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Abstract: We consider weak solutions of second order nonlinear elliptic systems of divergence type under
subquadratic growth conditions. Via the method of A-harmonic approximation we give a characterization
of regular points up to the boundary which extends known results from the quadratic and superquadratic
case. The proof yields directly the optimal higher regularity on the regular set.

1 Introduction

In this paper we study weak solutions u ∈ W 1,p(Ω,RN ), p ∈ (1, 2), of nonlinear homogeneous elliptic
systems of second order in divergence form

divA( · , u,Du) = 0 in Ω ,

where Ω ⊂ Rn, n ≥ 2, is a bounded domain, and where the coefficients A : Ω×RN ×RnN → RnN satisfy
reasonable structure conditions of so-called subquadratic growth stated in the next section.

We first give a short overview of partial regularity results in the interior and at the boundary. For detailed
discussions we refer to [15], [19] and [24], where examples and motivations can be found explaining the
development of regularity theory and the idea of partial regularity throughout the last century.

In 1968, De Giorgi demonstrated in [9] that, in contrast to equations, we cannot in general expect a
weak solution to a nonlinear system to be a classical one (i. e., of class C2). The best we can hope
for is partial regularity, in other words that there exists a set Ω0 ⊂ Ω such that Ω \ Ω0 is of Lebesgue
measure zero and that u or even Du is locally regular (e. g. Hölder-continuous) in Ω0. There are different
approaches to prove partial regularity in the interior: Giaquinta-Modica [16] and Ivert [23] were the first
to utilize the direct method; the blow-up technique was earlier applied in the setting of elliptic systems by
Giusti-Miranda [18]; furthermore, Duzaar and Grotowski introduced in [10] the method of A-harmonic
approximation, which is based on Simon’s proof of the regularity theorem of Allard.

In the situation considered in this paper we will use a version of the latter technique which has been
applied to various situations concerning regularity in the past few years. Here it is adapted to the
subquadratic case and to the boundary setting simultaneously. First we show that a function g which is
approximately A-harmonic, i. e., for which

∫
−
BR(x0)

ADg ·Dϕdx is sufficiently small for all test functions
ϕ ∈ C1

0 (BR(x0),RN ), is close to an A-harmonic function h in the Lp-sense. In this context we do not
prescribe boundary values for h. These values are thus taken in a natural way. In the next step we consider
the frozen system with coefficients A = DzA(x0, (u)x0,R, (Du)x0,R). We compare an approximately A-
harmonic rescaling of the solution u to the original system with an Lp-close A-harmonic function h.
Using good a priori estimates for h and a Caccioppoli-type inequality, we then find an excess-decay-
estimate in points where certain smallness assumptions (see below) are satisfied. Finally, by Campanato’s
characterization of Hölder-continuous functions, we conclude the desired partial regularity criterion.

Apart from the A-harmonic approximation lemma all proofs are direct. This gives a good control on the
dependencies on the structure conditions and enables us to obtain the optimal regularity result in a direct

∗L. Beck, Mathematisches Institut der Friedrich-Alexander-Universität Erlangen-Nürnberg, Bismarckstr. 1 1/2, 91054
Erlangen, Germany. E-mail: beck@mi.uni-erlangen.de

1



2 L. Beck

way. The result is optimal in the following sense: if (1+ |z|2)
1−p

2 A(x, u, z) is uniformly Hölder-continuous
in x and u with exponent α, then Du is partially Hölder-continuous with the same exponent α. The
following example demonstrates that we cannot expect higher regularity than the one allowed by the
regularity of the coefficients (see [20], Example 1.1 in the case p = 2):

Example: Let n ≥ 2, N = 1 and α ∈ (0, 1). Define coefficients A(x, z) for x, z ∈ Rn by

A(x, z) =

(
1 + |z|2

) p−2
2 z(

1 + (1 + xαn )2
) p−2

2 (1 + xαn )
.

Then the coefficients fulfill (H1) - (H4) of chapter 2 for the domain Ω given by an appropriate smoothing
of B+. The function u(x) = 1

1+αx
1+α
n +xn is a weak solution of divA(x,Du) = 0 on Ω of class C1,α(Ω,R),

but not more regular.

In the subquadratic case, where u ∈ W 1,p(Ω,RN ) with p ∈ (1, 2) and where the coefficients A satisfy a
corresponding (p−1)-growth condition, only few partial regularity results are known. In [25] the blow-up
technique is applied to a special quasi-linear system to show Hölder-continuity in the interior situation.
The quasi-linearity further allows us to infer that the singular set is of (n − p) Hausdorff measure zero.
For minimizers of quasiconvex integrals partial regularity is studied in [5] and [6]. In [27] solutions of
nonlinear systems are considered, but the regularity result is not optimal in the above sense. Theorem
2.1 closes this gap since we show the analogous (optimal) result to that of the quadratic case (see e. g.
[18] combined with [21]) and to that of the superquadratic case p ≥ 2 (see [22]). Furthermore, we give a
similar characterization of regular points where the set of regular points is defined by

Reg u :=
{
x ∈ Ω : Du ∈ C0(U,RN ) for some neighbourhood U of x

}
.

More precisely we obtain that (under structure conditions introduced in chapter 2) u ∈ C1,α
loc (Reg u,RN ),

and the set of singular points Sing u := Ω \ Reg u ⊂ Π1 ∪Π2 is of Lebesgue measure zero, with

Π1 =
{
x0 ∈ Ω : lim inf

ρ→ 0+

∫
−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx > 0
}
,

Π2 =
{
x0 ∈ Ω : lim sup

ρ→ 0+

(∣∣(u)x0,ρ

∣∣+
∣∣(V (Du)

)
x0,ρ

∣∣) = ∞
}
,

where V (ξ) = (1 + |ξ|2)
p−2

4 ξ for ξ ∈ Rk.

The boundary situation in the case of quasi-linear systems was considered in the early 70’s in [7], in
which the author showed Hölder continuity of weak solutions. Further, there are some papers, in particular
by Campanato, [3], and recently by Arkhipova, [1], in which the authors obtain global regularity in low
dimensions. Regularity up to the boundary in the case of general systems was lately studied for the
first time in [19] via the A-harmonic approximation in the case p = 2 and in [22] using a version of the
blow-up technique for the superquadratic case. We proceed analogously to [19] and provide a similar
characterization of regular boundary points defined by

Reg∂Ω u :=
{
x ∈ ∂Ω : Du ∈ C0(U ∩ Ω,RN ) for a neighbourhood U of x

}
.

Here we assume the boundary ∂Ω to be of class C1,τ and further u = g on ∂Ω for a function g ∈
C1,β(Ω,RN ).

To this end we first have to provide a priori estimates up to the boundary for weak solutions u ∈W 1,p of
homogeneous linear systems with constant coefficients. Here, in the subquadratic case, the estimates on
higher derivatives we require for the Sobolev embedding theorem are not immediately available. However,
by smoothing combined with the Lp-theory, the subquadratic case can be handled by similar methods
as in the quadratic case, and we obtain that weak solutions are smooth up to the boundary. This allows
us to derive an excess-decay estimate at the boundary. Combined with the excess-decay estimate in the
interior, we show that Du is locally Hölder-continuous with exponent min{α, β, τ} in points y ∈ Reg∂Ω u,
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and that the set of singular boundary points Sing∂Ω u := ∂Ω \ Reg∂Ω u ⊂ Σ̃1 ∪ Σ̃2, where

Σ̃1 =
{
y ∈ ∂Ω : lim inf

ρ→ 0+

∫
−
Ω∩Bρ(y)

∣∣V (Dν∂Ω(y)(u− g)
)
−
(
V
(
Dν∂Ω(y)(u− g)

))
y,ρ

∣∣2 dx > 0
}
,

Σ̃2 =
{
y ∈ ∂Ω : lim sup

ρ→ 0+

∣∣(V (Dν∂Ω(y)(u− g)
)
y,ρ

∣∣ = ∞
}

;

here ν∂Ω(y) denotes the inward-pointing unit normal to ∂Ω at y. This means that for the regularity
criterion at the boundary, only the normal derivative is of importance. This enables us to observe that
the regularity criteria given in [19] and in [22] are in fact equivalent; we discuss this in more detail in
section 7. We further note here that on the boundary we do not need to assume that the mean values
of u are bounded due to the fact that u is fixed on ∂Ω via the boundary data g. Note that since the
boundary ∂Ω itself is of Lebesgue measure zero, this does not yield the existence of regular boundary
points. For this we refer to [12].

In what follows we set the main focus on the treatment of the boundary situation. We will thus only
state the intermediate estimates in the interior and refer to [2] for detailed proofs and calculations, since
the interior case is technically easier to handle. We concentrate on the case of homogeneous systems.
However, our method also applies to the inhomogeneous case

− divA( · , u,Du) = B( · , u,Du) in Ω ,

where B(·, ·, ·) obeys either a controllable or a natural growth condition (in the latter case, we have to
consider bounded solutions satisfying the assumption ‖u‖L∞(Ω,RN ) ≤Mu such that 2L1(Mu)Mu < ν). In
the last section we sketch briefly the required modifications and state the results for the inhomogeneous
situation, which are completely analogous to the corresponding results in [10], [20] and [22].

2 Notation, structure conditions and statement of the results

We start with some remarks on the notation used below: we write Bρ(x0) =
{
x ∈ Rn : |x − x0| < ρ

}
and B+

ρ (x0) =
{
x ∈ Rn : xn > 0, |x − x0| < ρ

}
for a ball or an upper half-ball, respectively, centered

on a point x0 (∈ Rn−1 × {0} in the latter case) with radius ρ > 0. Sometimes it will be convenient to
treat the n-th component of x ∈ Rn separately; therefore, we set x = (x′, xn) where x′ = (x1, . . . , xn−1

)
.

Furthermore, we write
Γρ(x0) =

{
x ∈ Rn : |x− x0| < ρ, xn = 0

}
,

for x0 ∈ Rn−1×{0}. In the case x0 = 0 we set Bρ := Bρ(0), B := B1 as well as B+
ρ := B+

ρ (0), B+ := B+
1

with Γ = Γ1(0). We also introduce the following notation for W 1,p-functions defined on some half-ball
B+
ρ (x0) and which vanish (in the sense of traces) on the flat part of the boundary:

W 1,p
Γ (B+

ρ (x0),RN ) :=
{
u ∈W 1,p(B+

ρ (x0),RN ) : u = 0 on Γρ(x0)
}
.

Let Ln and Hk denote the n-dimensional Lebesgue measure and the k-dimensional Hausdorff measure,
respectively. For any bounded, measurable set X ⊂ Rn with Ln(X) =: |X| > 0, we denote the mean
value of a function h ∈ L1(X,RN ) by (h)X =

∫
−
X
h dx, and, in particular, we use the abbreviation

(h)x0,ρ, (h)+
x0,ρ for the mean value on Bρ(x0) and on B+

ρ (x0), respectively. The constants c appearing in
the different estimates will all be chosen greater than or equal to 1, and they may vary from line to line.

We consider a bounded domain Ω in Rn, for some n ≥ 2. The boundary of Ω is assumed to be of class C1,τ

for some τ ∈ (0, 1), i. e., for any point x0 ∈ ∂Ω there exist a radius r > 0 and a function h : Rn−1 → R
of class C1,τ such that (up to an isometry) Ω is locally represented by Ω ∩ Br(x0) =

{
x ∈ Br(x0) :

xn > h(x′)
}

. Thus we can locally straighten the boundary ∂Ω via a C1,τ -transformation T defined by
T(x′, xn) =

(
x1, . . . , xn−1, xn − h(x′)

)
.

In the paper we consider a general homogeneous system of second order elliptic equations in divergence
form

div A( · , u,Du) = 0 in Ω . (1)
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In components, this is a system of N equations of the form
∑n
κ=1DκA

i
κ( · , u,Du) = 0 on Ω for i =

1, . . . , N . Unless otherwise noted, we will always assume p ∈ (1, 2) fixed.

We impose on the coefficients A : Ω × RN × RnN → RnN of the system (1) standard boundedness,
differentiability, growth and ellipticity conditions: the functions (x, u, z) 7→ A(x, u, z) and (x, u, z) 7→
DzA(x, u, z) are continuous, and for fixed L ≥ 1, ν > 0 and all triples (x, u, z), (x̄, ū, z) ∈ Ω×RN ×RnN
there holds that:

(H1) A has polynomial growth:∣∣A(x, u, z)
∣∣ ≤ L

(
1 + |z|p−1 )

,

(H2) A is differentiable with respect to z with bounded and continuous derivatives:∣∣DzA(x, u, z)
∣∣ ≤ L ,

(H3) A is uniformly strongly elliptic:

DzA(x, u, z)λ · λ ≥ ν
(
1 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(H4) There exists a modulus of continuity ω with ω(t) ≤ min(1, tα) and K : [0,∞)→ [1,∞)
monotone nondecreasing such that∣∣A(x, u, z)−A(x̄, ū, z)

∣∣ ≤ LK(|u|)
(
1 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
.

Finally, we assume the following boundary condition:

(H5) g is in C1,β(Ω,RN ) .

Since the gradient DzA(x, u, z) is continuous, we may conclude the existence of a modulus of continuity
on compact sets of Ω× RN × RnN , i. e., there exists a function χ : [0,∞)× [0,∞)→ [0,∞) satisfying

χ(t, 0) = 0 for all t ≥ 0
t 7→ χ(t, s) is monotone nondecreasing for fixed s

s 7→ χ2(t, s) is concave and monotone nondecreasing for fixed t

such that for all (x, u, z), (x̄, ū, z̄) ∈ Ω× RN × RnN with |u|+ |z|+ |u− ū|+ |z − z̄| ≤M + 1 we have∣∣DzA(x, u, z)−DzA(x̄, ū, z̄)
∣∣ ≤ Lχ

(
M, |x− x̄|2 + |u− ū|2 + |z − z̄|2

)
=: LχM

(
|x− x̄|2 + |u− ū|2 + |z − z̄|2

)
. (2)

In this context we now specify the term weak solution:

Definition: u ∈W 1,p(Ω,RN ) is called a weak solution of the Dirichlet problem{
divA(x, u,Du) = 0 in Ω

u = g on ∂Ω

if there holds ∫
Ω

A( · , u,Du) ·Dϕdx = 0 ∀ϕ ∈ C∞0 (Ω,RN ) (3)

and if u = g on ∂Ω in the sense of traces.

By approximation and taking into account the growth assumption on A(·, ·, ·) we see that the identity
(3) holds for a larger class of test functions, namely all functions ϕ ∈W 1,p

0 (Ω,RN ).

Our main theorems, the partial regularity in the interior and the characterization of regular (boundary)
points, can now be stated:
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Theorem 2.1: Consider p ∈ (1, 2), Ω a bounded domain in Rn with n ≥ 2 and u ∈W 1,p(Ω,RN ) a weak
solution of system (1), where the coefficients A : Ω × RN × RnN → RnN fulfill the assumptions (H1),
(H2), (H3) and (H4). Then there holds: u ∈ C1,α

loc (Reg u,RN ) and Sing u ⊆ Π1 ∪Π2 with

Π1 =
{
x0 ∈ Ω : lim inf

ρ→ 0+

∫
−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx > 0
}
,

Π2 =
{
x0 ∈ Ω : lim sup

ρ→ 0+

(∣∣(u)x0,ρ

∣∣+
∣∣(V (Du)

)
x0,ρ

∣∣) = ∞
}

;

In particular, we have Ln(Sing u) = 0.

Theorem 2.2: Consider p ∈ (1, 2) and Ω ⊂ Rn a bounded domain of class C1,τ with n ≥ 2 and
some τ ∈ (0, 1). Let u ∈ W 1,p(Ω,RN ) be a weak solution of the system (1), where the coefficients
A : Ω×RN×RnN → RnN fulfill the assumption (H1), (H2), (H3) and (H4). Assume further the boundary
condition (H5). Then if y ∈ Reg∂Ω u there holds: Du is Hölder-continuous with exponent min{α, β, τ}
in a neighbourhood of y in Ω and Sing∂Ω u ⊂ Σ̃1 ∪ Σ̃2 with

Σ̃1 =
{
y ∈ ∂Ω : lim inf

ρ→ 0+

∫
−
Ω∩Bρ(y)

∣∣V (Dν∂Ω(y)(u− g)
)
−
(
V
(
Dν∂Ω(y)(u− g)

))
y,ρ

∣∣2 dx > 0
}
,

Σ̃2 =
{
y ∈ ∂Ω : lim sup

ρ→ 0+

∣∣(V (Dν∂Ω(y)(u− g)
)
y,ρ

∣∣ = ∞
}
.

The main step in the proof of Theorem 2.2 is to prove the result in the model situation of a half-ball. We
want to describe briefly how the Dirichlet problem (1) is transformed to a Dirchlet problem on a half-ball.
For details we refer to [2], chapter 2.3. Let z ∈ ∂Ω. Without loss of generality we suppose z = 0 and
ν∂Ω(z) = en. For sufficiently small radius r > 0 we consider the function ṽ(y) := u ◦ T−1(y)− g ◦ T−1(y)
on B+

r where T is the function which locally straightens the boundary and T−1 is its inverse. Via the
transformation formula we see that ṽ is a solution of{

div Ã( · , ṽ, Dṽ) = 0 in B+
r

ṽ = 0 on Γr

where Ãiκ(y, v, z) = Aiσ
(
T−1(y), v+ g̃(y), (z+Dg̃(y))DT(T−1(y))

)
DσT

κ
(
T−1(y)

)
(we sum over repeated

indices) are the transformed coefficients. Using assumptions (H1)-(H4) we calculate that Ã satisfy struc-
ture conditions analogous to (H1)-(H4) with new constants depending on ‖g‖C1,β , ‖T‖C1,τ , ‖T−1‖C1,τ

and the original ellipticity constant ν and upper bound L. Furthermore, we get as modulus of continuity
ω̃(t) = min{1, tα̃}.

3 Preliminaries

In this section we point out some basic and technical results which shall be used throughout the paper.
To handle the subquadratic case the V - and the W -function will be useful. For all ξ ∈ Rk and p > 1 they
are defined as

V (ξ) =
(
1 + |ξ|2

) p−2
4 ξ and W (ξ) =

(
1 + |ξ|2−p

)− 1
2 ξ . (4)

The crucial point is their property concerning growth: they behave linearly for |ξ| very small, but grow
like |ξ|

p
2 for |ξ| → ∞. As shown in [11], Chapter 3, we have

|W (ξ)| ≤ |V (ξ)| ≤ c(p) |W (ξ)|

with c(p) ≤
√

2 if p ∈ (1, 2). The advantage of W over V is that the function |W |
2
p – in contrast to |V |

2
p

– is convex on Rk. Some useful properties of V can be found in [5]:
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Lemma 3.1 ([5], Lemma 2.1): Let p ∈ (1, 2) and V,W : Rk → Rk be the functions defined in (4).
Then for any ξ, η ∈ Rk and t > 0 there holds:

(i) 2
p−2

4 min{|ξ| , |ξ|
p
2 } ≤ |V (ξ)| ≤ min{|ξ| , |ξ|

p
2 },

(ii) |V (tξ)| ≤ max{t, t
p
2 } |V (ξ)| ,

(iii) |V (ξ + η)| ≤ c(p)
(
|V (ξ)|+ |V (η)|

)
,

(iv) p
2 |ξ − η| ≤

|V (ξ)−V (η)|

(1+|ξ|2+|η|2)
p−2

4
≤ c(k, p) |ξ − η| ,

(v) |V (ξ)− V (η)| ≤ c(k, p) |V (ξ − η)| ,
(vi) |V (ξ − η)| ≤ c(p,M) |V (ξ)− V (η)| , provided |η| ≤M.

The inequalities (i)-(iii) also hold if we replace V by W .

Since |W |2 = (|W |
2
p )p is convex and satisfies a p-growth condition (see Lemma 3.1 (i)), we may apply

[8], Chapter 4, Theorem 2.3 to conclude lower semicontinuity of the mapping u 7→
∫

Ω
|W (Du)|2 dx with

respect to weak convergence in W 1,p(Ω,RN ).

Furthermore, we can prove with a similar argument to the proof of [13], Lemma 3:

Lemma 3.2: Let f : Ω→ Hom(Rn,RN ) be a function such that V ◦f is Hölder-continuous with exponent
α ∈ (0, 1). Then the function f itself is Hölder-continuous in Ω with the same exponent.

Next we want to consider a W 1,p-function u in the subquadratic case and prove some inequalities of
Sobolev-Poincaré-type, both for the interior and the boundary, which are appropriate for our situation.

Lemma 3.3: Let p ∈ (1, 2), Bρ(x0) ⊂ Rn with n ≥ 2 and set p] = 2n
n−p . Moreover, let V and W be

the functions defined in (4). Then there exists a constant cs depending only on n,N and p such that for
every u ∈W 1,p(Bρ(x0),RN )

(∫
−
Bρ(x0)

∣∣W (u−(u)x0,ρ

ρ

)∣∣p] dx) 1
p] ≤ cs

(∫
−
Bρ(x0)

|W (Du)|2 dx
) 1

2

and that for every u ∈W 1,p
Γ (B+

r (x0),RN ) with x0 ∈ Rn−1 × {0}

(∫
−
B+
ρ (x0)

∣∣W (uρ )∣∣p] dx) 1
p] ≤ cs

(∫
−
B+
ρ (x0)

|W (Du)|2 dx
) 1

2
.

Furthermore, the analogous inequalities hold if we replace W by V .

Proof: The proof of the interior estimate can be found in [11], Theorem 2. In the boundary situation we
extend u to the whole ball by zero, use Lemma 3.1 and apply Jensen’s inequality, and the result follows
from the estimate on the full ball in a more or less standard way. �

In the next step we will have a closer look at the Poincaré inequality for u ∈ W 1,p
Γ (B+

R ,RN ). We use
the fact that u vanishes on Γ to show that the integral over u is in fact estimated by the integral of the
normal derivative Dnu only rather than the full derivative.

Lemma 3.4: For functions u ∈W 1,p
Γ (B+

R(x0),RN ) with x0 ∈ Rn−1 × {0} there holds:∫
B+
R(x0)

|u|p dx ≤ Rp

p

∫
B+
R(x0)

|Dnu|p dx .

Proof: We may assume x0 = 0. A function u(x) ∈ C1(B+
R ,RN ) ∩W 1,p

Γ (B+
R ,RN ) can be written as

u(x) = u(x′, xn) = u(x′, xn)− u(x′, 0) =
∫ xn

0

Dnu(x′, t) dt .
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Then we conclude using Jensen’s inequality and Fubini’s theorem:∫
B+
R

|u(x)|p dx =
∫ R

−R

∫ √R2−x2
1

−
√
R2−x2

1

. . .

∫ √R2−|x′|2

0

|u(x)|p dxn dxn−1 . . . dx1

≤
∫ R

−R

∫ √R2−x2
1

−
√
R2−x2

1

. . .

∫ √R2−|x′|2

0

(
xn

∫
−
xn

0

|Dnu(x′, t)| dt
)p
dxn dxn−1 . . . dx1

≤
∫ R

−R

∫ √R2−x2
1

−
√
R2−x2

1

. . .

∫ √R2−|x′|2

0

xp−1
n

∫ √R2−|x′|2

0

|Dnu(x′, t)|p dt dxn dxn−1 . . . dx1

=
Rp

p

∫
B+
R

|Dnu(x)|p dx .

For functions u ∈W 1,p
Γ (B+

R ,RN ) the result is achieved via approximation. �

We wish to have an analogous result involving the function V . To this end, we need the following lemma:

Lemma 3.5: Let p ∈ (1, 2) and T : Lp(B+,RN ) → Lp(B+,RN ) be a bounded, linear operator whose
restriction T |L2 is also a bounded linear operator L2(B+,RN ) → L2(B+,RN ), i. e., ‖T‖L2(B+,RN ) :=
‖T |L2‖L2(B+,RN ) <∞. Then there exists a constant c depending on p, ‖T‖Lp(B+,RN ), ‖T‖L2(B+,RN ) such
that for all f ∈ Lp(B+,RN ) we have∫

−
B+
|V (Tf)|2 dx ≤ c

∫
−
B+
|V (f)|2 dx.

Proof: The result is shown by a slight modification of the proof of [4], Lemma 2.1. �

Lemma 3.6: Let p ∈ (1, 2) and B+
ρ (x0) ⊂ Rn with x0 ∈ Rn−1 × {0}, n ≥ 2. Then for all u ∈

W 1,p
Γ (B+

ρ (x0),RN ) there holds∫
−
B+
ρ (x0)

∣∣V (uρ )∣∣2 dx ≤ c(p)
∫
−
B+
ρ (x0)

|V (Dnu)|2 dx .

Furthermore, the analogous inequality holds if we replace W by V .

Proof: We consider for f ∈ C1
(
B+,RN

)
the linear operator

Tf(x) :=
∫ xn

0

f(x′, t) dt for x ∈ B+ .

Then we have ‖Tf‖Lq(B+,RN ) ≤ ‖f‖Lq(B+,RN ) for q = 2 and q = p. Therefore, we may extend T to a
linear operator (called T again) on Lq(B+,RN ). Applying Lemma 3.5 we draw the conclusion:∫

−
B+
|V (Tf)|2 dx ≤ c(p)

∫
−
B+
|V (f)|2 dx .

If we have that f vanishes on Γ, the identity T (Dnf) = f holds on B+; therefore, the estimate of the
lemma is proved in the particular situation of f being a continuously differentiable function. The general
case follows by approximation in W 1,p

(
B+,RN

)
and a standard transformation argument. �

4 Linear theory and A-harmonic approximation

In this section we first provide an a priori estimate for solutions of linear elliptic systems of second order
with constant coefficients in the subquadratic case. It is well known that W 1,2-solutions are smooth up
to the boundary. Here we have to use different techniques with the Lp-theory in a global version as an
essential tool to overcome the difficulties arising from the fact that we treat the case 1 < p < 2. Secondly
we present a suitable A-harmonic approximation lemma.
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We will apply later the a priori estimate for solutions of a homogeneous elliptic systems with constant
coefficients A ∈ Bil

(
RnN

)
on half-balls. Therefore, we will consider in what follows the Dirichlet problem{

div(ADu) = 0 in B+
R

u = 0 on ΓR .
(5)

We assume the coefficients A to be bounded and elliptic in the sense of Legendre-Hadamard, i. e., for
some ν, L > 0 there holds

(A1) |A(C,C)| ≤ Λ |C| |C| ∀C,C ∈ RnN ,

(A2) A(ξ ⊗ η, ξ ⊗ η) ≥ ν |ξ|2 |η|2 ∀ ξ ∈ RN , η ∈ Rn.

Theorem 4.1 (Lp-theory; [14], Satz 1*): Let Ω be a bounded Lipschitz-domain. Suppose the assump-
tions (A1) and (A2) hold. Then for any p > 1 and any F ∈ Lp(Ω,Hom(Rn,RN )) there exists exactly
one weak solution u ∈W 1,p

0 (Ω,RN ) of the Dirichlet problem∫
Ω

A(Du,Dϕ) dx =
∫

Ω

F ·Dϕdx ∀ϕ ∈ C∞0 (Ω,RN ) ,

and it satisfies
‖u‖W 1,p

0 (Ω,RN ) ≤ c ‖F‖Lp(Ω,RnN ) ,

where c is a positive constant depending only on n,N, p, νΛ and Ω.

Remark: In fact, in [14] the coefficients do not need to be constant because what is required is only their
uniform continuity. Furthermore, the theorem implies that for a homogeneous system the only solution
in W 1,p

0 (Ω,RN ) is identically zero.

The previous theorem now enables us to prove C∞-regularity for weak solutions u of class W 1,p
Γ (B+

R ,RN ).

Theorem 4.2: Let u ∈W 1,p
Γ (B+

R ,RN ) be a weak solution of the system (5) with constant coefficients A
which satisfy conditions (A1) and (A2). Then for any ρ < ρ0 < R we have: u ∈ C∞(B+

ρ ,RN ) and

sup
B+
ρ

(
ρ2 |Du|2 + ρ4 |D2u|2

)
≤ c max

{(
ρ
ρ0

)2
,
(
1− ρ

ρ0

)−8n}
ρ2− 2n

p

(∫
B+
ρ0

|Du|p dx
) 2
p

,

where the constant c depends only on n,N, p and ν
Λ .

Remark 4.3: In the interior, the C∞-regularity result for weak solutions and the corresponding estimate
is easier to derive: since we consider systems with constant coefficients, we can make use of the fact that
the smoothed solution is again a solution in the interior. As a consequence, we observe for functions
u ∈ W 1,1(Bρ(x0),RN ) which are solutions of a linear elliptic system with constant coefficients under
conditions (A1) and (A2): u ∈ C∞(Bρ(x0),RN ) and

sup
Bρ/2(x0)

(
|Du|+ ρ |D2u|

)
≤ c

∫
−
Bρ(x0)

|Du| dx ,

where the constant c depends only on n,N and ν
Λ (see [11], Lemma 5).

Proof: First we consider a weak solution u ∈ W 1,2
Γ (B+

R ,RN ). By [17], Chapter 10.2, we derive for any
radius r < R and any p > 1 the estimate

sup
B+
r

(
r2 |Du|2 + r4

∣∣D2u
∣∣2 ) ≤ c max

{(
r
R

)2
,
(
1− r

R

)−8n}
r2− 2n

p

(∫
B+
R

|Dnu|p dx
) 2
p

, (6)

where the constant c depends only on n,N, p and ν
Λ .
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Next we want to approximate our solution u ∈W 1,p
Γ (B+

R ,RN ) by functions wk ∈W 1,2
Γ (B+

ρ0
,RN ) which are

again solutions of appropriate Dirichlet problems. For this purpose we extend u to BR by odd reflection

ũ(x) =

{
u(x′, xn) if x ∈ B+ ∪ Γ
−u(x′,−xn) if x ∈ B− .

Let 0 < ρ < ρ0 < R, φ ∈ C∞0 (BR) be a standard mollifier and (εk)k∈N a positive sequence tending to
zero with εk ≤ min{ρ0 − ρ,R − ρ0} for all k ∈ N. Let φεk with φεk(x) = ε−nk φ

(
x
εk

)
for x ∈ Rn be the

associated kernels. Then we obtain for the smoothed functions uk := φεk ◦ ũ that uk ∈ C∞(Bρ0 ,RN ), in
particular uk ∈W 1,2(Bρ0 ,RN ), and

uk = 0 on Γρ0 , uk → u in W 1,p(B+
ρ0
,RN ) .

We consider the following Dirichlet problem in W 1,2(B+
ρ0
,RN ):

∫
B+
ρ0

A(Dwk, Dϕ) dx = 0 ∀ϕ ∈ C1
0 (B+

ρ0
,RN )

wk = uk on B+
ρ0
.

(7)

Using Lax-Milgram we obtain the existence of a unique weak solution wk ∈ W 1,2(B+
ρ0
,RN ), and the

function vk := wk − uk ∈W 1,2
0 (B+

ρ0
,RN ) satisfies for all ϕ ∈ C1

0 (B+
ρ0
,RN ):∫

B+
ρ0

A(Dvk, Dϕ) dx = −
∫
B+
ρ0

A(Duk, Dϕ) dx . (8)

From the Lp-theory, Theorem 4.1, we infer∫
B+
ρ0

|Dvk −Dvj |p dx ≤ c

∫
B+
ρ0

|Duk −Duj |p dx ,

where c = c(n,N, p, νΛ , ρ0). Applying the Poincaré inequality (note that vk, vj = 0 on ∂B+
ρ0

) we conclude
that {vk} is a Cauchy sequence in W 1,p

0 (B+
ρ0
,RN ), which converges to a function v ∈ W 1,p

0 (B+
ρ0
,RN ).

We used here the trace theorem to infer the zero-boundary values. Therefore, we obtain with (8), the
convergence uj → u in W 1,p

0 (B+
ρ0
,RN ) and (5)∫

B+
ρ0

A(Dv,Dϕ) dx = lim
k→∞

∫
B+
ρ0

A(Dvk, Dϕ) dx

= − lim
k→∞

∫
B+
ρ0

A(Duk, Dϕ) dx = −
∫
B+
ρ0

A(Du,Dϕ) dx = 0

for all functions ϕ ∈ C1
0 (B+

ρ0
,RN ). Since v vanishes on ∂B+

ρ0
, this implies according to the remark after

Theorem 4.1 that v is identically equal to zero.

Using wk = vk + uk it is easily shown that {wk} is a also Cauchy sequence in W 1,p(B+
ρ0
,RN ) (one needs

to keep in mind that wk = 0 on Γρ0 for the application of the Poincaré inequality in Lemma 3.4). Hence,
wk converges to some w in W 1,p(B+

ρ0
,RN ), and from (7) we see∫

B+
ρ0

A(Dw,Dϕ) dx = 0 .

With v = 0 this yields w = u.

Now we have finished the construction of the sequence {wk} converging to u where wk ∈W 1,2(B+
ρ0
,RN )

solves the linear elliptic system
∫
B+
ρ0
A(Dwk, Dϕ) dx = 0 for all ϕ ∈ C1

0 (B+
ρ0
,RN ). Therefore, we can

apply the a priori estimate (6) with (ρ, ρ0) instead of (r,R) to find

sup
B+
ρ

(
ρ2 |Dwk|2 + ρ4 |D2wk|2

)
≤ c max

{(
ρ
ρ0

)2
,
(
1− ρ

ρ0

)−8n}
ρ2− 2n

p

(∫
B+
ρ0

|Dwk|p dx
) 2
p

. (9)
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In particular, wk is smooth on the ball B+
ρ . Since also the function wk−wj ∈W 1,2(B+

ρ0
,RN ) is a solution

of this system, we can apply (9) to this difference, and therefore, we arrive at the conclusion that {wk}
is a uniform Cauchy sequence in C2(B+

ρ ,RN ). Thus there exists w̃ in C2(B+
ρ ,RN ) such that

wk → w̃ in C2(B+
ρ ,RN ) .

On the other hand we have the convergence wk → u in W 1,p(B+
ρ0
,RN ), and so by the uniqueness of the

limit we observe u = w̃ in B+
ρ . Thus u ∈ C2(B+

ρ ,RN ) (in fact it is smooth), and taking the limit in (9)
we obtain the desired estimate. �

In the second part of this chapter we deal with A-harmonic approximation, which extends the method of
harmonic approximation (i. e., approximating with functions solving the Laplace equation) in a natural
way to bounded elliptic operators with constant coefficients.

Lemma 4.4 (A-harmonic approximation): Let λ, Λ be positive constants. Then for any ε > 0
there exists δ = δ(n,N, p, νΛ , ε) with the following property: for any bilinear form A on RnN which is
elliptic in the sense of Legendre-Hadamard with ellipticity constant ν and upper bound Λ and for any
u ∈W 1,p

Γ (B+
ρ (x0),RN ) (with some ρ > 0, x0 ∈ Rn−1 × {0}) satisfying:∫

−
B+
ρ (x0)

|W (Du)|2 dx ≤ γ2 ≤ 1 ,

∣∣∣ ∫−
B+
ρ (x0)

A(Du,Dϕ) dx
∣∣∣ ≤ δ γ sup

B+
ρ (x0)

|Dϕ| ∀ϕ ∈ C1
0 (B+

ρ (x0),RN ) ,

there exists an A-harmonic function h ∈ W 1,p
Γ (B+

ρ/2(x0),RN ), i. e.,
∫
B+
ρ/2(x0)

A(Dh,Dϕ) dx = 0 for all

functions ϕ ∈ C1
0 (B+

ρ/2(x0),RN ), which satisfies∫
−
B+
ρ/2(x0)

∣∣W (u−γhρ )∣∣2 dx ≤ γ2ε and
∫
−
B+
ρ/2(x0)

∣∣W (Dh)
∣∣2 dx ≤ 2n+2 . (10)

Remark 4.5: An analogous result in the interior can be found in [11], Lemma 6. Instead of going to
balls of half radius as above, it was shown that there exists an A-harmonic function h on the full ball
Bρ(x0) which satisfies an estimate equivalent to (10) on Bρ(x0).

Proof: For the proof of this lemma we combine ideas from [11], Lemma 6, which treats the subquadratic
situation, with ideas of [20], Lemma 2.1, which treats the boundary in the quadratic case. Without loss
of generality we may assume x0 = 0 and ρ = 1. The general case follows by a rescaling argument.

If the conclusion of the lemma were false, we could find ε > 0 and sequences {Ak} of bilinear forms on
RnN with uniform ellipticity constant ν and uniform upper bound Λ, {fk} with fk ∈W 1,p

Γ (B+,RN ) and
{γk} with γk ∈ (0, 1] such that∫

−
B+

∣∣W (Dfk)
∣∣2 dx ≤ γ2

k ≤ 1 and
∣∣∣ ∫−
B+

A(Dfk, Dϕ) dx
∣∣∣ ≤ γk

k
sup
B+
|Dϕ| (11)

for all ϕ ∈ C1
0 (B+,RN ), but ∫

−
B+

1/2

∣∣W (fk − γkhk)
∣∣2 dx > γ2

k ε (12)

for all hk ∈ Hk : =
{
f ∈W 1,p

Γ (B+
1/2,R

N ), f is Ak-harmonic on B+
1/2 with

∫
−
B+

1/2

∣∣W (Df)
∣∣2 dx ≤ 2n+2

}
.

Defining gk := fk
γk

we obtain by (11):∣∣∣ ∫−
B+

A(Dgk, Dϕ) dx
∣∣∣ ≤ 1

k sup
B+
|Dϕ| ∀ϕ ∈ C1

0 (B+,RN ) , (13)
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and according to Lemma 3.1 (i) we see that the Lp-norm of Dgk is bounded on B+:∫
−
B+
|Dgk|p dx ≤

c(p)
|B+| γpk

(∫
B+
|W (Dfk)|2 dx+

∫
B+
|W (Dfk)|p dx

)
≤ c(p)

(
γ2−p
k + 1

)
.

Applying the Poincaré inequality from Lemma 3.4 to every gk (gk = 0 on Γ) immediately implies that
the sequence {gk} is bounded in W 1,p(B+,RN ) by a constant c(n, p). Hence, passing to a subsequence
(also labelled with k), this yields the existence of g ∈ W 1,p(B+,RN ), A ∈ Hom(Rn,RN ) and γ ∈ [0, 1]
such that there holds

gk ⇀ g weakly in W 1,p(B+,RN ) ,
gk → g strongly in Lp(B+,RN ) and a.e. in B+,

Ak → A in RnN ,
γk → γ monotone.

Indeed, by the trace theorem, we have g = 0 on Γ. Using the lower semicontinuity of u 7→
∫
B+ |W (Du)|2 dx

with respect to weak convergence in W 1,p(B+,RN ), Lemma 3.1 (ii) and (11), we deduce:∫
−
B+
|W (Dg)|2 dx ≤ lim inf

k→∞

∫
−
B+

∣∣W (Dfkγk )∣∣2 dx ≤ 1 . (14)

Furthermore, we deduce as in [11], Lemma 6 via the weak convergence of gk → g in W 1,p, the convergence
of Ak → A and (13): g is A-harmonic on B+, meaning that we have

∫
−
B+ A(Dg,Dϕ) dx = 0 for all

ϕ ∈ C1
0 (B+,RN ). Since g ∈ W 1,p

Γ (B+,RN ) is a solution of a linear system with constant coefficients,
Theorem 4.2 now allows us to observe that g is smooth on any smaller half-ball B+

ρ with 0 < ρ < 1.

We now consider the Dirichlet problem (Dk) given by
∫
B+

1/2

Ak(Dv,Dϕ) dx = 0 ∀ϕ ∈ C1
0 (B+

1/2,R
N )

v = g on ∂B+
1/2 .

By Lax-Milgram theorem there exists a unique solution vk ∈ W 1,2
Γ (B+

1/2,R
N ). Testing the system (Dk)

with vk − g and using the strong Legendre-Hadamard condition for each bilinear form Ak, the Ak-
harmonicity of vk, the A-harmonicity of g and Hölder’s inequality, we see that:

ν

∫
−
B+

1/2

|Dvk −Dg|2 dx ≤ |A−Ak| sup
B+

1/2

|Dg|
(∫
−
B+

1/2

|Dvk −Dg|2 dx
)1/2

.

As g is smooth on B+
1/2 and thus supB+

1/2
|Dg| is bounded, the convergence Ak → A yields that the right

hand side of the last inequality vanishes as k →∞. Via the Poincaré inequality we infer

vk → g strongly in W 1,2
Γ (B+

1/2,R
N ) (15)

and therefore, strong convergence V (Dvk)→ V (Dg) in L2(B+
1/2,R

N ) follows from Lemma 3.1 (v), (i):∫
−
B+

1/2

|V (Dvk)− V (Dg)|2 dx ≤ c

∫
−
B+

1/2

|V (Dvk −Dg)|2 dx ≤ c(n,N, p)
∫
−
B+

1/2

|Dvk −Dg|2 dx .

Then we conclude for k →∞ via (14)∫
−
B+

1/2

|W (Dvk)|2 dx ≤
∫
−
B+

1/2

|V (Dvk)|2 dx −→
∫
−
B+

1/2

|V (Dg)|2 dx ≤ 2n+1 .

This yields
∫
−
B+

1/2
|W (Dvk)|2 dx ≤ 2n+2 for k sufficiently large.

We have proved so far that the functions vk ∈ W 1,p
Γ (B+

1/2,R
N ) belong to Hk for k sufficiently large. In

what follows we show that they are suitable to produce a contradiction to (12). We proceed similar to
[11], Lemma 6, but for the convenience of the reader we outline the procedure as our situation is less
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complicated (we allow half-balls of half radius for the estimate (10)). Let p] := 2n
n−p > 2. Then there

exists t ∈ (0, 1
2 ) such that 1 = 2t+ 2(1− t) 1

p]
, and we can estimate via Hölder’s inequality:

∫
−
B+

1/2

∣∣W (fk − γkvk)
∣∣2dx ≤ (∫−

B+
1/2

∣∣W (fk − γkvk)
∣∣dx)2t(∫

−
B+

1/2

∣∣W (fk − γkvk)
∣∣p]dx) 2(1−t)

p]

. (16)

The first term of the right hand side of (16) is calculated by Lemma 3.1 (i):

γ−2t
k

(∫
−
B+

1/2

∣∣W (fk − γkvk)
∣∣ dx)2t

≤ γ−2t
k

(∫
−
B+

1/2

|fk − γkvk| dx
)2t

≤
(∫
−
B+

1/2

|gk − g| dx
)2t

+
(∫
−
B+

1/2

|g − vk| dx
)2t k→∞−−−−→ 0 , (17)

the convergence being a consequence of the strong convergence gk → g in Lp(B+,RN ) and vk → g in
L2(B+,RN ) in (15). For the second term on the right hand side of (16) we use the Sobolev-Poincaré
inequality from Lemma 3.3, Lemma 3.1 (iii), (i) and (11):

(∫
−
B+

1/2

∣∣W (fk − γkvk)
∣∣p] dx) 2(1−t)

p] ≤ cs(n,N, p)
(∫
−
B+

1/2

∣∣W (Dfk − γkDvk)
∣∣2 dx)1−t

≤ c(n,N, p)
(∫
−
B+

1/2

(∣∣W (Dfk)
∣∣2 +

∣∣W (γk(Dvk −Dg)
)∣∣2 +

∣∣W (γkDg)
∣∣2) dx)1−t

≤ c(n,N, p)
(
γ2
k + γ2

k

∫
−
B+

1/2

|Dvk −Dg|2 dx+
∫
−
B+

1/2

∣∣W (γkDg)
∣∣2 dx)1−t

. (18)

For the last term we argue exactly as in [11], estimate (47): we distinguish the cases that {γk} is, in turn,
nondecreasing or nonincreasing, and derive (for k sufficiently large):∫

−
B+

1/2

|W (γkDg)|2 dx ≤ 2n+1 γ2
k

using the weak convergence γk Dflγl ⇀ γkDg in Lp(B+,RN ), the lower semicontinuity with respect to weak

convergence in W 1,p(B+
1/2,R

N ) of u 7→
∫
B+

1/2
|W (Du)|2 dx, Lemma 3.1 and the estimate (11). Combined

with the estimate (18) and the convergence in (15), this gives

(∫
−
B+

1/2

∣∣W (fk − γkvk)
∣∣p] dx) 2(1−t)

p] ≤ c(n,N, p) γ2(1−t)
k .

From the decomposition (16) and the convergence in (17) we obtain altogether∫
−
B+

1/2

∣∣W (fk − γkvk)
∣∣2 dx ≤ ε γ2

k

for k sufficiently large, which is the desired contradiction to (12). This finishes the proof of the lemma.�

5 A Caccioppoli-type inequality

The first step in proving a regularity theorem for solutions u of elliptic systems is to establish a suitable
reverse-Poincaré or Caccioppoli inequality. This means that the derivative Du is essentially controlled
by the solution u itself on a larger domain (or, in our model situation, on a larger half-ball).

Lemma 5.1 (Caccioppoli inequality): Let u ∈W 1,p
Γ (B+,RN ) be a weak solution of the homogeneous

system
divA( · , u,Du) = 0 in B+,
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where the coefficients A satisfy the assumptions (H1), (H2), (H3) and (H4). Let M > 0. Then for any
fixed ξ ∈ RN with |ξ| ≤M , x0 ∈ Γ and ρ < 1− |x0| there holds:∫

−
B+
ρ/2(x0)

|V (Du− ξ ⊗ en)|2 dx ≤ ccacc

(∫
−
B+
ρ (x0)

∣∣V (u−ξ xnρ

)∣∣2 dx+ ρ2α
)

for a constant ccacc depending only on n, p, Lν , M and K(M).

Remark 5.2: In the interior, on the right hand side of a Caccioppoli inequality, we usually need a
function with mean value zero. Thus we show in this setting for any µ ∈ RN ,Υ ∈ RnN with |µ|, |Υ| ≤M
the following version:∫

−
Bρ/2(x0)

|V (Du)− V (Υ)|2 dx ≤ ĉcacc

(∫
−
Bρ(x0)

∣∣V (u(x)−µ−Υ(x−x0)
ρ

)∣∣2 dx+ ρ2α
)
,

where ĉcacc depends only on n,N, p, Lν ,M and K(2M).

Proof: We consider a cut-off function η ∈ C∞0 (B ρ
2
(x0), [0, 1]), satisfying η ≡ 1 on B ρ

2
(x0) and |∇η| ≤ 4

ρ .
Since u ∈ W 1,p

Γ (B+
ρ ,RN ), the function u − ξ · xn belongs as well to W 1,p

Γ (B+
ρ ,RN ), and we can test the

system with ϕ = η2(u− ξ xn). Abbreviating X = ξ ⊗ en we have

0 =
∫
−
B+
ρ (x0)

A( · , u,Du) ·Dϕdx

=
∫
−
B+
ρ (x0)

A( · , u,Du) · (Du− X) η2 dx+
∫
−
B+
ρ (x0)

A(· , u,Du) ·
(
(u− ξ xn)⊗∇η

)
2η dx ,

and finally (taking into account that A(x0, 0,X) is constant):∫
−
B+
ρ (x0)

[
A( · , u,Du)−A( · , u,X)

]
· (Du− X) η2 dx

= −
∫
−
B+
ρ (x0)

A( · , u,X) · (Du− X) η2 dx− 2
∫
−
B+
ρ (x0)

A( · , u,Du) ·
(
(u− ξ xn)⊗∇η

)
η dx

= −2
∫
−
B+
ρ (x0)

[
A( · , u,Du)−A( · , u,X)

]
·
(
(u− ξ xn)⊗∇η

)
η dx

−
∫
−
B+
ρ (x0)

[
A( · , u,X)−A( · , ξ xn,X)

]
·Dϕdx−

∫
−
B+
ρ (x0)

[
A( · , ξ xn,X)−A(x0, 0,X)

]
·Dϕdx

=: −
∫
−
B+
ρ (x0)

(2 I + II + III) dx (19)

with the obvious labelling. The ellipticity condition (H3) allows us to compute for the left-hand side of
(19): ∫

−
B+
ρ (x0)

[
A( · , u,Du)−A( · , u,X)

]
· (Du− X) η2 dx

=
∫
−
B+
ρ (x0)

∫ 1

0

DzA
(
· , u,X + t(Du− X)

)(
Du− X, Du− X

)
η2 dt dx

≥
∫
−
B+
ρ (x0)

∫ 1

0

ν
(
1 + |X + t(Du− X)|2

) p−2
2 |Du− X|2 η2 dt dx

≥ ν c−1(p,M)
∫
−
B+
ρ (x0)

|V (Du− X)|2 η2 dx . (20)

To estimate the terms I, II and III one by one, we decompose the half-ball:

B(≤)(>) := B+
ρ (x0) ∩

{
x : |Du(x)− X| ≤ 1} ∩ {x :

∣∣u(x)−ξ xn
ρ

∣∣ > 1
}
,
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where other combinations involving > and ≤ are defined analogously. On these sets we can use Lemma
3.1 (i) because for any ζ ∈ Rk there holds:

if |ζ| ≤ 1 : min{|ζ|2 , |ζ|p} = |ζ|2 ≤
√

2 |V (ζ)|2

if |ζ| > 1 : min{|ζ|2 , |ζ|p} = |ζ|p ≤
√

2 |V (ζ)|2 . (21)

Keeping in mind that ρ < 1 and using Young’s inequality a · b ≤ q−1
q ε a

q
q−1 + 1

q ε
1−q bq (for a, b, ε ≥ 0

and q > 1), we can now use the given assumptions on the coefficients A to estimate the various terms:
for term I we apply condition (H2) if x ∈ B(≤)(·) and condition (H1) if x ∈ B(>)(·) to conclude

2 I ≤ ε |V (Du− X)|2 η2 + c(p,M)
(
L2 ε−1 + Lp ε1−p) ∣∣V (u−ξ xnρ

)∣∣2 . (22)

For the remaining term II and III we use condition (H4) and the fact that we have |u− ξ xn| ≤ ρ in the
set B(·)(≤) to find in a standard way

II + III ≤ 2 ε |V (Du− X)|2 η2 + c(p,M)K(M)
p
p−1

(
L+ L

p
p−1 ε

1
1−p
) ∣∣V (u−ξ xnρ

)∣∣2
+ c(p,M)K(M)

p
p−1

(
L+ L

p
p−1 ε

1
1−p + L2 ε−1

)
ρ2α . (23)

For detailed calculations we refer to [2], chapter 5. Combining (19), (20), (22) and (23), we infer

(
ν c−1(p,M)− 3ε

) ∫
−
B+
ρ (x0)

|V (Du− X)|2 η2 dx

≤ c(p,M)K(M)
p
p−1

(
L2 ε−1 + Lp ε1−p + L+ L

p
p−1 ε

1
1−p
) ∫
−
B+
ρ (x0)

∣∣V (u−ξ xnρ

)∣∣2 dx
+ c(p,M)K(M)

p
p−1

(
L+ L

p
p−1 ε

1
1−p + L2 ε−1

)
ρ2α .

Taking ε = 1
6νc
−1(p,M) and dividing both sides by 1

2νc
−1(p,M), we obtain the desired estimate. �

6 An excess-decay estimate

For any half-ball B+
ρ (y) ⊂⊂ B+ with y ∈ Γ, a fixed function u ∈ W 1,p

Γ (B+,RN ) and ξ ∈ RN we define
the excess function by

Φ(y, ρ, ξ) :=
(∫
−
B+
ρ (y)

|V (Du− ξ ⊗ en)|2 dx
) 1

2
.

In this section we consider a solution u ∈W 1,p
Γ (B+,RN ) of the system

div A( · , u,Du) = 0 in B+ . (24)

We will show that the function u − ξ xn is approximately A-harmonic for some constant coefficients A

which are derived from the original coefficients A. Application of Lemma 4.4 below will then yield the
existence of an A-harmonic function, which is on the one hand comparable via the function W to the
function (u − ξ xn) in the L2-sense, and for which we have, on the other hand, already proved good a
priori estimates.

Lemma 6.1 (Approximate A-harmonicity): Let u ∈ W 1,p
Γ (B+,RN ) be a weak solution of (24),

where conditions (H2) and (H4) are satisfied. Then for any M > 0 there exists a constant ca =
Lc(p,M,K(M)) such that for every half-ball B+

ρ (y) ⊂⊂ B+, y ∈ Γ, and every ξ ∈ RN with |ξ| ≤ M we
have: ∣∣∣ ∫−

B+
ρ (y)

DzA(y, 0, ξ ⊗ en)
(
Du− ξ ⊗ en, Dϕ

)
dx
∣∣∣ ≤ ca

[
Φ2 + ρα + χM

(
Φ2
)

Φ
]

sup
B+
ρ (y)

|Dϕ|

for all ϕ ∈ C∞0 (B+
ρ (y),RN ). Here we have abbreviated Φ(y, ρ, ξ) by Φ.
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Proof: We use again the abbreviation X = ξ ⊗ en. We assume initially supB+
ρ (y) |Dϕ| ≤ 1. Since

A(y, 0,X) is constant and divA( · , u,Du) = 0 we see:∫
−
B+
ρ (y)

∫ 1

0

DzA
(
y, 0,X + t(Du− X)

)
dt
(
Du− X, Dϕ

)
dx

=
∫
−
B+
ρ (y)

[
A(y, 0, Du)−A(y, 0,X)

]
·Dϕdx =

∫
−
B+
ρ (y)

[
A(y, 0, Du)−A( · , u,Du)

]
·Dϕdx ,

and thus∣∣∣ ∫−
B+
ρ (y)

DzA(y, 0,X)
(
Du− X, Dϕ

)
dx
∣∣∣

≤
∫
−
B+
ρ (y)

( ∣∣∣ ∫ 1

0

[
DzA

(
y, 0,X

)
−DzA

(
y, 0,X + t(Du− X)

)]
dt
∣∣∣ ∣∣(Du− X

)∣∣
+
∣∣A(y, 0, Du)−A(x,X (x− y), Du

)∣∣ +
∣∣A(x,X (x− y), Du

)
−A

(
x, u,Du

)∣∣ ) dx
=
∫
−
B+
ρ (y)

(I + II + III) dx (25)

with the obvious labelling. In all the estimates of the terms I, II and III below we will distinguish the
cases |Du− X| ≤ 1, |Du− X| > 1 and use (21):

Estimate for I: On the set B+
ρ (y) ∩

{
|Du− X| > 1

}
from the boundedness of DzA in (H2) we get

I ≤ 2L |Du− X| ≤ 2L |Du− X|p ≤ 2
√

2L |V (Du− X)|2 .

On the complement, we use the existence of the modulus of continuity χM (see (2)) to conclude

I ≤
∫ 1

0

∣∣DzA(y, 0,X)−DzA
(
y, 0,X + t(Du− X)

)∣∣ dt |Du− X|

≤ LχM
(√

2 |V (Du− X)|2
)

2
1
4 |V (Du− X)| .

Since χ2
M is concave and monotone nondecreasing, we can apply Hölder’s and Jensen’s inequality (note

that we have χ2
M (ct) ≤ cχ2

M (t) for c ≥ 1) to arrive at

1∣∣B+
ρ (y)

∣∣ ∫
B+
ρ (y)∩{|Du−X|≤1}

I dx ≤ 2
1
4 L

∫
−
B+
ρ (y)

χM
(√

2 |V (Du− X)|2
)
|V (Du− X)| dx

≤
√

2LχM
(
Φ2(y, ρ, ξ)

)
Φ(y, ρ, ξ) .

Therefore, we achieve for the first integral:∫
−
B+
ρ (y)

I dx ≤ 2
√

2LΦ2(y, ρ, ξ) +
√

2LχM
(
Φ2(y, ρ, ξ)

)
Φ(y, ρ, ξ) . (26)

Estimate for II: By assumption (H4) we have:

II ≤ LK(|X|)ω
(
|x− y|+ |X| |x− y|

) (
1 + |Du|2

) p−1
2

≤ LK(M) c(M) ρα
(
1 + |Du− X|p−1 )

.

Hence, distinguishing the cases B+
ρ (y)∩

{
|Du− X| > 1

}
(note here ρ ≤ 1) and B+

ρ (y)∩
{
|Du− X| ≤ 1

}
,

we obtain for the second integral the estimate:∫
−
B+
ρ (y)

II dx ≤ LK(M) c(M)
(
Φ2(y, ρ, ξ) + ρα

)
. (27)

Estimate for III: Note that X (x− y) = ξ (xn − yn) = ξ xn. Similar to the estimate for term II, using
(H4), we see:

III ≤ LK(M) 2 (1 +M)ω
(
|u− ξxn|

) (
1 + |Du− X|p−1 )

.
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Since ω(t) ≤ 1 this implies on B+
ρ (y) ∩

{
|Du− X| > 1

}
:

III ≤ LK(M) c(M) |Du− X|p ≤ LK(M) c(M) |V (Du− X)|2 .

On B+
ρ (y) ∩

{
|Du− X| ≤ 1

}
we first distinguish the cases

{∣∣u−ξxn
ρ

∣∣ ≤ 1
}

,
{∣∣u−ξxn

ρ

∣∣ > 1
}

to find

|u− ξxn|α ≤ ρα +
√

2
∣∣V (u−ξxnρ

)∣∣2. Therefore, we derive on the set B+
ρ (y) ∩

{
|Du− X| ≤ 1

}
III ≤ LK(M) c(M)

(
ρα +

∣∣V (u−ξxnρ

)∣∣2) .
Since u − ξxn vanishes on Γ, in particular on Γρ(y), we can apply the Poincaré inequality from Lemma
3.6 to deduce for the third integral:∫

−
B+
ρ (y)

III dx ≤ LK(M) c(p,M)
(
Φ2(y, ρ, ξ) + ρα

)
. (28)

Combining the estimates (26)-(28) in (25), the assertion follows in the particular case supB+
ρ (y) |Dϕ| ≤ 1.

Rescaling yields the general result. �

The right hand side of the bound in Lemma 6.1 must be small in order to apply the A-harmonic approx-
imation, Lemma 4.4, to the function w = u− ξxn. Combined with the a priori estimates for A-harmonic
functions (i. e., solutions of a linear elliptic system with coefficients A) this provides an estimate for the
excess function on smaller half-balls. We proceed in a manner close to [20], section 3.3-3.4.

For a solution u ∈ W 1,p
Γ (B+,RN ) of system (24) we fix y ∈ Γ, 0 < ρ < 1 − |y|, M1 ≥ 1, ξ ∈ RN with

|ξ| ≤M1 and we set

Φ(r, ξ) := Φ(y, r, ξ) =
(∫
−
B+
r (y)

|V (Du− ξ ⊗ en)|2 dx
) 1

2
,

w := u− ξ xn ∈W 1,p
Γ (B+,RN ) .

The bilinear form A := 1
ν DzA(y, 0, ξ ⊗ en) is elliptic with ellipticity constant (1 +M2

1 )
p−2

2 and bounded
from above by L

ν , see conditions (H2) and (H3). Applying Lemma 6.1 with some free parameter δ ∈ (0, 1]
we calculate for all ϕ ∈ C∞0 (B+

ρ (y),RN ) :∣∣∣ ∫−
B+
ρ (y)

A(Dw,Dϕ) dx
∣∣∣ ≤ ca

(
p, νL ,M1,K(M1)

) [
Φ2(ρ, ξ) + ρα + χM1

(
Φ2(ρ, ξ)

)
Φ(ρ, ξ)

]
sup
B+
ρ (y)

|Dϕ|

≤ ca
√

Φ2(ρ, ξ) + δ−2ρ2α
[
Φ(ρ, ξ) + δ + χM1

(
Φ2(ρ, ξ)

)]
sup
B+
ρ (y)

|Dϕ|

≤ 2 ca
√

Φ2(ρ, ξ) + δ−2ρ2α

√
Φ2(ρ, ξ) + 1

2δ
2 + χ2

M1

(
Φ2(ρ, ξ)

)
sup
B+
ρ (y)

|Dϕ| . (29)

Let ε > 0 to be specified later, and let δ = δ(n,N, p, νL (1 +M2
1 )

p−2
2 , ε) ∈ (0, 1] denote the constant from

Lemma 4.4. Assume

Φ2(ρ, ξ) + χ2
M1

(
Φ2(ρ, ξ)

)
≤ 1

2 δ
2 , (30)

γ := 2 ca
√

Φ2(ρ, ξ) + δ−2ρ2α ≤ 1 , (31)

then we have due to (29) the estimate |
∫
−
B+
ρ (y)

A(Dw,Dϕ) dx | ≤ γ δ supB+
ρ (y) |Dϕ|. Furthermore, the

definition of Φ(ρ, ξ) yields (ca ≥ 1):∫
−
B+
ρ (y)

|W (Dw)|2 dx ≤
∫
−
B+
ρ (y)

|V (Dw)|2 dx = Φ2(ρ, ξ) ≤ γ2 .
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Under the smallness assumptions (30) and (31) we now find according to Lemma 4.4 the existence of a
A-harmonic function h ∈W 1,p

Γ (B+
ρ
2

(y),RN ) such that∫
−
B+
ρ/2(y)

∣∣W (w−γhρ

)∣∣2 dx ≤ γ2ε and
∫
−
B+
ρ/2(y)

∣∣W (Dh)
∣∣2 dx ≤ 2n+2 . (32)

Now we deduce some relevant properties of the function h: splitting the integration domain in {|Dh| > 1}
and {|Dh| ≤ 1}, we infer using Lemma 3.1 (i), Hölder’s inequality and (32)∫

−
B+
ρ/2(y)

|Dh|p dx ≤
√

2
(∫
−
B+
ρ/2(y)

∣∣W (Dh)
∣∣2 dx+

(∫
−
B+
ρ/2(y)

∣∣W (Dh)
∣∣2 dx) 1

2
)
≤ 2n+4 .

Using Lemma 4.2, from which follows that h is smooth on B+
ρ̄ (y) for all ρ̄ < ρ

2 , and the last estimate, we
observe

sup
B+
ρ/4(y)

(
|Dh|2 + ρ2 |D2h|2

)
≤ c

(∫
−
B+
ρ/2(y)

|Dnh|p dx
) 2
p ≤ c2h

(
n,N, p, νL (1 +M2

1 )
p−2

2
)
. (33)

Since h vanishes on Γ ρ
2

there exists a constant vector ζ ∈ RN such that we have the representation

Dh(y) = ζ ⊗ en where |ζ| ≤ ch . (34)

For x ∈ B+
2θρ(y) (the parameter θ ∈ (0, 1

8 ] will be fixed later), Taylor-expansion gives h(x) = h(y) +
Dh(y)(x − y) + R(x) = ζ xn + R(x) where the remainder term R(x) is estimated via (33) by |R(x)| ≤
1
2 supB+

2θρ(y) |D2h| (2θρ)2 ≤ 2 ch θ2ρ. Thus we obtain

sup
B+

2θρ(y)

|h(x)− ζ xn|2 ≤ sup
B+

2θρ(y)

|R(x)|2 ≤ 4 c2h θ
4 ρ2 .

Now, using Lemma 3.1 (iii), (i) and (32), this implies:∫
−
B+

2θρ(y)

∣∣V (w−γ ζxn2θρ

)∣∣2 dx ≤ c(p)
(∫
−
B+

2θρ(y)

∣∣W (w−γh2θρ

)∣∣2 dx+
∫
−
B+

2θρ(y)

∣∣γ h−ζxn2θρ

∣∣2 dx)
≤ c(p)

(
(2θ)−2(4θ)−n

∫
−
B+
ρ/2(y)

∣∣W (w−γhρ

)∣∣2 dx+ γ2 (2θρ)−2 sup
B+

2θρ(y)

|h(x)− ζ xn|2
)

≤ c(p)
(
θ−n−2ε+ c2h θ

2
)
γ2 ≤ c(p) c2h θ

2 γ2 , (35)

where we have chosen ε = θn+4 in the last inequality. This fixes δ = δ(n,N, p, νL (1 +M2
1 )

p−2
2 , ε) in terms

of θ; without loss of generality, we may assume δ ∈ (0, 1]. In the next step we want to estimate the
left-hand side of (35) by means of the Caccioppoli inequality. Since w − γζxn = u − (ξ + γζ)xn this is
only possible if |ξ + γζ| is bounded. Thus we choose M2 ≥M1 + 1 such that |ξ + γζ| ≤M2. Considering
that the constants ch, δ and ca depend monotone nondecreasingly on M1 we note that it is sufficient to
note the dependency on M2.

Applying the Caccioppoli inequality from Lemma 5.1, we infer with (35) an estimate for the excess
function on smaller half-balls B+

θρ(y):

Φ2(θρ, ξ + γζ) =
∫
−
B+
θρ(y)

∣∣V (Du− (ξ + γζ)⊗ en
)∣∣2 dx

≤ ccacc

(∫
−
B+

2θρ(y)

∣∣V (w−γ ζxn2θρ

)∣∣2 dx+ (2θρ)2α
)

≤ ccacc
(
c(p) c2h θ

2 γ2 + ρ2α
)
≤ c2dec

(
θ2 Φ2(ρ, ξ) + δ−2ρ2α

)
,

where we have used the definition of γ in the last line and where the constant cdec = 2
√
ccacc c(p) chca

depends only on n,N, p, νL ,M2 and K(M2). To an arbitrary exponent σ ∈ (α, 1) we next fix θ =
θ(n,N, p, νL ,M2,K(M2), σ) ≤ 1

8 sufficiently small such that c2decθ
2 ≤ θ2σ is satisfied. Note that this fixes
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δ. With the definition Φ̃2(ρ, ξ) := Φ2(ρ, ξ)+ρ2α of the modified excess function we come to the conclusion
that

Φ̃2(θρ, ξ + γζ) ≤ θ2σΦ̃2(ρ, ξ) + c̃ 2
dec δ

−2 ρ2α ,

where c̃ 2
dec = 1 + c2dec. If we now assume the smallness condition

Φ̃2(ρ, ξ) + χ2
M2

(Φ̃2(ρ, ξ)) ≤ δ2

4 c2a c2h
, (36)

we easily compute that the previous assumptions (30), (31) are satisfied (note that χM (t) is monotone in
M and t), and furthermore, we have |ξ+γζ| ≤M1+1 ≤M2. Thus we have shown an excess improvement:

Lemma 6.2: Let y ∈ Γ, M2 = 2M1 ≥ 2 and σ ∈ (α, 1) be fixed. Then there exists θ ∈ (0, 1
8 ] and

δ ∈ (0, 1] depending on n,N, p, νL ,M2,K(M2) and σ, such that the following holds: if for some ξ ∈ RN
with |ξ| ≤M1 and a radius ρ, 0 < ρ < 1− |y|, the smallness assumption (36) is fulfilled, then there exists
a ζ ∈ RN with |ζ| ≤ ch such that:

Φ̃2(θρ, ξ + γζ) ≤ θ2σΦ̃2(ρ, ξ) + c̃ 2
dec δ

−2 ρ2α

with a constant c̃dec = c̃dec
(
n,N, p, νL ,M2,K(M2)

)
. �

Iteration for the model situation

In the next step we show that the previous excess improvement can be iterated and that the quantities
appearing are uniformly bounded. For j ∈ N0 we define inductively ξj , ζj ∈ RN , γj ∈ R and functions
wj ∈W 1,p

Γ (B+
θjρ(y),RN ), hj ∈W 1,p

Γ (B+
θj ρ2

(y),RN ) by:

ξj := ξ +
j−1∑
k=0

γk ζk , γj := 2 ca
√

Φ2(θj ρ, ξj) + δ−2(θj ρ)2α , wj := u− ξjxn

(i. e., the quantities with indices 0 correspond to the original ones). For the definition of ζj and hj
respectively, we have to proceed analogously to the proof of the last lemma: as long as the smallness
conditions

|ξj | ≤ M2 and Φ̃2(θjρ, ξj) + χ2
M2

(
Φ̃2(θj ρ, ξj)

)
≤ δ2

4 c2a c2h
(37)

are satisfied for j ∈ N, the assumptions of Lemma 4.4 are fulfilled. Thus we obtain the existence of
1
ν DzA(y, 0, ξj ⊗ en)-harmonic functions hj ∈ W 1,p

Γ (B+
θj ρ2

(y),RN ) for which the corresponding estimates
(32) hold true: ∫

−
B+
θj
ρ
2

(y)

∣∣W (wj−γjhjθjρ

)∣∣2 dx ≤ γ2
j ε ,

∫
−
B+
θj
ρ
2

(y)

∣∣W (Dhj)
∣∣2 dx ≤ 2n+2 . (38)

Next we define ζj via Dhj(y) = ζj ⊗ en; in the next lemma we will show |ζj | ≤ ch. Given this if
|ξj+1| ≤M2, we can use the smallness conditions in (37) and calculate analogously to above to obtain

Φ̃2(θj+1ρ, ξj+1) ≤ θ2σΦ̃2(θjρ, ξj) + c̃ 2
dec δ

−2
(
θjρ
)2α

. (39)

For fixed M2 > 0 we choose t0 > 0 such that

t20 + χ2
M2

(t20) ≤ δ2

4 c2a c2h
and t0 ≤

M2(1− θα)
8 ca ch

. (40)

Now we choose a radius ρ0 ∈ (0, 1− |y|) satisfying

2 c̃ 2
dec δ

−2

θ2α − θ2σ
ρ2α

0 ≤ t20 . (41)

Therefore, t0 and ρ0 depend only on n,N, p, νL ,M2,K(M2), α, σ and χM2(·).
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Lemma 6.3 (cf. [20], Proposition 3.5): Let M2 ≥ 2. Choose t0 and ρ0 such that (40) and (41) are
valid. Assume that for some ρ ∈ (0, ρ0] we have:

|ξ0| ≤ 1
2 M2 and Φ̃2(ρ, ξ0) ≤ 1

2 t
2
0 . (42)

Then for all j ∈ N0 we have the following estimates:

(i) |ζj | ≤ ch

(ii) Φ̃(θjρ, ξj) ≤ θαj t0

(iii) γj ≤ 4 ca θαj t0
(iv) |ξj | ≤ M2 .

Furthermore, the limit ξ∞ := limj→∞ ξj exists and for any r ∈ (0, ρ] there holds∫
−
B+
r (y)

∣∣V (Du− ξ∞ ⊗ en)
∣∣2 dx ≤ cit

(( r
ρ

)2σ

Φ2(ρ, ξ0) + r2α
)

(43)

for a constant cit = c
(
n,N, p, νL ,M2,K(M2), α, σ, χM2(·)

)
.

Proof: Analogously to (34) we use (38)j to derive (i)j for any j ∈ N0. We shall establish (ii)-(iv) by
induction. We first note that (ii)0 and (iv)0 follow immediately from (42), and for (iii)0 we additionally
use the assumption (41) on the radius to see:

γ2
0 = 4 c2a

(
Φ2(ρ, ξ0) + δ−2 ρ2α

)
≤ 4 c2a t

2
0 .

Now we assume that for a given j ∈ N the estimates (ii)l-(iv)` are valid for ` ∈ {0, ..., j − 1}. Now (iv)j
follows using (iii), (i), (42) and (40):

|ξj | ≤ |ξ0|+
j−1∑
`=0

γ` |ζ`| ≤ 1
2 M2 + 4 ca ch t0

j−1∑
`=0

θα` ≤ 1
2 M2 + 1

2

8 ca ch t0
1− θα

≤ M2 .

In particular, the first condition in (37)` is satisfied due to (iv)`, and the second condition due to (ii)` and
(40). Since also (iv)j is valid, the estimate (39)` holds true for ` < j. Applying in turn (39)j−1, . . . , (39)0,
we estimate:

Φ̃2(θjρ, ξj) ≤ θ2σΦ̃2(θj−1ρ, ξj−1) + c̃ 2
dec δ

−2
(
θj−1ρ

)2α
≤ θ2σj Φ̃2(ρ, ξ0) +

c̃ 2
dec δ

−2

θ2α − θ2σ

(
θjρ
)2α

. (44)

Therefore, the fact that θ2σ ≤ θ2α, the assumption (42) and the choice of ρ0 in (41) imply the estimate
(ii)j :

Φ̃2(θjρ, ξj) ≤ θ2αj
(
Φ̃2(ρ, ξ0) +

c̃ 2
dec δ

−2

θ2α − θ2σ
ρ2α

0

)
≤ θ2αj t20 .

Using the definition of γj we compute from (44)

|γj |2 ≤ 4 c2a
(
θ2σj Φ̃2(ρ, ξ0) +

c̃ 2
dec δ

−2

θ2α − θ2σ

(
θjρ
)2α + δ−2(θjρ)2α

)
≤ 4 c2a

(
θ2σj Φ̃2(ρ, ξ0) +

2 c̃ 2
dec δ

−2

θ2α − θ2σ

(
θjρ
)2α)

. (45)

Thus (iii)j is valid due to (41) and (42).

In what follows we abbreviate c21 := ec 2
dec δ

−2

θ2α−θ2σ . We next show the existence of the limit of {ξj}. For i > j,
(i) and (45) allow us to estimate

|ξi − ξj | =
∣∣∣ i−1∑
`=j

γ`ζ`

∣∣∣ ≤ 2 ch ca
(

Φ̃(ρ, ξ0)
i−1∑
`=j

θσ` +
√

2 c1 ρα
i−1∑
`=j

θα`
)
≤ c2

(
θ2σj Φ̃2(ρ, ξ0) + (θjρ)2α

) 1
2
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where c2 = 4 chca(1 + c1)(1− θα)−1. The right-hand side approaches 0 as j →∞; thus {ξj} is a Cauchy
sequence and converges to some ξ∞ ∈ RN . Letting i tend to infinity we have:

|ξ∞ − ξj | ≤ c2
(
θ2σj Φ2(ρ, ξ0) + (θjρ)2α

) 1
2 .

As a consequence, we note via 3.1 (iii), (i) and (44):∫
−
B+
θjρ

(y)

∣∣V (Du− ξ∞ ⊗ en)
∣∣2dx ≤ c(p)

(
Φ̃2(θjρ, ξj) + |ξ∞− ξj |2

)
≤ c3

(
θ2σj Φ̃2(ρ, ξ0) + (θjρ)2α

)
for c3 = c(p) (c21 + c22). For a continuous version of the last inequality we consider an arbitrary radius
r ∈ (0, ρ] and use the fact that there exists a unique k ∈ N0 such that θk+1ρ < r ≤ θkρ. This finally gives
the desired result with cit = 2θ−n−2σc3. �

Excess decay estimate in the interior: The analogous excess-decay estimate in the interior is es-
tablished in a similar way: for Bρ(x0) ⊂⊂ Ω we freeze our system in A = DzA(x0, (u)x0,ρ,Υ) for some
Υ ∈ RnN where |(u)x0,ρ|, |Υ| ≤M . Defining the excess function in x0 for the interior by

Ψ(x0, ρ,Υ) :=
(∫
−
Bρ(x0)

|V (Du−Υ)|2 dx
) 1

2
,

Ψ̃2(x0, ρ,Υ) := Ψ2(x0, ρ,Υ) + ρ2α, we find via approximate A-harmonicity and an iteration technique:
let M̂2 ≥ 2 and let t1 be sufficiently small depending on n,N, p, νL , M̂2,K(M̂2), α, σ and χ bM2

such that

t21 + χ2bM2
(t21) ≤ δ̂ 2

4 ĉ 2
i ĉ

2
a ĉ

2
h

and t1 ≤
M̂2(1− θ̂ α)(2θ̂)n

8 ci ĉa ĉh
(46)

(where the quantities signed with ̂ are the quantities corresponding to the boundary situation, and ci
depends on n and p). Choose the radius ρ1 with the same dependencies such that

2 ĉ 2
dec δ̂

−2

θ̂ 2α − θ̂ 2σ
ρ2α

1 ≤ t21 . (47)

If, for some ρ ∈ (0, ρ1], we have

|Υ0| ≤ 1
2 M̂2 , |(u)x0,ρ| ≤ 1

2 M̂2 and Ψ̃2(x0, ρ,Υ0) ≤ 1
2 t

2
1 (48)

then there exists an Υ∞ ∈ RnN such that for any r ∈ (0, ρ] we have∫
−
Br(x0)

∣∣V (Du)− V (Υ∞)
∣∣2 dx ≤ ĉit

(( r
ρ

)2σ

Ψ2(x0, ρ,Υ0) + r2α
)
. (49)

We want to remark here that in the interior situation weak solutions are not a priori bounded. Therefore,
we further need to iterate the averages of u and show that the sequence |(u)x0,bθjρ| is bounded. This is
possible in a standard way using the Poincaré inequality and estimates involving the excess function (cf.
e. g. [10], estimate (3.39) or see [2], proof of Lemma 6.6).

7 Proof of the main results

We next want to prove the main theorems stated in section 2. For this purpose we show that the
assumptions for the excess-decay estimate in Lemma 6.3 for the boundary case and the analogous estimate
in the interior are satisfied in the set of regular points.

Proof (of Theorem 2.1): Consider x0 ∈ Ω\ (Π1∪Π2). Then there exist M̂2 ≥ 2 and 0 < ρ ≤ ρ1 such
that: B2ρ(x0) ⊂⊂ Ω and∣∣(u)x0,ρ

∣∣ < 1
2 M̂2 ,

∣∣(V (Du)
)
x0,ρ

∣∣ < 2
p−6

4 M̂
p
2

2 and (50)∫
−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx + ρ2α < 1
2 c
−2(p, M̂2) t21 (51)
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where c(p, M̂2) is coming from Lemma 3.1 (vi). Since the functions

z 7→ (u)z,ρ , z 7→
(
V (Du)

)
z,ρ

and z 7→
∫
−
Bρ(z)

∣∣V (Du)−
(
V (Du)

)
z,ρ

∣∣2 dx
are continuous, there exists a ball Bρ̃(x0) such that for all points z ∈ Bρ̃(x0) we have: Bρ(z) ⊂⊂ Ω and
the estimates (50) and (51) hold with x0 replaced by z.

We now choose Υ0(z) ∈ RnN such that V
(
Υ0(z)

)
=
(
V (Du)

)
z,ρ

(note: this is always possible as the
function V is bijective). Combining these estimates with Lemma 3.1 (i) and (vi) we find that |Υ0(z)| <
1
2M̂2 and Ψ̃2

(
z, ρ,Υ0(z)

)
< 1

2 t
2
1. Thus the above assumptions in (48) are satisfied for all z ∈ Bρ̃(x0) and

we obtain: there exists Υ∞(z) ∈ RnN such that:∫
−
Br(z)

∣∣V (Du)− V
(
Υ∞(z)

)∣∣2 dx ≤ c
(( r

ρ

)2σ

Ψ2
(
z, ρ,Υ0(z)

)
+ r2α

)
for any radius 0 < r ≤ ρ and all z ∈ Bρ̃(x0). The constant c depends on n,N, p, νL , M̂2,K(2M̂2), α, σ and
χ bM2

(·). Applying the integral characterization of Hölder-continuous functions due to Campanato (see
[26], chapter 1.1, Lemma 1) we conclude that there exists a representative of V ◦ Du which is Hölder-
continuous with exponent α (< σ). Using Lemma 3.2 and as well as Lebesgue’s Differentiation Theorem
we obtain the desired result. �

For the proof of the characterization of regular boundary points in Theorem 2.2 we first consider the set
of regular points RegΓ u defined corresponding to the definition of Reg∂Ω u in the model situation. Here
we make use of a slight modification of Campanato’s integral characterization of Hölder-continuity:

Theorem 7.1 ([20], Theorem 2.3): Consider n ∈ N, n ≥ 2 and x0 ∈ Rn−1 × {0}. Suppose that there
are positive constants α ∈ (0, 1], κ > 0 such that, for some v ∈ L2(B+

6R(x0)), there holds the following:

inf
µ∈R

{∫
−
B+
ρ (y)

|v − µ|2 dx
}
≤ κ2

( ρ
R

)2α

for all y ∈ Γ2R(x0) and ρ ≤ 4R; and

inf
µ∈R

{∫
−
Bρ(y)

|v − µ|2 dx
}
≤ κ2

( ρ
R

)2α

for all y ∈ B+
2R(x0) mit Bρ(y) ⊂ B+

2R(x0). Then there exists a Hölder-continuous representative v̄ of v
on B+

R(x0), and for v̄ there holds: |v̄(x)− v̄(z)| ≤ c κ
( |x−z|

R

)α for all x, z ∈ B+
R(x0), for a constant c

depending only on n and α.

We then infer the desired charaterization in the model situation:

Theorem 7.2: Let u ∈ W 1,p(B+,RN ) be a weak solution of divA( · , u,Du) = 0 in B+ where the
coefficients A : B+ × RN × RnN → RnN satisfy the assumptions (H1)-(H4). Then we have: for points
y ∈ RegΓ u there holds that Du is Hölder-continuous with exponent α in a neighbourhood of y in B+,
and SingΓ u ⊂ Σ1 ∪ Σ2 where

Σ1 =
{
y ∈ Γ : lim inf

ρ→ 0+

∫
−
B+
ρ (y)

∣∣V (Dnu)−
(
V (Dnu)

)+
y,ρ

∣∣2 dx > 0
}
,

Σ2 =
{
y ∈ Γ : lim sup

ρ→ 0+

∣∣(V (Dnu)
)+
y,ρ

∣∣ = ∞
}
.

Proof: In the first step of the proof we will find a different formulation for the set Σ1 ∪Σ2 which allows
us to apply Lemma 6.3, where an assumption on the total weak derivative, instead of only the normal
derivative of u, is required. Let y ∈ Γ \ (Σ1 ∪ Σ2) and {ρk} be a monotone decreasing sequence of radii
with ρk → 0 for k →∞ and

lim
k→∞

∫
−
B+
ρk

(y)

∣∣V (Dnu)−
(
V (Dnu)

)+
y,ρk

∣∣2 dx = 0 .
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Since y /∈ Σ2 there exists M ≥ 1 such that |(V (Dnu))+
y,ρk
| ≤ M for all k ∈ N. Similar to the proof of

the interior estimate in Theorem 2.1 we define {ξ(y, ρk)} ∈ RN via V
(
ξ(y, ρk)

)
=
(
V (Dnu)

)+
y,ρk

. Then
Lemma 3.1 (i) yields |ξ(y, ρk)| ≤ 2M2. Applying the Caccioppoli inequality, the Poincaré inequality in
Lemma 3.6 (note that u− ξ(y, ρk)xn ∈W 1,p

Γ (B+,RN )) and Lemma 3.1 (vi) we compute∫
−
B+
ρk/2(y)

∣∣V (Du− ξ(y, ρk)⊗ en
)∣∣2 dx ≤ ccacc

(∫
−
B+
ρk

(y)

∣∣∣V (u− ξ(y, ρk)xn
ρk

)∣∣∣2 dx+ ρ2α
k

)
≤ ccacc

(
cP (p)

∫
−
B+
ρk

(y)

∣∣V (Dnu− ξ(y, ρk)
)∣∣2 dx+ ρ2α

k

)
≤ c(n, p, νL ,M,K(2M2))

(∫
−
B+
ρk

(y)

∣∣V (Dnu)−
(
V (Dnu)

)+
y,ρk

∣∣2 dx+ ρ2α
k

)
which vanishes as k → ∞. This calculation - performed in the case p = 2 where the V -function acts as
the identity function - shows that the characterization of regular boundary points given by Grotowski in
[20] and by Hamburger in [22] are in fact equivalent as mentioned in the introduction. We now set

Σ′1 =
{
y ∈ Γ : lim inf

ρ→ 0+

∫
−
B+
ρ (y)

∣∣V (Du− ξ(y, 2ρ)⊗ en
)∣∣2 dx > 0

}
,

Σ′2 =
{
y ∈ Γ : lim sup

ρ→ 0+
|ξ(y, ρ)| = ∞

}
.

Then the calculation above yields the inclusion Γ \ (Σ1 ∪ Σ2) ⊂ Γ \ (Σ′1 ∪ Σ′2) (moreover, using the fact
that for any function v ∈ L2(Ω,RN ) the mean value minimizes the function RN 3 µ 7→

∫
Ω
|v − µ|2 dx

combined with Lemma 3.1 (v), we derive that the union of these sets are equivalent).

We thus consider y ∈ Γ \ (Σ1 ∪Σ2); without loss of generality, we may assume y = 0. In the second step
of the proof we will show: Du ∈ C0,α(B+

ρ ,RnN ) for some ρ > 0.

Let M2 denote the upper bound on 2 |ξ(0, ρ)| (note M2 <∞ is guaranteed since 0 /∈ Σ′2). We take t0 to
be the constant according to Lemma 6.3 and let ρ0 be the corresponding radius (cf. (40) and (41)). In
order to apply Theorem 7.1 to conclude the Hölder-continuity up to the boundary, we have to combine
the excess-decay estimates in the interior and at the boundary. Thus we define M̂2 = 2M2 and choose
t1 according to the smallness assumption in (46). For any y ∈ B+ let ρ1 ∈ (0,min{1 − |y| , yn}) be the
corresponding radius from (47). We now choose t2 > 0 such that:

t22 ≤ min{t20 , 21−n 3−2σ c−1
it t21} and 2n+1 32σ cit t2 ≤ M2 (52)

where cit denotes the constant in Lemma 6.3. We fix a radius R0 > 0 sufficiently small with

6R0 ≤ min{ρ0, ρ1} and 3n 23+4αR2α
0 ≤ t22 . (53)

Since 0 /∈ Σ′1 we find some R ∈ (0, R0] such that, abbreviating ξ0(0) := ξ(0, 12R), we have:

Φ2
(
0, 6R, ξ0(0)

)
=
∫
−
B+

6R(0)

∣∣V (Du− ξ0(0)⊗ en
)∣∣2 dx ≤ 2−3 3−n t22 (54)

and by assumption |ξ0(0)| ≤ 1
2M2. Conditions (52) and (53) guarantee in particular that also the

smallness assumption Φ̃2(0, 6R, ξ0(0)) ≤ 1
2 t

2
0 of Lemma 6.3 is satisfied on B+

6R(0). Thus we find ξ∞(0) ∈
RN such that for any r ∈ (0, 6R] there holds:∫

−
B+
r

∣∣V (Du− ξ∞(0)⊗ en
)∣∣2 dx ≤ cit

[( r

6R

)2σ

Φ2(0, 6R, ξ0(0)) + r2α
]
.

Using the smallness assumption (54) we now want to show that the conditions of Theorem 7.1 are fulfilled
on all required balls and half-balls with centre y ∈ Γ2R and y ∈ B+

2R, respectively. We distinguish several
cases (cf. [20], p. 378-379):
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Case 1: y ∈ Γ2R, |y| ≤ ρ ≤ 4R:
Using B+

ρ (y) ⊆ B+
ρ+|y|(0), the last estimate for r = ρ+ |y| ≤ 6R and 22α ≤ 22σ, we see∫

−
B+
ρ (y)

∣∣V (Du− ξ∞(0)⊗ en
)∣∣2 dx ≤ 2n+2σ cit

[( ρ

6R

)2σ

Φ2(0, 6R, ξ0(0)) + ρ2α
]
. (55)

Case 2: y ∈ Γ2R, 0 < ρ < |y| < 2R:
Here we calculate that the assumptions of Lemma 6.3 are also satisfied for the point y and radius 2R:
recalling the definition of Φ(0, 6R, ξ0(0)) we infer from (54) that:∫

−
B+

2R(y)

∣∣V (Du− ξ0(0)⊗ en
)∣∣2 dx ≤ 3n Φ2(0, 6R, ξ0(0)) . (56)

We have |ξ0(0)| ≤ 1
2M2 (see above). Furthermore, by the condition (54) on Φ2(0, 6R, ξ0(0)) and (53) on

the radius we conclude Φ̃2(y, 2R, ξ0(0)) ≤ 1
2 t

2
0. Lemma 6.3 now yields the existence of ξ∞(y) ∈ RN with

|ξ∞(y)| ≤M2 such that for all 0 < ρ ≤ 2R from (56) follows:∫
−
B+
ρ (y)

∣∣V (Du− ξ∞(y)⊗ en
)∣∣2 dx ≤ 3n cit

[( ρ

6R

)2σ

Φ2(0, 6R, ξ0(0)) + ρ2α
]
. (57)

Case 3: y ∈ B+
2R, Bρ(y) ⊂ B+

2R:
Let y′ = (y1, ..., yn−1, 0) be the projection of y onto Rn−1 × {0}. Here we have the inclusions

Bρ(y) ⊂ Byn(y) ⊂ B+
2yn

(y′) .

We shall now show that the assumptions for the iteration and thus for the excess-decay estimate in the
interior are satisfied on the ball Byn(y). If |y′| ≤ 2yn (≤ 4R) we can apply case 1 with centre y′ and
radius 2yn to obtain∫

−
B+

2yn
(y′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 3n+2σ cit

[(2yn
6R

)2σ

Φ2(0, 6R, ξ0(0)) + (2yn)2α
]
. (58)

Here we have set ξ̂ = ξ∞(0) and have replaced 2n+2σ by 3n+2σ. Otherwise if 2yn < |y′| < 2R we have in
particular B+

2yn
(y′) ⊂ B+

2R(y′). This yields the existence of ξ∞(y′) ∈ RN with |ξ∞(y′)| ≤ M2 such that
the above inequality holds setting ξ̂ = ξ∞(y′).

Thus for any y ∈ B+
2R and Bρ(y) ⊂ B+

2R we conclude, with the appropriate choice ξ̂ = ξ∞(0) or ξ̂ = ξ∞(y′)
that (keeping in mind Byn(y) ⊂ B+

2yn
(y′)):∫

−
Byn (y)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 2n−1 3n+2σ cit

[(2yn
6R

)2σ

Φ2(0, 6R, ξ0(0)) + (2yn)2α
]
. (59)

Apart from the explicit estimates for the excess-functions in (58) and (59) in dependency of the radius,
we can use our choice in (53) for the radius R0, and the smallness condition (54) for the excess function
to obtain with 2yn ≤ 4R0 according to the choice of t2 in (52):∫

−
B+

2yn
(y′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 1

4 32σ cit t
2
2 , (60)∫

−
Byn (y)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 2n−3 32σ cit t

2
2 ≤ 1

4 t
2
1 .

Since |ξ̂ ⊗ en| ≤ M2 = 1
2M̂2 we only have to make sure that the mean value of u on the ball Byn(y) is

bounded by 1
2M̂2 for all assumptions in (48) to hold true: the Poincaré inequality in Lemma 3.4, Lemma

3.1, (60) and (52) now allows us to estimate (note t2 ≤ 1, yn ≤ 1
2 ):

|(u)y,yn | ≤ 2n yn
∫
−
B+

2yn
(y′)

|Du− ξ̂ ⊗ en| dx+ |ξ̂| yn ≤ 1
2 M̂2 .
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Via (49) we draw the conclusion: there exists Υ∞(y) ∈ RnN with |Υ∞(y)| ≤ M̂2, and for all 0 < r ≤ yn
we conclude with (59):∫

−
Br(y)

∣∣V (Du)− V (ξ̂ ⊗ en)
∣∣2 dx ≤ ĉit

[( r
yn

)2σ
∫
−
Byn (y)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx+ r2α

]
≤ ĉit cit 6n+2

(( r

6R

)2σ

Φ2(0, 6R, ξ0(0)) + r2α
)
.

Combining the last estimate with (55) and (57) (where we still have to apply Lemma 3.1 (v)) we have
shown that the assumptions of Theorem 7.1 are satisfied for V (Du). Thus V (Du) ∈ C0,α(B+

R ,RnN ), and
due to Lemma 3.2 we obtain: Du ∈ C0,α(B+

R ,RnN ). �

Now the set of regular boundary points can be characterized by a transformation argument:

Proof (of Theorem 2.2): We only want to outline the proof. The transformed function ṽ = (u− g) ◦
T−1 ∈ W 1,p

Γ (B+
r ,RN ) (see chapter 2) is a weak solution of div Ã( · , v,Dv) = 0 on B+

r where the radius
r is chosen sufficiently small (in fact we require B+

1/(
√

2ρ)
⊂ T(Ω ∩ Bρ) ⊂ B+√

2ρ
for all ρ ≤

√
2r). The

coefficients Ã satisfy the structure conditions analogous to (H1)-(H4). Thus we are in the situation of the
last theorem which characterizes the set of regular boundary points in the model situation of a half-ball.

Analogously to the proof of Theorem 7.2 we define ξ̃(0, ρ) ∈ RN by

V
(
ξ̃(0, ρ)

)
=
(
V (Dn(u− g))

)
0,ρ

=
∫
−
Ω∩Bρ

V
(
Dn(u− g)

)
dx .

Using the transformation formula we calculate (cf. [2], proof of Satz 7.5):

lim inf
ρ→ 0+

∫
−
B+
ρ

∣∣V (Du− ξ̃(0,√8ρ)⊗ en
)∣∣2 dy = 0 , lim sup

ρ→ 0+

∣∣ξ̃(0, ρ)
∣∣ ≤ c(M)

for some M ≥ 2. These conditions are comparable to the definition of the sets Σ′1 and Σ′2 from above.
Choosing the radius smaller if required, we conclude as in Theorem 7.2 (with ṽ, ξ̃(0, ·), min{α, β, τ}
instead of u, ξ(0, ·), α): Dṽ is Hölder-continuous with exponent min{α, β, τ} on the half-ball B+

R for
some 0 < R < 1. Since T is a transformation of class C1,τ this gives the desired result. �

8 The inhomogeneous case

We close by briefly considering the case of inhomogeneous systems of the form

−divA( · , u,Du) = B( · , u,Du) in Ω , (61)

where B : Ω × RN × RnN → RN is a Carathéodory function, i. e., measurable in x and continuous in
(u, z) obeying a controllable or a natural growth condition.

Let us first assume a controllable growth condition, i. e.

(B1) |B(x, u, z)| ≤ L(1 + |z|2)
p−1

2 ∀ (x, u, z) ∈ Ω̄× RN × RnN .

Transforming the system as indicated at the end of section 2, we can restrict ourselves again to the model-
case Ω = B+ of an upper half-ball as far as the boundary regularity is concerned (with B̃ still satisfying
(B1)). In the Caccioppoli inequality in Lemma 5.1 and in Lemma 6.1 of the approximate A-harmonicity
an additional integral

∫
−
B+
ρ (x0)

B(·, u,Du) · ϕdx appears and needs to be estimated:

We chose ϕ = η2(u− ξxn) as a test function in Lemma 5.1 and get for the new integrand called IV

IV ≤ ε
∣∣V (Du− X)

∣∣2η2 + Lc
(
p, Lε ,M

) (∣∣V (u−ξxnρ

)∣∣2 + ρ2α
)
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by estimating the integrand analogously to above on the different sets B(·)(·). This has the same form
as the estimates (22) and (23) of the terms I − III. In the second lemma, we consider an arbitrary test
function ϕ ∈ C∞0 (B+

ρ ,RN ) with supB+
ρ
|Dϕ| ≤ 1; this means we may use the fact that supB+

ρ
|ϕ| ≤ ρ to

obtain

IV ≤ L (1 + |z|2)
p−1

2 ρ ≤ Lc(M)
(∣∣V (Du− X)

∣∣2 + ρα
)

as in (27). Hence, Lemma 6.1 is valid in this setting as well.

Instead of (B1) we may require that the inhomogeneity B fulfills a natural growth condition

(B2) |B(x, u, z)| ≤ L1(Mu) + L2(Mu) |z|p ∀ (x, u, z) ∈ Ω̄× RN × RnN with |u| ≤Mu .

In this setting we have to study bounded weak solutions u ∈ W 1,p(Ω,RN ) ∩ L∞(Ω,RN ). Then the weak
formulation corresponding to (3) holds for all functions ϕ ∈ W 1,p

0 (Ω,RN ) ∩ L∞(Ω,RN ). We further
require ‖u‖∞ ≤Mu for some Mu > 0 which satisfies 2L2(Mu)Mu < ν. In this setting the transformation
requires a little more care. For sufficiently small radius r > 0 we transform the system and obtain:
ṽ = u ◦T−1(y)− g ◦T−1(y) ∈W 1,p

Γ (B+
r ,RN ) (as in section 2) is a solution of div Ã(·, ṽ, Dṽ) = B̃(·, ṽ, Dṽ)

in B+
r . Here, the transformed coefficients satisfy structure conditions analogous to (H1),(H2),(H3)* and

(H4) where

(H3)∗ DzA(x, u, z)λ · λ ≥ ν
(
ν̄−2 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN

for ν̄ ≥ 1 depending on Mu, L1(Mu) and ‖Dg‖∞ (which, of course, implies (H3) for some ν̃ ∈ (0, ν]). This
modified condition is needed due to the fact that we reduce - in contrast to [20] - to zero-boundary-values.
Furthermore, there holds |ṽ + g ◦ T−1| ≤ Mu, and 2L̃2(Mu)Mu < ν is still satisfied by the choice of a
sufficiently small radius. The latter boundedness condition combined with the new version (H3)* of the
ellipticity assumption now allows us to estimate the remaining term in the Caccioppoli-inequality, cf.
[20], Lemma 4.3, (for the sake of simplicity we write u, g instead of ṽ, g ◦ T−1): similar to the estimate
(20) we deduce the lower bound∫
−
B+
ρ (x0)

[
A( · , u,Du)−A( · , u,X)

]
· (Du− X) η2 dx

≥
∫
−
B+
ρ (x0)

ν
(
ν̄−2 + (1 + δ−1) |X|2 + (1 + δ) |Du− X|2

) p−2
2 |Du− X|2η2 dx

for some δ ∈ (0, 1). This time we derive for the integral over IV :∫
−
B+
ρ (x0)

IV dx ≤ L1(Mu) (1 + δ)
(
2Mu + (‖Dg‖L∞ + |ξ|) ρ

)
∫
−
B+
ρ (x0)

(
ν̄−2 + (1 + δ−1) |X|2 + (1 + δ) |Du− X|2

) p−2
2 |Du− X|2 η2 dx

+ c
(
M,L1(Mu), L2(Mu), ν̄, δ−1

) ∫
−
B+
ρ (x0)

(∣∣V (u−ξ xnρ

)∣∣2 + ρ2α
)
dx

and, using 2L̃2(Mu)Mu < ν, absorption of the first integral on the right-hand side is possible provided ρ
and δ are small. Hence, Lemma 5.1 is still valid under the additional boundedness condition, and in the
proof of Lemma 6.1 the inhomogeneity can be handled as in the situation of controllable growth. From
this point on we may now proceed (apart from the new dependencies of the constants and choosing the
radius smaller if necessary) as in the homogeneous situation to obtain:

Theorem 8.1: Let u ∈ W 1,p(Ω,RN ) be a weak solution of the inhomogeneous system (61) under the
hypotheses (H1)-(H5) and one of the following assumptions on the inhomogeneity

1. B(·, ·, ·) obeys a controllable growth condition (B1),

2. B(·, ·, ·) obeys a natural growth condition (B2) and u ∈ L∞(Ω,RN ) with ‖u‖L∞(Ω,RN ) ≤ Mu such
that 2L1(Mu)Mu < ν;

then the conclusions of the main theorems 2.1 and 2.2 follow.
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