ∂Eisop ∩ Cε we have X(z, t) = −νEisop
(z, t), the horizontal unit normal to

∂Eisop (see Section 1.2).

iii) For any point (z, t) ∈ Σs, s ∈ R, we have,

1

2n
divHX(z, t) =HΣs(z, t) ≤HΣ0 = 1. (3.2.28)

We start the proof. Let F ⊂ Hn be a set with finite H-perimeter such that L2n+1(F ) =

L2n+1(Eisop) and F∆Eisop ⊂⊂ Cε. By Theorem 2.5 in [56], we can without loss of generality

assume that ∂F is of class C∞. For δ > 0, let Eδisop = {(z, t) ∈ Eisop ∶ ∣z∣ > δ}. By (3.2.28) and

by the Gauss-Green formula (1.2.6) for the perimeter measure and the horizontal normal,

we have

L
2n+1

(Eδisop ∖ F ) = ∫
Eδisop∖F

1dzdt ≥ ∫
Eδisop∖F

divHX

2n
dzdt

=
1

2n
{∫

∂F∩Eδisop

⟨X,νF ⟩dµF − ∫
(∂Eδisop)∖F

⟨X,νEδisop
⟩dµEδisop

} .

Observe that µEδisop
= µEisop

{∣z∣ > δ} + µ{∣z∣>δ} Eisop and µ{∣z∣>δ}(Eisop) ≤ Cδ
2n−1. Letting

δ → 0+ and using the Cauchy-Schwarz inequality, we obtain

L
2n+1

(Eisop ∖ F ) ≥
1

2n
{∫

∂F∩Eisop

⟨X,νF ⟩dµF − ∫
(∂Eisop)∖F

⟨X,νEisop
⟩dµEisop

}

≥
1

2n
{µEisop

(Cε ∖ F ) − µF (Eisop)}

=
1

2n
{PH(Eisop,Cε ∖ F ) − PH(F,Eisop)}.

(3.2.29)

By a similar computation we also have

L
2n+1

(F ∖Eisop) = ∫
F∖Eisop

1dzdt = ∫
F∖Eisop

divHX

2n
dzdt (3.2.30)

=
1

2n
{∫

∂Eisop∩F
⟨X,νEisop

⟩dµEisop
− ∫

(∂F )∖Eisop

⟨X,νF ⟩dµF}

≤
1

2n
{µF (Cε ∖Eisop) − µEisop

(F )}

=
1

2n
{PH(F,Cε ∖Eisop) − PH(Eisop, F )}. (3.2.31)
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On the other hand,

∫
Eisop∖F

divHX

2n
dzdt = ∫

Eisop∖F
(1 + (

divHX

2n
− 1)) dzdt

= L
2n+1

(Eisop ∖ F ) − ∫
Eisop∖F

(1 −
divHX

2n
) dzdt

= L
2n+1

(Eisop ∖ F ) − G(Eisop ∖ F ),

where

G(Eisop ∖ F ) = ∫
Eisop∖F

(1 −
divHX

2n
) dzdt.

From (3.2.29) and (3.2.30), we obtain

1

2n
{PH(Eisop,Cε ∖ F ) − PH(F,Eisop)} ≤ ∫

Eisop∖F

divHX

2n
dzdt

= L
2n+1

(Eisop ∖ F ) − G(Eisop ∖ F )

= L
2n+1

(F ∖Eisop) − G(Eisop ∖ F )

≤
1

2n
{PH(F,Cε ∖Eisop) − PH(Eisop, F )} − G(Eisop ∖ F ),

that is equivalent to

PH(F ) − PH(Eisop) ≥ 2nG(Eisop ∖ F ). (3.2.32)

For any z with ∣z∣ < 1 − ε, we define the vertical sections Ezisop = {t ∈ R ∶ (z, t) ∈ Eisop}

and F z = {t ∈ R ∶ (z, t) ∈ F}. By Fubini-Tonelli theorem, we have

G(Eisop ∖ F ) = ∫
Eisop∖F

(1 −
divHX

2n
) dzdt

= ∫
{∣z∣<1}

∫
Ezisop∖F

z
(1 −

divHX(z, t)

2n
)dt dz.

The function t ↦ divHX(z, t) is increasing, and thus letting m(z) = L1(Ezisop ∖ F
z), by

monotonicity we obtain

G(Eisop ∖ F ) ≥ ∫
{∣z∣<1}

∫

ϕ(∣z∣)

ϕ(∣z∣)−m(z)
(1 −

divHX(z, t)

2n
)dt dz

= ∫
{∣z∣<1}

∫

m(z)

0
(1 −

1

fz(t)
)dt dz,

where fz(t) = u(z,ϕ(∣z∣) − t) is the function introduced in (3.2.26).

By (3.2.6), when ε = 0 the function fz satisfies the estimate 1 − 1/fz(t) ≥ t
2/20, and by
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Hölder inequality we find

G(Eisop ∖ F ) ≥
1

20
∫
{∣z∣<1}

∫

m(z)

0
t2dt dz

=
1

60
∫
{∣z∣<1}

m(z)3 dz

≥
1

60ω2
2n

(∫
{∣z∣<1}

m(z)dz)
3

=
1

480ω2
2n

L
2n+1

(Eisop∆F )
3.

(3.2.33)

From (3.2.33) and (3.2.32) we obtain (3.2.2).

By (3.2.7), when 0 < ε < 1 the function fz satisfies the estimate 1 − 1/fz(t) ≥
√
εt/4 and

we find

G(Eisop ∖ F ) ≥

√
ε

4
∫
{∣z∣<1}

∫

m(z)

0
t dt dz

=

√
ε

8
∫
{∣z∣<1}

m(z)2 dz

≥

√
ε

8ω2n
(∫

{∣z∣<1}
m(z)dz)

2

=

√
ε

32ω2n
L

2n+1
(Eisop∆F )

2.

(3.2.34)

From (3.2.34) and (3.2.32) we obtain claim (3.2.3).

3.3 Subcalibration in Grushin spaces and H-type groups.

In Chapter 2, we studied the isoperimetric problem in Grushin spaces and H-type

groups. Given h, k ≥ 1 integers, and n = h + k, we consider for α ≥ 0 the family of vector

fields on Rn

Xα = {X1, . . . ,Xh, Y1, . . . , Yk},

Xi = ∂xi, Yj(x, y) = ∣x∣α∂yj , i = 1 . . . h, j = 1, . . . k.

In Remark 2.5.2 we proved that, when k = 1, the isoperimetric problem for the X-perimeter

and the Lebesgue measure has a unique solution up to dilations and vertical translations,

Eαisop = {(x, y) ∈ Rn ∶ ∣y∣ ≤ ϕα(∣x∣), ∣x∣ < 1}, ϕα(∣x∣) = ∫
π/2

arcsin ∣x∣
sinα+1 t dt

in the class of x-spherically symmetric sets

E ⊂ Rhx ×Ry, E = {(x, y) ∈ Rn ∶ (∣x∣, y) ∈ F} for a generating set F ⊂ R+
×Rk.

Starting from this profile function, we show that the sub-calibration technique provides a

quantitative isoperimetric inequality also in this setting. More details about isoperimetric
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deficit and asymmetry in Grushin spaces will be given in Chapter 4 in the case of the

Grushin plane.

Given a hypersurface Σ ⊂ Rn = Rh ×R which is locally the zero set of a function u ∈ C1

such that ∣∇αu∣ ≠ 0 on Σ, where ∇αu = (∂x1u, . . . , ∂xhu, ∣x∣
α∂yu), we define its α-mean

curvature as

Hα
Σ =

1

h
divα(

∇αu

∣∇αu∣
). (3.3.1)

For any vector field W = ∑
n
i=1wi∂xi in Rn, divα denotes the α-divergence of W , (see (1.2.2))

divαW =
h

∑
i=1

∂xiwi + ∣x∣α∂ywn.

For any ε ≥ 0 we define rε = 1 − ε, yε = ϕα(rε). Analogously to (3.2.1), we define the

cylinder

Cε = {(x, y) ∈ Rn ∶ x ∈ Rh, y ∈ R, ∣x∣ < rε, y > yε}

and

Dε = Cε ∩E
α
isop.

We also call πα ∶= ϕα(0).

Theorem 3.3.1. Let α ≥ 0, h ≥ 1, n = h + 1 and F ⊂ Rn be any measurable set with

Ln(F ) = Ln(Eαisop).

i) If F∆Eαisop ⊂⊂ C0 then

Pα(F ) − Pα(E
α
isop) ≥

h

8(24 + 3π2
α)ω

2
h

L
n
(F∆Eαisop)

3. (3.3.2)

ii) If F∆Eαisop ⊂⊂ Cε for 0 < ε < 1, then

Pα(F ) − Pα(E
α
isop) ≥

h
√
ε

8(1 + πα)ωh
L
n
(F∆Eαisop)

2. (3.3.3)

Remark 3.3.2. In Remark 2.5.2 we proved the sharp isoperimetric inequality for x-spherically

symmetric sets in (Rn, dα) with n = h + 1. Theorem 3.3.1 gives a new class of sets

for which the sharp isoperimetric inequality in the Grushin space (Rn, dα) is valid, for

n = h + 1. Namely, for any set of finite α-perimeter F ⊂ Rn such that Ln(F ) = Ln(Eαisop)

and F △Eαisop ⊂⊂ C0, we have

Pα(E
α
isop) ≤ Pα(F ).

Equality holds if and only if F = Eαisop (see Theorem 2.1.4 and [116]).
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Basically, the argument used to prove Theorem 3.2.1 applies directly to prove Theorem

3.3.1 and we are not going to write it again. The analogous of Theorem 3.2.2 in this context

is based on the fact that for α integer, the profile function ϕα satisfies for a constant C < 0

ϕα(r) = ϕα(0) +Cr
α+2

+ o(rα+2
), r → 0+. (3.3.4)

The sign of C is due to the fact that ϕα is strictly decreasing. In the following, for any

m ∈ N we denote the m-th derivative of ϕα at 0, by ϕ
(m)
α (0). The expansion (3.3.4) is

justified by the following Proposition, which holds true forcing α > 0 to be integer.

Proposition 3.3.3. Let α ∈ N. Then ϕα is differentiable α + 2 times at 0 and there holds

ϕ(m)
α (0) = 0, if m = 1,2, . . . , α + 1 ϕ(α+2)

α (0) ≠ 0. (3.3.5)

Proof. By Proposition 2.5.3, ϕ′α(r) = O(rα+1) as r → 0+. This implies that, for any m =

1, . . . , α + 2, ϕ
(m)
α (r) = O(rα+2−m). Moreover ϕ′α(0) = 0. We conclude the proof recursively

for m = 1, . . . , α + 2. At the first stage we have

ϕ′′α(0) = lim
r→0+

ϕ′α(r) − ϕ
′
α(0)

r
= lim
r→0+

ϕ′α(r)

rα+1
rα

⎧⎪⎪
⎨
⎪⎪⎩

= 0 if α = 0

≠ 0 if α > 0.

To consider derivatives of order higher than 2 in (3.3.5), we assume α > 0. Let m ≤ α+2,

hence ϕ
(m−1)
α (0) = 0. We have

ϕ(m)
α (0) = lim

r→0+
ϕ
(m−1)
α (r) − ϕ

(m−1)
α (0)

r
= lim
r→0+

ϕ
(m−1)
α (r)

r

= lim
r→0+

O(rα+2−m+1)

r
= lim
r→0+

O(rα+2−m
)

⎧⎪⎪
⎨
⎪⎪⎩

= 0 if m ≤ α + 1

≠ 0 if m = α + 2.

Theorem 3.3.4. Let 0 ≤ ε < 1. There exists a continuous function u ∶ Cε → R with level

sets Σs = {(x, y) ∈ Cε ∶ u(x, y) = s}, s ∈ R, such that:

i) u ∈ C1(Cε∩E
α
isop)∩C

1(Cε∖E
α
isop) and ∇αu/∣∇αu∣ is continuously defined on Cε∖{x =

0};

ii) ⋃s>1 Σs = Cε ∩Eisop and ⋃s≤1 Σs = Cε ∖Eisop;

iii) Σs is a hypersurface of class C2 with constant H-mean curvature HΣs = 1/s for s > 1

and Hα
Σs

= 1 for s ≤ 1;

iv) For any point (x,ϕα(∣x∣) − y) ∈ Σs with s > 1 we have

1 −Hα
Σs(x,ϕα(∣x∣) − y) ≥

1

8 + πα
s2 when ε = 0. (3.3.6)
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and

1 −Hα
Σs(x,ϕα(∣x∣) − y) ≥

√
ε

1 + πα
s when 0 < ε < 1, (3.3.7)

Proof. We only recall the main steps of the proof highlighting the main differences with

respect to Theorem 3.2.2. Using the dilations δλ(x, y) = (λx,λα+1y), we define the function

u at x as the zero locus of Fε ∶Dε → R

Fε(x, y, s) = s
α+1

{ϕα(
r

s
) − ϕα(

rε
s
)} + yε − y,

where we use the notation r = ∣x∣. In this case the limit (3.2.15) becomes

lim
s→+∞

Fε(x, y, s) = lim
s→∞

sα+1{ϕα(0) + o(
rα+1

sα+1
) − ϕα(0) + o(

rα+1
ε

sα+1
)} + yε − y

= lim
s→∞

sα+1o(
1

sα+1
) + yε − y = yε − y < 0

while Fε → ϕα(r) − y > 0 as s→ 1+. Moreover

∂sFε(x, y, s) = (α + 1)sα[ϕα(
r

s
) − ϕα(

rε
s
)] −

sα+1rε
s2

ϕ′α(
rε
s
)

= sα[ψα(
r

s
) − ψα(

rε
s
)] < 0

(3.3.8)

where

ψα(r) = (α + 1)ϕα(r) − rϕ
′
α(r) (3.3.9)

is a strictly increasing function:

ψ′α(r) = αϕ
′
α(r) − rϕ

′′
α(r) = −α

rα+1

√
1 − r2

+
rα+1(α + 1 − αr2)

(1 − r2)3/2
=

rα+1

(1 − r2)3/2
.

Hence

u(x, y) = s if and only if F (x, y, s) = 0

is well defined. Claims i) and ii) derive from this definition of u as in Theorem 3.2.2.

We show claim iii). This follows applying the implicit function theorem to compute

∂xiu = −
∂xiF

∂sF
=

xir
α

sα
√
s2 − r2

⋅
1

[ψα(
rε
s
) − ψα(

r
s
)]
, ∂yu = −

∂yF

∂sF
= −

1

[ψα(
rε
s
) − ψα(

r
s
)]sα

.

Hence

∂xiu =
xir

α

√
s2 − r2

∂yu.

Therefore

∣∇αu∣
2
= (

h

∑
i=1

(
xir

α

√
s2 − r2

)
2
+ r2α

)(∂yu)
2
=
s2r2α

s2 − r2
⋅

1

s2α[ψα(
rε
s
) − ψα(

r
s
)]

2
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and

∂xiu

∣∇αu∣
=

xir
α

√
s2 − r2

∂yu
1

rαs√
s2−r2

∂yu
=
xi
s
,

∂yu

∣∇αu∣
=

∂yu
rαs√
s2−r2

∂yu
=

√
s2 − r2

srα
.

Therefore Hα
Σs

= 1/s:

divα(
∇αu

∣∇αu∣
) =

h

∑
i=1

∂xi
xi
s
=
h

s
.

To show the estimates at claim iv), analogously to (3.2.26), we define for 0 < ∣x∣ < 1 − ε and

0 < y < ϕα(r) − yε the function

fx(y) = u(x,ϕα(r) − y) = s =
1

Hα
Σs

if and only if (x,ϕα(r) − y) ∈ Σs.

Given ∣x∣ < rε, we have for any 0 < y < ϕα(r) − yε

f ′x(y) = −∂yu(x,ϕα(r) − y) =
1

fx(y)α[ψα(rε/s) − ψα(r/s)]
≥

1

fx(y)α[ψα(rε/s) − απα]
,

where απα = ψα(0). Moreover, (see (3.2.27)) we have

sα(ψα(rε/s) − απα) = s
α
∫

rε/s

0
ψ′α(r)dr = s

α
∫

rε/s

0

rα+1

(1 − r2)3/2
dr

≤ rαε ∫
rε/s

0

r

(1 − r2)3/2
dr = rαε ((1 − (rε/s)

2
)
−1/2

− 1)

≤
1

√
s − rε

.

Estimates (3.3.7) and (3.3.6) follow from

f ′x(y) ≥
√
fx(y) − rε

exactly as in Theorem 3.2.2. In particular, when ε = 0, an integration with fx(0) = 1 gives

fy(x) ≥ 1 + t2/8, hence

1 −HΣs(x,ϕα(∣x∣) − y) = 1 −
1

fx(y)
≥

y2

8 + y2
≥

y2

8 + π2
α

When ε > 0, f ′x(y) ≥
√
fx(y) − rε ≥

√
ε, hence fx(y) ≥ 1 + y

√
ε and

1 −HΣs(x,ϕα(∣x∣) − y) = 1 −
1

fx(y)
≥ y

√
ε

1 + y
√
ε
≥

√
ε

1 + πα
.
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3.4 Subcalibration in the Euclidean space Rn

The proof of Theorems 3.2.1 and 3.3.1 is based on the following model in Rn, n ≥ 2 with

the euclidean perimeter. We consider the unit ball in Rn, B = {x ∈ Rn ∶ ∣x∣ < 1} in Rn whose

profile function is given by

φ ∶ [0,1]→ R, φ(r) =
√

1 − r2

and it satisfies

φ′(r) = −
r

√
1 − r2

, φ′′(r) = −
1

√
1 − r2

−
r2

(1 − r2)3/2
for r ∈ [0,1).

Given ε ≥ 0 we set rε = 1 − ε and xεn = φ(1 − ε) =
√

1 − (1 − ε)2 =
√

1 − r2
ε . We call Cε = {x =

(x̂, xn) ∶ ∣x̂∣ < rε, xn > x
ε
n}. In Cε ∖B, the leaves Σs are vertical translations of the top part

of the boundary B. We define on

Dε = B ∩ {x = (x̂, xn) ∈ Rn ∶ xεn < xn ≤ φ(∣x̂∣), ∣x̂∣ < rε}

the functional

Fε(x, s) = s[φ(
∣x̂∣

s
) − φ(

rε
s
)] + xεn − xn.

As before, for any x ∈ Rn there exists a unique s > 1 such that Fε(x, s) = 0. Hence we

define u(x) = s ⇐⇒ Fε(x, s) = 0 for x ∈ Dε. The vector field ∇u/∣∇u∣ turns out to satisfy

properties i), ii) and iii) of Theorem 3.2.2 and the estimates at point iv) are the following:

for any point (x̂, φ(∣x̂∣) − xn) ∈ Σs with s > 1 we have

1 −HΣs(∣x̂∣, φ(∣x̂∣) − xn) ≥
1

9
x2
n when ε = 0. (3.4.1)

and

1 −HΣs(x̂, φ(∣x̂∣) − xn) ≥

√
ε

2
xn when 0 < ε < 1. (3.4.2)

This construction leads to the quantitative estimates. In the following P (E) denotes the

Euclidean perimeter of E ⊂ Rn.

Theorem 3.4.1. Let F ⊂ Rn, n ≥ 2, be any measurable set with Ln(F ) = Ln(B).

i) If F∆B ⊂⊂ C0 then

P (F ) − P (B) ≥
n − 1

216ω2
n−1

L
n
(F∆B)

3. (3.4.3)

ii) If F∆B ⊂⊂ Cε for 0 < ε < 1, then

P (F ) − P (B) ≥
(n − 1)

√
ε

16ωn−1
L

2n+1
(F∆B)

2. (3.4.4)
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In the Euclidean setting, the same foliation as in Theorems 3.2.2 and 3.3.4 can be

explicitly constructed interpreting ε ≥ 0 in the vertical direction. Namely, given ε ≥ 0, we

call rε = φ
−1(ε) =

√
1 − ε2 and

Cε = {x = (x̂, xn) ∈ Rn ∶ ∣x̂∣ < rε, xn > ε}, Dε
= Cε ∩B.

In this case, we prove that for any measurable set F ⊂ Rn such that F △B ⊂⊂ Cε,

there exists c1 = c1(ε) > 0, c1(ε)→ 0 as ε→ 0 such that

P (F ) − P (B) ≥
c1(ε)(n − 1)

nωn
L
n
(F∆B)

2 if ε > 0
(3.4.5)

and

there exists c0 > 0 such that P (F ) − P (B) ≥
c0(n − 1)

n2ω2
n

L
n
(F∆B)

3 if ε = 0. (3.4.6)

The foliation above the unit ball is obtained translating the upper part of its boundary:

the leaves {u = t} are described for t < 0 by (∂B ∩Cε) + (0,−t). For any t > 0 we consider

the sphere centered at (0,−t) ∈ Rn passing through the n − 1-dimensional sphere Sε =

{(x̂, xn) ∈ Rn ∶ ∣x̂∣ = rε, xn = ε}, namely Σt is the graph {(x̂, hεt(∣x̂∣)), ∣x̂∣ < rε}, with

hεt(r) = −t +
√
r(t)2 − r2, for 0 < r < r(t) and r(t) > 0 satisfying hεt(rε) = ε, i.e.,

√
r(t)2 − 1 + ε2 − t = ε ⇐⇒ r(t) =

√
t2 + 2tε + 1.

-��� -��� ��� ��� ���
���

���

���

���

���

���

���

Figure 3.5: The foliation below the unit sphere.

Given x = (x̂, xn) ∈ Rn, we define the function u ∶Dε → R through the equivalence

u(x) = t ⇐⇒ xn = h
ε
t(∣x̂∣) i.e., (xn + t)

2
= r(t)2

− ∣x̂∣2.
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Hence u(x) =
1−∣x∣2

2(xn−ε)
. It holds

∂u

∂xi
= −

xi
xn − ε

for i = 1, . . . , n − 1

∂u

∂xn
= −

xn
xn − ε

−
1 − ∣x∣2

2(xn − ε)2
=

2εxn − x
2
n − 1 + ∣x̂∣2

2(xn − ε)2
≤ −

xn
xn − ε

≤ −1 in Cε ∩B

∣∇u∣2 =
∑
n−1
i=1 x

2
i

(xn − ε)2
+

(2εxn − x
2
n − 1 + ∣x̂∣2)2

4(xn − ε)4

=
1

4(xn − ε)4
{4∣x̂∣2(xn − ε)

2
+ (1 − 2εxn + x

2
n − ∣x̂∣2)2

}

Therefore

∇u = 0 ⇐⇒ ∣x̄∣(xn − ε) = 0 and 1 − 2εxn + x
2
n − ∣x̄∣2 = 0

which is satisfied only for x = (x̂, xn) ∈ Rn, xn = ε and ∣x̂∣2 = 1 − ε2. Moreover

∣∇u(x)∣ ≥ ∣
∂u

∂xn
∣ ≥ 1 x ∈ Cε ∩B. (3.4.7)

We define the vector field

X = −
∇u

∣∇u∣

which is C1 on Cε. Its divergence at the point x ∈ Σt equals the tangential divergence to

the vector field on the surface Σt, hence

divX

n − 1
=HΣt =

1

r(t)
for x ∈ Σt, t > 0

where HΣt is the mean curvature of the surface Σt.

We start the proof of (3.4.5) and (3.4.6) that makes of use the following elementary

Lemma. The strategy that we are going to describe represents an alternative argument to

the conclusion of the proof of Theorems 3.2.1 and 3.3.1.

Lemma 3.4.2. For any M,L, k > 0 and for any measurable function ϑ ∶ [0,M] → [0, L]

there holds

(∫

M

0
ϑ(s)ds)

k+1
≤ (k + 1)Lk ∫

M

0
skϑ(s)ds. (3.4.8)

Proof. Integrating by parts, we obtain

∫

M

0
skϑ(s)ds =Mk

∫

M

0
ϑ(s)ds − k∫

M

0
sk−1

∫

s

0
ϑ(t)dt ds.

The function

g(s) = ∫
s

0
ϑ(t)dt

is nonnegative, increasing, L-Lipschitz and with g(0) = 0. The claim (3.4.8) is equivalent to

the validity of the inequality

g(M)
k+1

≤ (k + 1)Lk(Mkg(M) − k∫
M

0
sk−1g(s)ds)
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which is equivalent to

∫

M

0
sk−1g(s)ds ≤

1

k
Mkg(M) −

1

k(k + 1)Lk
g(M)

k+1.

For any 0 ≤ N ≤ LM , let AN be the set of the functions g ∶ [0,M] → [0, L] that are

nonnegative, increasing, L-Lipschitz, with g(0) = 0 and g(M) = N . The maximizer of the

maximum problem

max{∫

M

0
sk−1g(s)ds ∶ g ∈ AN}

is the function

ḡ(s) =

⎧⎪⎪
⎨
⎪⎪⎩

Ls 0 ≤ s ≤ N
L ,

N N
L ≤ s ≤M.

��

�/� �

�

0.5 1.0 1.5 2.0 2.5 3.0 3.5

100

200

300

Figure 3.6: The graph of ḡ.

The integral of ḡ is

∫

M

0
sk−1ḡ(s)ds =

L

k + 1
(
N

L
)
k+1

+
N

k
(Mk

− (
N

L
)
k
)

=
1

k
Mkg(M) −

1

k(k + 1)Lk
g(M)

k+1,

which proves the thesis.

Let F ⊂⊂ Cε. Applying the argument used to prove (3.2.32), we get

P (F ) − P (B) ≥ (n − 1)G(B ∖ F ), G(B ∖ F ) = ∫
B∖F

(1 −
divX

n − 1
) dzdt.

W claim that there exist constants C1(ε), C0 > 0 such that

G(B ∖ F ) ≥
C0

n2ω2
n

L
n
(B△ F )

3 if ε = 0, G(B ∖ F ) ≥
C1

nωn
L
n
(B△ F )

2 if ε > 0.

In fact, by the coarea formula, the measure of B ∖ F is

L
n
(B ∖ F ) = ∫

B∖F
dx = ∫

∞

0
(∫

Σt
χB∖F

1

∣∇u∣
dHn−1

)dt

The function ϑ ∶ [0,∞)→ R,

ϑ(t) = ∫
Σt
χB∖F

1

∣∇u∣
dHn−1
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is nonnegative. By (3.4.7) we have

0 ≤ ϑ(t) ≤ ∫
Σt

1

∣∇u∣
dHn−1

≤H
n−1

(Σt) ≤H
n−1

(∂Σ0).

We let L =Hn−1(Σ0) =H
n−1(∂B)/2 = nωn/2. On the other hand

G(B ∖ F ) = ∫
B∖F

(1 −
divX

n − 1
) dzdt

= ∫

M(ε)

0
(∫

Σt
(1 −

divX

n − 1
)

1

∣∇u∣
dHn−1

)dt

= ∫

M(ε)

0
(1 −HΣt)ϑ(t)dt,

We consider the case ε > 0. Without loss of generality we can assume B△F ⊂⊂ C2ε. In

this case ϑ(t) = 0 for t >M(ε),

M(ε) =
1 − 4ε2

2ε
, (3.4.9)

where M is the solution t of the equation u(0,2ε) = t. If t > M(ε), the surface Σt is

contained in {t < 2ε}.

We claim that there exists C = C(ε) > 0 such that

1 −HΣt = 1 −
1

√
t2 + 2εt + 1

≥ C(ε)t for all t ∈ [0,M(ε)]. (3.4.10)

In fact,

1 −HΣt = 1 − (1 −
1

2
(t2 + 2εt) + o(t2 + 2εt)) as t→ 0+.

Therefore there exists tε > 0 such that

1 −HΣt ≥
1

4
(t2 + 2εt) ≥

ε

4
t for t < tε.

To conclude we use uniform convergence on [tε,M(ε)]. We call Iε ∶= [tε,M(ε)]. Let Cj > 0

be a sequence of real numbers such that Cj → 0 as j →∞. Since for any j ∈ N

max
t∈Iε

Cjt = CjM(ε)→ 0 as j →∞,

there exists j̄ ∈ N such that Cjt ≤ 1 −HΣtε > 0 for any j ≥ j̄ and t ∈ Iε. Then

Cj̄t ≥ 1 −
1

√
t2ε + 2εtε + 1

≥ 1 −
1

√
t2 + 2εt + 1

, t ∈ Iε.
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We prove the claim choosing

C(ε) = min{Cj̄ , ε/4}→ 0, ε→ 0+.

In conclusion, applying Lemma 3.4.2 for k = 1, when ε > 0 and F △B ⊂⊂ C2ε

G(B ∖ F ) = ∫

M(ε)

0
(1 −HΣt)ϑ(t) dt ≥ C(ε)∫

M(ε)

0
tϑ(t)dt ≥

C(ε)

Hn−1(∂B)
(∫

M(ε)

0
ϑ(t)dt)

2
,

which proves (3.4.5).

Finally we consider the case when ε = 0. The following estimate holds: there exists

C̃ > 0 such that

1 −HΣt = 1 −
1

√
1 − t2

≥ C̃min{t2,1}, for any t > 0.

In fact, since (1 + t2)−1/2 = 1 − t2/2 + o(t2) as t→ 0+, there exists t0 ≤ 1 such that

1 −HΣt ≥
1

4
t2 for t < t0.

We call I0 ∶= [t0,1]. For any t ∈ t0, we have uniform convergence

sup
t∈I0

Cjt
2
= Cj → 0, j →∞

where Cj → 0 as j →∞. We conclude as previously that for j big enough Cjt
2 ≤ 1 −HΣt0

≤

1 −HΣt for any t ∈ I0. Hence for t ∈ [0,1], 1 −HΣt ≥ Ct
2 for some C > 0.

On the other hand, 1−HΣt ≥ 1−HΣ1 = C̄ for any t ≥ 1. The claim follows with C̃ ≤ min{C, C̄}.

By Lemma 3.4.2,

G(B ∖ F ) ≥ C̃ ∫
∞

0
ϑ(t)min{t2,1}dt = C̃ ∫

1

0
t2ϑ(t)dt + C̃ ∫

∞

1
ϑ(t)dt

≥
C̃

3(Hn−1(∂B)/2)2
(∫

1

0
ϑ(t)dt)

3
+ C̃ ∫

∞

1
ϑ(t)ds

≥
C

n2ω2
n

{(∫

1

0
ϑ(t)dt)

3
+ (∫

∞

1
ϑ(t)dt)

3
}

≥
C

n2ω2
n

{(∫

1

0
ϑ(t)dt + ∫

∞

1
ϑ(t)dt)

3
}

=
C

n2ω2
n

L
n
(B∆F )

3,

for C > 0, which proves (3.4.6).
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CHAPTER 4

A partitioning problem for the isoperimetric stability

of the Grushin plane

The purpose of this chapter is to study the stability of the isoperimetric inequality in

the particular case of the Grushin plane (R2, dα), where the sharp isoperimetric inequality

is known to hold in the wider generality of measurable sets with finite Lebesgue measure

(see Chapter 2). So far, we are able to provide only partial results, nonetheless, some new

questions arise from our analysis and we describe their solutions.

For any Lebesgue measurable set E ⊂ R2, we introduce the notation

Bα(E) = δαλ(E
α
isop), λ = (

L2(E)

L2(Eαisop)
)

1
Q
,

where Q = α + 2 is the homogeneous dimension of the Grushin plane and

Eαisop = {(x, y) ∈ R2
∶ ∣y∣ < ϕα(∣x∣), ∣x∣ < 1}, ϕα(r) = ∫

π/2

arcsin r
sinα+1 t dt

is the isoperimetric set in the Grushin plane. We define the α-isoperimetric deficit of E as

Dα(E) =
Pα(E) − Pα(Bα(E))

Pα(E)
,

and the α-asymmetry of E as

Aα(E) = min
y∈R

L2(E △ (Bα(E) + (0, y)))

L2(E)
.

These definitions are given in analogy with the euclidean and the Heisenberg ones (see

Section 3.1). Since the isoperimetric set in (R2, dα) is unique up to vertical translations,

in the definition of α-asymmetry, comparing E with all the vertical translations of Bα(E)

corresponds to compare it with all the isoperimetric sets of the same volume (see Theorem

2.1.4). This situation is slightly different from the Euclidean case (see (3.1.1)) and from the

111
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Heisenberg groups (see Definitions 3.1.2), where invariance under left-translations of the

perimeter leads to a wider class of competing sets for E.

A first stability result for the isoperimetric inequality in the Grushin plane is proved in

Theorem 4.1.1 where we show that if the α-isoperimetric deficit is small enough, then also

the α-asymmetry is arbitrarily close to zero. This connection between isoperimetric deficit

and asymmetry is known as the qualitative stability of the isoperimetric inequality, and is

also valid in more general Grushin spaces (Rn, dα) with n = h + k for h ≥ 1 integer, k = 1

where a sharp isoperimetric inequality is established (see Remark 4.1.3).

In the rest of the chapter, we present preliminary results in view of a Hall-type quantita-

tive isoperimetric inequality in the Grushin plane, see (3.1.3). Our approach is to consider

the techniques of [63] in the class of x- and y-Schwarz symmetric sets in the plane (see

Definition 2.1.2), replacing standard perimeter with α-perimeter. Some crucial differences

from the classical case arise from the very beginning (see Section 4.2.1 and Remark 4.2.7),

and lead us to the study of a partitioning problem for the α-perimeter, that we describe in

Section 4.3.

4.1 Qualitative Stability

In this Section, we prove the qualitative stability of the isoperimetric inequality in the

Grushin plane. We introduce the notation

ωα ∶= L
2
(Eαisop).

Theorem 4.1.1 (Qualitative stability). For every ε > 0 there exists δ = δ(α, ε) > 0 such

that, for any measurable set E ⊂ R2 with finite α-perimeter and L2(E) = ωα, if Dα(E) ≤ δ

then Aα(E) < ε.

Notice that Theorem 4.1.1 implies a qualitative estimate for any choice of L2(E), thanks

to the invariance under δαλ -dilations of the α-isoperimetric deficit and the α-asymmetry. To

prove Theorem 4.1.1 we use a compactness argument relying on the following lemma.

Lemma 4.1.2. There exist constants ` = `(α), C = C(α) > 0 such that for any measurable

set E ⊂ R2 with finite α-perimeter and such that L2(E) = ωα, there exists a set E′ ⊂ Q` =

[−`, `]2 with L2(E′) = ωα satisfying

Dα(E
′
) ≤ CDα(E), Aα(E) ≤ Aα(E

′
) +CDα(E). (4.1.1)

Lemma 4.1.2 is the same as Lemma 5.1 in [63] reformulated for the α-perimeter. Our

proof represents an alternative to the one in [63] and it is based on the choice of symmetric



4.1. QUALITATIVE STABILITY 113

cuts: to define the set E′, we consider a dilation of Ê = E ∩ {(x, y) ∈ R2 ∶ ∣x∣ < x̄} for

some x̄ ∈ R bounded by a constant `1 = `1(α) > 0, instead of considering a dilation of

Ẽ = E ∩ {(x, y) ∈ R2 ∶ x1 < x < x2} for some x1, x2 ∈ R, with ∣x2 − x1∣ ≤ `1 as in [63]. The

last strategy would need a translation of E′ to be centered at zero, while our choice does

not need any translation and better adapts to the anisotropy of the α-perimeter. Moreover,

in the final part we use Proposition 2.4.2 to deduce estimate (4.1.1) for the isoperimetric

deficit. We recall the notation introduced in Section 2.4. For any set E ⊂ R2, and t > 0 we

let

Ext− = {(x, y) ∈ E ∶ ∣x∣ < t} and Ext = {(x, y) ∈ E ∶ ∣x∣ = t}

Eyt− = {(x, y) ∈ E ∶ ∣y∣ < t} and Eyt = {(x, y) ∈ E ∶ ∣y∣ = t}

and

vxE(t) =H
1
(Ext ), vyE(t) = ∫

Eyt

∣x∣α dH1.

Proof. (of Lemma 4.1.2) Let E ⊂ R2 be as in the statement. Following the proof of Theorem

2.4.3, define the function g ∶ [0,∞)→ [0,1],

g(t) =
L2(Ext−)

ωα
,

which is continuous, (0,1) ⊂ g(R) ⊂ [0,1] and it is increasing, hence differentiable almost

everywhere. In particular, we deduce as in (2.4.17), that

g′(t) =
H1(Ext )

ωα
=
vxE(t)

ωα
.

Consider the set δr(E
x
t−) with r = g(t)

− 1
Q . We have L2(δr(E

x
t−)) = ωα, hence, by the sharp

isoperimetric inequality (see [99] and Remark (2.5.2)),

g(t)
−
Q−1
Q Pα(E

x
t−) = Pα(δr(E

x
t−)) ≥ Pα(E

α
isop) (4.1.2)

Similarly,

Pα(E ∖Ext−) ≥ (1 − g(t))
Q−1
Q Pα(E

α
isop) (4.1.3)

Moreover, by Proposition 2.4.1, Pα(E
x
t−) = Pα(E;Ext−)+v

x
E(t) and Pα(E ∖Ext−) = Pα(E;E ∖

Ext−) + v
x
E(t). Then, summing up (4.1.2) and (4.1.3) we obtain

Pα(E) + 2vxE(t) ≥

⎧⎪⎪
⎨
⎪⎪⎩

(
L2(Ext−)

ωα
)

Q−1
Q

+ (1 −
L2(Ext−)

ωα
)

Q−1
Q

}Pα(E
α
isop). (4.1.4)

By definition of α-isoperimetric deficit, Pα(E) = Pα(E
α
isop)(1 +Dα(E)), hence we deduce

{g(t)
Q−1
Q + (1 − g(t))

Q−1
Q − 1 −Dα(E)}Pα(E

α
isop) ≤ 2vxE(t). (4.1.5)



114 CHAPTER 4. ISOPERIMETRIC STABILITY IN THE GRUSHIN PLANE

Consider the auxiliary function ψ ∶ [0,1]→ R, ψ(s) = s
Q−1
Q + (1− s)

Q−1
Q − 1 which is concave,

with maximum ψ(1/2) = 2
1
Q − 1 and satisfying ψ(s) = ψ(1 − s), ψ(0) = ψ(1) = 0. From

(4.1.5) we get

vxE(t) ≥
Pα(E

α
isop)

4
ψ(g(t)) +

Pα(E
α
isop)

4
{ψ(g(t)) − 2Dα(E)}.

Now, if 2Dα(E) < maxψ = 2
1
Q − 1, there exist t1, t2 ∈ R such that g(t1) = 1 − g(t2) and

ψ(g(t1)) = ψ(g(t2)) = 2Dα(E). By concavity of ψ and continuity of g, this leads to ψ(g(t)) ≥

2Dα(E) for any t1 ≤ t ≤ t2. Then

ωαg
′
(t) = vxE(t) ≥

Pα(E
α
isop)

4
ψ(g(t)), t1 ≤ t ≤ t2. (4.1.6)

On the other hand, for Dα(E) small enough, from ψ(g(t2)) = 2Dα(E) and 1− g(t1) = g(t2)

we deduce t1 ≤ t2/2. Therefore

t2
2
≤ t2 − t1 = ∫

t2

t1
1 ≤

4

ωα
Pα(E

α
isop)∫

t
t2
1

g′(t)

ψ(g(t))
dt ≤

4

ωα
Pα(E

α
isop)∫

1

0

1

ψ(s)
ds =∶ ˜̀.

Let `1 = 2˜̀. We consider the sets Ê = Ext2− and E† = δλÊ with λ ≥ 1 such that L2(E†) = ωα.

We have L2(E†) = λQλ(Ê) and λ(Ê) = ωαg(t2) = ωα(1 − g(t1)). Notice that, by concavity

of ψ, for any s ∈ (0, 1
2), ψ(s) > 2(2

1
Q − 1)s, hence, applied to g(t1) <

1
2 :

λQ =
1

1 − g(t1)
≤

1

1 −
ψ(g(t1))

2(2
1
Q −1)

=
1

1 −
Dα(E)

2
1
Q −1

.

In particular, since 2Dα(E) ≤ maxψ = 2
1
Q
−1

, λQ ≤ 2. Hence, by Proposition 2.4.2,

Pα(E
†
) = λQ−1Pα(Ê) ≤ λQ−1Pα(E) ≤ 2

Q−1
Q Pα(E) (4.1.7)

and the first inequality in (4.1.1) is proved.

To prove the second inequality in (4.1.1), let (0, y) ∈ R2 be such that ωαAα(E
†) =

L2(E† △Eαy ) with Eαy = Eαisop + (0, y). Then

ωαAα(E) ≤ L
2
(E △Eαy )

≤ L
2
(E △ Ê) +L

2(Ê △ δ1/λ(E
α
y )) +L

2(δ1/λ(E
α
y )△Eαy )

= L
2
(E ∖ Ê) +L

2(δ1/λ(E
†
)△ δ1/λ(E

α
y )) +L

2(Eαy ∖ δ1/λ(E
α
y ))

≤
1

λQ
L

2
(E†

△Eαy ) +L
2
(E ∖ Ê) +L

2(Eαy ∖ δ1/λ(E
α
y ))

≤ ωαAα(E
†
) +C(α)Dα(E)

To conclude we start again from (4.1.5) replacing E with E† and considering sets (E†)
y
t−,

t > 0, which can be assumed to be in the stripe ∣x∣ < `1. In this case, for t > 0

vyE(t) = ∫
Eyt

∣x∣α dH1
≤ `α1ωαg

′
(t)
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and inequality (4.1.6) reads in some interval t3 ≤ t ≤ t4:

`α1ωαg
′
(t) ≥ vyE(t) ≥

Pα(E
α
isop)

4
ψ(g(t)).

We deduce (4.1.1) for ` = max{`1, `2} with `2 = 2˜̀/`α1 .

Proof. (of Theorem 4.1.1) It is enough to prove the statement for E ⊂ Q` where ` > 0 is the

constant in Lemma 4.1.2. In fact, if E ⊂ R2 is such that L2(E) = L2(B), from Lemma 4.1.2

there exists E′ ⊂ Q` satisfying (4.1.1) for C > 0. If the qualitative estimate in the statement

holds for sets contained in Q`, for ε > 0 fixed, there exists δ1 > 0 such that if Dα(E
′) < δ1,

then λα(E
′) < ε/2. Defining δ = min{ ε

2C ,
δ1
C }, we get for Dα(E) ≤ δ,

λα(E) ≤ λα(E
′
) +CDα(E) <

ε

2
+C

ε

2C
= ε.

We assume by contradiction that there exists ε > 0 such that for every n ∈ N there exists

En ⊂ Q` with λα(En) ≥ ε and Dα(En) ≤
1
n . Hence

Pα(En) ≤ (1 +
1

n
)Pα(Bα) ≤ 2Pα(Bα) for every n ∈ N (4.1.8)

By the compactness theorem for BVα-functions, see Section (1.2.1), there exists a subse-

quence converging in L1
loc(R

2) to a measurable set E∞ with finite α-perimeter. Since the

sets En are all contained in the same compact Q, convergence χEn → χE∞ is in L1(R2).

This implies

L
2
(E∞) = ∫

R2
χE∞ = lim

n→∞
∫
R2
χEn = lim

n→∞
L

2
(En) = L

2
(Bα). (4.1.9)

Moreover, by the lower semicontinuity of the α-perimeter,

Pα(E∞) ≤ lim inf
n→∞

Pα(En) = Pα(Bα) since Dα(En)→ 0. (4.1.10)

We have constructed a set E∞ ⊂ R2 such that L2(E∞) = L2(Bα), and Pα(E∞) ≤ Pα(Bα).

Therefore by Theorem 3.2 in [99], E∞ coincides up to a vertical translation to the set Bα,

i.e., E∞ = Bα(0, y) for some y ∈ R. Hence, by definition of λα,

λα(En) ≤
L2(En△E∞)

L2(Bα)
→ 0 for n→∞

which contradicts the assumption λα(En) > ε.

Remark 4.1.3. The proofs of Theorem 4.1.1 and Lemma 4.1.2 apply also to the case of

(Rn, dα) n = h + k, with h, k integers such that h ≥ 1, k = 1. In fact, by Remark 2.5.2,

the solution of the isoperimetric problem in this case is unique up to dilations and vertical

translations, hence a sharp isoperimetric inequality holds and (4.1.2), (4.1.3) can be repro-

duced. Moreover estimates (4.1.5) and (4.1.7) hold for any choice of h, k ≥ 1 integers and

the same holds for the compactness theorem.
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4.2 Euclidean techniques to prove Hall’s theorem

In the seminal paper [63], the authors prove the quantitative isoperimetric inequality in

Rn. In a central step, contained in Section 4 of [63], they prove the quantitative inequality

for axially symmetric sets. In this Section, we describe their techniques in the case of x-

and y-Schwarz symmetric sets in R2. Namely, we show how to prove existence of a constant

C > 0 such that

A(E)
2
≤ CD(E), (4.2.1)

for all x- and y-Schwarz symmetric sets E ⊂ R2.

In the euclidean setting, the proof of (4.2.1) can be reduced to an estimate of the

asymmetry inside the stripe Z = {(x, y) ∶ ∣x∣ ≤
√

2
2 } with respect to the isoperimetric deficit,

i.e.,

L
2
((B ∖E) ∩Z) ≤ C

√
D(E), (4.2.2)

for any x- and y-Schwarz symmetric set E ⊂ R2 with L2(E) = L2(B), where B = BE(0,1).

In fact, if Z2 denotes the stripe where ∣y∣ ≤
√

2
2 , we have B ⊂ Z ∪ Z2. Then B ∖ E ⊂

((B∖E)∩Z)∪((B∖E)∩Z2). Now, if L2((B∖E)∩Z) < L2((B∖E)∩Z2), the transformation

θ ∶ R2 → R2, θ(x1, x2) = (x2, x1) is such that

i. θ(E) is x- and y-Schwarz symmetric

ii. P (E) = P (θ(E)), A(θ(E)) = A(E)

iii. L2((B ∖ θ(E)) ∩Z) > L2((B ∖ θ(E)) ∩Z2).

Hence, up to a rotation of the axes we can assume L2((B ∖ E) ∩ Z) ≥ L2((B ∖ E) ∩ Z2)

which implies

L
2
(B ∖E) ≤ 2L2

((B ∖E) ∩Z). (4.2.3)

By definition of asymmetry, we hence get

A(E) ⋅ ωn ≤ L
2
(E △B) = 2L2

(B ∖E) ≤ 4L2
((B ∖E) ∩Z)

and (4.2.1) follows if (4.2.2) holds. The proof of (4.2.1) is divided into three steps.

Step 1: From the asymmetry to section estimates

Let ` > 0. There exist C1 > 0 and δ1 = δ1(`) > 0 such that, if E ⊂ Q` = [−`, `]2,

L2(E) = L2(B), is x-symmetric and y-Schwarz symmetric with D(E) ≤ δ1, there exists

x̄ = x̄(E) ∈ [0,
√

2/2] such that, if x′ = x′(E) > 0 is defined through the equality

∫

x̄

0
vE(t) dt = ∫

x′

0
vB(t) dt, (4.2.4)
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then

L
2
((B ∖E) ∩Z) ≤ C1∣vE(x̄(E)) − vB(x′(E))∣. (4.2.5)

We will prove this estimate in Lemma 4.2.4 for the α-perimeter and for every α ≥ 0.

Step 2: From unaligned sections to sections aligned at {x1 = 0}.

Let ` > 0. There exists C2 > 0 such that for any x-and y-Schwarz symmetric set E ⊂ Q`,

with L2(E) = L2(B) such that, if δ1 > 0, x̄(E) and x′(E) are as in Step 1 and D(E) < δ1,

then there exists a set Ẽ ⊂ R2 so that

P (Ẽ) ≤ P (E), ∣vE(x̄(E)) − vB(x′(E))∣ ≤ C2 ∣vẼ(0) − vB(0)∣. (4.2.6)

The proof of this fact is based on the two following remarks.

Remark 4.2.1. Given a x- and y-Schwarz symmetric set E ⊂ R2 and h > 0 such that vE(x̄) =

2h for some x̄ > 0, we construct a x-symmetric and y-Schwarz symmetric set Ẽ ⊂ R2 that

satisfies:

1. P (Ẽ) ≤ P (E);

2. there exists t > 0 such that the ball B̃ = B(0,R) centered at 0 ∈ R2 of some radius

R > 0 is the central part of Ẽ, namely Ẽxt− = B̃
x
t−;

3. L2(Ẽxt−) = L
2(Exx̄−) and L2(Ẽ ∖ Ẽxt−) = L

2(E ∖Exx̄−);

4. vẼ(t) = vE(x̄) = 2h.

The set Ẽ is therefore obtained as a minimum of the perimeter under the prescribed partition

of volume in claim 3 and the one-dimensional constraint in claim 2.

We begin the proof observing that there exists a unique euclidean ball B̃ = BE(0,R) ⊂ R2

and a unique t > 0 such that

L
2
(B̃x

t−) = L
2
(Exx̄−) and vE(x̄) = vB̃(t)

We let

El = E ∩ {(x, y) ∈∈ R2
∶ x < x̄}, Er = E ∩ {(x, y) ∈ R2 ∶ x > x̄},

B̃l
= B̃ ∩ {(x, y) ∈ R2

∶ x < −t}, B̃r = B̃ ∩ {(x, y) ∈ R2 ∶ x > t}

The set

Ẽ = (El + (x̄ − t)) ∪ B̃x
t− ∪ (Er + (t − x̄))

satisfies claims 2, 3 and 4. We show that P (Ẽ) ≤ P (E). In fact

L
2
((B̃l

+ ((x0 − x̄),0)) ∪E
x
x̄− ∪ (B̃r

+ ((x̄ − x0),0))) = L
2
(B̃),



118 CHAPTER 4. ISOPERIMETRIC STABILITY IN THE GRUSHIN PLANE

therefore, by the equality case in the isoperimetric inequality in R2, we obtain

P (B̃;{x < −t}) + P (B̃;{∣x∣ < t}) + P (B̃;{x > t}) = P (B̃)

≤ P((B̃l
+ (t − x̄,0)) ∪Exx̄− ∪ (B̃r

+ (x̄ − t,0)))

= P (B̃l
+ (t − x̄,0);{x < −x̄}) + P (E,{∣x∣ < x̄}) + P (B̃r

+ (x̄ − t,0);{x > x̄})

= P (B̃;{x < −t}) + P (E,{∣x∣ < x̄}) + P (B̃;{x > t})

(4.2.7)

and claim 1 follows, by writing

P (Ẽ) = P (El + (x̄ − t,0),{x < −t}) + P (B̃;{∣x∣ < t}) + P (Er + (t − x̄,0);{x > t})

= P (El,{x < −x̄}) + P (B̃;{∣x∣ < t}) + P (Er;{x > x̄})

≤ P (El,{x < −x̄}) + P (E;{∣x∣ < x̄}) + P (Er;{x > x̄}) = P (E).

(4.2.8)

Remark 4.2.2. Let B = BE(0,1), B̃ = BE(0,R) with R > 0 and x′ ∈ (0,
√

3/2). Define the

point x0 > 0 through the following equality

∫

x0

0
vB̃(x) dx = ∫

x′

0
vB(x) dx (4.2.9)

Then, there exists a constant C2 > 0 such that

∣vB(x′) − vB̃(x0)∣ ≤ C2∣vB(0) − vB̃(0)∣. (4.2.10)

We stress that the balls B̃ and B have the same center: this property is central in the

argument (see Proposition 4.3.11).

We give a proof in the case R ≥ 1. In this case we have vB̃ ≥ vB, that implies x0 ≤ x
′, by

(4.2.9). Notice that

∣vB̃(0) − vB(0)∣ = 2(R − 1)

Therefore it is sufficient to prove vB̃(x0)− vB(x′) ≤ C2(R− 1). To this purpose, notice that

for any 0 ≤ x ≤ x0, we have

vB̃(x) − vB(x) = 2(
√
R2 − x2 −

√
1 − x2) = 2

R2 − 1
√

R2 − (
√

3
2 )2 +

√

1 − (
√

3
2 )2

≤ 2
R + 1

√

R2 − (
√

3
2 )2 + 1

2

(R − 1) ≤ C(R − 1)

(4.2.11)

hence

C

√
3

2
(R − 1) ≥ ∫

x0

0
vB̃(x) − vB(x) dx = ∫

x′

x0
vB(x) dx ≥ vB(

√
3/2)∣x′ − x0∣ ≥ ∣x′ − x0∣.

In conclusion,

vB̃(x0) − vB(x′) = (vB̃(x0) − vB(x0)) + (vB(x0) − vB(x′))

≤ C(R − 1) + vB(x′) + v′B(x′)(x0 − x
′
) − vB(x′)

≤ C2(R − 1).
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Proof of (4.2.6). Starting from a x- and y-Schwarz symmetric set E ⊂ Q`, such that L2(E) =

L2(B), we consider x̄(E) ∈ (0,
√

2/2) and x′(E) > 0 as in (4.2.5). From the proof of (4.2.5),

given in Lemma 4.2.4 below, it will be clear that, assuming D(E) small enough (D(E) < δ1),

we have x′(E) ∈ (0,
√

3/2). Applying Remark 4.2.1, we obtain a set Ẽ ⊂ R2 and a point

x0 > 0 such that L2(Ẽ) = L2(B), P (Ẽ) ≤ P (E) and vẼ(x0) = vE(x̄(E)). In particular, Ẽ

is a ball centered at zero in its central part, hence applying Remark 4.2.2,

∣vE(x̄(E)) − vB(x′(E))∣ = ∣vẼ(x0) − vB(x′(E))∣ ≤ C2∣vẼ(0) − vB(0)∣

and (4.2.6) follows.

Step 3: Estimate of the section-gap in terms of the isoperimetric deficit.

There exist C3, δ3 > 0 such that for any x-symmetric and y-Schwarz symmetric set

E ⊂ R2, L2(E) = L2(B) such that D(E) < δ3, we have

∣vE(0) − vB(0)∣ ≤ C3

√
D(E). (4.2.12)

The proof starts from replacing the set E with E′, such that P (E′) ≤ P (E), in the same

spirit of Step 2. In this case, we consider the unique ball B′ centered on the positive x-axis

such that

• L2(B′ ∩ {x > 0}) = L2(E)/2;

• vB′(0) = vE(0).

The set E′ is obtained as the union of B′ ∩ {x > 0} with its reflection with respect to the

y-axis, and it is a minimizer for the perimeter in the class of x-symmetric and y-Schwarz

symmetric sets in R2 with prescribed volume and section β = vE(0). The final estimate

(4.2.12) follows from a Taylor development of D(E′) as a function of β, to obtain

∣vE′(0) − vB(0)∣ ≤
√
D(E′).

Proof of (4.2.1). Let E ⊂ R2 be a x- and y-Schwarz symmetric set. As observed in Remark

3.1.1, we can assume without loss of generality that D(E) ≤ min{δ1, δ3,1}. By invariance

of A(E) and D(E) with respect to dilations we also assume L2(E) = L2(BE(0,1)). By

Lemma 4.1.2, it is enough to prove (4.2.1) for E′ ⊂ Q`, with ` > 0 as in the lemma, for α = 0.

In fact, by (4.1.1), if (4.2.1) holds for every set contained in Q`, we have, increasing the

constant C, if necessary:

A(E) ≤ A(E′
) +CD(E) ≤ C(

√
D(E′) +D(E)) ≤ C(

√
D(E) +D(E)) ≤ C

√
D(E).
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Assuming E ⊂ Q`, we hence apply the three previous steps in the following way

L
2
((E △Eαisop) ∩Z) ≤ ∣vE(x̄) − vB(x′)∣ ≤ ∣vẼ(0) − vB(0)∣ ≤

√

D(Ẽ) ≤
√
D(E),

where Ẽ ⊂ R2 is the x-symmetric and y-Schwarz symmetric set found at Step 2.

4.2.1. Comments on possible adaptations to the Grushin plane

In the Grushin plane the isoperimetric set

Eαisop = {(x, y) ∈ R2
∶ ∣y∣ ≤ ϕα(∣x∣), ∣x∣ < 1}, ϕα(r) = ∫

π
2

arcsin r
sinα+1 t dt

is contained in Z ∪Z2 where

Z = {(x, y) ∈ R2
∶ ∣x∣ ≤

√
2

2
}, Z2 = {(x, y) ∈ R2

∶ ∣y∣ ≤ ϕα(

√
2

2
)}

Hence, for any set E ⊂ R2

L
2
(E △Eαisop) = 2L2

(Eαisop ∖E) ≤ 2{L2
((Eαisop ∖E) ∩Z) +L

2
((Eαisop ∖E) ∩Z2)}

≤ 4 max{L2
((Eαisop ∖E) ∩Z), L2

((Eαisop ∖E) ∩Z2)}

Differently from the euclidean case, in general, a rotation of the axes changes the α-perimeter

of a set (see Example 4.2.3 below). To use Fusco Maggi and Pratelli approach to Hall’s

inequality we must therefore prove estimate (4.2.2) in both stripes Z, Z2. In Lemma 4.2.4

we show that the estimate (4.2.5) at Step 1, holds for the α-perimeter for every α ≥ 0, in

both stripes Z, Z2. In Lemma 4.2.6, we show that the proof of estimate (4.2.6) at Step

2 can be easily extended to the α-perimeter in the case of the stripe Z2, while it cannot

be reproduced in the stripe Z since the α-perimeter is not invariant under translations by

vectors (x,0), x ∈ R. This fact leads us to study a partitioning problem to replace the

argument at Step 2 (see Section 4.3).

Example 4.2.3. The map (x, y) ↦ θ(x, y) = (y, x) fails to preserve α-perimeter, namely

the following property does not hold in general:

Pα(E) = Pα(θ(E)). (4.2.13)

We show an example. Consider the set E ⊂ R2, E = [−1,1]× [−2,2] and define Eθ = θ(E) =

[−2,2] × [−1,1]. By the representation formula for the α-perimeter, we have

Pα(E) = ∫
∂E

∣NE
α (x, y)∣ dH1

= ∫
{1}×[−2,2]

dH1
+ ∫

{−1}×[−2,2]
dH1

+ ∫
[−1,1]×{2}

∣x∣α dH1
+ ∫

[−1,1]×{−2}
∣x∣α dH1

= 8 + 2∫
1

−1
∣x∣α dx = 8 + 4∫

1

0
xα dx = 8 +

4

α + 1
,
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while

Pα(E
θ
) = 2H1

([−1,1] × {2}) + 2∫
[−2,2]×{1}

∣x∣α dH1
= 4 + 4∫

2

0
xα dx = 4 + 4

2α+1

α + 1
.

Hence Pα(E) = Pα(θ(E)) if and only if

α + 2 = 2α+1

which has the only solution α = 0.

From the asymmetry to section estimates in vertical and horizontal stripes

For any set E ⊂ R2 and any t > 0 we let

wyE(t) =H
1
(Eyt ) (4.2.14)

and we introduce from (2.4.2) the notation

vxα(t) = v
x
Eαisop

(t), wyα(t) = w
x
Eαisop

(t).

Lemma 4.2.4. Let α ≥ 0, ` > 0. Then, there exist δ1 = δ1(α, `) > 0, C1 = C1(α, `) > 0 with

the property that for any x- and y-Schwarz symmetric set E ⊂ Q`, satisfying Dα(E) < δ1,

there exists x̄ = x̄(E) ∈ [0,
√

2
2 ] such that if x′ = x′(E) is defined through the equality

∫

x̄

0
vxE(t) dt = ∫

x′

0
vxα(t) dt (4.2.15)

then

L
2
((E △Bα) ∩Z1) ≤ C1∣vE(x̄) − v

x
α(x

′
)∣. (4.2.16)

Moreover there exists ȳ = ȳ(E) ∈ [0, ϕα(
√

2
2 )] such that if y′ = y′(E) is defined through the

equality

∫

ȳ

0
wyE(t) dt = ∫

y′

0
wyα(t) dt (4.2.17)

then

L
2
((E △Bα) ∩Z2) ≤ C1∣w

y
E(ȳ) −w

y
α(y

′
)∣. (4.2.18)

Proof. We prove (4.2.16). We begin using x-symmetry and y-Schwarz symmetry of E to

write:

L
2
((E △Eαisop) ∩Z) = ∫

√
2/2

0
H

1
(Ext △ (Eαisop)

x
t ) dt = ∫

√
2/2

0
∣vxE(t) − v

x
α(t)∣ dt.

By the Mean Value Theorem, there exists x0 ∈ [0,
√

2
2 ] such that

∣vxE(x0) − v
x
α(x0)∣ ≥

√
2L2

((E △Eαisop) ∩Z). (4.2.19)
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We define

v∆(x0) = v
x
E(x0) − v

x
α(x0), I∆(x0) = ∫

x0

0
vxE(t) − v

x
α(t) dt

If v∆(x0) ≤ 0 and I∆(x0) ≤ 0, we set x̄ = x0. Then,

∫

x′

0
vxα(t) dt = ∫

x̄

0
vxE(t) dt ≤ ∫

x̄

0
vxα(t) dt

hence 0 ≤ x′ ≤ x̄ ≤
√

2
2 . By convexity of Eαisop, we deduce from (4.2.19) that

vxα(x
′
) ≥ vxα(x̄) ≥ v

x
E(x̄) +

√
2L2

((E △Eαisop) ∩Z)

and (4.2.16) is proved. The same argument applies if v∆(x0) ≥ 0 and I∆(x0) ≥ 0.

If v∆(x0) ≤ 0 and I∆(x0) ≥ 0, we consider two cases.

Case 1 : The quantity I∆(x0) ≥ 0 satisfies the following bound

I∆(x0) ≤m(α)L2
((E △Eαisop) ∩Z), where m(α) =

1

8
√

2
(

2
√

3
)
α+1

vxα(

√
3

2
). (4.2.20)

We let x̄(E) = x0. Since I∆(x0) ≥ 0, we deduce by (4.2.15) that x′(E) ≥ x̄(E). Nevertheless,

by Theorem 4.1.1, for any ε > 0, we can choose δ > 0 such that ∣x̄(E)−x′(E)∣ ≤ ε ifDα(E) < δ.

In particular, we can choose δ1 > 0 such that

x′(E) ≤
√

3/2 if Dα(E) < δ1 (4.2.21)

In fact, assume by contradiction that for some ε > 0, there exist a sequence of sets En ⊂ Q`,

n ∈ N satisfying

Dα(E) ≤
1

n
and ∣x̄(En) − x

′
(En)∣ ≥ ε. (4.2.22)

Applying the same compactness argument used in the proof of Theorem 4.1.1, (see relations

(4.1.8), (4.1.9), (4.1.10)), we deduce that the L1-limit of the sequence En is the isoperimetric

set Eαisop. Hence, by (4.2.15), limn→∞ x̄(En) = limn→∞ x
′(En) which contradicts (4.2.22).

For Dα(E) < δ1, by (4.2.21), we therefore have the following estimates

vxα(t) ≥ v
x
α(

√
3

2
) = 4∫

π/2

π/3
sinα+1 xdx for 0 ≤ t ≤ x′

∣x̄(E) − x′(E)∣ = ∫

x′

x̄
dx ≤

1

vxα(
√

3/2)
∫

x′

x̄
vxα(t) dt =

I∆(x0)

vxα(
√

3
2 )

dvxα(t)

dt
=
d

dt
(4∫

π/2

arcsin t
sinα+1 x dx) = −4

tα+1

√
1 − t2

≥ −8(

√
3

2
)
α+1

for 0 < t < x′

(4.2.23)

We deduce, using (4.2.20) and (4.2.19)

vxα(x
′
(E)) = vxα(x̄(E)) + ∫

x′(E)

x̄(E)

dvxα(t)

dt
dt

≥ vxα(x̄(E)) −
8

vα(
√

3
2 )

(

√
3

2
)
α+1

m(α)L2
((E △Eαisop) ∩Z)

≥ vE(x̄(E)) + (
√

2 −
1

√
2
)L

2
((E △Eαisop) ∩Z)



4.2. EUCLIDEAN HALL’S THEOREM 123

and (4.2.16) holds with C1(α) =
√

2/2.

Case 2: We have I∆(x0) ≥m(α)L2((E △Eαisop) ∩Z). In this case we have

1

x0
∫

x0

0
vxE(t) − v

x
α(t) dt ≥

√
2m(α)L2

((E △Eαisop) ∩Z).

and we can define

x̄ = max{t ∈ [0, x0] ∶ v
x
E(t) − v

x
α(t) ≥

√
2m(α)L2

((E △Eαisop) ∩Z)}. (4.2.24)

Then

∫

x0

x̄
vxE(t) − v

x
α(t) dt ≤

√
2m(α)L2

((E △Eαisop) ∩Z)∣x̄ − x0∣ ≤m(α)L2
((E △Eαisop) ∩Z).

We deduce

∫

x̄

0
vxE(t) − v

x
α(t) dt ≥ 0,

that reads, through (4.2.15), x′ ≥ x̄. By convexity of Eαisop and definition of x̄, we deduce

(4.2.16) for C1 = 1/
√

2m(α):

vxα(x
′
) ≤ vxα(x̄) ≤ v

x
E(x̄) −

√
2m(α)L2

((E △Eαisop) ∩Z).

If v∆(x0) ≥ 0 and I∆(x0) ≤ 0, the same argument works considering two cases depending

on the validity of the inequality

I∆(x0) ≥ −m2(α)L
2
((E △Eαisop) ∩Z), with m2(α) =

vxα(
1√
2
)

8
(
√

2)
α+1

. (4.2.25)

The same reasoning applies to prove (4.2.18), where the constants m and m2 have to be

replaced observing that

wyα(t) = 4ψα(t), for 0 < t < ϕα(0)

where ψα is the inverse function of ϕα, and it is still decreasing and concave.

Remark 4.2.5. By the proof of Lemma 4.2.4, it is clear that it is possible to choose δ1 > 0

small enough to have x′(E) ≤
√

3
2 (see (4.2.21)) and y′(E) ≤ ϕα(

√
3

2 ).

From unaligned sections to sections aligned at {y=0} in Z2

Lemma 4.2.6. Let α ≥ 0 and ` > 0. There exists a constant C2 = C2(α, `) > 0 such that for

any x- and y-Schwarz symmetric set E ⊂ Q` with L2(E) = L2(Eαisop), if δ1, ȳ(E) and y′(E)

are as in Lemma 4.2.4, there exists a set Ẽ ⊂ R2 so that

Pα(Ẽ) ≤ Pα(E), ∣wyE(ȳ(E)) −wyα(y
′
(E))∣ ≤ C2∣w

y

Ẽ
(0) −wyα(0)∣. (4.2.26)
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Proof. The proof follows the scheme given by Remarks 4.2.1 and 4.2.2 in the euclidean case.

We consider the unique pair of numbers λ, y0 > 0 such that

L
2
((δαλE

α
isop)

y
y0−) = L

2
(Eyȳ−) and H

1
({(x, y) ∈ δαλE

α
isop ∶ ∣y∣ = y0}) = w

y
E(ȳ)

and we call Ẽλ = δ
α
λE

α
isop. We let

Ed = {(x, y) ∈ E ∶ y < −ȳ}, Eu = {(x, y) ∈ E ∶ y > ȳ},

Ẽd = {(x, y) ∈ Ẽλ ∶ y < −y0}, Ẽu = {(x, y) ∈ Ẽλ ∶ y > y0}.

With the same reasoning as in (4.2.7) and (4.2.8), by invariance of the α-perimeter under

vertical translations, we deduce that the set Ẽ = (Ed+(0, ȳ−y0))∪(Ẽλ)
y
y0−∪(E

u+(0, y0−ȳ))

satisfies Pα(Ẽ) ≤ Pα(E).

O

Y_c

Y '

A BH

K
b

ψ(y ') +ψ ' (y ') (y - y ')

λ

Figure 4.1: Situation in the proof of Lemma 4.2.6 in the stripe Z2.

To conclude we are left to show existence of a constant C2 such that ∣wyα(y
′)−wy

Ẽ
(y0)∣ ≤

C2∣w
y
α(0)−w

y

Ẽ
(0)∣. As in Remark 4.2.2, assuming λ > 1, we have ∣wyα(0)−w

y

Ẽ
(0)∣ = 2πα(λ−1),

hence we only have to prove ∣wyα(y
′) −wy

Ẽ
(y0)∣ ≤ C(λ − 1). We can assume without loss of

generality that y′(E) ≤ ϕα(
√

3/2), as observed in Remark 4.2.5 (see Figure 4.1). This

allows to prove the following estimate: let 0 < t < y0 ≤ ϕα(
√

3/2) and define Jt(λ) =

λψα(t/λ
α+1) − ψα(t) for λ ≥ 1. We have wy

Ẽλ
(t) − wyα(t) = 4Jt(λ), then there exists λ∗ ≥ 1

such that

wy
Ẽλ

(t) −wyα(t) = 4J ′t(λ
∗
)(λ − 1) ≤ C(λ − 1)

since for any λ ≥ 1, 0 ≤ t ≤ ϕα(
√

3/2) we have

J ′t(λ) = ψα(
t

λα+1
) −

t

λα+1
ψ′α(

t

λα+1
) ≤ 1 + ψ′α(

√
3

2
)ϕα(

√
3

2
).

Then, we deduce

Cϕα(
√

3/2)(λ − 1) ≥ ∫
y0

0
wy
Ẽλ

(t) −wyα(t) dt

= ∫

y′

y0
wyα(t) dt ≥ w

y
α(ϕα(

√
3/2))∣y′ − y0∣ = 2

√
3∣y′ − y0∣.
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The rest of the proof runs as in Remark 4.2.2.

Remark 4.2.7. Since the α-perimeter is not invariant under horizontal translations, namely

there exist E ⊂ R2 and x ∈ R such that Pα(E + (x,0)) ≠ Pα(E), it is not possible to argue

as in the previous lemma (or as in Remark 4.2.1) to prove an estimate analogous to 4.2.26

in the stripe Z.

In Section 4.3, we show our attempts to solve this problem, studying a minimal partition

problem that replaces the construction in the proof of Lemma 4.2.6. In the next Remark

we show that for any dilation of the set Eαisop, an estimate as (4.2.26) can be proved.

Remark 4.2.8. For any λ > 0, we let Ẽ = δαλE
α
isop. For any x̄′ ∈ (0,

√
3/2) we let x0 > 0

defined by

∫

x0

0
vx
Ẽ
(t) dt = ∫

x′

0
vxα(t) dt

Then, the estimate

∣vxα(x
′
) − vẼ(x0)∣ ≤ C2∣v

x
α(0) − vẼ(0)∣

can be proved for some constant C2 > 0 as in the proof of Lemma 4.2.6.

4.3 A minimal partition problem

In this Section, we describe a minimum problem for the α-perimeter of sets in the plane

having a prescribed partition of volumes. Motivated by the proof of Step 2 and 3 in Section

4.2, we want to add a one dimensional constraint to the minimization problem, that can be

described using the notion of trace of a Schwarz symmetric set. To give the definition of

trace we use the result of the following Lemma.

Lemma 4.3.1. Let E ⊂ R2 be a y-Schwarz symmetric set and let x0 ∈ R. Then there exist

y+, y− ≥ 0 such that if T ± is the real interval [−y±, y±] ⊂ R, the following holds

lim
x→x±0

∫
R
∣χE(x, y) − χT±(y)∣ dy = 0.

Proof. We prove the statement for the limit as x→ x−0 . Let u ∈ C1(R2) and x1, x2 ∈ (−∞, x0).

The α-gradient of u is Dαu = (∂xu, ∣x∣
α∂yu). We have

∫
R
(u(x2, y) − u(x1, y))dy = ∫

R
∫

x2

x1
∂xu(ξ, y) dξdy

≤ ∫
(x1,x2)×R

∣∂xu∣(ξ, y) dξdy ≤ ∣Dαu∣((x1, x2) ×R).

By the approximation theorem for BVα-functions (see Theorem 1.2.4 and [56]), the last

inequality can be extended to u ∈ BV (R2). For u = χE we obtain

∫
R
(χE(x2, y) − χE(x1, y))dy ≤ Pα(E; (x1, x2) ×R),
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which implies that for any ε > 0 there exists δ > 0, such that

∥χE(x2, ⋅) − χE(x1, ⋅)∥L1(R) ≤ ε for x0 − δ < x1 < x2 < x0,

which is a Cauchy condition in the complete space L1(R). We deduce that there exists a

function u ∈ L1(R) which is the limit of χE(x, ⋅) as x→ x−0 . Moreover, since the sections of

E in the vertical direction are real intervals centered at zero, u = χT , for some symmetric

interval T = [−y−, y−].

Definition 4.3.2 (Traces of Schwarz symmetric sets). Let E ⊂ R2 be a y-Schwarz symmetric

set and let x0 ∈ R. The interval T− (resp. T +) defined in Lemma 4.3.1 is called the left (resp.

right) trace of E at x0 in the x-direction and it is denoted by trxx0− (reap trxx0+). If trxx0−E

and trxx0+E are the same interval, we call it the trace of E at x0 in the x-direction and we

denote it by trxx0E. In this case we say that the set E has trace at x0 in the x-direction.

Remark 4.3.3. In the same way we can define left and right traces at y0 > 0 in the y-

direction for x-Schwarz symmetric sets through the formula ∥χE(⋅, y2) − χE(⋅, y1)∥L1(R) ≤ ε

for ŷ − δ < y1 < y2 < ŷ.

Remark 4.3.4. If E = {(x, y) ∈ R2 ∶ ∣y∣ < f(∣x∣)} is a x-symmetric and y-Schwarz symmetric

set, then for any x0 > 0, trxx0±E = [−y±0 , y
±
0 ] with

lim
x→x±0

f(x) = y±0 .

In fact, by definition of left and right traces

0 = lim
x→x±0

∫
R
∣χE(x, y) − χ[−y±0 ,y

±
0 ]
(y)∣ dy

= lim
x→x±0

L
1
((E)x△ [−y±0 , y

±
0 ]) = 2 lim

x→x±0
∣f(x) − y±0 ∣.

For any given v1, v2, h1, h2 ≥ 0, we define the class Ax = Ax(v1, v2, h1, h2) of all Lebesgue

measurable sets E ⊂ R2 that are x-symmetric, y-Schwarz symmetric and such that there

exists x0 = x0(v1, v2, h1, h2) ≥ 0 satisfying

L
2
(Exx0−) = v1, L

2
(E ∖Exx0−) = v2,

[−h1, h1] ⊂ trxx0−E, [−h2, h2] ⊂ trxx0+E.
(4.3.1)

We define the following functional on the class Ax:

Fα(E) = Pα(E
x
x0−) + Pα(E

x
x0+) − 4h1 − 4h2, E ⊂ Ax. (4.3.2)
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Remark 4.3.5. The functional Fα is non-negative on the sets of the class Ax. In fact,

using the Representation formula for the α-perimeter of smooth sets, combined with the

approximation result in Theorem 1.2.4, we get

Fα(E) = Pα(E;Exx0−) + Pα(E
x
x0−;{∣x∣ = x0}) − 4h1

+ Pα(E;E ∖Exx0−) + Pα(E ∖Exx0−;{∣x∣ = x0}) − 4h2

which is non-negative thanks to the trace assumption.

Moreover, if h1 = h2 = h, for any set E ∈ Ax such that trxx0−E = trxx0+E = [−h,h], we have

Fα(E) = Pα(E;Exx0−) + 4h + Pα(E;E ∖Exx0−) + 4h − 8h = Pα(E).

We consider the minimization problem for Fα in the class Ax, defining the constant

CIP = inf{Fα(E) ∶ E ∈ Ax}. (4.3.3)

The constant CIP is strictly positive thanks to the isoperimetric inequality in the Grushin

plane (see Proposition 1.3.4).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 4.2: Example of a set in Ax(v1, v2, h1, h2), for h1 = h2 i.e., a x-symmetric and y-

Schwarz symmetric set whose volume is partitioned into three parts that touch each other

in sections of prescribed length.

Section 4.3.1 is dedicated to the proof of existence of bounded minimizers for Problem

(4.3.3), satisfying suitable convexity properties. In Section 4.3.2 we deduce differential equa-

tions for the profile function of such minimizers and we use them to prove some elementary

properties of minimizers, see Remark 4.3.8.

In Section 4.3.3 we are concerned with trace properties of the minimizers for (4.3.3).

What we expect is that given v1, v2, h1, h2 ≥ 0, a minimizer E ⊂ Ax(v1, v2, h1, h2) for problem

(4.3.3) satisfies trxx0−E = [−h1, h1] and trxx0+E = [−h2, h2] where x0 > 0 is defined by (4.3.1).

So far we are able to prove only part of the claim. In Proposition 4.3.9 we prove that if the
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profile function of E has finite derivative at x0, then trxx−0
E = [−h1, h1]. The technique that

we use here does not work in the case of infinite derivative, see Remark 4.3.10.

In Section 4.3.4 we focus on the following question, motivated by Remark 4.2.8: are

minimizers obtained as dilations of Eαisop in their central part? In Proposition 4.3.11 we

prove that this property fails to hold when v2 = 0 and h1 > 0.

4.3.1. Existence of solutions to the partitioning problem

Theorem 4.3.6. Let v1, v2, h1, h2 ≥ 0. Then there exists a bounded set E ∈ Ax realizing the

infimum in (4.3.3) and such that, for x0 ≥ 0 as in (4.3.1), Exx0−, E∩{x > x0}, E∩{x < −x0}

are convex sets.

Proof. Let (Em)m∈N be a minimizing sequence for the infimum in (4.3.3), namely

Em ∈ Ax Fα(Em) ≤ CIP (1 +
1

m
) m ∈ N.

Since Em ∈ Ax, there exists xm > 0 such that (4.3.1) is satisfied for E = Em, x0 = xm.

Moreover, by the symmetry properties of the sets in Ax, there exists a measurable function

fm such that Em = {(x, y) ∈ R2 ∶ ∣y∣ < fm(∣x∣)}. We define y−m, y
+
m ≥ 0 such that trxxm±Em =

[−y±m, y
±
m]. By Remark 4.3.4,

lim
x→x+m

fm(x) = y+m, lim
x→x−m

fm(x) = y−m, with y+m ≥ h2, y
−
m ≥ h1. (4.3.4)

Fix m ∈ N and let E = Em, x0 = xm, f = fm, y−0 = y−m, y+0 = y+m. The proof is divided into

several steps.

Step 1. (Approximation by smooth sets). We claim that there exists a sequence of x-

symmetric and y-Schwarz symmetric sets (Ej)j∈N such that

1. ∂Ej is a locally C∞ curve, i.e., for any (x, y) ∈ ∂Ej there exists r > 0 such that

∂Ej ∩B((x, y), r) is a C∞ curve;

2. lim
j→∞

Pα((Ej)
x
x0−) = Pα(E

x
x0−) and limj→∞ Pα(Ej ∖ (Ej)

x
x0−) = Pα(E ∖Exx0−);

3. lim
j→∞
L

2
((Ej)

x
x0−) = L

2
(Exx0−) and lim

j→∞
L

2
(Ej ∖ (Ej)

x
x0−) = L

2
(E ∖Exx0−);

4. if trxx0±Ej = [−q±j , q
±
j ], for some q±j ≥ 0, we have q±j → y±0 as j →∞.

To construct the sequence (Ej)j∈N we introduce a positive symmetric mollifier J ∈ C∞(R2),

i.e., J ∈ C∞
c (BE(0,1)), J ≥ 0, ∫R2 J(p) dp = 1, and J(p) = J(q), for p, q ∈ R2, ∣p∣ = ∣q∣. For

any ε > 0, let Jε(p) =
1
ε2
J(∣p∣/ε), p ∈ R2 and define the mollified function hε = Jε ∗ χE . For

any t ∈ (0,1), let Eεt = {(x, y) ∈ R2 ∶ hε(x, y) > t}. Consider a sequence εj → 0 as j → ∞.
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Then, following [66, Theorem 1.24], we can choose t ∈ (0,1) such that the set Ej = Eεjt

satisfies 1, 3, and, in addition

lim
j→∞

Pα(Ej ; (Ej)
x
x0−) = Pα(E;Exx0−), lim

j→∞
Pα(Ej ;Ej ∖ (Ej)

x
x0−}) = Pα(E;E ∖Exx0−). (4.3.5)

Observe that the sets Ej , j ∈ N are y-Schwarz symmetric, i.e., for any (x̄, ȳ) ∈ Ej , (x̄, y) ∈

Ej if ∣y∣ < ȳ. In fact, since E is y-Schwarz symmetric, χE(x̄ − x
′, ȳ − y′) ≤ χE(x̄ − x

′, y − y′)

for every (x′, y′) ∈ R2 and ∣y∣ < ∣ȳ∣. Hence

t <hεj(x̄, ȳ) = ∫
Bεj (0)

Jε(x
′, y′)χE(x̄ − x

′, ȳ − y′) dx′dy′

≤ ∫
Bεj (0)

Jε(x
′, y′)χE(x̄ − x

′, y − y′) dx′dy′ = hεj(x̄, y),

which implies (x̄, y) ∈ Ej . Moreover by symmetry of the mollifier J , for every j ∈ N, Ej is

also x-symmetric. Hence the left and right traces of Ej are well defined. Let φj denote the

profile function of Ej , i.e., Ej = {(x, y) ∈ R2 ∶ ∣y∣ < φj(∣x∣)}, and define

q−j = lim
x→x−0

φj(x0), q+j = lim
x→x+0

φj(x0).

By Remark 4.3.4, trxx0±Ej = [−q±j , q
±
j ]. We prove that q+j → y+0 as j →∞. The same reasoning

applies to prove q−j → y−0 , j →∞, and claim 4 follows. Let 0 < σ < y+0 , by (4.3.4) there exists

δ = δ(σ) > 0 such that

∣f(x) − y+0 ∣ < σ for x0 < x < x0 + δ. (4.3.6)

Choose j̄(σ) ∈ N to have εj < min{σ, δ(σ)/4} for j ≥ j̄(σ). We first claim that for any

j ≥ j̄(σ), if x ∈ (x0 + εj , x0 +
δ
2) and y ∈ (0, y+0 − 2σ), then

(x − ξ, y − η) ∈ E, for (ξ, η) ∈ B(0, εj). (4.3.7)

In fact, the following estimates holds true for j ≥ j̄(σ), x ∈ (x0 + εj , x0 +
δ
2), −εj < ξ < εj :

x0 < x − ξ < x0 +
δ

2
− ξ < x0 +

δ

2
+ εj < x0 + δ

hence, by (4.3.6), for y ∈ (0, y+0 − 2σ) and −εj < η < εj ,

y − η < y + εj < y
+
0 − 2σ + σ < f(x − ξ).

We now deduce from (4.3.7) that

Aσ = (x0 + εj , x0 +
δ

2
) × (0, y0 − 2σ) ⊂ Ej , for j ≥ j(σ). (4.3.8)

This follows applying the definition of the set Ej , since, for any j ≥ j̄(σ), if (x, y) ∈ Aσ we

have

hεj(x, y) = ∫
B(0,εj)

Jεj(ξ, η)χE(x − ξ, y − η) dξdη = ∫
B(0,εj)

Jεj(ξ, η) dξdη = 1 > t.



130 CHAPTER 4. ISOPERIMETRIC STABILITY IN THE GRUSHIN PLANE

In particular, (4.3.8) implies

(−y+0 + 2σ, y+0 − 2σ) ⊂ trx(x0+εj)+Ej for every j > j̄(σ). (4.3.9)

Similarly, we can choose ¯̄j(σ) ∈ N such that

tr(x0+εj)+Ej ⊂ (−y+0 − 2σ, y0 + 2σ) for j ≥ ¯̄j(σ). (4.3.10)

We deduce claim 4 from (4.3.9) and (4.3.10). Claim 2 follows from claim 4 and (4.3.5).

Step 2. (Gluing around the y-axis). We claim that there exist x-symmetric and y-

Schwarz symmetric sets Êj , j ∈ N, such that for every j ∈ N, there exist 0 < x̂j ≤ x0 satisfying:

1. the euclidean outer unit normal to Êj exists outside a set of H1-measure zero;

2. if φ̂j ∶ [0,∞) → [0,∞) denotes the profile function of Êj and Dj = inf{x̄ ≥ 0 ∶ φj(x) =

0 for x ≥ x̄}, then H1
({x ∈ [0,Dj] ∶ φ̂j(x) = 0}) = 0;

3. Pα((Êj)
x
x̂j−

) ≤ Pα((Ej)
x
x0−) and Pα(Êj ∖ (Êj)

x
x̂j−

) ≤ Pα(Ej ∖ (Ej)
x
x0−);

4. L2
((Êj)

x
x̂j−

) = L
2
((Ej)

x
x0−) and L2

(Êj ∖ (Êj)
x
x̂j−

) = L
2
(Ej ∖ (Ej)

x
x0−);

5. trxx0−Êj = trxx0−Ej and trxx0+Êj = trxx0+Ej .

For any j ∈ N, define the set Zj ∶= {x ∈ R ∶ φj(x) = 0} and write Zj = Z
1
j ∪Z

2
j with

Z1
j = {x ∈ [0,Dj] ∶ φj(x) = 0 and φj(ξ) ≠ 0 for ξ ∈ (x − δ, x + δ) ∖ {x} for some δ > 0},

Z2
j = {x ∈ [0,Dj] ∶ ∃δ > 0 ∶ φj(ξ) = 0 for ξ ∈ (x − δ, x] or ξ ∈ [x,x + δ)}.

By symmetry and smoothness of Ej , we have Z1
j = ∅. In fact, suppose by contradiction that

there exists x ∈ Z1
j , and let p = (x,0) ∈ ∂Ej . Since ∂Ej is smooth, there exists the outer unit

normal ν at p. By y-symmetry of E, ν = (±1,0). Moreover, there exists a smooth function

θ ∶ Br(p)→ R, defined on a euclidean ball Br(p) = {q ∈ R2 ∶ ∣q − p∣ < r}, for some radius r > 0

such that

θ(q) = 0 ⇐⇒ q ∈ ∂Ej ∩Br(p),

θ(q) > 0 ⇐⇒ q ∈ Ej ∩Br(p),

θ(q) < 0 ⇐⇒ q ∈ (R2
∖ Ej) ∩Br(p).

We deduce that p + τν /∈ Ej for 0 < τ < min{r, δ}, which contradicts φj(x ± τ) ≠ 0.

On the other hand, the set Z2
j is the complement in R of the set {x ∈ R ∶ (x,0) ∈ Ej},

therefore it is open in the R-topology. Hence, Z2
j is the union of at most countably many

open intervals. We diversify the notation for the intervals in Z2
j ∩ {x ∈ R ∶ ∣x∣ < x0} and in
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Z2
j ∩ {x ∈ R ∶ ∣x∣ > x0}: there exists a sequence of points 0 ≤ a1

j < b
1
j < a

2
j < b

2
j < ⋅ ⋅ ⋅ ≤ x0 < c

1
j <

d1
j < c

2
j < d

2
j < ⋅ ⋅ ⋅ ≤Dj , such that

Z2
j = ⋃

k∈I

(akj , b
k
j ) ∪⋃

k∈J

(ckj , d
k
j ) ∪⋃

k∈I

(−bkj ,−a
k
j ) ∪⋃

k∈J

(−dkj ,−c
k
j ),

where I,J ⊂ N. We rearrange Ej in at most countably many steps, each one corresponding

to an interval (akj , b
k
j ) for k ∈ I.

Base step. We define the set

E
1
j = (Ej)

x
a1j−

∪ {(x + a1
j − b

1
j , y) ∶ (x, y) ∈ Ej , x > b

1
j}

∪ {(x + b1j − a
1
j , y) ∶ (x, y) ∈ Ej , x < −b

1
j}

which is x-symmetric and y-Schwarz symmetric. Let x1
j = x0 + a

1
j − b

1
j < x0. Since

Ej ∩ ((a1
j , b

1
j) ×R) = ∅, we have

L
2
((E

1
j )
x
x1j−

) = L
2
((Ej)

x
x0−) and L

2
(E

1
j ∖ (E

1
j )
x
x1j−

) = L
2
(Ej ∖ (Ej)

x
x0−).

Moreover trx
x1j±
E1
j = trxx0±Ej . We prove that Pα((E

1
j )
x
x1j−

) ≤ Pα((Ej)
x
x0−). Since ∂E1

j is

locally smooth outside the set {(x, y) ∈ R2 ∶ ∣x∣ = a1
j}, let N1

j (p) = (N1
jx(p),N

1
jy(p)) be

euclidean outer unit normal to E1
j at p = (x, y) ∈ R2, for ∣x∣ ≠ a1

j . If Nj is the euclidean

outer unit normal to ∂Ej , for (x, y) ∈ ∂Ej , we have

N1
j (x − b

1
j + a

1
j , y) = Nj(x, y) if x > b1j ; N1

j (x + b
1
j − a

1
j , y) = Nj(x, y) if x < −b1j .

Hence, by the representation formula in Proposition 2.2.1 we get

Pα((E
1
j )
x
x1j−

) ≤ Pα((E
1
j )
x
a1j−

) + Pα((E
1
j )
x
x1j−

∖ (E
1
j )
x
a1j−

)

≤ ∫
∂(E1j )

x

a1
j
−

√
N1
jx(x, y)

2 + ∣x∣2αN1
jy(x, y)

2 dH1
(x, y)

+ ∫
∂((E1j )

x

x1
j
−∖(E

1
j )
x

a1
j
−)

√
(N1

jx(x − b
1
j + a

1
j , y))

2 + ∣x − b1j + a
1
j ∣

2α(N1
jy(x − b

1
j + a

1
j , y))

2 dH1

≤ ∫
∂(Ej)xaj−

(N1
jx

2
+ ∣x∣2αN1

jy
2
)

1
2 dH1

+ ∫
∂((Ej)xx0−∖(Ej)

x
bj−)

(N2
jx + ∣x∣2αN2

jy)
1
2 dH1

(x, y)

= Pα(Ej).

In the same way follows

Pα(E
1
j ∖ (E

1
j )
x
x1j−

) ≤ Pα(Ej ∖ (Ej)
x
x0−).

Second step. Let E2
j be the x-symmetric and y-Schwarz symmetric set

E
2
j ={(x, y) ∈ E

1
j ∶ ∣x∣ ≤ a

2
j − (b1j − a

1
j)}

∪ {(x −
2

∑
i=1

(bij − a
i
j), y) ∶ (x, y) ∈ E

1
j , x > b

2
j − (b1j − a

1
j)}

∪ {(x +
2

∑
i=1

(bij − a
i
j), y) ∶ (x, y) ∈ E

1
j , x < −b

2
j + (b1j − a

1
j)},
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and x2
j = x0 −∑

2
i=1(b

i
j − a

1
j). Then,

L
2
((E

2
j )
x
x2j−

) = L
2
((Ej)

x
x0−) and L

2
(E

1
j ∖ (E

2
j )
x
x2j−

) = L
2
(Ej ∖ (Ej)

x
x0−),

and trx
x2j±
E2
j = trx

x1j±
E1
j = trxx0±Ej . Moreover, as in the previous step, ∂E2

j is locally

smooth outside the set {(x, y) ∈ R2 ∶ ∣x∣ = a1
j , ∣x∣ = a

2
j −(b

1
j −a

1
j)}, hence, Pα((E

2
j )
x
x2j−

) ≤

Pα((Ej)
x
x0−) and Pα(E

2
j ∖ (E2

j )
x
x2j−

) ≤ Pα(Ej ∖ (Ej)
x
x0−).

Inductive step. Let Ekj be the x-symmetric and y-Schwarz symmetric set

E
k
j ={(x, y) ∈ E

k−1
j ∶ ∣x∣ ≤ akj −

k−1

∑
i=1

(bij − a
i
j)}

∪ {(x −
k

∑
i=1

(bij − a
i
j), y) ∶ (x, y) ∈ E

k−1
j , x > bkj −

k−1

∑
i=1

(bij − a
i
j)}

∪ {(x +
k

∑
i=1

(bij − a
i
j), y) ∶ (x, y) ∈ E

k−1
j , x < −bkj +

k−1

∑
i=1

(bij − a
i
j)},

and define

xkj = x0 −
k

∑
i=1

(bij − a
i
j) < x0.

Then

L
2
((E

k
j )
x
xkj−

) = L
2
((Ej)

x
x0−) and L

2
(E

1
j ∖ (E

k
j )
x
xkj−

) = L
2
(Ej ∖ (Ej)

x
x0−),

Pα((E
k
j )
x
xkj−

) ≤ Pα((Ej)
x
x0−), Pα(E

k
j ∖ (Ekj )

x
xkj−

) ≤ Pα(Ej ∖ (Ej)
x
x0−), and ∂Ekj is locally

smooth outside {(x, y) ∈ R2 ∶ ∣x∣ = a1
j −∑

`
i=2(b

i
j − a

i
j) for ` = 2, . . . , k}.

Iterating this procedure at most countably many times, we obtain a x-symmetric and y-

Schwarz symmetric set Êj satisfying claims 3, 4 an 5 for

x̂j = x0 −∑
i∈I

(bij − a
i
j). (4.3.11)

Repeating this argument for the intervals (ckj , d
k
j ), k ∈ J, we obtain a set, which we still call

Êj , that satisfies also claims 1 and 2. In fact, let

Ẑj = {akj −
k−1

∑
i=1

(bij − a
i
j) ∶ k ∈ I} ∪ {ckj −

k−1

∑
i=1

(dij − c
i
j) ∶ k ∈ J}

which is at most countable, and denote by φ̂j be the profile function of Êj . Then the outer

unit normal to Êj exists outside the set {(x, y) ∈ R2 ∶ ∣x∣ ∈ Ẑj}, and {x ∈ R ∶ φ̂j(x) = 0} ⊂ Ẑj .

Step 3. (Reflection in the vertical direction) For any j ∈ N, we rearrange the set Êj into

a x-symmetric and y-Schwarz symmetric set
ˆ̂
Ej with profile function

ˆ̂
φj ∶ [0,∞) → [0,∞)

such that
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1. The euclidean outer unit normal to
ˆ̂
Ej exists outside a set of H1-measure zero;

2.
ˆ̂
φj(∣x∣) ≥ qj for x ∈ R, ∣x∣ < x̂j ;

3. Pα((
ˆ̂
Ej)

x
x̂j−

) ≤ Pα((Êj)
x
x̂j−

) and Pα(
ˆ̂
Ej ∖ (

ˆ̂
Ej)

x
x̂j−

) = Pα(Êj ∖ (Êj)
x
x̂j−

);

4. L2
((

ˆ̂
Ej)

x
x̂j−

) ≥ L
2
((Êj)

x
x̂j−

) and L2
(

ˆ̂
Ej ∖ (

ˆ̂
Ej)

x
x̂j−

) = L
2
(Êj ∖ (Êj)

x
x̂j−

);

5. trxx̂j−
ˆ̂
Ej = trxx̂j−Êj and trxx̂j+

ˆ̂
Ej = trxx̂j+Êj .

We define the rearranged function
ˆ̂
φj ∶ [0,∞)→ [0,∞),

ˆ̂
φj(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣φ̂j(x) − q
−
j ∣ + q

−
j =

⎧⎪⎪
⎨
⎪⎪⎩

φ̂j(x) if φ̂j(x) ≥ q
−
j

2q−j − φ̂j(x) if φ̂j(x) < q
−
j

if ∣x∣ < x̂j ,

φ̂j(x) if ∣x∣ > x̂j .

Let
ˆ̂
Ej be the x- and y-symmetric set generated by

ˆ̂
φj (see Figure 4.3). Clearly

ˆ̂
Ej∖(

ˆ̂
Ej)

x
x̂j−

=

Êj ∖ (Êj)
x
x̂j−

and claims 2 and 5 are satisfied. Claim 4 follows, observing that
ˆ̂
φ ∈ L1(R) and

ˆ̂
φj ≥ φ̂j , thus L2(

ˆ̂
Ej) ≥ L

2(Êj).

1 2 3 4 5 6

1

2

3

4

1 2 3 4 5 6

1

2

3

4

Figure 4.3: The set Êj and the rearranged
ˆ̂
Ej .

Denote by Kj , the set of points (x, y) ∈ ∂Êj with φ̂j(x) = q
−
j and for which there exists

δ > 0 such that φ̂(ξ) ≠ q−j for ξ ∈ (x,x + δ) or ξ ∈ (x − δ, x). Then, H1(Kj) = 0 for any j ∈ N
since Kj is countable.

By construction, the outer unit normal to
ˆ̂
Ej exists outside Kj ∪ Ẑj , which has H1-

measure zero, and we denote it by
ˆ̂
Nj = (

ˆ̂
Njx,

ˆ̂
Njy). Moreover, if N̂j = (N̂jx, N̂jy) is the

outer unit normal to ∂Êj , we have for any (x, y) ∈ ∂Êj ∖ (Kj ∪ Ẑj), ∣x∣ < x̂j ,

ˆ̂
Nj(x, ∣y − qj ∣ + qj) = (N̂jx(x, y), sgn(y − qj)N̂jy(x, y)),
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hence

Pα((
ˆ̂
Ej)

x
x̂j−

) = ∫
∂j(

ˆ̂
Ej)

x
x̂j−

√
ˆ̂
N2
jx + ∣x∣2α

ˆ̂
N2
jy dH

1

= ∫
{p∈∂(Êj)xx̂j−∶ N̂jy(p)≠0}

√

N̂2
jx + ∣x∣2αN̂2

jy dH
1
+H

1({p ∈ ∂(
ˆ̂
Ej)

x
x̂j−

∶
ˆ̂
Njy(p) = 0})

≤ ∫
{p∈∂(Êj)xx̂j−∶ N̂jy(p)≠0}

√

N̂2
jx + ∣x∣2αN̂2

jy dH
1
+H

1({p ∈ ∂(Êj)
x
x̂j−

∶ N̂jy(p) = 0})

= Pα(Êj).

Step 4. (Convexification) For any j ∈ N, we rearrange the set
ˆ̂
Ej into a x-symmetric and

y-Schwarz symmetric set Ẽj , such that there exists 0 < x̃j < x0 satisfying:

1. the sets (Ẽj)
x
x̃j−, Ẽj ∩ {(x, y) ∈ R2 ∶ x < −x̃j} and Ẽj ∩ {(x, y) ∈ R2 ∶ x > x̃j} are convex;

2. Pα((Ẽj)
x
x̃j−) ≤ Pα((Ej)

x
x0−) and Pα(Ẽj ∖ (Ẽj)

x
x̃j−) ≤ Pα(Ej ∖ (Ej)

x
x0−);

3. L2
((Ẽj)

x
x̃j−) = L

2
((Ej)

x
x0−) and L2

(Ẽj ∖ (Ẽj)
x
x̃j−) = L

2
(Ej ∖ (Ej)

x
x0−);

4. trxx̃j−Ẽj = trxx̃j+Ẽj ⊃ [−qj , qj].

We introduce the function

Ψ ∶ R2
→ R2, Ψ(x, y) = (sgn(x)

∣x∣α+1

α + 1
, y),

which is a homeomorphism with inverse

Φ ∶ R2
→ R2, Φ(ξ, η) = (sgn(ξ)∣(α + 1)ξ∣

1
α+1 , η).

As shown in [99, Proposition 2.3], for any measurable set F ⊂ R2, we have

Pα(F ) = P (Ψ(F )) and L
2
(F ) = µ(Ψ(F )),

where P denotes the Euclidean perimeter and µ is a Borel measure on R2 defined on Borel

sets as follows:

µ(A) = ∫
A
∣(α + 1)ξ∣−

α
α+1 dξdη, A ⊂ R2 Borel.

For any j ∈ N, let F c
j = Ψ((

ˆ̂
Ej)

x
x̂j−

) ⊂ R2 and consider its convex envelope in R2, co(F c
j ).

We show that the transformed set Fc
j = Φ(co(F c

j )) is convex itself (see [99, page 362]). First

of all, notice that the maps Φ, Ψ preserve the symmetries, namely, since co(F c
j ) is x- and

y-Schwarz symmetric, also Fc
j has such symmetries. We show that it is also a convex set. In

fact, let t ∈ (0,1), for any q1, q2 ∈ Φ(co(F c
j )) there exist p1 = (ξ1, η1), p2 = (ξ2, η2) ∈ co(F c

j ).

Since co(F c
j ) is convex, we have

(sgn(tξ1 + (1 − t)ξ2)(α + 1)∣tξ1 + (1 − t)ξ2∣
1
α+1 , tη1 + (1 − t)η2)

= Φ(tp1 + (1 − t)p2) ∈ Φ(co(F c
j ))

(4.3.12)
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On the other hand, by the concavity inequality

∣tξ1 + (1 − t)ξ2∣
1
α+1 ≥ t∣ξ1∣

1
α+1 + (1 − t)∣ξ2∣

1
α+1 , t ∈ (0,1), ξ1, ξ2 ≥ 0

and by x- and y-Schwarz symmetry of Φ(co(F c
j )), we get from (4.3.12)

tq1+(1−t)q2 = ((α+1){sgn(tξ1)∣tξ1∣
1
α+1+sgn((1−t)ξ2)∣(1−t)ξ2∣

1
α+1 }, tη1+(1−t)η2) ∈ Φ(co(F c

j )),

which proves that Fc
j is convex. The set Fc

j satisfies

L
2
(F

c
j ) = µ(co(F c

j )) ≥ µ(F
c
j ) = L

2
((

ˆ̂
Ej)

x
x̂j−

) ≥ L
2
((Êj)

x
x̂j−

) ≥ L
2
((Ej)

x
x0−), (4.3.13a)

Pα(F
c
j ) = P (co(F c

j )) ≤ P (F c
j ) = Pα((

ˆ̂
Ej)

x
x̂j−

), (4.3.13b)

trxx̂j−F
c
j = [−q−j , q

−
j ]. (4.3.13c)

By (4.3.13a), we define x̃j ∈ [0, x̂j] such that L2((Fc
j )
x
x̃j−

) = L2((Ej)
x
x0−). By x- and y-

Schwarz symmetry of Fcj , its profile function is decreasing, hence

[−q−j , q
−
j ] ⊂ trxx̃j−F

c
j .

Define the set

Fj = (F
c
j )
x
x̃j− ∪ {(x − x̂j + x̃j , y) ∈ R2

∶ (x, y) ∈
ˆ̂
Ej , x > x̂j}

∪ {(x + x̂j − x̃j , y) ∈ R2
∶ (x, y) ∈

ˆ̂
Ej , x < −x̂j}.

As in Step 1, we have Pα(Fj∖(Fj)
x
x̃j−

) ≤ Pα(
ˆ̂
Ej∖(

ˆ̂
Ej)

x
x̂j−

), L2(Fj∖(Fj)
x
x̃j−

) = L2(
ˆ̂
Ej∖(

ˆ̂
Ej)

x
x̂j−

)

and trxx̃j+Fj = trxx̂j+
ˆ̂
Ej .

Let ψj ∶ [0,∞)→ [0,∞) be the profile function of Fj . The same argument used to prove

(4.3.13a)-(4.3.13c), shows that the sets

F
r
j = Φ(co(Ψ(Fj ∩ {x > x̃j}))) and F

l
j = Φ(co(Ψ(Fj ∩ {x < −x̃j})))

are convex sets satisfying

F
l
j = {(−x, y) ∶ (x, y) ∈ Frj }, L

2
(F

r
j ∪F

l
j) ≥ L

2
(Fj ∖ (Fj)

x
x̃j−)

trx̃j+F
r
j = trx̃j+Fj , Pα(F

l
j ∪F

r
j ) ≤ Pα(Fj ∖ (Fj)

x
x̃j−).

For any j ∈ N, let rj ≥ x̃j be such that L2((Frj ∪F
l
j)
x
rj−) = L

2(Ej ∖ (Ej)
x
x0−). The sequence

Ẽj = (F
c
j )
x
x̃j− ∪ (F

r
j ∪F

l
j)
x
rj−, j ∈ N, (4.3.14)

satisfies all the claims of this Step.

Step 5. (Boundedness) We go back to the sequence Em, m ∈ N and use the following

notation:
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• Emj ⊂ R2 is the sequence at Step 1, with trxxm±E
m
j = [−qm±j , qm±j ];

• Ẽmj ⊂ R2 is the sequence at Step 4 and x̃mj > 0 is such that trxx̃mj ±
= [−q̃m±j , q̃m±j ].

By Step 1, for any m ∈ N there exists J(m) ∈ N such that for j ≥ J(m), we have

∣q±j − y
±
m∣ ≤

1

m
(4.3.15)

and

∣Pα((Ẽ
m
j )

x
x̃mj −

) − Pα((Em)
x
xm−))∣ ≤

1

m
, ∣Pα(Ẽ

m
j ∖ (Ẽ

m
j )

x
x̃mj −

) − Pα(Em ∖ (Em)
x
xm−)∣ ≤

1

m
,

∣L
2((Ẽ

m
j )

x
x̃mj −

) −L
2
((Em)

x
xm−))∣ ≤

1

m
, ∣L

2(Ẽ
m
j ∖ (Ẽ

m
j )

x
x̃mj −

) −L
2
(Em ∖ (Em)

x
xm−))∣ ≤

1

m
.

(4.3.16)

Let (jm)m∈N be an increasing sequence of integer numbers such that jm ≥ J(m) for any

m ∈ N. We choose the diagonal sequence Ẽm = Ẽmjm , m ∈ N. We prove that there exists ` > 0

such that

Ẽm ⊂ [−`, `] × [−`, `], for any m ∈ N. (4.3.17)

First of all, letting x̃m = x̃mjm , we have

sup{Pα((Ẽm)
x
x̃m−) ∶m ∈ N} <∞, and sup{Pα(Ẽm ∖ (Ẽm)

x
x̃m−) ∶m ∈ N} <∞ (4.3.18)

by definition of Fα in (4.3.2), and minimality of (Em)m∈N. In fact:

max{Pα((Ẽm)
x
x̃m−), Pα(Ẽm ∖ (Ẽm)

x
x̃m−)} ≤ Pα((Ẽm)

x
x̃m−) + Pα(Ẽm ∖ (Ẽm)

x
x̃m−)

≤ Pα((Em)
x
xm−) + Pα(E ∖ (Em)

x
xm−) +

2

m

= Fα(Em) + 4h1 + 4h2 +
2

m
≤ 2CIP + 4h1 + 4h2 + 2.

We prove that the sequence x̃m is bounded. Let φ̃m be the profile function of Ẽm and

assume by contradiction that xm → ∞ as m → ∞. In this case, by the Representation

formula in Proposition 2.2.1 we have:

Pα((Ẽm)
x
x̃m−) = ∫

x̃m

0

√

φ̃m(x)2 + ∣x∣2α dx ≥ ∫
x̃m

0
∣x∣α =

x̃α+1
m

α + 1
→∞, m→∞

which is in contradiction with (4.3.18). In the same way we can see that, if rm is defined

by (4.3.14) so that Ẽm ⊂ (Ẽm)xrm−, the sequence (rm)m∈N is bounded.

Now, we show boundedness in the vertical direction, namely we show that there exists

L ≥ 0 such that Ẽm ⊂ (Ẽm)
y
L−. Suppose by contradiction that for any L ≥ 0, there exists

m = m(L) ∈ N such that (Ẽm)xx̃m− ∖ (Ẽm)
y
L− ≠ ∅, then by convexity of (Ẽm)xx̃m−, it is

equivalent to assume that for any L ≥ 0 there exists j(L) ≥ 0 such that

φ̃m(0) > L for m ≥m(L), (4.3.19)
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We write for x ∈ (0, x̃m)

φ̃m(x) = −∫
x̃m

x
φ̃′m(ξ) dξ = ∫

x̃m

x
∣φ̃′m(ξ)∣ dξ,

then

φ̃m(0) = lim
x→0

∫

x̃m

x
∣φ̃′m(ξ)∣ dξ = ∫

x̃m

0
∣φ̃′m(ξ)∣ dξ,

which implies, by (4.3.19)

lim
m→∞

∫

x̃m

0
∣φ̃′m(ξ)∣ dξ = lim

m→∞
φ̃m(0) =∞.

Therefore

Pα((Ẽm)
x
x̃m−) = 4∫

x̃m

0

√

(φ̃′m(x))2 + x2α dx ≥ ∫
x̃m

0
∣φ̃′m(x)∣ dx→∞ as m→∞,

which is in contradiction with (4.3.18). Similarly, we exclude the case that for any L > 0

(Ẽm ∖ (Ẽm)xx̃m−) ∖ (Ẽm)
y
L− ≠ ∅.

Step 6. (Existence of a minimum) From (4.3.18), by the compactness theorem for BVα

functions (see [65, Theorem 1.28 ]), there exists a set E∞ which is the L1
loc-limit of Ẽm as

m →∞. By (4.3.17), convergence χẼm → χE∞ is in L1(R2). Moreover, since the sequence

(x̃m)m∈N is bounded, we let x∞ ≥ 0 be the limit up to subsequences of x̃m as m →∞. We

have, by (4.3.16),

L
2
((E∞)x̃∞) = lim

m→∞
L

2
((Ẽm)

x
x̃m−) = lim

m→∞
L

2
((Em)

x
xm−) = v1

and

L
2
(E∞ ∖ (E∞)x̃∞) = lim

m→∞
L

2
(Ẽm ∖ (Ẽm)

x
x̃m−) = lim

m→∞
L

2
(Em ∖ (Em)

x
xm−) = v2.

Now, since (Ẽm)xx̃m−, Ẽm ∩ {x > x̃m}, Ẽm ∩ {x < −x̃m} are convex, we can choose a rep-

resentative for E∞ such that (E∞)xx∞−, E∞ ∩ {x > x̃∞}, E∞ ∩ {x < −x̃∞} are convex. By

boundedness of the sequence Ẽm, let y±∞ ≥ 0 be such that trxx∞±E∞ = [−y±∞, y
±
∞]. Then, by

(4.3.15) and claim 4 at Step 4, we have

y−∞ ≥ lim
m→∞

q̃−m ≥ lim
m→∞

q−m ≥ lim
m→∞

y−m −
1

m
≥ h1,

equivalently y+∞ ≥ h2. Hence E∞ ∈ Ax.

By the lower semi-continuity of the α-perimeter together with (4.3.16), we have

Fα(E∞) = Pα((E∞)
x
x∞−) + Pα(E∞ ∖ (E∞)

x
x∞−) − 4h1 − 4h2

≤ lim inf
m→∞

Pα((Ẽm)
x
x̃m−) + lim inf

m→∞
Pα(Ẽm ∖ (Ẽm)

x
x̃m−) − 4h1 − 4h2

≤ lim inf
m→∞

Pα((Em)
x
xm−) + lim inf

m→∞
Pα(Em ∖ (Em)

x
xm−) +

2

m
− 4h1 − 4h2

= lim inf
m→∞

Fα(Em) +
2

m
≤ CIP .

(4.3.20)
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In conclusion the set E∞ ⊂ R2 is such that

Pα(E∞) = inf{Pα(E),E ∈ Ax}

with E∞ ∈ Ax. It is therefore a bounded minimizer for (4.3.3) such that Exx∞−, E∞ ∩ {∣x∣ <

x∞}, and E∞ ∩ {∣x∣ > x∞} are convex.

4.3.2. Differential equations for the profile function

In the following proposition we deduce differential equations for a minimizer for Problem

(4.3.3) as in Theorem 4.3.6.

Proposition 4.3.7. Let v1, v2, h1, h2 ≥ 0 and E ∈ Ax be a bounded minimizer for (4.3.3)

such that for x0 ≥ 0 as in (4.3.1), Exx0−, E ∩ {x > x0}, E ∩ {x < −x0} are convex sets. Then

its profile function f ∶ [0,∞)→ [0,∞) is C2 smooth almost everywhere on [0,∞) and there

exist constants c ≥ 0, k ≤ 0, d ∈ R such that

f ′(x) = −
sgnx c∣x∣α+1

√
1 − c2x2

if ∣x∣ < x0, (4.3.21a)

f ′(x) =
(kx + d) xα

√
1 − (kx + d)2

if x > x0. (4.3.21b)

f ′(x) =
(kx − d) ∣x∣α

√
1 − (kx − d)2

if x < −x0. (4.3.21c)

Proof. Let E ⊂ R2 be a bounded minimizer as in the statement and let r0 = inf{r > 0 ∶

E ⊂ Exr−}, then r0 < ∞. By the convexity properties of E, the profile function of E,

f ∶ [0, r0)→ [0,∞) is C2-smooth a.e.

We first prove (4.3.21a). For ψ1 ∈ C∞
c (0, x0) with ∫ ψ1 = 0, and ε ∈ R, consider the

perturbation x↦ f(∣x∣) + εψ1(∣x∣) and define the set

Eε = {(x, y) ∈ R2
∶ ∣y∣ < f(∣x∣) + εψ1(∣x∣)}

Notice that the variation involves only Exx0−. The set Eε is still in the class Ax, hence

Fα(Eε) ≤ Fα(E). Therefore

d

dε
Fα(Eε)∣

ε=0
=
d

dε
Pα((Eε)

x
x0−)∣

ε=0
= 0

where, by the Representation formula for the α-perimeter of x- and y-symmetric sets (2.2.12)

(see also (2.5.11)), we have

p1(ε) = Pα((Eε)
x
x0−) = 4{∫

x0

0

√
(f ′ + εψ′)2 + x2α dx + lim

x→x−0
f(x)},
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that leads to

0 = p′1(ε)∣ε=0
= 4∫

x0

0

d

dε
(

√

(f ′ + εψ′1)
2 + x2α)∣

ε=0
dx

= 4∫
x0

0

f ′(x)ψ′1(x)√
f ′2(x) + x2α

dx = −4∫
x0

0

d

dx

⎛

⎝

f ′
√
f ′2 + x2α

⎞

⎠
ψ1(x) dx.

Using the fact that ψ1 is arbitrary we deduce the following second order ordinary differential

equation satisfied for some C ∈ R

d

dx

⎛

⎝

f ′(x)
√
f ′(x)2 + x2α

⎞

⎠
= C for a.e. 0 < x < x0. (4.3.22)

The normal form of (4.3.22) is

f ′′(x) =
c

x2α
(f ′(x)2

+ x2α
)

3
2 , (4.3.23)

which implies, by convexity of Exx0− that C ≤ 0. We let c = −C ≥ 0. Now, since E is x-

symmetric, the function f is even, hence f ′ is odd and f ′′ is even. This allows us to extend

(4.3.22) to ∣x∣ < x0. Moreover, integrating (4.3.22), we obtain existence of a constant d ∈ R
such that for some δ > 0,

f ′(x)
√
f ′(x)2 + x2α

= Cx + d for ∣x∣ < δ.

Since f ′ is odd we deduce that d = 0, in fact for ∣x∣ < δ

Cx + d =
f ′(x)

√
f ′2(x) − x2α

= −
f ′(−x)

√
f ′2(−x) + (−x)2α

= −(C(−x) + d) = Cx − d.

We therefore get to an ode for f :

f ′(x)
√
f ′2(x) + x2α

= Cx for ∣x∣ < δ,

which is equivalent to:

f ′(x) = −sgn(x)
c∣x∣α+1

√
1 − c2x2

for ∣x∣ < δ.

A solution to the latter equation can be extended up to (−1/c,1/c). This implies 0 < x0 ≤ 1/c

and (4.3.21a) is proved.

To prove (4.3.21b) and (4.3.21c), we proceed in the same way, considering a function

ψ2 ∈ C∞
c (x0, r0), with ∫ ψ2 = 0 and the associated perturbation f + ηψ2 for η ∈ R. The

set Eη = {(x, y) ∈ R2 ∶ ∣y∣ < f(∣x∣) + εψ2(∣x∣)} is inside the class Ax, hence, as previously,

minimality of E leads to

d

dη
Fα(Eη)∣

η=0

=
d

dη
Pα(Eη ∖ (Eη)

x
x0−)∣

η=0

= 0
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and we obtain existence of a constant k ∈ R such that

d

dx

⎛

⎝

f ′(x)
√
f ′(x)2 + x2α

⎞

⎠
= k for x0 < ∣x∣ < r0. (4.3.24)

In particular, k ≤ 0. Let x0 < x < r0. An integration between x0 and x shows that, letting

d = lim
x→x+0

f ′(x)
√
f ′(x)2 + x2α

− kx0,

we have
f ′(x)

√
f ′(x)2 + x2α

= kx + d for x0 < x < r0

which is equivalent to (4.3.21b). In particular, ∣kx + d∣ < 1 for x0 < x < r0.

Analogously, for any x ∈ (−r0,−x0), an integration between x and −x0 shows that

f ′(x)
√
f ′(x)2 + x2α

= kx − d for − r0 < x < −x0,

which leads to (4.3.21c) and ∣kx − d∣ < 1 for −r0 < x < −x0.

Remark 4.3.8. If E is a minimizer as in Proposition 4.3.7, using the ordinary differential

equations (4.3.21a)-(4.3.21c) we can show, as in Proposition 2.5.1, that the function f is

indeed C2([0, x0)) ∩C
2(x0, r0) ∩C

2(−r0,−x0), with r0 = inf{r > 0 ∶ E ⊂ Exr−} <∞.

By (4.3.21a), we deduce that a minimizer E ∈ Ax for Problem (4.3.3) as in Theorem

4.3.6, is obtained in its central part through the composition of a dilation and a vertical

translation of Eαisop, namely there exists y ∈ R such that

Exx0− = (δαλ(E
α
isop) + (0, y))

x

x0−
. (4.3.25)

In particular

lim
x→0+

f ′(x)

∣x∣α+1
= 0.

Moreover, by (4.3.21b),

f(r0) = 0, lim
x→r+0

f ′(x) = −∞

In particular, r0 is characterized by the following equality:

−1 = lim
x→r−0

f ′(x)
√
f ′(x)2 + x2α

= kr0 + d,

namely,

r0 = −
1 + d

k
. (4.3.26)
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4.3.3. Traces of minimizers

In this Section, we study traces of minimizers. What we expect is that if E ∈ Ax is a

minimizer for (4.3.3) as in Theorem 4.3.6, then

trxx0−E = [−h1, h1] and trxx0+E = [−h2, h2],

where x0 is defined by (4.3.1). In Proposition 4.3.9 we prove the claim for the left-trace

assuming that the profile function of E does not have infinite derivative at x0. The argument

used here does not apply to the case of infinite derivative as shown in Remark 4.3.10. The

case of the right trace is analogous.

Proposition 4.3.9. Let v1, v2, h1, h2 ≥ 0 and E ∈ Ax be a bounded minimizer for (4.3.3)

such that for x0 ≥ 0 as in (4.3.1), Exx0−, E ∩ {x > x0}, E ∩ {x < −x0} are convex sets. Let

f ∶ [0, r0)→ [0,∞) be its profile function for r0 > 0 as in Remark 4.3.8. If

lim
x→x−0

f ′(x) > −∞,

then

trxx0−E = [−h1, h1].

Proof. Assume by contradiction that f(x−0) > h1, where

f(x−0) = lim
x→x−0

f(x).

We show that in this case, there exists a set F ∈ Ax such that Pα(F
x
x0−) < Pα(E

x
x0−),

Pα(F ∖ F xx0−) = Pα(E ∖ Exx0−), hence Fα(F ) < Fα(E), which is in contradiction with the

minimality of E.

For a small parameter ε > 0, let fε ∶ [0, x0)→ [0,∞) be the function defined by

fε(x) =

⎧⎪⎪
⎨
⎪⎪⎩

f(x), if 0 < x < x0 − ε

rε(x), if x0 − ε < x < x0

where rε is the segment connecting the points (x0 − ε, f(x0 − ε)) and (x0, f(x
−
0) − ε), i.e.,

rε(x) =m(ε)(x − x0) + f(x
−
0) − ε, m(ε) =

1

ε
(f(x−0) − ε − f(x0 − ε)) < 0.

By convexity of Exx0−, f(x) ≥ rε(x) for x0 − ε < x < x0. We define the set Eε = {(x, y) ∈ R2 ∶

∣y∣ < fε(∣x∣)}.

We compute the difference Pα(E)−Pα(Eε), using the Representation formula for sym-

metric sets (2.2.12). Since ∂Exx0 = ∂E ∩ {∣x∣ = x0} is a vertical segment, the outer unit
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Figure 4.4: Construction of the set Eε.

normal to E is constant on ∂Exx0 , NE = (1,0). In the same way the outer unit normal to

Eε is constant on ∂(Eε)
x
x0 , NEε = (1,0). Then, we have

Pα(E
x
x0−) − Pα(Eε) = 4∫

x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx + ∫

∂Exx0

dH1
− ∫

∂(Eε)xx0

dH1

= 4∫
x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx + 4(f(x−0) − (f(x−0) − ε))

= 4{∫
x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx + ε}.

Let A(ε) = (Pα(E
x
x0−) − Pα(Eε))/4. On the other hand,

L
2
(Exx0−) −L

2
(Eε) = 4∫

x0

x0−ε
f(x) − rε(x) dx,

and we define B(ε) = (L2(Exx0−) − L
2(Eε))/4. For any ε > 0, let yε = B(ε)/x0. We claim

that for ε > 0 small enough the set

Fε = (Eε + (0, yε)) ∪ ([−x0, x0] × [−yε, yε]),

obtained by translating Eε in the vertical direction of the quantity yε, satisfies

Pα(Fε) < Pα(E). (4.3.27)

It follows that the set F = Fε ∪ (E ∖ Exx0−) satisfies Fα(F ) < Fα(E). Moreover F ∈ Ax,

since L2(F xx0−) = L
2(Eε) + 4x0yε = L

2(Exx0−), and the other properties in (4.3.1) are clear

by construction. By invariance under vertical translations of the α-perimeter,

Pα(Fε) = Pα(Eε) + 4yε = Pα(E
x
x0−) − 4(A(ε) −

B(ε)

x0
)

To prove (4.3.27), it is therefore sufficient to show that for ε > 0 small enough

x0A(ε) > B(ε). (4.3.28)
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First of all, notice that, by Lebesgue dominated convergence Theorem,

lim
ε→0+

A(ε) = lim
ε→0+

B(ε) = 0. (4.3.29)

Let f ′(x−0) = limx→x−0 f
′(x). By convexity of Exx0−, we have f ′(x−0) ≤ 0 f ′′(x−0) = limx→x−0 f

′′(x) ≤

0. Moreover, the following limit exists

lim
ε→0+

m(ε) = lim
ε→0+

f(x−0) − f(x0 − ε)

ε
− 1 = f ′(x−0) − 1.

Now, since f ′(x−0) > −∞, we also have f ′′(x−0) > −∞, hence the following limit exists

m′
(0) = lim

ε→0+
m′

(ε) = lim
ε→0+

1

ε
{f ′(x0 − ε) −

1

ε
[f(x−0) − f(x0 − ε)]}

= lim
ε→0+

1

ε
{f ′(x−0) − f

′′
(x−0)ε −

1

ε
[f(x−0) − (f(x−0) − f

′
(x−0)ε +

f ′′(x−0)

2
ε2

)] + o(ε)}

= −
f ′′(x−0)

2
.

On the other hand, by the chain rule

A′
(ε) = 1 +

√
f ′2(x0 − ε) + (x0 − ε)2α −

√
m(ε)2 + (x0 − ε)2α − ∫

x0

x0−ε

m(ε)m′(ε)
√
m(ε2) + x2α

dx

≥ 1 +
√
f ′2(x0 − ε) + (x0 − ε)2α −

√
m(ε)2 + (x0 − ε)2α

that gives

A′
(0) = lim

ε→0
A′

(ε) ≥ 1 +
√

f ′2(x−0)
2 + x2α

0 −

√

(f ′(x−0) − 1)2 + x2α
0 > 0, (4.3.30)

where the last inequality is justified by the following: for any c < a < 0, and b ∈ R,

√
a2 + b2 −

√
c2 + b2 > c − a.

We conclude observing that B′(0) = limε→0+ B
′(ε) = 0, in fact:

B′
(ε) = f(x0 − ε) − rε(x0 − ε) + ∫

x0

x0−ε

d

dε
{f(x) −m(ε)(x − x0) − f(x

−
0) + ε} dx

= f(x0 − ε) + εm(ε) − f(x−0) + ε − ∫
x0

x0−ε
1 −m′

(ε)(x − x0) dxÐÐ→
ε→0

0

Then, (4.3.28) follows by (4.3.30) and (4.3.29).

Remark 4.3.10. Assume that the profile function of a minimizer as in Theorem 4.3.6 satisfies

f ′(x−0) = lim
x→x−0

f ′(x) = −∞.

Using the notation of Proposition 4.3.9, we claim that, for ε > 0, small enough we have

x0A(ε) −B(ε) = −
xα+2

0

6
√

2
(
ε

x0
)

3
2 + o(ε3/2

) < 0 for ε < ε0. (4.3.31)



144 CHAPTER 4. ISOPERIMETRIC STABILITY IN THE GRUSHIN PLANE

Hence, the construction proposed in the latter proposition does not apply to this case. To

prove (4.3.31), we observe that if f ′(x−0) = −∞, we are in the case when c = 1/x0 in equation

(4.3.21a). Hence, for any ∣x∣ < x0, we have

f(x) = xα+1
0 ϕα(

x

x0
) + f(x−0) (4.3.32)

where ϕα is the profile function of the isoperimetric set Eαisop,

ϕα(r) = ∫
π/2

arcsin r
sin tα+1 dt, 0 ≤ r ≤ 1.

Notice that the map x ↦ Φα(x) = x
α+1
0 ϕα(

x
x0

) is the profile function of a dilation of Eαisop

such that it closes at x0, i.e., Φα(x0) = 0. For any ε > 0, we have, by (4.3.32) and definition

of m(ε)

m(ε) =
1

ε
(f(x−0) − ε − f(x0 − ε)) = −(1 +

xα+1
0 ϕα(1 −

ε
x0

)

ε
)

We write A(ε) = ε +A1(ε) −A2(ε), where, using the differential equation (4.3.21a), we let

A1(ε) = ∫
x0

x0−ε

√
f ′2 + x2α dx = x0∫

x0

x0−ε

xα
√
x2

0 − x
2
dx, A2(ε) = ∫

x0

x0−ε

√
m(ε)2 + x2α dx.

Moreover using the definition of rε, and (4.3.32)

B(ε) = ∫
x0

x0−ε
f(x) − rε(x) dx = ∫

x0

x0−ε
xα+1

0 ϕα(
x

x0
) + f(x−0) −m(ε)(x − x0) − f(x

−
0) + ε dx

= xα+1
0 ∫

x0

x0−ε
ϕα(

x

x0
) dx + (

m(ε)

2
+ 1)ε2.

Using De L’Hopital Theorem, we prove the following asymptotic behavior of A1(ε) as

ε→ 0+.

A1(ε) =
√

2xα+1
0 (

ε

x0
)

1
2
+

1 − 4α

6
√

2
xα+1

0 (
ε

x0
)

3
2
+ o(ε

3
2 )

To find developments for A2 and B we first notice that

ϕα(1 −
ε

x0
) =

√
2(

ε

x0
)

1
2
−

4α + 3

6
√

2
(
ε

x0
)

3
2
+ o(ε

3
2 ), as ε→ 0+,

then

m(ε) = −1 −
√

2xα0 (
ε

x0
)
−1/2

+
4α + 3

6
√

2
xα0 (

ε

x0
)

1
2
+ o(

√
ε), as ε→ 0+,

and

∫

x0

x0−ε
ϕα(

x

x0
) dx =

2x0

√
2

3
(
ε

x0
)

3
2
+ o(ε

3
2 ), as ε→ 0+.

After some computations that are omitted we obtain

A2(ε) =
√

2xα+1
0

√
ε

x0
+ ε −

√
2αxα+1

0

3
(
ε

x0
)

3
2
+ o(ε

3
2 ), B(ε) =

xα+2
0

3
√

2
(
ε

x0
)

3
2
+ o(ε

3
2 ).

We then deduce (4.3.31) since

A(ε) = ε +A1(ε) −A2(ε) =
xα+1

0

6
√

2
(
ε

x0
)

3
2
+ o(ε

3
2 ).
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4.3.4. Center of the solution to the partitioning problem with v2 = 0

In this section, we present a preliminary analysis of the minimizers obtained in Theorem

4.3.6. The question that arises in view of Remark 4.2.8 is to understand if we can assume

a minimizer E ∈ Ax to satisfy for some λ > 0:

Exx0− = (δαλE
α
isop)

x
x0−. (4.3.33)

Let f be the profile function of E. As observed in Remark 4.3.8, from the study of the

differential equations in Proposition 4.3.7, it follows

f(x) = λα+1ϕα(
x

λ
) + y, ∣x∣ < x0 (4.3.34)

for some λ > 0, and y ∈ R, where ϕα is the profile function of the isoperimetric set Eαisop.

We address the problem of characterizing λ and y ∈ R in the easier case of minimizers

for Problem (4.3.3) with h2 = v2 = 0. Namely, given h, v ≥ 0 we consider a convex set

E ∈ Ax(h, v) = Ax(v,0, h,0) (see (4.3.1) for definitions), that is x- and y-Schwarz symmetric,

E ⊂ Exx0− and satisfies Pα(E) ≤ Pα(F ) for any F ∈ Ax(h, v). In the next proposition we

show that, for α = 1, the vertical translation y is in fact strictly negative, i.e., y < 0, and

property (4.3.33) fails with v2 = 0.

Proposition 4.3.11. Let α ∈ {0,1}, h ≥ 0, v > 0. Let E be a convex minimizer for (4.3.3)

with h1 = h, v1 = v, h2 = v2 = 0 and let x0 > 0 be such that trxx−0
E = [−h,h]. Let c > 0 be as

in (4.3.21a) and λ, y be as in (4.3.34). Then, letting d = cx0, λ and y satisfy

λ =
1

c
=
x0

d
, y = h{1 −

ϕα(d)

dα
√

1 − d2
} (4.3.35)

Moreover
⎧⎪⎪
⎨
⎪⎪⎩

xα+1
0 = dh√

1−d2

xα+2
0 Gα(d) + hx0 − v = 0,

(4.3.36)

where

Gα(d) =
1

dα+2 ∫

d

0
∫

arcsind

arcsin t
sinα+1 t dϑ dt.

Remark 4.3.12. Relation (4.3.35) can be extended to any α ≥ 0 such that (4.3.43) is true

(see the proof below). If this happens for any α ≥ 0, we notice that y = 0 if and only if

α = 0. In fact the function d ↦ ϕα(d) − d
α
√

1 − d2 is 0 at d = 1 and it is strictly monotone

decreasing since

(ϕα(d) − d
α
√

1 − d2)
′
= −

dα+1

√
1 − d2

− αdα−1
√

1 − d2 +
dα+1

√
1 − d2

< 0.

Hence if α > 0, ϕα(d) − d
α
√

1 − d2 > 0 for 0 < d < 1.
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Proof. Let E ⊂ R2 be a convex set such that for some x0 = x0(E) > 0,

E ⊂ Exx0−, trxx0−E = [−h,h], L
2
(E) = v1

and

Pα(E) = min{Pα(F ) ∶ F ∈ Ax}.

By Proposition 4.3.7, the profile function of E, f ∶ [0, x0] → [0,∞), satisfies (4.3.21a), for

some c ≥ 0, we then have λ = 1/c. By (4.3.34), we deduce f(t) = λα+1ϕα(
x
λ
) + y. Let

β = f(0) > 0. From Propositon 2.2.1, we define the functional

p(β, c, x0) = Pα(E) = ∫

x0

0

√
f ′2(t) + t2α dt = ∫

x0

0

tα
√

1 − (ct)2
dt =

1

cα+1 ∫

arcsin cx0

0
sinα ϑ dϑ.

Notice that p is independent of β, since Pα is independent of vertical translations. Let

d = cx0. We have

p(d, x0) = x
α+1
0 gα(d), with gα(d) =

1

dα+1 ∫

arcsind

0
sinα ϑ dϑ. (4.3.37)

We write the volume and trace constraint in terms of the parameters d and x0. For any

t ∈ (0, x0) we write

f(t) = β + ∫
t

0
f ′(s) ds = β − ∫

t

0

csα+1

√
1 − (cs)2

ds = β −
1

cα+1 ∫

arcsin ct

0
sinα+1 ϑ dϑ

Hence the trace constraint f(x0) = h is equivalent to

β = β(d, x0) = h + x
α+1
0 σα(d), with

σα(d) =
1

dα+1 ∫

arcsind

0
sinα+1 ϑ dϑ > 0 for d ∈ (0,1),

(4.3.38)

and, plugging β = β(d, x0) in the expression for f ,

f(t) = h + xα+1
0 σα(d) − x

α+1
0

1

dα+1 ∫

arcsin( d
x0
t)

0
sinα+1 ϑ dϑ, (4.3.39)

that implies

y = f(λ) = h + xα+1
0 bα(d), with

bα(d) =
1

dα+1
{∫

arcsind

0
sinα+1 ϑ dϑ − ∫

π/2

0
sinα+1 ϑ dϑ}

= −
1

dα+1 ∫

π/2

arcsind
sinα+1 ϑ;dϑ = −

ϕα(d)

dα+1
< 0 for d ∈ (0,1).

(4.3.40)

The volume constraint ∫ f = v reads, using the trace constraint β = β(d, x0) in (4.3.38)

v = ∫
x0

0
(β −

1

cα+1 ∫

arcsin ct

0
sinα+1 ϑ dϑ) dt = βx0 −

1

cα+2 ∫

cx0

0
∫

arcsin r

0
sinα+1 ϑ dϑ dr

= (h + xα+1
0 σα(d))x0 − x

α+2
0

1

dα+2 ∫

d

0
∫

arcsin t

0
sinα+1 ϑ dϑ dt,
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hence

v = hx0 + x
α+2
0 Gα(d), with

Gα(d) =
1

dα+2
(d∫

arcsind

0
sinα+1 ϑ dϑ − ∫

d

0
∫

arcsin t

0
sinα+1 ϑ dϑ dt)

=
1

dα+2 ∫

d

0
∫

arcsind

arcsin t
sinα+1 ϑ dϑ dt > 0 for d ∈ (0,1)

(4.3.41)

The function

F (d, x0) = x
α+2
0 Gα(d) + hx0 − v.

defines implicitly the constraints of the problem. Existence of a minimizer together with

the Lagrange Multipliers theorem imply that there exists µ ∈ R such that ∇p(d, x0) =

µ∇F (d, x0), namely

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂dp = µ∂dF

∂x0p = µ∂x0F

F (d, x0) = 0

⇐⇒

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g′α(d)x
α+1
0 = µxα+2

0 G′
α(d)

(α + 1)xα0 gα(d) = µ((α + 2)xα+1
0 Gα(d) + h)

xα+2
0 Gα(d) + hx0 − v = 0

(4.3.42)

Recalling the definitions of gα and Gα in (4.3.37) and (4.3.41), we write the expressions for

the derivatives

g′α(d) = −
α + 1

dα+2 ∫

arcsind

0
sinα ϑ dϑ +

1

d
√

1 − d2

G′
α(d) = −

α + 2

dα+3 ∫

d

0
∫

arcsind

arcsin t
sinα+1 ϑ dϑ +

1
√

1 − d2

We claim that when α = 1 (or α = 0) we have

g′α(d) = dG
′
α(d) (4.3.43)

In fact, we have when α = 1, g′α(d) = −
2
d3

[
√

1 − d2 − 1] + 1

d
√

1−d2
= 2−d2−2

√
1−d2

d3
√

1−d2
, hence

G′
α(d) = −

3

d4 ∫

d

0

1

2
[ϑ −

sin(2ϑ)

2
]
arcsind

arcsin t
dt +

1
√

1 − d2

=
3

2d4 ∫

d

0
(arcsin t − t

√
1 − t2 − arcsind + d

√
1 − d2) +

1
√

1 − d2

=
3

2d4
{[tarcsin t +

√
1 − t2 +

1

3
(1 − t2)3/2]

d

0
− darcsind + d2

√
1 − d2}

=
3

2d4
{darcsind +

√
1 − d2 +

1

3
(1 − d2

)
3/2

− 1 −
1

3

− darcsind + d2
√

1 − d2}

=
1

d4
{(2 + d2

)
√

1 − d2 − 2} +
√

1
√

1 − d2 =
2 − d2 − 2

√
1 − d2

d4
√

1 − d2
.

Going back to any α ≥ 0, we notice that (4.3.43) is equivalent to

0 =
1

dα+2
{(α + 2)∫

d

0
∫

arcsind

arcsin t
sinα+1 ϑ dϑ dt − (α + 1)∫

arcsind

0
sinα ϑ dϑ} +

1 − d2

d
√

1 − d2

= (α + 2)Gα(d) −
1

d
(α + 1)gα(d) +

1

d

√
1 − d2

(4.3.44)
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From (4.3.43), the first equation in system (4.3.42) gives

µ =
g′α(d)

x0G′
α(d)

=
d

x0
=

1

λ
.

Plugging µ into the second equation of (4.3.42) we obtain

(α + 1)xα+1
0 gα(d) = d{(α + 2)xα+1

0 Gα(d) + h},

hence, using (4.3.44),

xα+1
0 =

dh

(α + 1)gα(d) − d(α + 2)Gα(d)
=

dh
√

1 − d2
(4.3.45)

We are left to calculate y = f(λ) = f(x0/d) with x0 = x0(h, d) given by (4.3.45) and d

satisfying the last equation in (4.3.42), which reads

(
dh

√
1 − d2

)

α+2
α+1

Gα(d) + h(
dh

√
1 − d2

)

1
dα+1

− v = 0. (4.3.46)

Expression (4.3.40) for y, combined with the last equation for x0 in (4.3.45)

y = f(
x0

d
) = h + xα+1

0 bα(d) = h −
dh

√
1 − d2

ϕα(d)

dα+1

= −
h

dα
√

1 − d2
{ϕα(d) − d

α
√

1 − d2}

which concludes the proof.

4.4 Estimates of the section-gap in terms of the

α-isoperimetric deficit

In this Section, we show that the conclusive estimate of the techniques in [63] holds true

for the α-perimeter in both stripes Z and Z2, in the case when α = 1. In this case we have

L
2
(Eαisop) =

8

3
and Pα(E

α
isop) = 4.

Proposition 4.4.1. Let α = 1. There exists β0 > 0 such that for any 0 ≤ β ≤ β0, any

minimizer E ∈ Ax(0, ωα,0, β) for Problem (4.3.3) as in Theorem 4.3.6, satisfies

∣vxE(0) − v
x
α(0)∣ ≤ C

√
Dα(E)

for some constant C > 0.
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Proof. If E is a minimizer as in Theorem 4.3.6, then E ∩{x > 0} and E ∩{x < 0} are convex

and, by Proposition 4.3.7, the profile function of E, f ∶ [0, r0) → [0,∞) satisfies for some

k ≤ 0 and d ∈ R the following ordinary differential equation:

f ′(x) =
(kx + d)x

√
1 − (kx + d)2

, 0 ≤ x < r0.

We deduce that ∣d∣ < 1, by ∣kx + d∣ < 1 for 0 < x < r0. Moreover, as observed in Remark

4.3.25, r0 = −(1 + d)/k. Notice that if x = −d/k, f ′(x) = 0, hence −d/k is a critical point for

f and we can deduce for geometrical reasons that it is in fact a maximum point.

By the Representation formula for the α-perimeter, we have

Pα(E)/4 = ∫
r0

0

√
f ′2 + x2 dx = ∫

r0

0

x
√

1 − (kx + d)2
dx =

1

k2 ∫

d

−1

d − z
√

1 − z2
dz

=
1

k2
[darcsin z +

√
1 − z2

∫ ]
d

−1
=

1

k2
[
√

1 − d2 + d(arcsind +
π

2
)]

(4.4.1)

Let x ∈ [−d/k, r0). Then, by Remark 4.3.8

f(x) = f(x) − f(r0) = −∫

r0

x

(kt + d)t
√

1 − (kt + d)2
dt =

1

k2 ∫

kx+d

−1

z2 − d ⋅ z
√

1 − z2
dz

=
1

k2
[
1

2
(arcsin z − z

√
1 − z2) + d

√
1 − z2]

kx+d

−1

=
1

2k2
{
π

2
+ arcsin (kx + d) + (d − kx)

√
1 − (kx + d)2}

Hence, we have

f(−d/k) =
1

2k2
(
π

2
+ 2d)

and, with a similar argument we deduce the same expression for f at x ∈ [0,−d/k]. Hence

f(x) =
1

2k2
{
π

2
+ arcsin (kx + d) + (d − kx)

√
1 − (kx + d)2}, x ∈ [0, r0). (4.4.2)

In particular, there holds

β = f(0) =
1

2k2
{
π

2
+ arcsind + d

√
1 − d2} (4.4.3)

On the other hand, by (4.4.2)

2

3
=
ωα
4

= ∫

r0

0
f(x) dx = −

1

2k3 ∫

d

−1
(
π

2
+ arcsin z + 2d

√
1 − z2 − z

√
1 − z2) dz

= −
1

2k3
{
π

2
(d + 1) + [z arcsin z +

√
1 − z2 + d(arcsin z + z

√
1 − z2) +

1

3
(1 − z2

)
3/2

]}

= −
1

k3
[d(arcsind +

π

2
) +

1

3
(2 + d2

)
√

1 − d2].

Hence, deducing k in terms of β and d in (4.4.3) and inserting it into the last equation, we

deduce

F (β, d) = 0, (4.4.4)
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where F ∶ [0,∞) × [−1,1]→ R is defined as

F (β, d) =
2

3
(

1

2β
{
π

2
+ arcsind + d

√
1 − d2})

3/2
− d(

π

2
+ arcsind) −

2 + d2

3

√
1 − d2.

We let

` ∶ [−1,1]→ R, `(d) =
1

2
{
π

2
+ arcsind + d

√
1 − d2}

hence, we have

`′(d) =
√

1 − d2 and `′′(d) = −
d

√
1 − d2

.

Notice that F (π/4,0) = 0. We have

∂

∂d
F (β, d) = `(d)

1
2β−3/2

{`′(d) − 2β3/2`(d)1/2
}

and
∂

∂β
F = −`(d)

3
2β−

5
2

In particular,
∂

∂d
F (π/4,0) =

4

π

8 − π2

8
,

∂

∂β
F (π/4,0) = −

4

π
.

Therefore, by the implicit function theorem there exists a neighborhood Uπ/4 ⊂ R of π/4

such that d can be written as a function of β around π/4 with d(π/4) = 0 and

ḋ(β) =
d

dβ
d(β) = −

∂βF (β, d(β))

∂dF (β, d(β))
=
`(d)

β
{`′(d) − 2β3/2`(d)1/2}

−1
. (4.4.5)

Moreover,

d̈(β) =
`′(d)ḋ(β)

β{`′(d) − 2β3/2`(d)1/2}
−

`(d)

β2{`′(d) − 2β3/2`(d)1/2}

−
`(d)[`′′(d)ḋ − 2(3

2β
1/2`(d)1/2 + 1

2β
3/2`′(d)ḋ`(d)−1/2)]

β{`′(d) − 2β3/2`(d)1/2}2

Now, we consider the functional ∆ that associates to any β ∈ Uπ/4 the α-isoperimetric deficit

of a minimizer for (4.3.3) with trace [−β,β] at x0 = 0: from (4.4.1), since Pα(E
α
isop) = 4, we

write

∆(β) =Dα(E) =
β(

√
1 − d(β)2 + d(arcsind + π

2 ))

1
2
{π

2 + arcsind + d
√

1 − d2}
− 1.

The proof is concluded once we show that

∆(π/4) = ∆̇(π/4) = 0 and ∆̈(π/4) > 0 (4.4.6)

In fact, in this case

Dα(E) = ∆(β) = ∆̈(π/4)(β − π/4)2
+ o((β − π/4)2) ≥ C(vxE(0) − v

x
α(0))

2
, β ∈ Uπ/4.
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To prove (4.4.6) we simply use the expression of ∆ and the derivatives of d. We have

∆(
π

4
) =

π
4

1
2 ⋅

π
2

− 1 = 0

Moreover, a computation yields

∆̇(β) =
1

`(d)
(
√

1 − d2 + d(arcsind + π/2)) +
βḋ

`(d)
(arcsind + π/2)

−
β(

√
1 − d2 + d(arcsind + π/2))

`(d)2
`′(d)ḋ

=

√
1 − d2 + (arcsind + π/2)(d + ḋβ)

`(d)
−
ḋ`′(d)

`(d)2
β(

√
1 − d2 + d(arcsind + π/2)).

Hence, since ḋ(π/4) = 8/(8 − π2) (see (4.4.5)), we have

∆̇(
π

4
) = (1 +

π

2

8

8 − π2

π

4
)

4

π
−

16

π2

8

8 − π

π

4
=

4(8 − π2 + π2) − 32

(8 − π2)π
= 0.

A computation done with the help of the software Wolfram Mathematica gives the values

d̈(
π

4
) =

6π(16 − π2)

(π2 − 8)2
, ∆̈(

π

4
) =

−64 + 40π2 − 3π4

(π2 − 8)2
∼ 11 > 0.

This completes the proof.
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