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Abstract. We study a variational problem for the perimeter associated with the Grushin

plane, called minimal partition problem with trace constraint. This consists in studying how

to enclose three prescribed areas in the Grushin plane, using the least amount of perimeter,

under an additional “one-dimensional” constraint on the intersections of their boundaries. We

prove existence of regular solutions for this problem, and we characterize them in terms of

isoperimetric sets, showing differences with the Euclidean case. The problem arises from the

study of quantitative isoperimetric inequalities and has connections with the theory of minimal

clusters.

1. Introduction

Carnot-Carathéodory spaces are metric spaces in which the distance is defined in association

with a family of vector fields X = {X1, . . . , Xr} on a n-dimensional manifold, n ≥ r. The theory

of perimeters in such spaces has been developed starting from the 1990s in [3], [12], [18], and

isoperimetric inequalities in Carnot-Carathéodory spaces are a current object of investigation in

Calculus of Variations and Analysis on Metric spaces, see [25], [18], [9], [10], [26]. In particular,

Pansu’s conjecture on the sharp isoperimetric inequality in the Heisenberg groups is still an open

problem (see [21], [29], [27], [23]). The Grushin plane is an example of Carnot-Carathéodory

space, introduced in the context of hypoelliptic operators by Franchi and Lanconelli in [11].

In this paper, we study a variational problem for the perimeter in the Grushin plane, that

we call minimal partition problem with trace constraint. We were led to this problem studying

quantitative isoperimetric inequalities, as we will explain at the end of the introduction. The

minimal partition problem with trace constraint has connections with the theory of minimal

clusters.

Let α ≥ 0. The Grushin plane is defined endowing R2 with the family of vector fields

Xα = {∂x, |x|α∂y}, where (x, y) denotes a point in R2 and ∂x, ∂y respectively denote the partial

derivative with respect to the first and to the second coordinate. Given a Lebesgue measurable

set E ⊂ R2, the α-perimeter of E is defined as

Pα(E) = sup
{∫

E
(∂xϕ1 + |x|α∂yϕ2) dxdy : ϕ1, ϕ2 ∈ C1

c (R2), max
R2

(
ϕ2
1 + ϕ2

2

) 1
2 ≤ 1

}
. (1.1)

Notice that when α = 0 the α-perimeter is the standard Euclidean perimeter, that we denote

by P . If E ⊂ R2 is a bounded set with Lipschitz boundary, we have

Pα(E) =

∫
∂E

√
(NE

x (x, y))2 + |x|2α(NE
y (x, y))2 dH1(x, y), (1.2)

where NE = (NE
x , N

E
y ) is the outer unit normal to E and H1 is the one dimensional Hausdorff

measure, see [22, Theorem 2.1], [14, Proposition 2.1]. By the representation formula (1.2), it is
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clear that x-translations modify the α-perimeter with α > 0, i.e., there exists E ⊂ R2 such that

Pα(E) = Pα(E + (x̄, 0)), if and only if |x̄| = 0. This is an essential difference with the classical

perimeter, or with the one defined in Carnot groups. In fact, the Grushin plane for α > 0

is not isometrically homogeneous (i.e., there exist p, q ∈ R2 such that no distance preserving

homeomorphism connects p to q), and it doesn’t admit any group structure (see [19]).

An important feature of the Grushin plane is that isoperimetric sets are completely charac-

terized. Given v > 0, the isoperimetric problem for the α-perimeter is

min{Pα(E) : E ⊂ R2, L2(E) = v}, (1.3)

where L2 denotes the two-dimensional Lebesgue measure. Solutions to (1.3) have been studied

in [22], and in [14] in Grushin structures of dimension n ≥ 2: up to a vertical translation

τt(x, y) = (x, y + t) and an anisotropic dilation δλ(x, y) = (λx, λα+1y), the unique solution to

problem (1.3), called isoperimetric set, is

Eαisop = {(x, y) ∈ R2 : |y| < ϕα(|x|), |x| < 1}, ϕα(r) =

∫ π
2

arcsin r
(sin t)α+1 dt, r > 0. (1.4)

The one parameter family of dilations δλ is such that Pα(δλE) = λQ−1Pα(E), L2(δλE) =

λQL2(E), where Q = α + 2 is called homogeneous dimension. In particular, (1.4) implies the

validity of the following sharp isoperimetric inequality for any measurable set E ⊂ R2 with finite

measure:

L2(E) ≤ c(α)Pα(E)
Q
Q−1 , c(α) =

α+ 1

α+ 2

(
2

∫ π

0
sinα(t) dt

)− 1
α+1

.

When α = 1, the profile function ϕα corresponds to the conjectured isoperimetric profile function

of the Heisenberg groups.

The minimal partition problem with trace constraint consists in studying how to enclose three

prescribed areas in the Grushin plane, using the least amount of perimeter, under an additional

“one-dimensional” constraint on the intersections of their boundaries.

We say that a set E ⊂ R2 is x-symmetric (resp. y-symmetric) if (x, y) ∈ E implies (−x, y) ∈ E
(resp. if (x, y) ∈ E implies (x,−y) ∈ E). We say that E is y-convex if the section Ex = {y ∈
R : (x, y) ∈ E} is an interval for every x ∈ R; finally we say that E is y-Schwarz symmetric if

it is y-symmetric and y-convex. We denote by Sx the class of L2-measurable, x-symmetric sets

in R2 and by S ∗
y the class of L2-measurable and y-Schwarz symmetric sets in R2.

Given v1, v2, h1, h2 ≥ 0, we define the class A = A(v1, v2, h1, h2) of all sets E ∈ Sx ∩S ∗
y such

that for some x0 > 0, called partitioning point of E, the sets

El = {(x, y) ∈ E : x < −x0}, Ec = {(x, y) ∈ E : |x| < x0}, Er = {(x, y) ∈ E : x > x0}

satisfy

L2(Ec) = v1, L2(El) = L2(Er) = v2/2, (1.5a)

[−h1, h1] ⊂ trxx0−E, [−h2, h2] ⊂ trxx0+E, (1.5b)

where trxx0±E denote the left and right traces of the set E at the point x0, introduced in Definition

A.2. Choosing h1 = h2 = h > 0, the trace constraint (1.5b) is a relaxed version of the trace

equality

Ex0 = E−x0 = [−h, h]. (1.6)

In other words, a set E ∈ A is such that El, Ec, Er have prescribed areas and Ec touches Er

and El in segments of a prescribed length, see Figure 1.
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Figure 1. A set in the class A, for h1 = h2 = h.

Given v1, v2, h1, h2 ≥ 0, we study existence of regular solutions of

inf{Pα(E) : E ∈ A(v1, v2, h1, h2)}, (1.7)

where

Pα(E) = Pα(El) + Pα(Ec) + Pα(Er)− 4h1 − 4h2 (1.8)

measures the total amount of α-perimeter of the partition {El, Ec, Er}. The quantity 4h1 + 4h2
is the total perimeter of the common parts counted with multiplicity.

The first solution to the minimal partition problem with no trace constraint and with two

prescribed volumes in the Euclidean plane dates back to the 1993 paper [7], where it is proved

that the unique minimizers are the so called double bubbles. For general dimensions, several

open questions about minimal clusters are still open (see [24]).

Our interest in Problem (1.7) comes from the study of the stability of the isoperimetric

inequality. In the seminal paper [16], the authors present a symmetrization technique in Rn,

n ∈ N, to prove existence of a dimensional constant C(n) > 0 such that any Lebesgue measurable

set E ⊂ Rn satisfies

P (E)− P (B(0, rE)) ≥ C(n)
(

min
x∈Rn

Ln(E4B(x, rE))
)2
. (1.9)

Here, B(0, r) = {p = (p1, . . . , pn) ∈ Rn : p21 + · · ·+ p2n < r2}, and the quantity rE ≥ 0 is chosen

in order to have Ln(E) = Ln(B(0, rE)). Such inequality is known as the sharp quantitative

isoperimetric inequality in Rn, see also [5], [6], [8], [20]. The minimal partition problem (1.7)

is used in [16] to prove (1.9) in a class of symmetric sets in Rn. In [16, Lemma 4.3] the

authors implicitly use the solution E to problem (1.7) with trace constraint given by (1.6), in

the Euclidean setting (α = 0). The solution is, for some x0, r0 > 0

E = El ∪ Ec ∪ Er, Ec = B(0, r0) ∩ {(x, y) ∈ R2 : |x| < x0}. (1.10)
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Figure 2. The solution of the minimal partition problem in the Euclidean setting.
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Notice that the central part Ec is the portion of an isoperimetric set lying in a vertical stripe,

see Figure 2. This is due to the invariance under translations of the standard perimeter P .

Quantitative isoperimetric inequalities have been studied in Riemannian manifolds providing

results in the Gauss space (see [4]), in the n-Sphere (see [1]) and in the Hyperbolic space (see

[2]). Quantitative isoperimetric inequalities in a subRiemannian setting are presented in [15] in

the case of the Heisenberg group.

An interesting task would be to study quantitative isoperimetric inequalities in spaces with

less isometries, such as the Grushin plane. However, in this paper we show some unexpected

obstacles that prevent an adaptation of the techniques in [16] to the Grushin plane. In particular,

we will show that, when α > 0, solutions to the minimal partition problem (1.7) are not obtained

in their central part as portions of isoperimetric sets lying in a vertical stripe.

In the first part of this paper we establish existence of solutions.

Theorem 1.1. Let α ≥ 0, v1, v2, h1, h2 ≥ 0. There exists a solution E = El ∪ Ec ∪ Er ∈
A(v1, v2, h1, h2) to the minimal partition problem with trace constraint (1.7) such that Ec is a

convex set and El, Er have Lipschitz boundaries.

Minimizers as in Theorem 1.1 are called regular. In Proposition 3.3 we show, under a tech-

nical assumption, that any regular minimizer E ∈ A assumes the least possible traces at the

partitioning point x0 > 0, i.e., trxx0−E = [−h1, h1], and trxx0+E = [−h2, h2].
When α ∈ {0, 1} and v2 = h2 = 0, the geometry of regular solutions can be described in a

more precise way.

Theorem 1.2. Let α ∈ {0, 1}. Given v1, h1 > 0, let E = El ∪ Ec ∪ Er ∈ A(v1, 0, h1, 0) be a

regular solution for Problem (1.7) such that tr−x0E = [−h1, h1]. Then Ec = {(x, y) ∈ R2 : |y| <
f(x), |x| < x0}, where the function f is given by

f(r) = λα+1ϕα
( r
λ

)
+ y, (1.11)

for some λ = λ(α, v1, h1) > 0 and y = y(α, v1, h1) ≤ 0 such that y = 0 if and only if α = 0.

Due to the presence of the vertical translation y in (1.11), we deduce by Theorem 1.2 that a

regular solution of the minimal partition problem is not obtained as the portion of an isoperi-

metric set δλ(Eαisop) lying in a vertical stripe, unless α = 0. This result shows a delicate point

where the techniques of [16] fail in the case of the Grushin geometry.

The paper is organized as follows. In Section 2, we prove existence of regular solutions of

the minimal partition problem. The argument is divided into several steps. Lemma 2.1 is an

approximation theorem, that generalizes the classical results in [12]. In Lemma 2.2 we show how

to modify a set in the class A in order to decrease the perimeter Pα and gain some regularity

properties. Finally, in Theorem 2.4 we combine lower semicontinuity of the α-perimeter together

with a compactness theorem for sets of finite α-perimeter to prove existence of minimizers.

In Section 3, we characterize regular solutions of the minimal partition problem. In Propostion

3.1 we find differential equations for the profile function f of a regular minimizer E = {(x, y) ∈
R2 : |y| < f(|x|)}. In Section 3.2 we prove, under a technical assumption, that regular solutions

of the minimal partition problem (1.7) satisfy the trace equality (1.6). We conclude showing

formula (1.11) in Proposition 3.5, which is proved under the assumptions α ∈ {0, 1}, v1, h1 > 0

and v2 = h2 = 0. To this purpose, we use the differential equations of Proposition 3.1 to write

the parameters λ and y in terms of α and of the given constraints.

Appendix A is dedicated to the notion of trace of a y-Schwarz symmetric set.
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2. Existence of minimizers

In this section we prove existence of solutions to problem (1.7). The proof is divided into

several steps that we present in Lemmas 2.1 and 2.2.

We first introduce some notation.

We say that a set E ⊂ R2 is locally Lipschitz (resp. locally C∞) if its boundary ∂E is a

locally Lipschitz (resp. locally C∞) curve, i.e., for any (x, y) ∈ ∂E there exists r > 0 such that

∂E∩B((x, y), r) is a Lipschitz (resp. C∞) curve, where B((x, y), r) = {p ∈ R2 : |p−(x, y)| < r}.
For any set E ⊂ R2 and t > 0 we let

Ext− = {(x, y) ∈ E : |x| < t} and Ext = {(x, y) ∈ E : |x| = t}

In the following, we use the short notation {|x| < t} for {(x, y) ∈ R2 : |x| < t}.
We call the profile function of a set E ∈ Sx∩S ∗

y , the measurable function f : [0,∞)→ [0,∞)

such that

E = {(x, y) ∈ Rn : |y| < f(|x|)},

that exists by definition of x-symmetry and y-Schwarz symmetry.

In the next lemma we show that it is possible to approximate the sets in A by smooth sets

in such a way that the symmetries are maintained and the trace constraint is preserved in the

limit. This result is a refinement of the well known approximation theorem for sets with finite

α-perimeter, see [12, Theorem 2.2.2].

Lemma 2.1 (Approximation by smooth sets). Given v1, v2, h1, h2 > 0, let E ∈ A(v1, v2, h1, h2)

be a set with finite α-perimeter. Let x0 > 0 be the partitioning point for E and y±0 be such that

trxx0±E = [−y±0 , y
±
0 ]. Then there exists a sequence of locally C∞ sets Ej ∈ Sx ∩S ∗

y , j ∈ N such

that

• lim
j→∞

Pα((Ej)xx0−) = Pα(Exx0−) and lim
j→∞

Pα(Ej \ (Ej)xx0−) = Pα(E \ Exx0−); (2.1a)

• lim
j→∞

L2((Ej)xx0−) = L2(Exx0−) and lim
j→∞

L2(Ej \ (Ej)xx0−) = L2(E \ Exx0−); (2.1b)

• if trxx0±Ej = [−q±j , q
±
j ], for some q±j ≥ 0, we have q±j → y±0 as j →∞. (2.1c)

Proof. To construct the sequence (Ej)j∈N we introduce a positive symmetric mollifier J ∈
C∞(R2), i.e., J ∈ C∞c (B(0, 1)), with B(0, 1) = {p ∈ R2 : |p| < 1}, J ≥ 0,

∫
R2 J(p) dp = 1,

and J(p) = J(q), for p, q ∈ R2, |p| = |q|. For any ε > 0, let Jε(p) = 1
ε2
J(|p|/ε), p ∈ R2 and de-

fine the mollified function hε = Jε ∗χE . For any t ∈ (0, 1), let Eεt = {(x, y) ∈ R2 : hε(x, y) > t}.
Consider a sequence εj → 0 as j → ∞. Following [17, Theorem 1.24], we can choose t ∈ (0, 1)

such that the set Ej = Eεjt is a locally smooth set satisfying (2.1b), and, in addition

lim
j→∞

Pα(Ej ; (Ej)xx0−) = Pα(E;Exx0−), lim
j→∞

Pα(Ej ; Ej \ (Ej)xx0−}) = Pα(E;E \ Exx0−). (2.2)

Observe that the sets Ej , j ∈ N are y-Schwarz symmetric, i.e., for any (x̄, ȳ) ∈ Ej , (x̄, y) ∈ Ej
if |y| < ȳ. In fact, since E is y-Schwarz symmetric, χE(x̄ − x′, ȳ − y′) ≤ χE(x̄ − x′, y − y′) for

every (x′, y′) ∈ R2 and |y| < |ȳ|. Hence

t <hεj (x̄, ȳ) =

∫
Bεj (0)

Jε(x
′, y′)χE(x̄− x′, ȳ − y′) dx′dy′

≤
∫
Bεj (0)

Jε(x
′, y′)χE(x̄− x′, y − y′) dx′dy′ = hεj (x̄, y),



6 V. FRANCESCHI

which implies (x̄, y) ∈ Ej . Moreover, by symmetry of the mollifier J , for every j ∈ N, Ej is also

x-symmetric. Hence the left and right traces of Ej are well defined. Let φj denote the profile

function of Ej , i.e., Ej = {(x, y) ∈ R2 : |y| < φj(|x|)}, and define

q−j = lim
x→x−0

φj(x0), q+j = lim
x→x+0

φj(x0).

By Remark A.3, trxx0±Ej = [−q±j , q
±
j ]. We prove that q+j → y+0 as j → ∞. The same argument

applies to prove q−j → y−0 , j → ∞, and (2.1c) follows. Let 0 < σ < y+0 , by (2.12) there exists

δ = δ(σ) > 0 such that

|f(x)− y+0 | < σ for x0 < x < x0 + δ. (2.3)

Choose j̄(σ) ∈ N to have εj < min{σ, δ(σ)/4} for j ≥ j̄(σ). We first claim that for any j ≥ j̄(σ),

if x ∈ (x0 + εj , x0 + δ
2) and y ∈ (0, y+0 − 2σ), then

(x− ξ, y − η) ∈ E, for (ξ, η) ∈ B(0, εj). (2.4)

In fact, the following estimates holds true for j ≥ j̄(σ), x ∈ (x0 + εj , x0 + δ
2), −εj < ξ < εj :

x0 < x− ξ < x0 +
δ

2
− ξ < x0 +

δ

2
+ εj < x0 + δ

hence, by (2.3), for y ∈ (0, y+0 − 2σ) and −εj < η < εj ,

y − η < y + εj < y+0 − 2σ + σ < f(x− ξ).

We now deduce from (2.4) that

Aσ =
(
x0 + εj , x0 +

δ

2

)
× (0, y0 − 2σ) ⊂ Ej , for j ≥ j(σ). (2.5)

This follows applying the definition of the set Ej , since, for any j ≥ j̄(σ), if (x, y) ∈ Aσ we have

hεj (x, y) =

∫
B(0,εj)

Jεj (ξ, η)χE(x− ξ, y − η) dξdη =

∫
B(0,εj)

Jεj (ξ, η) dξdη = 1 > t.

In particular, (2.5) implies

(−y+0 + 2σ, y+0 − 2σ) ⊂ trx(x0+εj)+Ej for every j > j̄(σ). (2.6)

Similarly, we can choose ¯̄j(σ) ∈ N such that

tr(x0+εj)+Ej ⊂ (−y+0 − 2σ, y0 + 2σ) for j ≥ ¯̄j(σ). (2.7)

We deduce (2.1c) from (2.6) and (2.7). Statement (2.1a) follows from (2.1c) and (2.2). �

Lemma 2.2 (Regularization). Let v1, v2, h1, h2 ≥ 0 and E ∈ A(v1, v2, h1, h2) be a locally C∞-

set with finite α-perimeter. Then, there exists a set Ẽ ∈ A(v1, v2, h1, h2) such that, if x̃0 is the

partitioning point for Ẽ, there holds:

(1) Ẽxx̃0− is convex and Ẽ \ Ẽxx̃0− has locally Lipschitz boundary;

(2) Pα(Ẽ) ≤Pα(E), in particular Pα(Ẽxx̃0−) ≤ Pα(Exx0−) and Pα(Ẽ\Ẽxx̃0−) ≤ Pα(E\Exx0−)

where x0 is the partitioning point for E.

Proof. Let trxx0−E = [−q−, q−] and trxx0+E = [−q+, q+]. We divide the proof into the following

steps, corresponding to operations performed on the set E.

Step 1. (Gluing around the y-axis). Starting from E, we construct a set Ê ∈ Sx∩S ∗
y such that

there exist 0 < x̂0 ≤ x0 satisfying:

(1) the Euclidean outer unit normal to Ê exists outside a set of H1-measure zero;
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(2) if φ̂ : [0,∞) → [0,∞) denotes the profile function of Ê and D = inf{d ≥ 0 : φ(x) =

0 for x ≥ d}, then H1({x ∈ [0, D] : φ̂(x) = 0}) = 0;

(3) Pα(Êxx̂0−) ≤ Pα(Exx0−) and Pα(Ê \ Êxx̂0−) ≤ Pα(E \ Exx0−);

(4) L2(Êxx̂0−) = L2(Exx0−) and L2(Ê \ Êxx̂0−) = L2(E \ Exx0−);

(5) trxx̂0−Ê = tr−x0E and trxx̂0+Ê = tr+x0E.

�
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Figure 3. From E to Ê.

Let φ : [0,∞) → [0,∞) be the profile function of E. Define the set Z := {x ∈ R : φ(x) = 0}
and write Z = Z1 ∪ Z2 with

Z1 = {x ∈ [0, D] : φ(x) = 0 and φ(ξ) 6= 0 for ξ ∈ (x− δ, x+ δ) \ {x} for some δ > 0},

Z2 = {x ∈ [0, D] : ∃δ > 0 : φ(ξ) = 0 for ξ ∈ (x− δ, x] or ξ ∈ [x, x+ δ)}.

By symmetry and smoothness of E, we have Z1 = ∅. In fact, suppose by contradiction that

there exists x ∈ Z1, and let p = (x, 0) ∈ ∂E. Since ∂E is smooth, there exists the outer unit

normal ν at p. By y-symmetry of E, ν = (±1, 0). Moreover, there exists a smooth function

θ : Br(p)→ R, defined on a Euclidean ball Br(p) = {q ∈ R2 : |q− p| < r} for some radius r > 0,

such that

θ(q) = 0 ⇐⇒ q ∈ ∂E ∩Br(p),
θ(q) > 0 ⇐⇒ q ∈ E ∩Br(p),

θ(q) < 0 ⇐⇒ q ∈ (R2 \ E) ∩Br(p).

We deduce that p+ τν 6∈ E for 0 < τ < min{r, δ}, which contradicts φ(x± τ) 6= 0.

On the other hand, the set Z2 is the complement in R of the set {x ∈ R : (x, 0) ∈ E},
therefore it is open in the R-topology. Hence, Z2 is the union of at most countably many

open intervals. We diversify the notation for the intervals in Z2 ∩ {x ∈ R : |x| < x0} and in

Z2 ∩ {x ∈ R : |x| > x0}: there exists a sequence of points 0 ≤ a1 < b1 < a2 < b2 < · · · ≤ x0 <

c1 < d1 < c2 < d2 < · · · ≤ D, such that

Z2 =
⋃
k∈I

(ak, bk) ∪
⋃
k∈J

(ck, dk) ∪
⋃
k∈I

(−bk,−ak) ∪
⋃
k∈J

(−dk,−ck),

where I, J ⊂ N. We rearrange E in at most countably many steps, each one corresponding to

an interval (ak, bk) for k ∈ I.

Base step. We define the set

E1 = (E)xa1− ∪ {(x+ a1 − b1, y) : (x, y) ∈ E, x > b1}
∪ {(x+ b1 − a1, y) : (x, y) ∈ E, x < −b1}

which is x-symmetric and y-Schwarz symmetric. Let x1 = x0+a1−b1 < x0. Since E∩
(
(a1, b1)×

R) = ∅, we have

L2((E1)
x
x1−) = L2(Exx0−), L2(E1 \ (E1)

x
x1−) = L2(E \ Exx0−).
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Moreover trxx1±E1 = trxx0±E. We prove that Pα((E1)
x
x1−) ≤ Pα(Exx0−). By smoothness of ∂E1

outside {(x, y) ∈ R2 : |x| = a1}, we let N1(p) = (N1x(p), N1y(p)) be the Euclidean outer unit

normal to E1 at p = (x, y) ∈ R2, for |x| 6= a1. If N = (Nx, Ny) is the Euclidean outer unit

normal to ∂E, for (x, y) ∈ ∂E, we have

N1(x, y) = N(x− a1 + b1, y) if x > a1;

N1(x, y) = N(x− b1 + a1, y) if x < −a1.

Hence, by the representation formula (1.2) we get

Pα((E1)
x
x1−) ≤ Pα((E1)

x
a1−) + Pα((E1)

x
x1− \ (E1)

x
a1−)

=

∫
∂(E1)xa1−

(
N1x(x, y)2 + |x|2αN1y(x, y)2)

1
2 dH1(x, y)

+

∫
∂
(
(E1)xx1−

\(E1)xa1−

)(Nx(x− a1 + b1, y)2 + |x|2αNy(x− a1 + b1, y)2)
1
2 dH1(x, y)

=

∫
∂(E)xa1−

(Nx
2 + |x|2αNy

2)
1
2 dH1 +

∫
∂
(
Exx0−

\(E)xb1−

)(N2
x + |x− b1 + a1|2αN2

y )
1
2 dH1(x, y)

≤
∫
∂(E)xa1−

(Nx
2 + |x|2αNy

2)
1
2 dH1 +

∫
∂
(
Exx0−

\(E)xb1−

)(Nx
2 + |x|2αNy

2)
1
2 dH1 = Pα(Exx0−).

In the same way it follows

Pα(E1 \ (E1)
x
x1−) ≤ Pα(E \ Exx0−).

Second step. Let E2 be the x-symmetric and y-Schwarz symmetric set

E2 ={(x, y) ∈ E1 : |x| ≤ a2 − (b1 − a1)}

∪
{(
x−

2∑
i=1

(bi − ai), y
)

: (x, y) ∈ E1, x > b2 − (b1 − a1)
}

∪
{(
x+

2∑
i=1

(bi − ai), y
)

: (x, y) ∈ E1, x < −b2 + (b1 − a1)
}
,

and x2 = x0 −
∑2

i=1(bi − ai). Then,

L2((E2)
x
x2−) = L2(Exx0−) and L2(E2 \ (E2)

x
x2−) = L2(E \ Exx0−),

and trxx2±E2 = trxx1±E1 = trxx0±E. Moreover, as in the previous step, ∂E2 is locally smooth

outside the set {(x, y) ∈ R2 : |x| = a1, |x| = a2 − (b1 − a1)}, hence, Pα((E2)
x
x2−) ≤ Pα(Exx0−)

and Pα(E2 \ (E2)
x
x2−) ≤ Pα(E \ Exx0−).

Inductive step. Let Ek be the x-symmetric and y-Schwarz symmetric set

Ek =
{

(x, y) ∈ Ek−1 : |x| ≤ ak −
k−1∑
i=1

(bi − ai)
}

∪
{(
x−

k∑
i=1

(bi − ai), y
)

: (x, y) ∈ Ek−1, x > bk −
k−1∑
i=1

(bi − ai)
}

∪
{(
x+

k∑
i=1

(bi − ai), y
)

: (x, y) ∈ Ek−1, x < −bk +
k−1∑
i=1

(bi − ai)
}
,
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and define

xk = x0 −
k∑
i=1

(bi − ai) < x0.

Then

L2((Ek)xxk−) = L2(Exx0−) and L2(Ek \ (Ek)
x
xk−) = L2(E \ Exx0−),

Pα((Ek)
x
xk−) ≤ Pα(Exx0−), Pα(Ek \ (Ek)

x
xk−) ≤ Pα(E \Exx0−), and ∂Ek is locally smooth outside

{(x, y) ∈ R2 : |x| = a1 −
∑`

i=2(bi − ai) for ` = 2, . . . , k}. Iterating this procedure at most

countably many times, we obtain a x-symmetric and y-Schwarz symmetric set Ê satisfying

claims 3, 4 and 5 for

x̂0 = x0 −
∑
i∈I

(bi − ai). (2.8)

Repeating this argument for the intervals (ck, dk), k ∈ J, we obtain a set, which we still call Ê,

that satisfies also claims 1 and 2. In fact, let

Ẑ =
{
ak −

k−1∑
i=1

(bi − ai) : k ∈ I
}
∪ {ck −

k−1∑
i=1

(di − ci) : k ∈ J}

which is at most countable, and denote by φ̂ be the profile function of Ê. Then the outer unit

normal to Ê exists outside the set {(x, y) ∈ R2 : |x| ∈ Ẑ}, and {x ∈ R : φ̂(x) = 0} ⊂ Ẑ.

Step 2. (Reflection in the vertical direction) We rearrange the set Ê into a x-symmetric and

y-Schwarz symmetric set
ˆ̂
E with profile function

ˆ̂
φ : [0,∞)→ [0,∞) such that

(1) The Euclidean outer unit normal to
ˆ̂
E exists outside a set of H1-measure zero;

(2)
ˆ̂
φ(|x|) ≥ q− for x ∈ R, |x| < x̂0;

(3) Pα((
ˆ̂
E)xx̂0−) ≤ Pα(Êxx̂0−) and Pα(

ˆ̂
E \ (

ˆ̂
E)xx̂0−) = Pα(Ê \ (Ê)xx̂0−);

(4) L2(( ˆ̂
E)xx̂0−) ≥ L2(Êxx̂0−) and L2( ˆ̂

E \ (
ˆ̂
E)xx̂0−) = L2(Ê \ (Ê)xx̂0−);

(5) trxx̂0−
ˆ̂
E = trxx̂0−Ê and trxx̂0+

ˆ̂
E = trxx̂0+Ê.

We define the rearranged function
ˆ̂
φ : [0,∞)→ [0,∞),

ˆ̂
φ(x) =

 |φ̂(x)− q−|+ q− =

{
φ̂(x) if φ̂(x) ≥ q−

2q− − φ̂(x) if φ̂(x) < q−
if |x| < x̂0,

φ̂(x) if |x| > x̂0.

Let
ˆ̂
E be the x- and y-symmetric set generated by

ˆ̂
φ (see Figure 4). Clearly

ˆ̂
E \ (

ˆ̂
E)xx̂0− =

Ê \ (Ê)xx̂0− and claims 2 and 5 are satisfied. Claim 4 follows, observing that
ˆ̂
φ ∈ L1(R) and

ˆ̂
φ ≥ φ̂, thus L2( ˆ̂

E) ≥ L2(Ê).

Ε


��


�-

Ε


��


�-

Figure 4. The set Ê and the rearranged
ˆ̂
E.
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Denote by K, the set of points (x, y) ∈ ∂Ê with φ̂(x) = q− and for which there exists δ > 0

such that φ̂(ξ) 6= q− for ξ ∈ (x, x+ δ) or ξ ∈ (x− δ, x). Then, H1(K) = 0 for any j ∈ N since K
is countable.

By construction, the outer unit normal to
ˆ̂
E exists outside K∪ Ẑ, which has H1-measure zero,

and we denote it by
ˆ̂
N = (

ˆ̂
Nx,

ˆ̂
Ny). Moreover, if N̂ = (N̂x, N̂y) is the outer unit normal to ∂Ê,

we have for any (x, y) ∈ ∂Ê \
(
K ∪ Ẑ

)
, |x| < x̂0,

ˆ̂
N(x, |y − q−|+ q−) =

(
N̂x(x, y), sgn(y − q−)N̂y(x, y)

)
,

hence

Pα
(
(

ˆ̂
E)xx̂0−

)
=

∫
∂(

ˆ̂
E)xx̂0−

√
ˆ̂
N2
x + |x|2α ˆ̂

N2
y dH1

=

∫
{p∈∂Êxx̂0−: N̂y(p)6=0}

√
N̂2
x + |x|2αN̂2

y dH1 +H1
(
{p ∈ ∂(

ˆ̂
E)xx̂0− :

ˆ̂
Ny(p) = 0}

)
≤
∫
{p∈∂Êxx̂0−: N̂y(p)6=0}

√
N̂2
x + |x|2αN̂2

y dH1 +H1
(
{p ∈ ∂Êxx̂0− : N̂y(p) = 0}

)
= Pα(Ê).

Step 3. (Convexification and regularization) We finally rearrange the set
ˆ̂
E into a x-symmetric

and y-Schwarz symmetric set Ẽ, such that there exists 0 < x̃0 < x0 satisfying:

(1) (Ẽ)xx̃0− is convex, and Ẽ \ Ẽxx̃0− is locally lipschitz;

(2) Pα((Ẽ)xx̃0−) ≤ Pα(Exx0−) and Pα(Ẽ \ (Ẽ)xx̃0−) ≤ Pα(E \ Exx0−);

(3) L2((Ẽ)xx̃0−) = L2(Exx0−) and L2(Ẽ \ (Ẽ)xx̃0−) = L2(E \ Exx0−);

(4) trxx̃0−Ẽ ⊃ [−q−, q−] and trxx̃0+Ẽ ⊃ [−q+, q+].

This will conclude the proof.

We introduce the function

Ψ : R2 → R2, Ψ(x, y) =
(

sgn(x)
|x|α+1

α+ 1
, y
)
,

which is a homeomorphism with inverse

Φ : R2 → R2, Φ(ξ, η) =
(

sgn(ξ)|(α+ 1)ξ|
1

α+1 , η
)
.

As shown in [22, Proposition 2.3], for any measurable set F ⊂ R2, we have

Pα(F ) = P (Ψ(F )) and L2(F ) = µ(Ψ(F )),

where P denotes the Euclidean perimeter and µ is a Borel measure on R2 defined on Borel sets

as follows:

µ(A) =

∫
A
|(α+ 1)ξ|−

α
α+1 dξdη, A ⊂ R2 Borel.

Let F c = Ψ((
ˆ̂
E)xx̂0−) ⊂ R2 and consider its convex envelope in R2, co(F c). First of all,

notice that the maps Φ, Ψ preserve the symmetries, namely, since co(F c) is x- and y-Schwarz

symmetric, also F c has such symmetries. We show that it is also a convex set. In fact, let
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t ∈ (0, 1), for any q1, q2 ∈ Φ(co(F c)) there exist p1 = (ξ1, η1), p2 = (ξ2, η2) ∈ co(F c). Since

co(F c) is convex, we have(
sgn
(
tξ1 + (1− t)ξ2

)
(α+ 1)|tξ1 + (1− t)ξ2|

1
α+1 , tη1 + (1− t)η2

)
= Φ(tp1 + (1− t)p2) ∈ Φ(co(F c))

(2.9)

On the other hand, by the concavity inequality

|tξ1 + (1− t)ξ2|
1

α+1 ≥ t|ξ1|
1

α+1 + (1− t)|ξ2|
1

α+1 , t ∈ (0, 1), ξ1, ξ2 ≥ 0

and by x- and y-Schwarz symmetry of Φ(co(F c)), we get from (2.9)

tq1+(1−t)q2 =
(

(α+1)
{

sgn(tξ1)|tξ1|
1

α+1 +sgn((1−t)ξ2)|(1−t)ξ2|
1

α+1
}
, tη1+(1−t)η2

)
∈ Φ(co(F c)),

which proves that F c is convex. The set F c satisfies

L2(F c) = µ(co(F c)) ≥ µ(F c) = L2(( ˆ̂
E)xx̂0−) ≥ L2(Êxx̂0−) ≥ L2(Exx0−), (2.10a)

Pα(F c) = P (co(F c)) ≤ P (F c) = Pα((
ˆ̂
E)xx̂0−), (2.10b)

trxx̂0−F
c = [−q−, q−]. (2.10c)

By (2.10a), we define x̃0 ∈ [0, x̂0] such that L2
(
(F c)xx̃0−

)
= L2

(
Exx0−

)
. Notice that Pα((F c)xx̃0−) ≤

Pα(F c): this follows using the same calibration argument as in [14, Proposition 4.2]. Moreover,

we deduce

[−q−, q−] ⊂ trxx̃0−F
c

by x- and y-Schwarz symmetry of F c, that implies decreasing monotonicity of its profile function.

Ε


��

�-

Figure 5. The convexified set F c, cut at x̃0.

Define the set

F = (F c)xx̃0− ∪ {(x− x̂0 + x̃0, y) ∈ R2 : (x, y) ∈ ˆ̂
E, x > x̂0}

∪ {(x+ x̂0 − x̃0, y) ∈ R2 : (x, y) ∈ ˆ̂
E, x < −x̂0}.

Arguing as in Step 2, we have Pα(F \(F )xx̃0−) ≤ Pα(
ˆ̂
E\( ˆ̂

E)xx̂0−), L2(F \(F )xx̃0−) = L2( ˆ̂
E\( ˆ̂

E)xx̂0−)

and trxx̃0+F = trxx̂0+
ˆ̂
E.

Now, the same argument used to prove (2.10a)-(2.10c), shows that the sets F r = Φ(co(Ψ(F ∩
{x > x̃0}))) and F l = {(−x, y) : (x, y) ∈ F r}, obtained combining the changes of variables Φ

and Ψ with a convexification in the plane R2
(ξ,η), satisfy

L2(F r ∪ F l) ≥ L2(F \ (F )xx̃0−), trx̃0+F
r = trx̃0+F, Pα(F l ∪ F r) ≤ Pα(F \ (F )xx̃0−).
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Moreover, since co(Ψ(F ∩ {x > x̃0})) is a convex set and Φ is C∞-smooth outside 0, the set F r

is locally Lipschitz. Let r ≥ x̃0 be such that L2((F r ∪ F l)xr−) = L2(E \ Exx0−). The set

Ẽ = (F c)xx̃0− ∪ (F r ∪ F l)xr− (2.11)

satisfies all the claims of this Step. �

Remark 2.3. Given a set F ∈ A(v1, v2, h1, h2) with partitioning point x0 > 0 it is always possible

to construct a set Ẽ ∈ A(v1, v2, h1, h2) such that Pα(Ẽ) ≤Pα(F ), Ẽxx0− = F xx0−, and Ẽ \ Ẽxx0−
is locally Lipschitz.

This follows combining the changes of variables Ψ : R2
(x,y) → R2

(ξ,η) and Φ : R2
(ξ,η) → R2

(x,y)

with a convexification in the plane R2
(ξ,η) as we did to construct the set Ẽ defined in (2.11).

We prove that Problem (1.7) admits solutions satisfying suitable regularity properties. Given

v1, v2, h1, h2 ≥ 0, we define the constant

CMP = inf{Pα(E) : E ∈ A(v1, v2, h1, h2)}.

Notice that, for any E ∈ A, Pα(E) ≥ P (E). This follows from the formulas

Pα(Ext−) = Pα(E;Ext−) +H1(Ext ) and Pα(E \ Ext−) = Pα(E;E \ Ext−) +H1(Ext )

holding for a.e. t > 0 and any set E with finite measure and finite α-perimeter, see [14,

Proposition 4.1]. Moreover, if h1 = h2 = h, for any set E ∈ A(v1, v2, h, h) such that tr−x0E =

tr+x0E = [−h, h], the functional Pα corresponds to the α-perimeter:

Pα(E) = Pα(E;Exx0−) + 4h+ Pα(E;E \ Exx0−) + 4h− 8h = Pα(E).

We hence deduce that the constant CMP is positive thanks to the validity of the following

isoperimetric inequality: for any L2-measurable set E ⊂ R2 with finite measure

Pα(E) ≥ CL2(E)
α+1
α+2

for some geometric constant C > 0, see [9], [10], [18] (see also [13, Proposition 1.3.4]).

Theorem 2.4. Let v1, v2, h1, h2 ≥ 0. There exists a bounded set E ∈ A with partitioning point

x0 ≥ 0 realizing the infimum in (1.7) and such that Exx0− is convex, and E \ Exx0− is locally

Lipschitz.

Proof. Let (Em)m∈N be a minimizing sequence for the infimum in Problem (1.7), namely

Em ∈ A Pα(Em) ≤ CMP

(
1 +

1

m

)
m ∈ N.

Let xm > 0 be the partitioning point for Em and fm : [0,∞) → [0,∞) be its profile function.

Moreover, let y−m, y
+
m ≥ 0 be such that trxxm±Em = [−y±m, y±m]. By Remark A.3,

lim
x→x+m

fm(x) = y+m, lim
x→x−m

fm(x) = y−m, with y+m ≥ h2, y−m ≥ h1. (2.12)

Let m ∈ N. By Lemma 2.1, let Emj ∈ Sx ∩S ∗
y , j ∈ N be a sequence of smooth sets approxi-

mating Em, i.e., satisfying (2.1a)-(2.1c). Define q±jm ≥ 0 such that trxxm±E
m
j = [−q±jm, q

±
jm]. For

any j ∈ N, apply Lemma 2.2 to Emj , obtaining a x-symmetric and y-Schwarz symmetric set Ẽmj ,

such that there exists 0 < x̃mj < xm satisfying:

(1) (Ẽmj )xx̃mj − is convex, and Ẽmj \ (Ẽmj )xx̃mj −
is locally lipschitz;

(2) Pα((Ẽmj )xx̃mj −) ≤ Pα((Emj )xxm−) and Pα(Ẽmj \ (Ẽmj )xx̃mj −) ≤ Pα(Ej \ (Emj )xxm−);

(3) L2((Ẽj)xx̃j−) = L2((Ej)xx0−) and L2(Ẽj \ (Ẽj)xx̃j−) = L2(Ej \ (Ej)xx0−);
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(4) trxx̃mj −
Ẽmj ⊃ [−q−j , q

−
j ] and trxx̃j+Ẽj ⊃ [−q+j , q

+
j ].

By (2.1c), for any m ∈ N there exists J(m) ∈ N such that for j ≥ J(m), we have

|q±jm − y
±
m| ≤

1

m
(2.13)

and∣∣∣Pα((Ẽmj )xx̃mj −
)
− Pα((Em)xxm−)

)∣∣∣ ≤ 1

m
,
∣∣∣Pα(Ẽmj \ (Ẽmj )xx̃mj −

)
− Pα

(
Em \ (Em)xxm−

)∣∣∣ ≤ 1

m
,∣∣∣L2((Ẽmj )xx̃mj −

)
− L2((Em)xxm−)

)∣∣∣ ≤ 1

m
,
∣∣∣L2(Ẽmj \ (Ẽmj )xx̃mj −

)
− L2(Em \ (Em)xxm−)

)∣∣∣ ≤ 1

m
.

(2.14)

Let (jm)m∈N be an increasing sequence of integer numbers such that jm ≥ J(m) for any m ∈ N.

We choose the diagonal sequence Ẽm = Ẽmjm , m ∈ N and prove that there exists ` > 0 such that

Ẽm ⊂ [−`, `]× [−`, `], for any m ∈ N. (2.15)

First of all, letting x̃m = x̃mjm , notice that

sup{Pα((Ẽm)xx̃m−) : m ∈ N} <∞, and sup{Pα(Ẽm \ (Ẽm)xx̃m−) : m ∈ N} <∞. (2.16)

In fact:

max{Pα
(
(Ẽm)xx̃m−

)
, Pα

(
Ẽm \ (Ẽm)xx̃m−

)
} ≤ Pα((Ẽm)xx̃m−) + Pα(Ẽm \ (Ẽm)xx̃m−)

≤Pα(Em) + 4h1 + 4h2 +
2

m
≤ 2CMP + 4h1 + 4h2 + 2.

We prove that the sequence x̃m is bounded. Let φ̃m be the profile function of Ẽm and assume

by contradiction that xm →∞ as m→∞. In this case, by the representation formula (1.2) we

have:

Pα((Ẽm)xx̃m−) =

∫ x̃m

0

√
φ̃m(x)2 + |x|2α dx ≥

∫ x̃m

0
|x|α =

x̃α+1
m

α+ 1
→∞, m→∞

which is in contradiction with (2.16). In the same way we can see that, if rm is such that

Ẽm ⊂ (Ẽm)xrm−, the sequence (rm)m∈N is bounded.

Now, we show boundedness in the vertical direction, namely we show that there exists L ≥ 0

such that Ẽm ⊂ (Ẽm)yL−. Suppose by contradiction that for any L ≥ 0, there exists m = m(L) ∈
N such that (Ẽm)xx̃m− \ (Ẽm)yL− 6= ∅, then by convexity of (Ẽm)xx̃m−, we can equivalently assume

that for any L ≥ 0 there exists j(L) ≥ 0 such that

φ̃m(0) > L for m ≥ m(L), (2.17)

We write for x ∈ (0, x̃m)

φ̃m(x) = −
∫ x̃m

x
φ̃′m(ξ) dξ =

∫ x̃m

x
|φ̃′m(ξ)| dξ,

then

φ̃m(0) = lim
x→0

∫ x̃m

x
|φ̃′m(ξ)| dξ =

∫ x̃m

0
|φ̃′m(ξ)| dξ,

which implies, by (2.17)

lim
m→∞

∫ x̃m

0
|φ̃′m(ξ)| dξ = lim

m→∞
φ̃m(0) =∞.
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Therefore

Pα((Ẽm)xx̃m−) = 4

∫ x̃m

0

√
(φ̃′m(x))2 + x2α dx ≥

∫ x̃m

0
|φ̃′m(x)| dx→∞ as m→∞,

which is in contradiction with (2.16). Similarly, we exclude the case that for any L > 0
(
Ẽm \

(Ẽm)xx̃m−
)
\ (Ẽm)yL− 6= ∅.

We conclude the proof showing existence of a solution to Problem (1.7). Thanks to (2.16),

by the compactness theorem for BVα functions (see [18, Theorem 1.28 ]), there exists a set E∞
which is the L1

loc-limit of Ẽm as m → ∞. By (2.15), convergence χẼm → χE∞ is in L1(R2).

Moreover, since the sequence (x̃m)m∈N is bounded, we let x∞ ≥ 0 be the limit up to subsequences

of x̃m as m→∞. We have, by (2.14),

L2((E∞)xx̃∞−) = lim
m→∞

L2((Ẽm)xx̃m−) = lim
m→∞

L2((Em)xxm−) = v1,

and

L2(E∞ \ (E∞)xx̃∞−) = lim
m→∞

L2(Ẽm \ (Ẽm)xx̃m−) = lim
m→∞

L2(Em \ (Em)xxm−) = v2.

Now, since (Ẽm)xx̃m−, is convex, we can choose a representative for E∞ such that (E∞)xx∞−, is

convex. By boundedness of the sequence Ẽm, let y±∞ ≥ 0 be such that trxx∞±E∞ = [−y±∞, y±∞].

Then, by (2.13) and claim 4 at Step 4, we have

y−∞ ≥ lim
m→∞

q̃−m ≥ lim
m→∞

q−m ≥ lim
m→∞

y−m −
1

m
≥ h1,

equivalently y+∞ ≥ h2. Hence E∞ ∈ A.

By the lower semi-continuity of the α-perimeter together with (2.14), we have

Pα(E∞) = Pα((E∞)xx∞−) + Pα(E∞ \ (E∞)xx∞−)− 4h1 − 4h2

≤ lim inf
m→∞

Pα((Ẽm)xx̃m−) + lim inf
m→∞

Pα(Ẽm \ (Ẽm)xx̃m−)− 4h1 − 4h2

≤ lim inf
m→∞

Pα((Em)xxm−) + lim inf
m→∞

Pα(Em \ (Em)xxm−) +
2

m
− 4h1 − 4h2

= lim inf
m→∞

Fα(Em) +
2

m
≤ CMP .

(2.18)

By Remark 2.3 applied to F = E∞, there exists a set Ẽ∞ ∈ A(v1, v2, h1, h2) such that Pα(Ẽ∞) ≤
Pα(E∞), Ẽ∞ \ (Ẽ∞)xx∞− is locally Lipschitz and (Ẽ∞)xx∞− = (E∞)xx∞−. In conclusion the set

Ẽ∞ ⊂ R2 is such that

Pα(Ẽ∞) = inf{Pα(E), E ∈ A}
with Ẽ∞ ∈ A. It is therefore a bounded minimizer for (1.7) such that (Ẽ∞)xx∞− is convex and

Ẽ∞ \ (Ẽ∞)xx∞− is locally Lipschitz. �

3. Profile of regular solutions

In this section we describe the solutions to the minimal partition problem (1.7) found in

Theorem 2.4. If E ∈ A(v1, v2, h1, h2) with partitioning point x0 > 0 is a bounded solution to

Problem (1.7) such that Exx0− is convex and E\Exx0− is locally Lipschitz, we say that E is a regular

solution of the minimal partition problem. In this case, writing E = {(x, y) ∈ R2 : |y| < f(|x|)},
the profile function f : [0,∞) → [0,∞) is decreasing in [0, x0) and locally Lipschitz in [x0,∞).

With a little abuse of notation, in the following we sometimes consider f to be extended to an

even function defined on the whole R, and we still call it the profile function of E.
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3.1. Differential equations for the profile function. In the following proposition we deduce

differential equations for regular solutions of the minimal partition problem.

Proposition 3.1. Let v1, v2, h1, h2 ≥ 0 and E ⊂ R2 be a regular solution of the minimal partition

problem (1.7) in the class A = A(v1, v2, h1, h2), with partitioning point x0 ≥ 0. Then, writing

E = {(x, y) ∈ R2 : |y| < f(x)},

the even function f satisfies

f ′(x) = −sgnx c|x|α+1

√
1− cx2

if |x| < x0, (3.1a)

f ′(x) =
(kx+ d) xα√
1− (kx+ d)2

if x > x0. (3.1b)

f ′(x) =
(kx− d) |x|α√
1− (kx− d)2

if x < −x0 (3.1c)

for some constants c ≥ 0, k, d ∈ R.

Proof. By boundedness of the regular minimizer E, let r0 = inf{r > 0 : E ⊂ Exr−} <∞.

We first prove equation (3.1a). For ψ1 ∈ C∞c (0, x0) with
∫
ψ1 = 0, and ε ∈ R, consider the

function x 7→ f(|x|) + εψ1(|x|), x ∈ R, and define the set

Eε = {(x, y) ∈ R2 : |y| < f(|x|) + εψ1(|x|)} ∈ A.

By the Representation formula for the α-perimeter (1.2), let

p1(ε) = Pα((Eε)
x
x0−) = 4

{∫ x0

0

√
(f ′ + εψ′)2 + |x|2α dr + lim

x→x−0
f(x)

}
.

By minimality of E, we then have

0 = p′1(ε)
∣∣
ε=0

= 4

∫ x0

0

d

dε

(√
(f ′ + εψ′1)

2 + x2α
)∣∣∣∣
ε=0

dx

= 4

∫ x0

0

f ′(x)ψ′1(x)√
f ′2(x) + x2α

dx = −4

∫ x0

0

d

dx

(
f ′√

f ′2 + x2α

)
ψ1(x) dx.

By arbitrariness of ψ1, we deduce the following second order ordinary differential equation,

holding for some C ∈ R

d

dx

(
f ′(x)√

f ′(x)2 + x2α

)
= C for a.e. 0 < x < x0. (3.2)

The normal form of (3.2) is

f ′′(x) =
αf ′(x)

x
+

C

x2α
(f ′(x)2 + x2α)

3
2 . (3.3)

Hence, since f is even, f ′ is odd and f ′′ is even, f satisfies (3.3) for any x ∈ R, |x| < x0 and we

extend (3.2) to |x| < x0. Integrating (3.2) around 0, we obtain existence of a constant d ∈ R
such that for some δ > 0,

f ′(x)√
f ′(x)2 + x2α

= Cx+ d for |x| < δ.
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Since f ′ is odd we deduce that d = 0, in fact for |x| < δ

Cx+ d =
f ′(x)√

f ′2(x)− x2α
= − f ′(−x)√

f ′2(−x) + (−x)2α
= −(C(−x) + d) = Cx− d.

Hence (3.2) reads

f ′(x)√
f ′2(x) + x2α

= Cx for |x| < δ,

which implies, by monotonicity of f , that C < 0. Letting c = −C > 0, we hence get the

following ordinary differential equation for f :

f ′(x) = −sgn(x)
c|x|α+1

√
1− c2x2

for |x| < δ.

A solution to the latter equation can be extended up to (−1/c, 1/c). This implies 0 < x0 ≤ 1/c

and (3.1a) is proved.

To prove (3.1b) and (3.1c), we proceed in the same way, considering a function ψ2 ∈ C∞c (x0, r0),

with
∫
ψ2 = 0 and the associated perturbation f + ηψ2 for η ∈ R. The set Eη = {(x, y) ∈ R2 :

|y| < f(|x|) + εψ2(|x|)} is inside the class A, hence, as in the previous case, minimality of E

leads to
d

dη
Pα(Eη)

∣∣∣∣
η=0

=
d

dη
Pα(Eη \ (Eη)

x
x0−)

∣∣∣∣
η=0

= 0

and we obtain existence of a constant k ∈ R such that

d

dx

(
f ′(x)√

f ′(x)2 + x2α

)
= k for x0 < |x| < r0. (3.4)

Let x0 < x < r0. An integration between x0 and x shows that, letting

d = lim
x→x+0

f ′(x)√
f ′(x)2 + x2α

− kx0,

we have
f ′(x)√

f ′(x)2 + x2α
= kx+ d for x0 < x < r0

which is equivalent to (3.1b). In particular, |kx+ d| < 1 for x0 < x < r0.

Analogously, for any x ∈ (−r0,−x0), an integration between x and −x0 shows that

f ′(x)√
f ′(x)2 + x2α

= kx− d for − r0 < x < −x0,

which leads to (3.1c) and |kx− d| < 1 for −r0 < x < −x0. �

Remark 3.2. Let E be a regular solution of the minimal partition problem with partitioning

point x0 > 0. Then, its profile function f is defined on some bounded interval [0, r0] and it is

a locally Lipschitz function satisfying in a weak sense the ordinary differential equations (3.1a)-

(3.1c). By an elementary argument, that is omitted, it follows that f ∈ C2([0, x0))∩C2(x0, r0)∩
C2(−r0,−x0).

Notice that equation (3.1a) is scale invariant, i.e., given c1, c2 ≥ 0 and a solution g to (3.1a)

for c = c1, the function

gλ(x) = λα+1g
(x
λ

)
, λ =

c1
c2
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is a solution to (3.1a) for c = c2. In this sense, in [22, Theorem 3.2], the authors show that the

unique solution to equation (3.1a) is the function

ϕα(x) =

∫ π
2

arcsin |x|
sinα+1(t) dt, x ∈ [−1, 1], (3.5)

obtained integrating (3.1a) for c = 1. In other words, there exist λ > 0 and y ∈ R such that

f(x) = λα+1ϕα
(x
λ

)
+ y, |x| < x0. (3.6)

In particular

lim
x→0+

f ′(x)

|x|α+1
= 0.

Moreover, by (3.1b),

f(r0) = 0, lim
x→r+0

f ′(x) = −∞,

and r0 is characterized by the following equality

−1 = lim
x→r−0

f ′(x)√
f ′(x)2 + x2α

. = kr0 + d,

Namely,

r0 = −1 + d

k
. (3.7)

3.2. Traces of regular solutions. In this section, we study traces of minimizers. What we

expect is that if E ∈ A(v1, v2, h1, h2) is a regular solution of the minimal partition problem with

partitioning point x0, then

tr−x0E = [−h1, h1] and tr+x0E = [−h2, h2].

In Proposition 3.3 we prove the claim for the left trace, under the additional assumption that

the profile function of E does not have infinite derivative at x0. The case of the right trace is

equivalent.

Proposition 3.3. Given v1, v2, h1, h2 ≥ 0, let E ∈ A(v1, v2, h1, h2) be a regular solution of

Problem (1.7) with partitioning point x0 > 0, and let f : [0,∞)→ [0,∞) be its profile function.

If

lim
x→x−0

f ′(x) > −∞,

then

tr−x0E = [−h1, h1].

Proof. Assume by contradiction that f(x−0 ) > h1, where

f(x−0 ) = lim
x→x−0

f(x).

We show that in this case, there exists a set F ∈ A such that Pα(F xx0−) < Pα(Exx0−), Pα(F \
F xx0−) = Pα(E \ Exx0−), hence Pα(F ) < Pα(E), which is in contradiction with the minimality

of E.

For a small parameter ε > 0, let fε : [0, x0)→ [0,∞) be the function defined by

fε(x) =

{
f(x), if 0 < x < x0 − ε
rε(x), if x0 − ε < x < x0
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where rε is the segment connecting the points
(
x0 − ε, f(x0 − ε)

)
and (x0, f(x−0 )− ε), i.e.,

rε(x) = m(ε)(x− x0) + f(x−0 )− ε, m(ε) =
1

ε
(f(x−0 )− ε− f(x0 − ε)) < 0.

By convexity of Exx0−, f(x) ≥ rε(x) for x0 − ε < x < x0. We define the set Eε = {(x, y) ∈ R2 :

|y| < fε(|x|)}.



�

(�)
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(�-ε)

(�)-ε
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x ∈ ℝ

y ∈ ℝ

Figure 6. Construction of the set Eε.

We compute the difference Pα(E) − Pα(Eε), using the Representation formula for the α-

perimeter (1.2). Since ∂Exx0 = ∂E ∩ {|x| = x0} is a vertical segment, the outer unit normal to

E is constant on ∂Exx0 , NE = (1, 0). In the same way the outer unit normal to Eε is constant

on ∂(Eε)
x
x0 , NEε = (1, 0). Then, we have

Pα(Exx0−)− Pα(Eε) = 4

∫ x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx+

∫
∂Exx0

dH1 −
∫
∂(Eε)xx0

dH1

= 4

∫ x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx+ 4

(
f(x−0 )− (f(x−0 )− ε)

)
= 4
{∫ x0

x0−ε

√
f ′(x)2 + x2α −

√
m(ε)2 + x2α dx+ ε

}
.

Let A(ε) = (Pα(Exx0−)− Pα(Eε))/4. On the other hand,

L2(Exx0−)− L2(Eε) = 4

∫ x0

x0−ε
f(x)− rε(x) dx,

and we define B(ε) = (L2(Exx0−)− L2(Eε))/4. For any ε > 0, let yε = B(ε)/x0. We claim that

for ε > 0 small enough the set

Fε = (Eε + (0, yε)) ∪
(
[−x0, x0]× [−yε, yε]

)
,

obtained by translating Eε in the vertical direction of the quantity yε, satisfies

Pα(Fε) < Pα(E). (3.8)

It follows that the set F = Fε ∪ (E \ Exx0−) satisfies Pα(F ) < Pα(E). Moreover F ∈ A, since

L2(F xx0−) = L2(Eε) + 4x0yε = L2(Exx0−), and (1.5a) and (1.5b)are clear by construction. By
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invariance under vertical translations of the α-perimeter, we have

Pα(Fε) = Pα(Eε) + 4yε = Pα(Exx0−)− 4
(
A(ε)− B(ε)

x0

)
To prove (3.8), it is therefore sufficient to show that for ε > 0 small enough

x0A(ε) > B(ε). (3.9)

First of all, notice that, by Lebesgue dominated convergence Theorem,

lim
ε→0+

A(ε) = lim
ε→0+

B(ε) = 0. (3.10)

Let f ′(x−0 ) = limx→x−0
f ′(x). By convexity of Exx0−, we have f ′(x−0 ) ≤ 0 f ′′(x−0 ) = limx→x−0

f ′′(x) ≤
0. Moreover, the following limit exists

lim
ε→0+

m(ε) = lim
ε→0+

f(x−0 )− f(x0 − ε)
ε

− 1 = f ′(x−0 )− 1.

Now, since f ′(x−0 ) > −∞, we also have f ′′(x−0 ) > −∞, hence the following limit exists

m′(0) = lim
ε→0+

m′(ε) = lim
ε→0+

1

ε

{
f ′(x0 − ε)−

1

ε

[
f(x−0 )− f(x0 − ε)

]}
= lim

ε→0+

1

ε

{
f ′(x−0 )− f ′′(x−0 )ε− 1

ε

[
f(x−0 )−

(
f(x−0 )− f ′(x−0 )ε+

f ′′(x−0 )

2
ε2
)]

+ o(ε)
}

= −f
′′(x−0 )

2
.

On the other hand, by the chain rule

A′(ε) = 1 +
√
f ′2(x0 − ε) + (x0 − ε)2α −

√
m(ε)2 + (x0 − ε)2α −

∫ x0

x0−ε

m(ε)m′(ε)√
m(ε2) + x2α

dx

≥
√
f ′2(x0 − ε) + (x0 − ε)2α −

√
m(ε)2 + (x0 − ε)2α

that gives

A′(0) = lim
ε→0

A′(ε) ≥ 1 +
√
f ′2(x−0 )2 + x2α0 −

√
(f ′(x−0 )− 1)2 + x2α0 > 0, (3.11)

where the last inequality is justified by the following: for any c < a < 0, and b ∈ R,√
a2 + b2 −

√
c2 + b2 > c− a.

We conclude observing that B′(0) = limε→0+ B
′(ε) = 0, in fact:

B′(ε) = f(x0 − ε)− rε(x0 − ε) +

∫ x0

x0−ε

d

dε

{
f(x)−m(ε)(x− x0)− f(x−0 ) + ε

}
dx

= f(x0 − ε) + εm(ε)− f(x−0 ) + ε−
∫ x0

x0−ε
1−m′(ε)(x− x0) dx −−−→

ε→0
0

Then, (3.9) follows by (3.11) and (3.10). �

Remark 3.4. Assume that the profile function of a minimizer as in Theorem 2.4 satisfies

f ′(x−0 ) = lim
x→x−0

f ′(x) = −∞.

Using the notation of Proposition 3.3, there holds, for ε > 0 small enough:

x0A(ε)−B(ε) = −x
α+2
0

6
√

2

( ε
x0

) 3
2 + o(ε3/2) < 0 for ε < ε0. (3.12)

Hence, the construction proposed in the latter proposition does not apply to this case.
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3.3. Center of regular solutions. In this section, we show that we cannot in general expect a

regular minimizer for the minimal partition problem to be obtained in its central part as a dila-

tion of the isoperimetric set Eαisop. In fact, we show that, for particular choices of v1, v2, h1, h2 > 0

and α ≥ 0, a regular minimizer E ∈ A with partitioning point x0 > 0 does not satisfy for any

λ > 0

Exx0− = (δαλE
α
isop)xx0−. (3.13)

Let f be the profile function of a regular solution of the minimal partition problem E. As

observed in Remark 3.2, from the study of the differential equations in Proposition 3.1, it

follows

f(x) = λα+1ϕα
(x
λ

)
+ y, |x| < x0

for some λ > 0, and y ∈ R, where ϕα is the profile function of the isoperimetric set Eαisop defined

in (3.5). We characterize the parameters λ and y ∈ R in terms of the data h1 = h, v1 = v in the

case of regular solutions of Problem (1.7) with h2 = v2 = 0 and α = 0, 1, see Proposition 3.5.

We deduce that, if α = 1, the translation y is strictly negative (see Remark 3.6), hence (3.13)

does not hold. On the other hand, in the case when α = 0, the α-perimeter corresponds to

the Euclidean perimeter and we prove that regular solutions of the minimal partition problem

satisfy (3.13).

φα

(���)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

�

�
�

-1.0 -0.5 0.5 1.0

-0.5

0.5

Figure 7. For α > 0, a regular solution for the minimal partition problem is

not obtained as a dilation of the isoperimetric set Eαisop in its central part. Its

profile function is in fact the profile of an isoperimetric set vertically translated

of a negative quantity y.

Proposition 3.5. Given α ∈ {0, 1}, h ≥ 0, and v > 0, let E ∈ A(v, 0, h, 0) be a regular solution

of Problem (1.7) with v1 = v, h1 = h, v2 = h2 = 0, and partitioning point x0 > 0, satisfying

tr−x0E = [−h, h]. Let f : [0, x0] → [0,∞) be its profile function. Then there exists d ∈ [−1, 1]

such that

f(t) = λα+1ϕα
(x
λ

)
+ y (3.14)

with

λ =
x0
d
, y = h

{
1− ϕα(d)

dα
√

1− d2
}
. (3.15)

Proof. If E ∈ A is as in the statement, it is a convex set such that E ⊂ E−x0 , and Pα(E) =

Pα(E) ≤Pα(F ) for any F ∈ A. By Propostion 3.1, the profile function f satisfies for a constant
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c > 0

f ′(x) = −sgnx c|x|α+1

√
1− c2x2

,

hence, as observed in Remark 3.2, there exist λ > 0, y ∈ R such that

f(x) = λα+1ϕα
(x
λ

)
+ y, |x| < x0.

In particular λ = 1/c. Let β = f(0) > 0, and define

p(β, c, x0) = Pα(E) =

∫ x0

0

√
f ′2(t) + t2α dt =

∫ x0

0

tα√
1− (ct)2

dt =
1

cα+1

∫ arcsin cx0

0
sinα ϑ dϑ.

Notice that p can be thought of as a functional depending on β, c, x0 where the triple (β, c, x0)

identify a unique minimizer E ∈ A as in the statement. In particular, p is independent of β, as

well as Pα is independent of vertical translations. Let d = cx0, that leads to λ = x0/d. With a

slight abuse of notation, we write p in terms of d and x0 as

p(d, x0) = xα+1
0 gα(d), with gα(d) =

1

dα+1

∫ arcsin d

0
sinα ϑ dϑ. (3.16)

We write the volume and trace constraints satisfied by the minimizer E in terms of the param-

eters d and x0. For any t ∈ (0, x0), there holds

f(t) = β +

∫ t

0
f ′(s) ds = β −

∫ t

0

csα+1√
1− (cs)2

ds = β − 1

cα+1

∫ arcsin ct

0
sinα+1 ϑ dϑ.

Hence the trace constraint f(x0) = h is equivalent to

β = β(d, x0) = h+ xα+1
0 σα(d), with

σα(d) =
1

dα+1

∫ arcsin d

0
sinα+1 ϑ dϑ > 0 for d ∈ (0, 1).

(3.17)

Plugging β = β(d, x0) in the expression for f we get

f(t) = h+ xα+1
0 σα(d)− xα+1

0

1

dα+1

∫ arcsin( d
x0
t)

0
sinα+1 ϑ dϑ, (3.18)

that implies

y = f(λ) = h+ xα+1
0 bα(d), with

bα(d) =
1

dα+1

{∫ arcsin d

0
sinα+1 ϑ dϑ−

∫ π/2

0
sinα+1 ϑ dϑ

}
= − 1

dα+1

∫ π/2

arcsin d
sinα+1 ϑ dϑ = −ϕα(d)

dα+1
< 0 for d ∈ (0, 1).

(3.19)

Using (3.17) and the expression for f , the volume constraint
∫
f = v reads

v =

∫ x0

0

(
β − 1

cα+1

∫ arcsin ct

0
sinα+1 ϑ dϑ

)
dt = βx0 −

1

cα+2

∫ cx0

0

∫ arcsin r

0
sinα+1 ϑ dϑ dr

=
(
h+ xα+1

0 σα(d)
)
x0 − xα+2

0

1

dα+2

∫ d

0

∫ arcsin t

0
sinα+1 ϑ dϑ dt,
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hence

v = hx0 + xα+2
0 Gα(d), with

Gα(d) =
1

dα+2

(
d

∫ arcsin d

0
sinα+1 ϑ dϑ−

∫ d

0

∫ arcsin t

0
sinα+1 ϑ dϑ dt

)
=

1

dα+2

∫ d

0

∫ arcsin d

arcsin t
sinα+1 ϑ dϑ dt > 0 for d ∈ (0, 1)

(3.20)

The functional

F (d, x0) = xα+2
0 Gα(d) + hx0 − v.

defines implicitly the constraints of the problem. Existence of a minimizer together with the

Lagrange Multipliers theorem imply that there exists µ ∈ R such that ∇p(d, x0) = µ∇F (d, x0),

namely 
∂dp = µ∂dF

∂x0p = µ∂x0F

F (d, x0) = 0

⇐⇒


g′α(d)xα+1

0 = µxα+2
0 G′α(d)

(α+ 1)xα0 gα(d) = µ
(
(α+ 2)xα+1

0 Gα(d) + h
)

xα+2
0 Gα(d) + hx0 − v = 0

(3.21)

Recalling the definitions of gα and Gα in (3.16) and (3.20), we write the expressions for the

derivatives

g′α(d) = −α+ 1

dα+2

∫ arcsin d

0
sinα ϑ dϑ+

1

d
√

1− d2

G′α(d) = −α+ 2

dα+3

∫ d

0

∫ arcsin d

arcsin t
sinα+1 ϑ dϑ+

1√
1− d2

it easy to see that when α = 0, 1 we have

g′α(d) = dG′α(d) (3.22)

We check it for α = 1. In this case g′α(d) = − 2
d3

[
√

1− d2 − 1] + 1
d
√
1−d2 = 2−d2−2

√
1−d2

d3
√
1−d2 , and

G′α(d) = − 3

d4

∫ d

0

1

2

[
ϑ− sin(2ϑ)

2

]arcsin d
arcsin t

dt+
1√

1− d2

=
3

2d4

∫ d

0

(
arcsin t− t

√
1− t2 − arcsin d+ d

√
1− d2

)
+

1√
1− d2

=
3

2d4

{[
t arcsin t+

√
1− t2 +

1

3
(1− t2)3/2

]d
0
− d arcsin d+ d2

√
1− d2

}
=

3

2d4

{
d arcsin d+

√
1− d2 +

1

3
(1− d2)3/2 − 1− 1

3

− d arcsin d+ d2
√

1− d2
}

=
1

d4
{(2 + d2)

√
1− d2 − 2}+

√
1
√

1− d2 =
2− d2 − 2

√
1− d2

d4
√

1− d2
.

Notice that (3.22) is equivalent to

0 =
1

dα+2

{
(α+ 2)

∫ d

0

∫ arcsin d

arcsin t
sinα+1 ϑ dϑ dt− (α+ 1)

∫ arcsin d

0
sinα ϑ dϑ

}
+

1− d2

d
√

1− d2

= (α+ 2)Gα(d)− 1

d
(α+ 1)gα(d) +

1

d

√
1− d2.

(3.23)



MINIMAL PARTITION WITH TRACE CONSTRAINT 23

From (3.22), the first equation in system (3.21) gives

µ =
g′α(d)

x0G′α(d)
=

d

x0
=

1

λ
.

Plugging µ into the second equation of (3.21) we obtain

(α+ 1)xα+1
0 gα(d) = d{(α+ 2)xα+1

0 Gα(d) + h},

hence, using (3.23),

xα+1
0 =

dh

(α+ 1)gα(d)− d(α+ 2)Gα(d)
=

dh√
1− d2

(3.24)

We are left to compute y = f(λ) = f(x0/d) with x0 = x0(h, d) given by (3.24). Expression

(3.19) for y, combined with (3.24) gives

y = f
(x0
d

)
= h+ xα+1

0 bα(d) = h− dh√
1− d2

ϕα(d)

dα+1

= − h

dα
√

1− d2
{
ϕα(d)− dα

√
1− d2

}
which concludes the proof. �

Remark 3.6. Let α ≥ 0 and E = {(x, y) ∈ R2 : |y| < f(|x|)} be a regular minimizer of Problem

(1.7) with f as in (3.14). We deduce by (3.15) that y = 0 if and only if α = 0. In fact, for any

α ≥ 0 the function d 7→ ϕα(d)− dα
√

1− d2 is 0 at d = 1 and it if α > 0 it is strictly monotone

decreasing since

(ϕα(d)− dα
√

1− d2)′ = − dα+1

√
1− d2

− αdα−1
√

1− d2 +
dα+1

√
1− d2

< 0.

Hence if α > 0, ϕα(d)− dα
√

1− d2 > 0 for 0 < d < 1. In particular, y < 0. On the other hand,

if α = 0, ϕα(d) =
√

1− d2, that leads to y = 0.

This implies that the central part of Euclidean solutions of Problem (1.7) are portions of

isoperimetric sets lying in some stripe {|x| < x0}, while this property fails to hold in the

Grushin plane with α = 1.

Appendix A. Traces of Schwarz symmetric sets

For a set E ∈ S ∗
y and a point x0 ∈ R, the notion of trace of E at x0 can be defined thanks

to the following Lemma.

Lemma A.1. Let E ∈ S ∗
y and let x0 ∈ R. Then there exist y+, y− ≥ 0 such that if T+ =

[−y+, y+] and T− = [−y−, y−], there holds

lim
x→x±0

∫
R
|χE(x, y)− χT±(y)| dy = 0.

Proof. We prove the statement for the limit as x→ x−0 . Let u ∈ C1(R2) and x1, x2 ∈ (−∞, x0).
Consider the α-gradient of u, Dαu = (∂xu, |x|α∂yu). We have∫

R

(
u(x2, y)− u(x1, y)

)
dy =

∫
R

∫ x2

x1

∂xu(ξ, y) dξdy

≤
∫
(x1,x2)×R

|∂xu|(ξ, y) dξdy ≤ |Dαu|((x1, x2)× R).
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By the approximation theorem for BVα-functions, see [12], the last inequality can be extended

to u ∈ BVα(R2) and for u = χE we get∫
R

(
χE(x2, y)− χE(x1, y)

)
dy ≤ Pα(E; (x1, x2)× R),

It hence follows that for every ε > 0 there exists δ > 0, such that

‖χE(x2, ·)− χE(x1, ·)‖L1(R) ≤ ε for x0 − δ < x1 < x2 < x0, (A.1)

which is a Cauchy condition in the complete space L1(R). We deduce existence of a function

u ∈ L1(R) which is the limit of χE(x, ·) as x→ x−0 . Moreover, since for any x ∈ R, the section

Ex = {y ∈ R : (x, y) ∈ E} is a real interval centered at zero, u = χT− , for a symmetric interval

T− = [−y−, y−] for some y− > 0. �

Definition A.2 (Traces of Schwarz symmetric sets). Let E ∈ S ∗
y be a set with finite α-

perimeter and let x0 ∈ R. The interval T− (resp. T+) defined in Lemma A.1 is called the left

(resp. right) trace of E at x0 and it is denoted by tr−x0 (resp. tr+x0). If

trxx0−E = trxx0+E = [−y0, y0],

we set trxx0E = [−y0, y0] and we call it the trace of E at x0 in the x-direction. In this case we

say that the set E has trace at x0 in the x-direction.

Remark A.3. If E ∈ Sx ∩S ∗
y has profile function f : [0,∞) → [0,∞), i.e., E = {(x, y) ∈ R2 :

|y| < f(|x|)}, then left and right traces at x0 > 0 can be computed as follows:

trxx0±E = [−y±0 , y
±
0 ] with lim

x→x±0
f(x) = y±0 . (A.2)

In fact, by definition of left and right traces, we have

0 = lim
x→x±0

∫
R
|χE(x, y)− χ[−y±0 ,y

±
0 ](y)| dy= lim

x→x±0
L1((E)x4[−y±0 , y

±
0 ]) =2 lim

x→x±0
|f(x)− y±0 |.

Remark A.4. If E ⊂ R2 is x-spherically symmetric and x-convex, i.e., the section Ey = {x ∈ R :

(x, y) ∈ E} is an interval for every y ∈ R, we can define left and right traces at y0 ∈ R in the

y-direction through the formula ‖χE(·, y2) − χE(·, y1)‖L1(R) ≤ ε for y0 − δ < y1 < y2 < y0 (see

(A.1)). In this paper we are interested in studying traces in the x-direction.
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