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Abstract

We prove that the optimal way to enclose and separate four planar
regions with equal area using the less possible perimeter requires all re-
gions to be connected. Moreover, the topology of such optimal clusters is
uniquely determined.

1 Introduction

We consider the problem of enclosing and separating N regions of R2 with
prescribed area and with the minimal possible interface length.

The case N = 1 corresponds to the celebrated isoperimetric problem whose
solution, the circle, was known since antiquity.

For N ≥ 1 first existence and partial regularity in Rn was given by Alm-
gren [1] while Taylor [18] describes the singularities for minimizers in R3. Ex-
istence and regularity of minimizers in R2 was proved by Morgan [12] (see also
[10]): the regions of a minimizer in R2 are delimited by a finite number of
circular arcs which meet in triples at their end-points (see Theorem 2.3).

Foisy et al. [7] proved that for N = 2 in R2 the two regions of any mini-
mizer are delimited by three circular arcs joining in two points (standard double
bubble) and are uniquely determined by their enclosed areas. Wichiramala [20]
proved that for N = 3 in R2 the three regions of any minimizer are delimited
by six circular arcs joining in four points. Such configuration (standard triple
bubble) is uniquely determined by the given enclosed areas, as shown by Mon-
tesinos [11]. The minimization problem can be stated also for N = ∞ regions
with equal areas (the honeycomb conjecture, see [13]): Hales [8] proved that the
hexagonal grid is indeed the solution.

∗The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Prob-
abilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM).
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Figure 1: The flower (left hand side) and sandwich (right hand side) topologies.

In obtaining the results with N = 2 or N = 3 planar regions, the main
difficulty is to prove that each region of the minimizer is connected. In fact, in
general, it is an open question whether each region of a minimizer is connected
(soap bubble conjecture, Conjecture 2.11, see Morgan and Sullivan [14]).

To investigate such a conjecture, in this paper (which originates from the
Ph.D. Thesis [17] of the second author) we consider the case of N = 4 regions
in the plane. In Theorem 6.5 we prove that if the four planar regions have
equal areas then the conjecture is true: the minimizing clusters must be con-
nected. However, in this case the connectedness and stationarity is not enough
to uniquely determine the topology of minimizers. In fact there are two nontriv-
ial possible topologies: we call them the flower and the sandwich topologies (see
Figure 1). We then exclude the flower topology, to conclude that minimizers
have the sandwich type (Theorem 7.3).

We conjecture that the minimizer with equal areas is symmetric; i.e.: the
regions E1 and E3 are congruent to the regions E2 and E4 respectively. How-
ever this point remains open: we have not excluded the possibility that a non-
symmetric stationary cluster exists with the sandwich topology and equal areas.

The plan of the paper is as follows. In Section 2 we set up the notation and
collect the known results that we need in the rest of the paper. In Section 3
we present some tools which apply to general planar clusters. In particular
notice that Proposition 3.3 gives an estimate by below on the measure of each
connected component of a minimal cluster. This estimate can be used to obtain
an upper bound on the total number of connected components of a cluster as
in Theorem 3.4. We also mention Proposition 3.6 which gives a lower bound on
the pressure of a disconnected region and is extensively used in the rest of the
paper.

In Section 4 we start the analysis of planar clusters with four equal areas. In
particular we find a precise estimate on the length of the candidate minimizer
(Proposition 4.1), we prove that possible components of a disconnected region
cannot be too small (Proposition 4.2) and cannot be too big (Proposition 4.3).
This estimates enable us to prove that a minimizer can have at most six con-
nected components (Proposition 4.9). In Section 5 we exclude the clusters with
six components. In Section 6 we exclude the clusters with five components
and obtain the connectedness result Theorem 6.5. In Section 7 we consider all

2



connected clusters (four components) and exclude the flower topology (Propo-
sition 7.2, Theorem 7.3).

2 Notation and preliminary results

Let us denote with E = (E1, . . . , EN ) an N -uple of measurable subsets of R2.
We will say that E is an N -cluster if m(Ei ∩ Ej) = 0 for all i 6= j (m(·) is the
Lebesgue measure). The external region E0 is defined as

E0 = R2 \
N⋃
i=1

Ei.

The sets E0, E1, . . . , EN will be called the regions of the cluster E.
We define the measure and the perimeter of a cluster by:

m(E) := (m(E1), . . . ,m(EN )), P (E) :=
1

2

N∑
i=0

P (Ei)

where P (Ei) is the perimeter of the measurable set Ei. For regular sets Ei one
has P (Ei) = H1(∂Ei) which is the length of the boundary of Ei.

Given a measurable set E we say that C with m(C) > 0 is a component of
E if

m(E) = m(C) +m(E \ C) and P (E) = P (C) + P (E \ C)

(i.e. the decomposition E = C∪(E\C) does not add any boundary). We say that
E is connected if it has no component C with 0 < m(C) < m(E) (C = E is a
trivial component). Notice that in our definitions a component does not need to
be connected: in general a component can be a union of connected components.
We say that a cluster E is connected if each region Ei, for i = 1, . . . , N , is
connected. We say that a cluster is disconnected if it is not connected (i.e. at
least one region is not connected).

A component C of a region Ei of the cluster E (with i 6= 0) is said to
be external if is adjacent to the external region E0 (formally P (C ∪ E0) <
P (C) + P (E0)) otherwise it is said to be internal.

Given a vector of positive numbers a ∈ RN+ , a = (a1, . . . , aN ), ai > 0 we will
define the family of competitors as the clusters with measure a:

C(a) = {E : m(E) = a}

among these we will consider the following minimization problem:

p(a) = inf{P (E) : E ∈ C(a)}

and the corresponding minimizers:

M(a) = {E ∈ C(a) : P (E) = p(a)}.
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We will also consider the weak variants of this minimization problem:

C∗(a) = {E : m(E) ≥ a}
p∗(a) = inf{P (E) : E ∈ C∗(a)}
M∗(a) = {E ∈ C∗(a) : P (E) = p∗(a)}.

(where the comparison between vectors of RN is understood componentwise).

Definition 2.1 (regular cluster). We say that a planar N -cluster E is regular
when:

1. each region (including the external region E0) is (up to a negligible set)
a closed set which is equal to the closure of its interior points (and in the
following we will assume that the Lebesgue representant of the regions Ei
is always a closed set);

2. each region, but the external one E0, is bounded;

3. the boundary of the cluster, defined by

∂E =

N⋃
k=1

∂Ek

is the continuous embedding of a finite planar graph (i.e. there are a finite
number of simple continuous curves which we will call edges which can
only meet in their end-points which we will call vertices and the faces of
the graph correspond to the connected components of the regions);

4. each vertex has order at least three (i.e. it coincides with at least three
end-points of the edges).

Notice that the perimeter of a region Ei of a regular cluster E is the sum of
the length of the edges of Ei. Moreover since each edge belongs to the boundary
of exactly two regions, we have

P (E) =
1

2

N∑
k=0

P (Ek) =
∑

σ edge of E

`(σ) = H1(∂E).

Definition 2.2 (stationary cluster). We say that a regular planar cluster E =
(E1, . . . , EN ) is stationary if it satisfies the following conditions:

1. every edge is either a circular arc or a straight segment (which, in the
following, we will identify with an arc of zero curvature);

2. in every vertex exactly three arcs meet, defining three equal angles of 120
degrees;
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3. it is possible to associate a real number pi (which we will call pressure) to
each region Ei of the cluster, so that p0 = 0 and such that any arc between
the regions Ei and Ej has curvature |pi − pj | (it is a straight segment if
pi = pj) and the region with higher pressure is towards the side where the
the arc is convex.

In particular it follows that the sum of the signed curvatures of the three
arcs meeting in a vertex is always zero.

The following existence result, in the planar case, can be found in [12] (see
also [10] for an alternative proof).

Theorem 2.3 (existence and regularity). Given a ∈ RN+ the family of clus-
ters M(a) is not empty and every minimal cluster E ∈ M(a) is regular and
stationary.

Theorem 2.4 (existence and regularity, weak case). Given a ∈ RN+ the family
of clusters M∗(a) is not empty and every minimal cluster E ∈M∗(a) is regular
and stationary.

Sketch of proof. The existence part of this proof can be obtained in exactly the
same way as it is done for strong minimizers. In fact the only requirement on the
constraint m(E) = a is the continuity with respect to the L1 convergence of E.
This property is satisfied as well by the constraint m(E) ≥ a. So M∗(a) 6= ∅.

Now notice that given E ∈ M∗(a) we have E ∈ M(a∗) with a∗ = m(E).
Hence weak minimizers have all the regularity properties that strong minimizers
have.

Now we will notice that weak minimizers have some additional properties
which makes them a better ambient space for our investigation.

Proposition 2.5 (properties of weak minimizers). [20] Let E ∈ M∗(a), a ∈
RN+ . Then:

1. the external region E0 is connected;

2. all the pressures pi are nonnegative;

3. if m(Ei) > ai then pi = 0.

Sketch of proof. Suppose that C is a bounded connected component of E0. Then
consider any other region which shares and edge with C. Suppose such a region
is E1. Define E′1 = E1 ∪ C and let E′ = (E′1, E2, . . . , EN ). Clearly P (E′) <
P (E) because the shared edge is cancelled and, moreover, E′ ∈ C∗(a) since
m(E′) ≥m(E) ≥ a, so P (E′) ≥ P (E). This is a contradiction.

We briefly recall that pressures pi represent the Lagrange multipliers of the
constraint m(E) = a. In fact, if we have a one parameter deformation E(t) of
E = E(0), one has

dP (E(t))

dt

∣∣∣∣
t=0

=

N∑
i=1

pi
d

dt
m(Ei(t))

∣∣∣∣
t=0

. (1)
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Suppose the region Ei is the region with lower pressure among all regions
(including the external one). If there is a region with negative pressure then
i > 0 (recall that the external region has pressure zero). Then there exists
variation which enlarges the measure of such a region and decreases perimeter.
This contradicts weak minimality.

Similarly, if m(Ei) > ai there exists a small variation of the cluster E which
decreases the measure of Ei while keeping fixed the measure of all other regions.
This variation cannot decrease the perimeter of the cluster, hence we find that
pi = 0.

Theorem 2.6 (pressure formula). [6] Let E ∈M∗(a) with a ∈ RN+ . Then

P (E) = 2

N∑
i=1

pim(Ei).

Sketch of proof. Let E(t) = (t+ 1)E for t ∈ [0, 1] so that

m(E(t)) = (t+ 1)2m(E), P (E(t)) = (t+ 1)P (E).

The result follows by equation (1).

Lemma 2.7 (turning angle). Let E ∈M∗(a), a ∈ RN+ and let C be a connected
component of some region Ei of E. Let n be the number of edges of C and let
Lj be the total length of the edges of C in common with the region Ej (Lj = 0
if C and Ej have not edges in common). Then, if i 6= 0, it holds

(6− n)π

3
=

N∑
j=0

(pi − pj)Lj

where pj is the pressure of the region Ej. For i = 0 we have instead

(6 + n)π

3
=

N∑
j=1

(pj − p0)Lj .

Proof. Consider the external normal vector along the component C.
In the case i 6= 0 recall that C is simply connected, hence by making a round

trip around the component, the normal vector will turn by an angle π/3 in each
vertex (since the internal angle between two edges is 2π/3) and will make a turn
of an angle L/R along each edge of length L and radius R. Remember now that
R is the inverse of the curvature, and the curvature is equal to the difference
of pressure between the two adjacent regions. Hence the curvature of each edge
between the component C and adjacent component of the region Ej is given by
pi − pj . So, a complete turn of the normal vector will be given by:

2π = n
π

3
+
∑
j

Lj
Rj

= n
π

3
+
∑
j

(pi − pj)Lj
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and the result follows.
In the case i = 0 we can make the same reasoning with the complementary

of E0, but now notice that internal angles have amplitude 4π/3, so the normal
vector will turn by an angle −π/3 in each vertex. The result follows.

Proposition 2.8. [4] [5] [17] Let E ∈M∗(a) with a ∈ RN+ . Let M be the total
number of bounded connected components of the regions of E.

1. Every bounded connected component is simply connected.

2. Two connected components of E cannot share more than a single edge.

3. If N > 2 then each connected component C of E has at least three edges.

4. Each connected component of a region with k connected components has
at most M + 1− k edges, and if it is internal it has at most M − k edges.

5. The total number of edges is 3(M − 1) and the total number of vertices is
2(M − 1).

6. If M ≤ 6 then E ∈M(a) (i.e. E is a strong minimizer).

Sketch of proof. If we had a component C which is not simply connected, we
could find a subcluster inside C. By moving the subcluster we don’t change
area nor perimeter but we eventually will bump the subcluster against the other
regions. This would contradict the stationarity of the resulting cluster.

If we had a component C with a single edge (a circle) and this is not the
only component of the cluster (which could be if N = 1), then we can move
the component C preserving the area and perimeter of the cluster and bump
it against another region. We would obtain a non-stationary minimal cluster,
which is a contradiction.

If two connected components share two different edges, between the two
edges we find a subcluster which could be moved along the edges without in-
creasing the total perimeter. Eventually the subcluster will bump with the rest
of the cluster and we would obtain a non-stationary minimal cluster. This would
be a contradiction.

If we had a component C with only two edges, then in the two vertices of
the component there are two arcs leaving the component and which separate
the same two regions which are adjacent to C. So the two edges must be the
same and one of the two regions adjacent to C has itself two edges. Thus we
have found a double-bubble which is a component of E. If N > 2 we could
move this double bubble and eventually bump the rest of the cluster, obtaining
a non-stationary cluster (hence a contradiction).

Every connected component can have only a single edge in common with
every other component of every other region. Including the external unbounded
component there are M + 1 components but k of them are in the same region
and hence excluded. If the component is internal also the external region is
excluded. So we obtain the estimates in 4.
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The edges and vertices of E form a planar finite graph. So, Euler’s formula
holds: v − e+M = 1 where v is the number of vertices and e is the number of
edges. Moreover since the cluster is stationary, every vertex has order three so:
3v = 2e. Solving the two equations one finds e = 3(M − 1) and v = 2(M − 1).

Suppose, by contradiction, that m(E) 6= a. This means that m(Ei) > ai
for some i = 1, . . . , N . By Proposition 2.5 we obtain that pi = 0. But since
every other region has nonnegative pressure, this means that the edges of Ei are
concave arcs (or straight segments). So, if we take any connected component C
of Ei the sum of the internals angles is not larger than (k − 2)π where k is the
number of edges of C, and since every internal angle is equal to 2π/3, we get
k ≥ 6. But since C can only have one edge in common with any other region,
and N ≤ M ≤ 6, we conclude that k = 6 i.e. every connected component of
Ei is hexagonal and all the edges are straight segments (otherwise the sum of
the internal angles would be strictly less than (k− 2)π). As a consequence also
the pressure pj of any region adjacent to C is zero, but since all regions are
adjacent to C, all pressures are 0 and by Theorem 2.6 we would have P (E) = 0
which is a contradiction with the isoperimetric inequality. Hence we conclude
that m(E) = a, so E ∈ C(a) and since p∗(a) ≤ p(a) we obtain E ∈M(a).

The following theorem is taken from [20].

Theorem 2.9 (removal of triangle components). Let E ∈ C(a) be a stationary
regular cluster and suppose that a connected component C of some region Ei
has three edges. Consider the three edges which arrive at the three vertices of C
but are not edges of C. The circles containing these three edges meet in a point
P inside the component C.

Moreover the cluster E′ obtained by E removing the component C and pro-
longing the three edges is itself a stationary regular cluster E′ ∈ C(a′) with
a′i = ai − m(C) (and the region Ei disappears if C was the only component
of Ei) and a′j ≥ aj for all j 6= i. Also the pressures p′j of the regions of E′

are equal to the pressure pj of the corresponding regions of E (if Ei disappears
because C was the only component of Ei, the regions must be relabeled but again
the pressures of the corresponding regions remain the same).

The following theorem was first proved in [7]. Here we present a different
proof following [11].

Theorem 2.10 (double bubble monotonicity). Given r = (r1, r2) ∈ R2
+, up to

isometries there exists a unique double bubble E(r) such that the external radii
of the two regions E1 and E2 are r1 and r2 respectively.

Let f : R2
+ → R2

+ be the function which gives the corresponding areas: f(r) =
m(E(r)).

Then if r′2 > r2 one has:

f1(r1, r
′
2) < f1(r1, r2)

f2(r1, r
′
2) > f2(r1, r2)
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while if r′1 > r1 one has:

f1(r′1, r2) > f1(r1, r2)

f2(r′1, r2) < f2(r1, r2)

(i.e. increasing one of the two radii the corresponding region increases its area
while the other region decreases).

As a consequence the map f is bijective.

Proof. We consider the case when r1 is fixed since the other case is obtained by
symmetry (f2(r2, r1) = f1(r1, r2)).

Let E = E(r1, r2) and E′ = E(r1, r
′
2) be choosen so that the circle contain-

ing the edge of radius r1 is fixed and also one of the two vertices is fixed (call it
P ).

So the regions are delimited by three circles:

E1 = Dr1 ∩Dr, E2 = Dr2 ∩D−r

where r is such that
1

r
=

1

r1
− 1

r2
,

Dρ is a closed disk of radius ρ when ρ > 0 while it is the complementary of a
ball of radius ρ when ρ < 0 and a closed half-plane if ρ = 0. The three circles
meet in the two vertices P and Q.

If we keep P fixed, r1 fixed and take r′2 > r2 we have

E1(r1, r
′
2) = Dr1 ∩Dr′ , E2(r1, r

′
2) = Dr′2

∩D−r′

where Dr1 is the same disk as before, while Dr′2
is a disk which is tangent to

Dr2 in the point P , Dr′ is a disk of (signed) radius r′ with

1

r′
=

1

r1
− 1

r′2

which is tangent to Dr in the point P . Notice that since r′2 > r2 we have r′ < r
and hence Dr′2

⊇ Dr2 and Dr′ ⊆ Dr. Consequently, E′2 ⊇ E2 and E′1 ⊆ E1.
The first part of the statement is proved.

Let us prove that f is injective. Let (r1, r2) 6= (r′1, r
′
2) be given and consider

m = max

{
r1
r′1
,
r2
r′2
,
r′1
r1
,
r′2
r2

}
> 1.

Without loss of generality suppose m = r1/r
′
1. We have (recall that f(λr) =

λ2f(r))

f1(r1, r2) = f1(mr′1, r2) = m2f1(r′1, r2/m) ≥ m2f1(r′1, r
′
2) > f1(r′1, r

′
2).

since r2/m ≤ r′2 and f1 is strictly decreasing in the second component. Injec-
tivity is hence proven.
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To prove surjectivity let us take any pair of areas (a1, a2) ∈ R2
+. Suppose

without loss of generality that a2 ≥ a1. Notice that f2(1, 1)/f1(1, 1) = 1 and
f2(1, t)/f1(1, t) → +∞ as t → +∞ because when increasing r2 the area f2
increases at will, while f1 decreases. So there exists t such that f2(1, t)/f1(1, t) =
a2/a1.

Now if we take r1 =
√
a1/f1(1, t) and r2 = tr1 we have

f1(r1, r2) = r21f1(1, r2/r1) =
a1

f1(1, t)
f1(1, t) = a1,

f2(r1, r2) = r21f2(1, r2/r1) =
a1

f1(1, t)
f2(1, t) = a2.

Conjecture 2.11 (soap bubble conjecture). [14] For all a ∈ RN+ each E ∈
M(a) is connected.

The main aim of this paper is to prove that the conjecture holds in the case
a = (1, 1, 1, 1).

3 Estimates on general clusters

Lemma 3.1 (isoperimetric inequality for clusters). Given E ∈ C∗(a) one has

P (E) ≥
√
π


√√√√ N∑
k=1

ak +

N∑
k=1

√
ak

 .

Proof. Given any E ∈ C∗(a), by applying the isoperimetric inequality

P (E) ≥ 2
√
π

√
min{m(E),m(R2 \ E)}

one has:

P (E) =
1

2

N∑
k=0

P (Ek) ≥
√
π


√√√√ N∑
k=1

m(Ek) +

N∑
k=1

√
m(Ek)

 . (2)

Proposition 3.2 (variation I). Let E ∈ M∗(a) and suppose that Ci is a com-
ponent of the region Ei. Let ` be the sum of the lengths of the edges of Ci in
common with the region Ek 6= Ei (k = 0 is also admitted). Then

` ≤ 2
√
π
√
m(Ci).
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Proof. Let B be any ball disjoint from E with the same area as Ci, so that
P (B) = 2

√
π
√
m(Ci). Consider the cluster E′ obtained by E by means of the

following variations on the regions Ei and Ej :

E′i = (Ei \ Ci) ∪B, E′j = Ej ∪ Ci.

Clearly we have m(E′i) = m(Ei) and m(E′j) > m(Ej). Hence E′ ∈ C∗(a).
Moreover, since the edges of length ` has been removed and the ball B has been
added, by the minimality of E we have:

0 ≤ P (E′)− P (E) = P (B)− ` = 2
√
π
√
m(Ci)− `.

Proposition 3.3 (variation II). Let E ∈ M∗(a) and suppose that Ci is a
component of the region Ei with 0 < m(Ci) < m(Ei). Let `k be the sum of the
lengths of the edges of Ci in common with the region Ek 6= Ei (k = 0 is also
admitted). Then

`k ≤
m(Ci)

|2ai −m(Ci)|
P (E). (3)

Moreover, if we denote by r ≤ N the number of regions which have an edge in
common with Ci, for all λ ≥ P (E) one has:

m(Ci) ≥
16πa2i
r2λ2

(
1− 16πai

r2λ2

)
. (4)

Proof. Let

t =

√
m(Ei)

m(Ei)−m(Ci)
=

√
1 +

m(Ci)

m(Ei)−m(Ci)
≤ 1 +

1

2

m(Ci)

m(Ei)−m(Ci)

and consider a new cluster E′ whose regions are defined by E′i = t(Ei \ Ci),
E′k = t(Ek ∪ Ci) and E′j = tEj when j 6∈ {i, k}. Simply speaking, the cluster

E′ has been obtained from E by giving Ci to Ek and then rescaling of a factor
t > 1.

Notice that t was defined so that

m(E′i) = t2(m(Ei)−m(Ci)) = m(Ei)

and clearly every other region does not decrease its measure since t > 1. So
E′ ∈ C∗(a) is a weak competitor to E. On the other hand since in the cluster
E′ all edges in common between the component tCi and the region tEk have
been removed (and these edges have a total length of t`k) we have

P (E′) = t(P (E)− `k).
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Since P (E) ≤ P (E′) one obtains:

P (E) ≤ t(P (E)− `k) ≤
(

1 +
m(Ci)

2(m(Ei)−m(Ci))

)
(P (E)− `k)

= P (E) +
m(Ci)

2(m(Ei)−m(Ci))
P (E)− 2m(Ei)−m(Ci)

2(m(Ei)−m(Ci))
`k

which is equivalent to

`k ≤
m(Ci)

2m(Ei)−m(Ci)
P (E).

Using 0 ≤ ai ≤ m(Ei) and m(Ci) ≤ m(Ei) one can easily check that

2m(Ei)−m(Ci) ≥ |2ai −m(Ci)|

so that (3) is proven.
Now if the component Ci has edges in common with at least r other regions,

there is k such that `k ≥ P (Ci)/r. By also applying the isoperimetric inequality
P (Ci) ≥ 2

√
π
√
m(Ci) we obtain:

2
√
π
√
m(Ci) ≤ r`k ≤

rm(Ci)

|2ai −m(Ci)|
P (E) ≤ rλm(Ci)

|2ai −m(Ci)|

if P (E) ≤ λ as in the statement of the Theorem being proved. Whence, by
squaring and then dividing by m(Ci), we obtain

4π ≤ r2λ2m(Ci)

(2ai −m(Ci))2
=

r2λ2m(Ci)

4a2i − 4aim(Ci) +m2(Ci)

which is equivalent to the following quadratic inequality in m(Ci):

m2(Ci)−
(

4ai +
r2λ2

4π

)
m(Ci) + 4a2i ≤ 0.

The corresponding equation has two positive solutions, and m(Ci) is larger than
the smaller of the two. So we obtain:

m(Ci) ≥ 2ai +
r2λ2

8π
−

√(
2ai +

r2λ2

8π

)2

− 4a2i

= 2ai −
r2λ2

8π

(√
1 +

32πai
r2λ2

− 1

)
.

(5)

By using the inequality:

√
1 + x ≤ 1 +

x

2
− x2

8
+
x3

16

with x = 32πai
r2λ2 , after some straightforward simplifications, we obtain (4).
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The following result is not used in the rest of the paper, but might be
interesting by itself.

Theorem 3.4. Let E ∈ M∗(a) be an N -cluster with N ≥ 3 and suppose that
Ci is a component of the region Ei with 0 < m(Ci) < m(Ei) and suppose that r
is the number of regions which are adjacent to Ci.

Let

‖a‖ 1
2

=

 N∑
j=1

√
aj

2

, ‖a‖−1 =

 N∑
j=1

(aj)
−1

−1 .
Then

m(Ci) ≥
20

9

a2i
r2 ‖a‖ 1

2

≥ 20

9

a2i
N2 ‖a‖ 1

2

. (6)

In particular, the number Mi of connected components of Ei has the following
bound

Mi ≤
9

20
N2
‖a‖ 1

2

ai

and hence the total number M of connected components of E is bounded by

M ≤ 9

20
N2
‖a‖ 1

2

‖a‖−1
.

Proof. Consider, as a competitor, a cluster E′ whose regions E′i are disjoint
balls with area ai and let

λ = P (E′) = 2
√
π

N∑
j=1

√
aj = 2

√
π
√
‖a‖ 1

2

Since E′ ∈ C∗(a) we have P (E) ≤ λ. Notice that E ∈ M∗(a) implies that
E ∈ M∗(a∗) with a∗ = m(E), we can apply Proposition 3.3 with a∗ in place
of a and with λ defined as above. So (4) holds with this value of λ and a∗ in
place of a.

Notice also that λ = P (E′) ≥ P (E) ≥ P (Ei) ≥ 2
√
π
√
m(Ei) = 2

√
π
√
a∗i .

Moreover r ≥ 3 since, by Proposition 2.8, we know that for N ≥ 3 every
component has at least three edges. Hence we know that

1− 16πa∗i

r2λ2
≥ 1− 16πa∗i

9 · 4πa∗i
=

5

9
.

So (4) becomes (notice that r ≤ N)

m(Ci) ≥
16π(a∗i )

2

4πr2 ‖a‖ 1
2

· 5

9
=

20

9
· (a∗i )

2

r2 ‖a‖ 1
2

≥ 20

9
· (a∗i )

2

N2 ‖a‖ 1
2

and, noting that a∗i = m(Ei) ≥ ai, (6) is proved.

13



Now suppose that Ci be the component of Ei with smaller area. Then
a∗i = m(Ei) ≥Mi ·m(Ci) and we have

Mi ≤
a∗i

m(Ci)
≤ a∗i

20
9

(a∗i )
2

N2‖a‖ 1
2

=
9

20
·
N2‖a‖ 1

2

a∗i
≤ 9

20
·
N2‖a‖ 1

2

ai

and summing up for i = 1, . . . , N we obtain:

M =

N∑
i=1

Mi ≤
9

20
N2‖a‖ 1

2

N∑
i=1

1

ai
=

9

20
N2
‖a‖ 1

2

‖a‖−1
.

Proposition 3.5. Let E ∈M∗(a) and let C be a connected component of some
region Ei. Let n be the number of edges of C. Then we have the following
estimate on the pressure of the region Ei:

pi ≥
(6− n)π

3P (C)
+

(
1− `

P (C)

)
pmin ≥

(6− n)π

3P (C)

where ` is the length of the external edge of C (` = 0 if C is internal) and pmin

is the lowest pressure of the bounded regions which are adjacent to C.

Proof. By Lemma 2.7 we have

(6− n)π

3
=
∑
j

(pi − pj)Lj = pi
∑
j

Lj −
∑
j 6=0

pjLj

≤ pi
∑
j

Lj − pmin

∑
j 6=0

Lj = piP (C)− pmin(P (C)− `)

where the sum in j is extended to the regions Ej which are adjacent to C. The
first estimate of the statement follows.

To get the second estimate recall that pmin ≥ 0 in view of Proposition 2.5.

Proposition 3.6 (variation III). Let E ∈ M∗(a) be a cluster and let B and
C be two different components of the same bounded region Ei of E. Let pi be
the pressure of Ei. Suppose that B is external and let L be the length of the
external arc of B and n be the number of different regions which are adjacent
to C. Then

pi ≥
P (C)

nm(C)
− 2

L
≥ 2

√
π

n
√
m(C)

− 2

L
.

Proof. Suppose i = 1 and consider all the regions which are adjacent to C.
Suppose that E2 is the region whose edges in common with C have largest total
length. Let ` be such total length in common between C and E2: we have that
n` ≥ P (C).

14



Let γ be the external edge of B and let v and w be its vertices. The arc γ
has radius R = 1/p1, length L and spans an angle θ = L/R. Given h > 0 we
are going to modify B by increasing the radius R up to R+h. Just consider the
two radii in v and w: extend them of a length h and join them with a parallel
arc of radius R + h. Let D be the strip between these two parallel arcs. We
have m(D) = ((R + h)2 − R2)θ/2 = Lh + Lh2/(2R) ≥ Lh. It is easy to see
that D ⊆ E0 (since all the external arcs are convex and meet at angles of 120
degrees). Fix h = m(C)/L and consider the following variation:

E′1 = (E1 \ C) ∪D, E′2 = E2 ∪ C.

If we let E′ = (E′1, E
′
2, E3, . . . , EN ) we notice that m(E′1) ≥ m(E1) (since

m(D) ≥ Lh = m(C)) so E′ ∈ C∗(a). Moreover, in computing the perimeter of
E′ the edges in common between C and E2 have been removed so we gain `
while the arc of length L has increased to length 2h + L(R + h)/R and so we
have, by the minimality of E:

0 ≤ P (E′)− P (E) ≤ −`+ 2h+ L
R+ h

R
− L = m(C)

(
1

R
+

2

L

)
− `

To obtain the statement just remember that 1/R = p1 and remember that
` ≥ P (C)/n.

Lemma 3.7. Let E ∈ C(a1, a2) be a connected stationary cluster (a double
bubble) with a1 ≥ a2. Then the pressures p1, p2 satisfy the following relations

k8√
a1
≤ p1 ≤ p2 ≤

k8√
a2

with

k8 :=

√
2π

3
+

√
3

4
, 1.5897 < k8 < 1.5898.

Proof. By Theorem 2.10 we know that the external radii r1, r2 and areas a1, a2
of a double bubble are in one-to-one correspondence. Moreover we know that
when r1 = r2 we have a1 = a2 because the resulting double bubble is symmetric.
Hence, by the monotonicity proven in Theorem 2.10, since we have a1 ≥ a2 by
assumption, we know that r1 ≥ r2 and hence p1 ≤ p2 (remember that pi = 1/ri).

Now consider the function f defined in Theorem 2.10. We can easily compute

f1(r, r) = f2(r, r) = k28r
2

and by monotonicity we get at once:

a1 = f1(r1, r2) ≥ f1(r1, r1) = k28r
2
1,

a2 = f2(r1, r2) ≤ f2(r2, r2) = k28r
2
2

15



whence

p1 =
1

r1
≥ k8√

a1
,

p2 =
1

r2
≤ k8√

a2
.

Lemma 3.8 (reduction to double-bubble). Let E = (E1, . . . , EN ) be a station-
ary cluster which is reducible to a double bubble (E′i, E

′
j) by subsequent removal

of triangular components where E′i ⊇ Ei, E
′
j ⊇ Ej, E

′
i ⊆ R2 \ (E0 ∪ Ej) and

E′j ⊆ R2 \ (E0 ∪ Ei). Let a = m(E) and a =
∑N
k=1 ak.

Then

k8√
max{a− ai, a− aj}

≤ min{pi, pj} ≤ max{pi, pj} ≤
k8√

min{ai, aj}
.

Proof. By Theorem 2.9 we know that the pressures of the double bubble are
equal to the corresponding pressures of the cluster E. Also notice that, for
k = i, j one has m(E′k) ≥ m(Ek) = ak (k = i, j), while m(E′i) ≤ m(R2 \ (E0 ∪
Ej)) = a− aj and m(E′j) ≤ m(R2 \ (E0 ∪Ei)) = a− ai so, by Theorem 2.10 we
obtain the desired result.

Lemma 3.9 (perimeter of triple bubble). Let E ∈ C∗(1, 1, 1). Then

P (E) ≥ k10

with

k10 := 6

√
π

2
+

1√
3
≥ 8.7939.

Proof. From [20] we know that each E′ ∈M∗(1, 1, 1) = M(1, 1, 1) is a standard
triple bubble where each region E′i is a three sided component and the internal
edges are straight segments and has area equal to 1. More precisely, each region
is composed by the union of an half-circle and an isosceles triangle with two
angles of 30 degrees. If r is the radius of the half circles, the triangle has the
base of length 2r and the equal edges of length 2r/

√
3.

So, the area of each region is

1 =

(
π

2
+

1√
3

)
r2

while

P (E′) = (3π + 2
√

3)r = 6

(
π

2
+

1√
3

)
r = 6

√
π

2
+

1√
3
.

Since P (E) ≥ P (E′) the result follows.
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E1

E2

E3 E4
y2x

Figure 2: The competitor cluster defined in Proposition 4.1.

4 Estimates on M∗(1, 1, 1, 1)

Proposition 4.1 (the competitor). We have

p∗(1, 1, 1, 1) ≤ k0 := 11.1962.

Proof. Let
x := 0.2707, y := 0.394

and R = 2(x + y)/
√

3. Consider the cluster represented in Figure 2. The area
of the regions with four edges is given by:

m(E1) = m(E2) = (2x+ y)y
√

3 +
π

3
R2 −

√
3

4
R2 > 1

while the area of the regions with three edges is:

m(E3) = m(E4) =
√

3y2 +
π

2
(y
√

3)2 > 1.

So E ∈ C∗(1, 1, 1, 1). And we have

P (E) = 2
2π

3
R+ 2π

√
3y + 2x+ 8y ≥ k0.

Proposition 4.2. Let E ∈M∗(1, 1, 1, 1) and suppose that C is a component of
some region.

Then:
m(C) ≥ k2 := 0.0244.

Moreover, if the number of regions which have an edge in common with C is not
larger than 3 one has

m(C) ≥ k6 := 0.0425.
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Proof. We can apply Proposition 3.3 with ai = 1, r ≤ 4, P (E) ≤ k0 so rP (E) ≤
λ := 4k0. We obtain:

m(C) ≥ π

k20

(
1− π

k20

)
≥ k2.

And with r ≤ 3 we would have

m(C) ≥ 16π

9k20

(
1− 16π

9k20

)
≥ k6.

Proposition 4.3. Let E ∈ M∗(1, 1, 1, 1) be such that the region E1 can be
decomposed in two parts E1 = E′1 ∪ C1 with

m(E1) = m(E′1) +m(C1), m(E′1) ≥ m(C1), P (E1) = P (E′1) + P (C1)

then

m(C1) ≤ k1 := 0.1605

P (C1) ≤ k7 := 1.4199

Proof. Let m = m(C1). By Lemma 3.1, one has

P (E) ≥
√
π

(√
4 +
√
m+

√
m(E′1) + 3

√
1

)
=
√
π(
√
m+

√
m(E′1) + 5)

whence
√
m+

√
m(E′1) ≤ P (E)√

π
− 5 ≤ k0√

π
− 5 ≤ c1 := 1.3168

On one hand we have assumed that m(E′1) ≥ m(C1) = m, so 2
√
m ≤ c1 <

√
2

which gives m ≤ 1/2.
On the other hand we know that m(E′1) = m(E1)−m ≥ 1−m, whence

√
m+

√
1−m ≤ c1.

Now let f(x) =
√
x +
√

1− x. By computing the sign of f ′(x) we easily
notice that f(x) is increasing for x ∈ [0, 1/2]. By direct computation one checks
that f(k1) > c1 (in fact k1, which is defined in the statement of the theorem
being proved, has been choosen to satisfy this relation). Since we know that
f(m) ≤ c1 and m ≤ 1/2 we conclude that m = m(C1) < k1.

To get the estimate on the perimeter, we use again the isoperimetric inequal-
ity:

P (C1) = 2P (E)− (P (E′1) + P (E0) +

4∑
i=2

P (Ei))

≤ 2k0 − 2
√
π(
√

1−m(C1) +
√

4 + 3
√

1)

≤ 2k0 − 2
√
π(
√

1− k1 + 5) ≤ k7
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Definition 4.4 (big/small, internal/external components). Let E be a regular
N -cluster. We say that a component C of a region Ei is small if m(C) ≤
m(Ei)/2. Otherwise we say that C is big. Notice that at most one connected
component of each region can be big.

A component is said to be external if it has at least one edge in common with
the external region E0. A component which is not external is called internal.

Corollary 4.5. Let E ∈M∗(1, 1, 1, 1). Then each region Ei has exactly one big
connected component E′i. Furthermore m(E′i) ≥ 1−k1, where k1 is the constant
introduced in Proposition 4.3.

Proof. It is enough to prove that one big component exists for each i = 1, . . . , 4.
Let E1

i , . . . , E
M
i be the connected components of the region Ei. Suppose by

contradiction that all Eji are small: m(Eji ) ≤ m(Ei)/2, for all j = 1, . . . ,M .
Let K be the smallest index such that

K∑
j=1

m(Eji ) > k1. (7)

We claim that
K∑
j=1

m(Eji ) < m(Ei)− k1. (8)

Otherwise we would have (notice that k1 < 1/4)

K−1∑
j=1

m(Eji ) =

K∑
j=1

m(Eji )−m(EKi ) ≥ m(Ei)− k1 −m(EKi )

≥ m(Ei)− k1 −
m(Ei)

2
≥ m(Ei)

2
− k1

≥ 1

2
− k1 > k1

which is a contradiction since K was the minimal index satisfying the inequal-
ity (7).

So, if we define

E′i =

K⋃
j=1

Eji , E′′i = Ei \ E′i

we have (by (7) and (8))

m(E′i) > k1, m(E′′i ) > k1.

This is now a contradiction with Proposition 4.3, since the smaller of the two
components E′i, E

′′
i should have a measure smaller than k1.

Finally if E′i is the big connected component of the region Ei, applying
Proposition 4.3 with Ci = Ei \ E′i, we find m(Ei) ≥ 1− k1.
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Corollary 4.6. Let E ∈M∗(1, 1, 1, 1). Then at most one of the big components
is internal.

Proof. Suppose by contradictions that two big components E1
i and E1

j are in-
ternal. Then by the isoperimetric inequality:

P (E) ≥ P (E1
i ∪ E2

i ) + P (E0)

≥ 2
√
π

(√
m(E1

i ) +m(E2
i ) +

√
m(E1) +m(E2) +m(E3) +m(E4)

)
≥ 2
√
π
(√

2(1− k1) +
√

4
)
≥ 11.6831 > k0 ≥ p∗(1, 1, 1, 1).

Which is a contradiction.

Proposition 4.7. Let E ∈ M∗(1, 1, 1, 1) be such that both regions Ei and Ej
are disconnected (i 6= j). Then every small component C of either Ei or Ej
satisfies:

m(C) ≤ k3 := 0.0408,

P (C) ≤ k9 := 0.7154.

Proof. Without loss of generality we might suppose that i = 1, j = 2. Let E′1
be the larger small component of E1 and let E′2 be the larger small component
of E2. Suppose moreover that m := m(E′1) ≥ m(E′2). Then we have

m(E1 \ E′1) ≥ 1−m, m(E′1) = m,

m(E2 \ E′2) ≥ 1−m, m(E′2) ≥ k2.

So, from the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

2∑
i=1

√
m(Ei \ E′i) +

2∑
i=1

√
m(E′i) +

4∑
j=3

√
m(Ej)

we obtain:

P (E)√
π
≥
√

4 +
√

1−m+
√
m+

√
1−m+

√
k2 + 2

√
1

= 4 + 2
√

1−m+
√
m+

√
k2.

If we set f(x) = 2
√

1− x+
√
x and remember that P (E) ≤ k0 (Proposition 4.1)

we obtain

f(m) ≤ k0√
π
− 4−

√
k2 ≤ c2 := 2.1606

We have:

f ′(x) = −(1− x)−
1
2 +

1

2
x−

1
2 , f ′′(x) = −1

2
(1− x)−

3
2 − 1

4
x−

3
2 .
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By direct computation one checks that f ′(k1) > 0.1565 > 0 and since f ′′ < 0 we
know that f is strictly increasing on [0, k1]. By direct computation one checks k3
was choosen so that f(k3) > c2. If, by contradiction, m > k3 since m ∈ [k2, k1]
(by Proposition 4.2 and Proposition 4.3) we would have f(m) > f(k3) > c2
against (9). So m < k3.

Since m was the measure of the largest small component we obtain the first
estimate: m(C) ≤ m ≤ k3.

To prove the estimate on the perimeter P (C) suppose now that C = E′1
(not it will not matter if E′1 is larger or smaller than E′2). Recall that (Propo-
sition 4.2)

m(E′1) ≥ k2, m(E′2) ≥ k2
and the previous estimate gives:

m(E1 \ E′1) ≥ 1− k3, m(E2 \ E′2) ≥ 1− k3.

Hence, using the isoperimetric inequality we have

2P (E) = P (E′1) + P (E′2) +

2∑
i=1

P (Ei \ E′i) +

4∑
i=3

P (Ei) + P (R2 \ E0)

≥ P (E′1) + 2
√
π
(√

k2 + 2
√

1− k3 + 2
√

1 +
√

4
)

whence, recalling also that P (E) ≤ k0:

P (E′1) ≤ 2k0 − 2
√
π(
√
k2 + 2

√
1− k3 + 4) ≤ k9

Proposition 4.8. Let E ∈M∗(1, 1, 1, 1) be such that the region Ei has at least
three components. Then every small component C of Ei satisfies:

m(C) ≤ k4 := 0.0411.

Proof. Without loss of generality we might suppose that i = 1. Notice that, by
Corollary 4.5, there are at least two small components of E1. Let E′1 be the
larger small component of E1 and E′′1 be another small component of E1. Let
m := m(E′1) ≥ m(E′′1 ). Then we have

m(E1 \ (E′1 ∪ E′′1 )) ≥ 1−m−m, m(E′1) = m, m(E′′1 ) ≥ k2.

So, from the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

√
m(Ei \ (E′i ∪ E′′i ))

+
√
m(E′i) +

√
m(E′′i ) +

4∑
j=2

√
m(Ej)
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we obtain:
P (E)√

π
≥
√

4 +
√

1− 2m+
√
m+

√
k2 + 3

√
1

= 5 +
√

1− 2m+
√
m+

√
k2.

(9)

If we set f(x) =
√

1− 2x+
√
x and remember that P (E) ≤ k0 (Proposition 4.1)

we obtain

f(m) ≤ k0√
π
− 5−

√
k2 ≤ c3 := 1.1606

We have:

f ′(x) = −(1− 2x)−
1
2 +

1

2
x−

1
2 , f ′′(x) = −(1− 2x)−

3
2 − 1

4
x−

3
2 .

By direct computation one checks that f ′(k1) > 0.0344 > 0 and since f ′′ < 0 we
know that f is strictly increasing on [0, k1]. By direct computation one checks
that k4 has been choosen so that f(k4) > c3. If, by contradiction, m > k4
since m ∈ [k2, k1] (by Proposition 4.2 and Proposition 4.3) we would have
f(m) > f(k4) > c3 against (9). So m ≤ k4.

Proposition 4.9. Let E ∈M∗(1, 1, 1, 1). Then the total number of small com-
ponents is not larger than two.

Proof. Suppose by contradiction that the cluster E ∈M∗(1, 1, 1, 1) has at least
three small components C1, C2, C3. Suppose m := m(C1) ≥ m(C2) ≥ m(C3).
Let C = C1 ∪ C2 ∪ C3 and let E′i = Ei \ C for i = 1, . . . , 4.

From the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

4∑
i=1

√
m(E′i) +

3∑
i=1

√
m(Ci).

Now consider the quantity

A =

4∑
i=1

√
m(E′i)

to get an estimate of A from below we use the estimates k2 ≤ m(Ci) ≤ m but
we have to distinguish three different cases:

1. if the small components all belong to the same region we have A ≥√
1− 3m+ 3

√
1;

2. if only two of the small components belong to the same region: A ≥√
1− 2m+

√
1−m+ 2

√
1;

3. if the three small components belong to three different regions: A ≥
3
√

1−m+
√

1.
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With a straightforward algebraic manipulation one can check that for all
x ∈ [0, 1/3] one has

3
√

1− x+ 1 ≥
√

1− 2x+
√

1− x+ 2 ≥
√

1− 3x+ 3

so that in every case it holds A ≥
√

1− 3m+ 3.
Hence

P (E′)√
π
≥
√

4 +
√

1− 3m+ 3 +
√
m+ 2

√
k2

=
√

1− 3m+
√
m+ 5 + 2

√
k2

(10)

If we set f(x) =
√

1− 3x +
√
x and remember that P (E′) = P (E) ≤ k0

(Proposition 4.1) we obtain

f(m) ≤ k0√
π
− 5− 2

√
k2 ≤ k5 := 1.0044

We have:

f ′(x) = −3

2
(1− 3x)−

1
2 +

1

2
x−

1
2 , f ′′(x) = −9

4
(1− x)−

3
2 − 1

4
x−

3
2 .

By direct computation one checks that f(k1) > 1.1206 > k5 and f(k2) >
1.1189 > k5. And since f ′′ < 0 we know that f is concave and hence f(x) > k5
if x ∈ [k2, k1]. Since f(m) ≤ k5 and we already know that m ≥ k2 (Proposi-
tion 4.2) we conclude that m > k1, which is a contradiction.

Corollary 4.10. Let E ∈ M∗(1, 1, 1, 1). Then there are at most six bounded
connected components. Four connected components are big and at most two are
small (see Definition 4.4).

If the small components are exactly two, they have measure between k2 and
k4, they are external, and they have edges in common with all the other regions.
If the two small components belong to the same region they both have four edges,
while if they belong to different regions they might have four or five edges.

If there is only one small component it has measure not larger than k1.

Proof. By Proposition 4.9 there are at most two small components, so the total
number of bounded connected components is at most six.

If we have two small components they can either belong to the same region,
and then by Proposition 4.8 each small component has measure not larger than
k4. Or, the two components belong to different regions and then by Proposi-
tion 4.7 each small component has measure not larger than k3 < k4. Every
small component which is adjacent only to three other regions would have mea-
sure larger than k6 by Proposition 4.2 and since k6 > k4 this is impossible.
So every small component must have edges in common with all the other four
regions, included the external one: so they have at least four edges and are
external. If the two components belong to two different regions they can have
four or five edges (the two small component might have an edge in common). If
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the two components belong to the same region, each other region is connected
and hence they cannot have more than four edges (each edge is adjacent to a
different component).

If there is only one small component we can only apply Proposition 4.3 to
get the estimate with the constant k1.

5 Clusters with six components

In this section we will consider possible minimizers E ∈ M∗(1, 1, 1, 1) with
exactly six bounded components and we will exclude that they exist.

The following Corollary assures that we have m(Ei) = 1 for i = 1, . . . , 4.
This will be used in the following without further notice.

Corollary 5.1. M∗(1, 1, 1, 1) = M(1, 1, 1, 1).

Proof. Given any E ∈M∗(1, 1, 1, 1) then by Corollary 4.10 we know that E has
no more than six bounded components. By Proposition 2.8 we conclude that
E ∈ M(1, 1, 1, 1), hence M∗(1, 1, 1, 1) ⊆ M(1, 1, 1, 1). Since M∗(1, 1, 1, 1) is not
empty (Theorem 2.4) we obtain p∗(1, 1, 1, 1) = P (E) = p(1, 1, 1, 1).

On the other hand, given E′ ∈ M(1, 1, 1, 1) we have E′ ∈ C∗(1, 1, 1, 1) and
since P (E′) = p(1, 1, 1, 1) = p∗(1, 1, 1, 1) we conclude that E′ ∈ M∗(1, 1, 1, 1).

Corollary 5.2. Let E ∈M∗(1, 1, 1, 1). Then we exclude that one region Ei can
have three components.

Proof. Suppose by contradiction that the region E1 is composed by three com-
ponents: one big and two small (recall that, by Corollary 4.5, each region has
one big component). By Proposition 2.8 we know that every component has
at least three edges. By Corollary 4.10, a small component has four edges, so,
the two small components have exactly four vertices and the region E1 has at
least 3 + 4 + 4 = 11 vertices. But the total number of bounded connected
components is M = 6 and by Proposition 2.8 the number of vertices should be
v = 2(M − 1) = 10. This is a contradiction.

Proposition 5.3. Let E ∈ M∗(1, 1, 1, 1). Then we exclude that two different
regions are disconnected.

Proof. By contradiction suppose that C1 and C2 are small components of E1

and E2 respectively and let E′1 = E1 \ C1 and E′2 = E2 \ C2 be the two big
components.

Recall that, by Corollary 4.10, the small components C1 and C2 have four
or five edges.

If the component Ci (i = 1, 2) has five edges, by Proposition 3.5 and Propo-
sition 4.7, one finds that

pi ≥
π

3P (C)
≥ π

3k9
> 1.4637 >

k0
8

(11)
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On the other hand if Ci has only four edges, one finds:

pi ≥
2π

3P (C)
≥ 2π

3k9
>
k0
4
.

Remember that, by Theorem 2.6 and Proposition 4.1, we have

p1 + p2 + p3 + p4 =
P (E)

2
≤ k0

2
.

Without loss of generality we might and shall suppose that p1 ≥ p2.
Notice that p1 and p2 are both larger than the average and, in particular,

p2 is not the lowest pressure: p2 > min{p3, p4}. If both regions C1 and C2 had
four edges, we would find p1 + p2 > k0/2 which is a contradiction. Hence we
know that C1 has four or five edges and C2 has five edges (if Ci has four edges
pi is the higher pressure).

Step 1: we claim that at most one component is internal. By Corollary 4.10
we know that the small components are external and by Corollary 4.6 we know
that at most one big component is internal. The claim follows.

Step 2: we claim that E′2 is external and has three or four edges.
Notice that since at most one component is internal, and we have a total

of 6 bounded components, the external region E0 has either 5 or 6 vertices.
On the other hand the big component E′2 has at least 3 vertices and the small
component C2 has 5 vertices. Two of the vertices of C2 are in common with the
vertices of E0 and, if E′2 were internal, all its vertices would be distinct from
the vertices of E0 and, of course, from the vertices of C2. So we find at least
3 + 3 + 5 = 11 distinct vertices of the cluster E while we know (Proposition 2.8)
that E has exactly 10 vertices.

The same contradiction holds in the case that E′2 has more than four vertices
since also in this case at least three of them would be internal.

Step 3: we claim that E′1 and E′2 are adjacent. Let `1 and `2 be the lengths of
the external edges of E′1 and E′2 respectively (`i = 0 if E′i is internal). Suppose
by contradiction that E′1 and E′2 have no common edge. Then

k0 ≥ P (E) ≥ P (E′1) + P (E′2) + P (E0)− (`1 + `2)

and by applying the isoperimetric inequality and the estimates m(E′i) ≥ 1− k3
we obtain:

k0 ≥ 2
√
π(2
√

1− k3 +
√

4)− (`1 + `2)

whence
`1 + `2

2
≥ 2
√
π(
√

1− k3 + 1)− k0
2
> c4 := 1.4186.

If we let `i be the largest between `1 and `2 we have `i > c4 and from Proposi-
tion 3.6 we obtain the following estimate on the pressure of the corresponding
region Ei (remember that every component of E is adjacent to at most four
different regions):

pi ≥
√
π

2
√
m(Ci)

− 2

`i
≥
√
π

2
√
k3
− 2

c4
> 2.9776 >

k0
4
. (12)
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Remember that p1 + p2 + p3 + p4 ≤ k0/2 so pi is the highest pressure (actually
i = 1 since we decided that p1 ≥ p2). Then let n ≥ 3 be the number of edges of
E′i and let Li,j be the total length of the edges in common between E′i and Ej
(so that Li,0 = `i):

π ≥ (6− n)π

3
=
∑
j

(pi − pj)Li,j ≥ pi`i

whence:
pi ≤

π

`i
≤ π

c4
< 2.2146

which is in contradiction with with (12).
Step 4 : if a connected region Ei (i = 3, 4) is internal, it is adjacent to both

E′1 and E′2.
The proof is the same as in the previous Step. Just take Ei in place of E′2

and E′1 or E′2 in place of E′1. Notice that `2 = 0 so that `i = `1 and the proof
completes in exactly the same way (the estimates are actually stronger).

Step 5 : we claim that if one of E3 or E4 is internal and the other one is
external with only three edges, then E3 and E4 must be adjacent. We proceed
in a similar way as the step before. Suppose by contradiction that E3 is internal
and not adjacent to E4.

So E3 is only adjacent to the components of E1 and E2 and it has at most
four edges, so, by Lemma 2.7, we have

0 <
(6− 4)π

3
≤

2∑
i=1

(p3 − pi)L3,i.

We deduce that p3 ≥ p2 since otherwise (being p1 ≥ p2) the right hand side of
the previous equation would be negative. So p3 ≥ p2 ≥ k0/8.

Now, let `i be the length of the external edges of E′i (recall that only one
component can be internal hence E′i is external and `i > 0). We have

k0 ≥ P (E) ≥ P (E′1 ∪ E′2 ∪ E3) + P (E0)− (`1 + `2)

whence, by applying the isoperimetric inequality,

`1 + `2
2

≥
√
π(
√

2(1− k3) + 1 +
√

4)− k0
2
> c5 := 0.9747.

Now if `i is the maximum between `1 and `2 we know that `i > c5. By Propo-
sition 3.6 (since any component can be adjacent to at most 4 different regions),
we have

pi ≥
2
√
π

4
√
m(Ci)

− 2

`i
≥
√
π

2
√
k3
− 2

c5
> 2.3355 >

3

16
k0.

So p1 > 3k0/16 (since p1 has been choosen to be the maximum between p1 and
p2).
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Now we work on E4 which is external with m = 3 edges. Remember that p2
cannot be the lowest pressure and since p1 ≥ p2 and p3 ≥ p2 we deduce that p4
is the lowest pressure. Hence, by Lemma 2.7

π =
(6−m)π

3
=
∑
j

(p4 − pj)L4,j ≤ p4L4,0

and by Proposition 3.2

p4 ≥
π

L4,0
≥ π

2
√
π
√
m(E4)

=

√
π

2
> 0.8862 >

k0
16

So, we have found that

P (E) = 2(p1 + p2 + p3 + p4) > 2

(
3k0
16

+
k0
8

+
k0
8

+
k0
16

)
= k0

which contradicts the minimality of E. The claim is proved.
Step 6 : we claim that E0 has not five edges. Suppose by contradiction that

E0 has exactly five edges and consider two possible cases: E′2 has either (i) three
or (ii) four edges.

If E′2 has three edges the region E2 = C2 ∪ E′2 has 8 distinct vertices (since
C2 has five vertices). Three vertices of C2 (let us call them x1, x2 and x3) are
not vertices of E0, and one vertex of E′2 (let us call it y) is not a vertex of E0. On
the other hand E0 has five vertices, and four of them are shared by C2 and E′2.
We denote by v the remaining vertex. Up to now we have considered 9 vertices
in total, since the cluster E has exactly 10 vertices, there is an additional vertex
w belonging to neither E0 nor E2. The situation is depicted in Figure 3(a). We
see that 11 edges have been already identified, so 4 edges are missing.

Consider the three edges which meet in the vertex w. At least two of them
should connect w to the vertices xk of C2. In fact if only one edges connects
w to C2 the other two edges of w should go to v and y and hence the two
remaining vertices of C2 should be joined together which is not admitted (we
would obtain a two sided component). Not all three edges of w can join the three
free vertices of C2 because otherwise we would obtain two three-sided internal
components. But we know that at most one component can be internal. So,
exactly two edges join w with two vertices of C2. The two vertices of C2 must be
consecutive, otherwise the third vertex x2 could not be connected to anything
(the edge would be closed in the loop: w, x3, x2 x1). We have two possibilities:
the two vertices are either x1 and x2 or x2 and x3 (the order of the vertices is
given by the Figure, where x1 is “closer” to the component E′2).

In the first case (x1 and x2 are joined to w) the third edge in w cannot go to
x3 (already excluded) and cannot go to v because otherwise the edge from x3
to y would cross the already defined edges. So the diagram is completed by an
edge joining w with y and an edge joining v with x3. The resulting diagram is
depicted in Figure 3(b). We know that C1 is external and has four or five edges:
the only possibility is X = C1. Then E′1 must be adjacent to E′2 so it must be
Z = E′1: however E′1 cannot be adjacent to C1 and we get a contradiction.
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(a) Case (i), incomplete diagram
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(c)

Figure 3: Diagrams used in the proof of Proposition 5.3, Step 6, case (i).
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X

Y

Z
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Figure 4: Diagram used in the proof of Proposition 5.3, Step 6, case (ii).
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In the second case (x2 and x3 are joined to w) we can complete the diagram
in a unique way, by adding an edge from w to v and an edge from y to x1 as
represented in Figure 3(c). In this case we have X = E′1 since E′1 must be
adjacent to E′2 but cannot have six edges. So W = C1 because C1 is external
and not adjacent to E′1. So Y and Z are the two connected regions E3 and E4.
However in Step 4 we proved that the connected region, if internal, must be
adjacent to both E′1 and E′2 which is not the case for the component Z. So this
configuration must be excluded, too.

So, the case when E′2 has only three edges has been completed and excluded.
Suppose now (ii) that E′2 has four edges. In this case no additional vertex must
be added, and we are in the situation depicted in Figure 4. Let x1, x2 and x3
be the free vertices of C2 and v be the free vertex of E0, as before. Let y1 and
y2 be the two free vertices of E′2. There are three edges missing in the diagram
and there is only one possibility (since the edges from C2 cannot go back to C2

and they cannot cross each other): x1 is joined to y1, x2 to y2 and x3 to v. The
component C1 is external with four or five edges, hence C1 is either X or Z.
The component E′1 is adjacent to E′2 but cannot be adjacent to C1 hence E′1
is either X or Z. So Y and W are the two connected regions E3 and E4: say
Y = E3 and W = E4.

But now we notice that E3 is internal and E4 is external with only three
edges, hence by Step 5 they should be adjacent, which is not the case.

Step 7 : conclusion. We know now that E0 has six edges. Recall that C2 is
external and has five vertices, two of which are shared with E0 while E′2 has
at least three vertices (all distinct from C2) two of which are shared with the
vertices of E0. So we have identified 6 vertices of E0 and at least 3 + 1 = 4
internal vertices of E2 = C2 ∪ E′2. We know that the cluster has 10 vertices in
total, so we have identified all of them. In particular we conclude that E′2 has
three vertices. Let x1, x2 and x3 be the three internal vertices of C2 and let v
be the internal vertex of E′2.

If we look at the edges, we have already identified the six edges of E0, other
four are the internal edges of C2 and other two are the internal edges of E′2. To
reach the total of 15 edges, we need to place other three edges. No edge can join
two points of C2 (otherwise a two sided component would rise). So the three
missing edges start from the three internal points of C2. One of them goes to
the internal vertex of E′2 and the other two go to the two free vertices of E0.

There are now two possibilities: either (a) the vertex v is connected to the
middle of the three internal vertices of C2 or (b) it is connected to one lateral
vertex (see Figure 5)

We can easily exclude case (a) because the component C1 must be one of
the two five-sided components (C1 has either four or five edges and there are no
components with four edges) while E′1 must be adjacent to E′2 and hence must
be the other component with five edges. But this is a contradiction since C1

cannot be adjacent to E′1.
So we remain with the configuration of case (b). The region with three edges

adjacent to C2 is not C1 (because C1 has four or five edges) and it cannot be
E′1 because E′1 must be adjacent to E′2. Hence we conclude that it is one of
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C2

E0

v

E′2

(a)

E0

C2

v

E′2

(b)

Figure 5: Diagrams used in the proof of Proposition 5.3 Step 7.

E3 and E4. Let us say it is E3. Then E4 must be the region with five edges,
because otherwise C1 and E′1 would be adjacent to each other. So C1 has four
edges and hence p1 ≥ k0/4 is the region with higher pressure and p2 ≥ k0/8 is
the second higher pressure while p3 + p4 ≤ k0/8.

We know that E3 has three edges, E4 has five edges and both E3 and E4 are
external. Let Lj,k be the total length of the edges between Ej and Ek. Applying
Proposition 3.2 we obtain, for j = 3, 4:

Lj,0 ≤ 2
√
π
√
m(Ej) = 2

√
π (13)

Since p1 and p2 are the largest pressures and E3 is not adjacent to E4 we have,
for j = 3, 4

Lj,0 pj ≥
4∑
k=1

Lj,k(pj − pk)

hence, by Lemma 2.7

L3,0 p3 ≥ π, L4,0 p4 ≥
π

3
(14)

and putting together with (13) we obtain

p3 ≥
π

L3,0
≥
√
π

2
, p4 ≥

π

3L4,0
≥
√
π

6
.

Now we are going to improve the estimates on p1 and p2. First notice that if
we denote by `i the length of the external edge of Ci we have, by Proposition 3.3
(notice that m(Ci) < k3 < 1),

`i ≤
m(Ci)

|2−m(Ci)|
P (E) ≤ m(Ci)

2− k3
k0
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while, by the isoperimetric inequality, we have

P (Ci) ≥ 2
√
π
√
m(Ci).

Now, applying Proposition 3.5 to the component Ci with i = 1, 2, which has
ni = i+ 3 edges, we have

pi ≥
(6− ni)π
3P (Ci)

+ pmin

(
1− `i

P (Ci)

)
≥ (3− i)π

3k9
+

√
π

6

(
1− m(Ci)k0

(2− k3)2
√
π
√
m(Ci)

)

=
(3− i)π

3k9
+

√
π

6

(
1−

√
m(Ci)k0

2
√
π(2− k3)

)

≥ (3− i)π
3k9

+

√
π

6

(
1−

√
k3k0

2
√
π(2− k3)

)
≥ (3− i)π

3k9
+ c7

with c7 := 0.1992. By using (14)

P (E) = 2(p1 + p2 + p3 + p4) ≥ 2

(
2π

3k9
+ c7 +

π

3k9
+ c7 +

√
π

2
+

√
π

6

)
=

2π

k9
+ 4c7 +

4

3

√
π ≥ 11.9428 > k0

which is a contradiction.

6 Clusters with five components

In this section we consider a weak minimizer E ∈M∗(1, 1, 1, 1) with five bound-
ed components. Only one region is disconnected and we will assume the region
is E1 and we denote with E′1 and C1 respectively, its big and small connected
components.

We recall that m(C1) ∈ [k2, k1] by Proposition 4.2 and Proposition 4.3.
Then recall that by Proposition 2.8 we know that C1 and E′1 have three

or four edges and they have exactly three edges if they are internal while the
connected regions E2, E3 and E4 have at least three edges, at most four if they
are internal and at most five if they are external.

By Proposition 2.8 we know that the cluster E has 8 vertices and 12 edges.

Proposition 6.1. Let E ∈M∗(1, 1, 1, 1) be a cluster with 5 components. Then,
up to a relabeling of the components, the topology of E is one of the cases
represented in Figure 6.

Proof. Suppose that E1 is the only disconnected region and let E′1 and C1 re-
spectively be the big and small connected components of E1. By Proposition 2.8
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Figure 6: Classification of clusters with five components, Proposition 6.1.
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we know that ∂E is composed by 12 edges and 8 vertices moreover both E′1 and
C1 may have at most 4 edges if they are external and 3 edges if they are internal.

Step 1. Suppose that both E′1 and C1 have four edges (and hence they are
external). All the 8 vertices of the cluster are vertices of either E′1 or C ′1 and
both E′1 and C1 have an external edge with two external vertices. The external
region E0 has four edges.

The remaining two internal vertices of E′1 must be connected with the two
internal vertices of C1 (remember that we cannot have two edges with the same
end points, because two-sided components are not allowed). Hence the cluster
is of type (A) in Figure 6.

Step 2. Suppose that E′1 has 4 edges (hence it is external) and suppose C1

is external with 3 edges. In this case we need to add an additional vertex v.
If v is external then the external region E0 has five edges. The vertex v must

be connected to an internal vertex of E′1 while the other internal vertex of E′1
must be connected to the internal vertex of C1. The resulting topology is (D).

If, instead, the additional vertex v is internal, it must be connected to the
two internal vertices of E′1 and to the internal vertex of C1. Hence we are in
case (C’).

Step 3. Suppose E′1 has 4 edges (hence it is external) and suppose C1 is
internal with 3 edges. Since the external region must have at least three edges,
there is an additional external vertex v and E0 has three edges. One of the three
vertices of C1 must be connected to the vertex v while the other two vertices of
C1 must be connected to the two internal vertices of E′1. The resulting topology
is (B).

Step 4. Suppose E′1 has 3 edges and is external while C1 has four edges (and
hence is external). We repeat the same reasoning of Step 2 with E′1 and C1

exchanged and we obtain cases (D’) and (C).
Step 5. Suppose E′1 has 3 edges and is internal while C1 has four edges (and

hence is external). We repeat the same reasoning of Step 3 and obtain case (B)
with E′1 and C1 exchanged. But in this case we would have two big internal
components: E′1 and E3 and this is impossible in view of Corollary 4.6.

Step 6. Suppose that both E′1 and C1 have three edges and are external.
There are two additional vertices v, w which are not vertices of E′1 or C1. Since
the external region E0 has at most 5 edges (there are only 5 bounded compo-
nents) one of the two vertices, say v, is internal. The other vertex w cannot be
internal, because otherwise v and w need to be joined by two different edges,
which is not possible. The internal vertex v must be connected to w and to the
two internal vertices of E′1 and C1. The resulting topology is (E).

Step 7. Suppose that both E′1 and C1 have three edges and suppose E′1 is
external and C1 is internal. We need to place two additional vertices v and w.
Certainly one among v and w is external, since E0 has at least three edges. In
case both v and w are external E0 has four edges.

If two of the three vertices of C1 are connected to the same vertex, we would
obtain an additional three sided component (say it is E2). Hence we notice
we have three components with three edges: E′1, C1 and E2. Let n0, n3 and
n4 be the number of edges of E0, E3 and E4. By Euler’s formula we have
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24 = 3×3+n0 +n3 +n4 ≤ 9+4+n3 +n4, which means that max{n3, n4} ≥ 11
2 ,

i.e max{n3, n4} ≥ 6 (notice that n3 and n4 are integers), which is impossible by
Proposition 2.8 (each component can only have one edge in common with each
other component).

So the three vertices of C1 are connected to v, w and to the internal vertex
of E′1. Necessarily v and w are also connected to the external vertices of E′1
hence they are both external and E0 has 4 edges. The resulting cluster is of
type (F).

Step 8. Suppose that both E′1 and C1 have three edges and suppose that E′1
is internal and C1 is external. We obtain the same classification of Step 7 but
with E′1 and C1 exchanged. We obtain case (F’).

Step 9. Suppose that both E′1 and C ′1 have three edges and are both internal.
This is impossible because the external region would only have two edges, which
is excluded.

Proposition 6.2. Let E ∈ M∗(1, 1, 1, 1). Then E cannot have the topologies
(B), (C), (C ′), (D), (D′), (E), (F ) of Figure 6.

Proof. Notice that in each case it is possible (by subsequently removing trian-
gular components) to reduce the cluster E to a double bubble (E′′1 , E

′′
2 ) where

E′′1 ⊇ E′1 and E′′2 ⊇ E2.
So, by applying Lemma 3.8 we obtain at once

p1 ≤
k8√

min{m(E′1),m(E2)}
=

k8√
1−m(C1)

≤ k8√
1− k1

≤ 1.7352. (15)

In the case when C1 has only three edges (i.e. cases (B), (C ′), (D), (E), and
(F )) we can apply Proposition 3.5 and then Proposition 4.3 to obtain

p1 ≥
(6− 3)π

3P (C1)
≥ π

k7
≥ 2.2125

and this is in contradiction with (15).
In both cases (C) and (D′) we can reduce the triangular components to

find a double bubble (E′′2 , E
′′
4 ) with E′′2 ⊇ E2 and E′′4 ⊇ E4. Moreover E′′2 ⊆

R2 \ (E0 ∪ E4) and E′′4 ⊆ R2 \ (E0 ∪ E2) so that m(E′′2 ) ≤ 3 and m(E′′4 ) ≤ 3.
So, by using Lemma 3.8 we obtain

min{p2, p4} ≥
k8√

min{4−m(E4), 4−m(E2)}
=

k8√
3
.

In case (D′) we can find another reduction to a double bubble (E′′2 , E
′′
3 ) and, as

before, we find

min{p2, p3} ≥
k8√

3

so that, in this case, min{p2, p3, p4} ≥ k8/
√

3.
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In case (C) we apply Proposition 3.5 to the component C1 to obtain:

p1 ≥
(6− 4)π

3P (C1)
≥ 2π

3k7
≥ 1.4750 > 0.9179 ≥ k8√

3

and then we apply the same Proposition 3.5 to E3 to obtain (notice that we
consider ` = 0 since E3 is internal):

p3 ≥
(6− 3)π

3P (E3)
+ min{p1, p2, p4} ≥ min{p1, p2, p4} ≥

k8√
3
.

So, in both cases C and D′, we obtain

min{p2, p3, p4} ≥
k8√

3
.

Now we need to estimate the length ` of the external edge of C1. By Proposi-
tion 3.3 we have (notice that m(C1) < k1 < 1),

` ≤ m(C1) · P (E)

|2−m(C1)|
≤ m(C1)k0

2− k1

while, by Proposition 4.3, we have

P (C1) ≤ k7.

By applying Proposition 3.5, and using the previous estimates, we get

p1 ≥
(6− 4)π

3P (C1)
+ min{p2, p3, p4}

(
1− ` · 1

P (C1)

)
≥ 2π

3k7
+
k8√

3

(
1− m(C1)k0

2− k1
· 1

2
√
π
√
m(C1)

)

≥ 2π

3k7
+
k8√

3

(
1−

√
k1k0

2
√
π(2− k1)

)
≥ 1.7615

which, again, is in contradiction with (15).

Proposition 6.3. Let E ∈ M∗(1, 1, 1, 1) has 5 components. Then we exclude
that E has the topology (F ′) of Figure 6.

Proof. By removing the triangular components we are able to reduce the cluster
E to a double bubble (E′′2 , E

′′
3 ) with E′′2 ⊇ E2 and E′′3 ⊇ E3. Notice that

E′′2 ⊆ R2\(E0∪E3) and E′′3 ⊆ R2\(E0∪E2) so that m(E′′2 ) ≤ 3 and m(E′′3 ) ≤ 3.
So, by Lemma 3.8, we obtain

min{p2, p3} ≥
k8√

3
.
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We repeat the same argument with E4 in place of E3 to obtain min{p2, p4} ≥
k8√
3

so that

min{p2, p3, p4} ≥
k8√

3
.

Now we estimate the length ` of the external edge of C1 by using Proposi-
tion 3.3:

` ≤ m(C1)

|2−m(C1)|
· P (E)

i.e. (notice that m(C1) < k1 < 1)

`

P (C1)
≤ `

2
√
π
√
m(C1)

≤
√
m(C1)P (E)

2
√
π(2−m(C1))

≤
√
k1k0

2
√
π(2− k1)

and we apply Proposition 3.5 to obtain

p1 ≥
(6− 3)π

3P (C1)
+ min{p2, p3}

(
1− `

P (C1)

)
≥ π

k7
+
k8√

3

(
1−

√
k1k0

(2− k1)2
√
π

)
≥ c8 := 2.4990.

By Lemma 2.7 applied to the component E′1 we have

π =
(6− 3)π

3
=

4∑
j=0

(p1 − pj)Lj ≥ (p1 −max{p0, p2, p3, p4})P (E′1)

= (p1 −max{p2, p3, p4})2
√
π
√

1− k1

so that

max{p2, p3, p4} ≥ p1 −
√
π

2
√

1− k1
Hence

P (E) = 2(p1 + p2 + p3 + p4) ≥ 2(p1 + max{p2, p3, p4}+ 2 min{p2, p3, p4})

≥ 4c8 − 2 ·
√
π

2
√

1− k1
+ 4 · k8√

3
≥ 11.5561 ≥ k0

which is a contradiction.

Proposition 6.4. Let E ∈M∗(1, 1, 1, 1) be a cluster with 5 components. Then
we exclude that E has the topology (A) depicted in Figure 6.

Proof. First of all notice that

2k0 ≥ 2P (E) = P (E′1) + P (C1) + P (E2) + P (E4) + P (E0) + P (E3)

≥ 2
√
π
(√

1− k1 +
√
k2 + 2

√
1 +
√

4
)

+ P (E3)
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so that

P (E3) ≤ 2k0 − 2
√
π
(√

1− k1 +
√
k2 + 4

)
≤ c9 := 4.4111.

Now let `j be the total length of the external edges of the region Ej (j =
1, 2, 4). If we remove E1 from E we obtain a 3-cluster E′ = (E2, E3, E4) with
E′ ∈ C∗(1, 1, 1). Hence, by Lemma 3.9 we have P (E′) ≥ k10. Moreover

`1 = P (E)− P (E′) ≤ k0 − k10.

We can repeat the same argument for `2 and `4 to obtain

max{`1, `2, `4} ≤ k0 − k10. (16)

By Proposition 3.5 we have (notice that we let ` = 0 since E3 is internal)

p3 ≥
(6− 4)π

3P (E3)
+ min{p1, p2, p4} > min{p1, p2, p4}. (17)

The same proposition applied to the component C1 gives

p1 ≥
(6− 4)π

3P (C1)
≥ 2π

3k7
≥ 1.4750.

Since

k0 ≥ P (E) = 2(p1 + p2 + p3 + p4) ≥ 2p1 + 6 min{p2, p3, p4}

≥ 4π

3k7
+ 6 min{p2, p3, p4},

we obtain

min{p2, p3, p4} ≤
k0
6
− 2π

9k7
≤ 1.3744,

so that
p1 > min{p2, p3, p4}. (18)

Putting together (17) and (18) we can say that the minimum among p1, p2,
p3, p4 is either p2 or p4. Without loss of generality we can assume that such a
minimum is p2.

Hence, applying Lemma 2.7 to the region E2 we obtain

(6− 4)π

3
=

4∑
i=0

(p2 − pi)Li ≤ p2`2

where Li is the total length of the edges between E2 and Ei (so that L0 = `2)
and we used the estimate p2 − pi ≤ 0 for i 6= 0. So, using (16)

min{p1, p2, p3, p4} = p2 ≥
2π

3`2
≥ 2π

3(k0 − k10)
.
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Now, use again Proposition 3.5 on the region E3 to obtain

p3 ≥
(6− 4)π

3P (E3)
+ min{p1, p2, p4} ≥

2π

3c9
+

2π

3(k0 − k10)
≥ c10 := 1.3466. (19)

Finally we apply Lemma 2.7 to the region E0 to obtain

(6 + 4)π

3
= p1`1 + p2`2 + p4`4 ≤ max{`1, `2, `4}(p1 + p2 + p4)

hence, using also (16)

p1 + p2 + p4 ≥
10π

3(k0 − k10)
.

So, using also (19), we have

P (E) = 2p3 + 2(p1 + p2 + p4) ≥ 2c10 +
20π

3(k0 − k10)
≥ 11.4116 > k0

which is a contradiction.

Theorem 6.5. Let E ∈M(1, 1, 1, 1). Then E is connected.

Proof. By Corollary 5.1 we know that E ∈M∗(1, 1, 1, 1).
By Corollary 4.5 and by Proposition 4.9 we know that each region Ei has

exactly one big component and the total number of small components is not
larger than two.

If the cluster has exactly two small components, with Corollary 5.2, we
exclude that they belong to the same region and with Proposition 5.3 we exclude
that they belong to two different regions.

Finally, from Proposition 6.1 and Propositions 6.2, 6.3 and 6.4 we exclude
that the cluster has exactly one small connected component (which means five
connected components in total).

7 Connected clusters (four components)

Proposition 7.1. Let E ∈ M∗(1, 1, 1, 1) be a connected cluster. Then E has
two possible topologies (see Figure 1):

1. one internal three sided region and three four sided external regions: we
call this topology the flower;

2. two three sided external regions and two four sided external regions; the
three sided regions are not adjacent to each other: we call this topology
the sandwich.
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Proof. Since every region is connected, by Proposition 2.8 every region (com-
prising E0) has three or four edges and the cluster has a total of nine edges and
six vertices. Let x be the number of regions (bounded or unbounded) with four
edges and let y the number of regions (bounded or unbounded) with three edges.
We have one unbounded region E0 and four bounded regions, hence: x+ y = 5.
Moreover summing up all the edges of all the regions we would count each edge
twice, hence we have: 4x+ 3y = 18. Solving the system of two equations gives
x = 3, y = 2 hence we have three regions with four edges and two regions with
four edges.

If the unbounded region E0 has three edges (note that there is a total of six
vertices), there is one internal region and three external regions. The internal
region can only have three edges (because it is not adjacent to E0) and we are
in the first case of the statement.

If the unbounded region E0 has four edges, all the bounded regions are
external: two of them have three edges and two have four edges. The regions
with four edges are adjacent to all other regions hence the regions with three
edges don’t touch each other. We are in the second case of the statement.

Proposition 7.2. Let E ∈ M∗(1, 1, 1, 1) be a connected cluster. Then E has
not the flower topology described in Theorem 7.1.

Proof. Suppose by contradiction that E has the flower topology and let E1 be
the internal three sided region.

First of all notice that

k0 ≥ P (E) ≥ P (E0) + P (E1) ≥ 2
√
π
√

4 + P (E1)

so that
P (E1) ≤ k0 − 4

√
π ≤ c11 := 4.1064.

Now let `2 be the length of the external edge of the region E2. If we remove
E2 from E we obtain a 3-cluster E′ = (E1, E3, E4) with E′ ∈ C∗(1, 1, 1). Hence,
by Lemma 3.9 we have P (E′) ≥ k10. Moreover

`2 = P (E)− P (E′) ≤ k0 − k10.

We can repeat the same argument for the lengths `3 and `4 of the external edges
of E3 and E4, to obtain

max{`2, `3, `4} ≤ k0 − k10. (20)

By removing the triangular components we are able to reduce the cluster
E to a double bubble (E′′2 , E

′′
3 ) with E′′2 ⊇ E2 and E′′3 ⊇ E3. Notice that

E′′2 ⊆ R2\(E0∪E3) and E′′3 ⊆ R2\(E0∪E2) so that m(E′′2 ) ≤ 3 and m(E′′3 ) ≤ 3.
So, by Lemma 3.8, we obtain

min{p2, p3} ≥
k8√

3
.
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We repeat the same argument with E4 in place of E3 to obtain min{p2, p4} ≥
k8√
3

so that

min{p2, p3, p4} ≥
k8√

3
.

Now, use again Proposition 3.5 on the region E1 to obtain (notice that we
let ` = 0 since E1 is internal)

p1 ≥
(6− 3)π

3P (E1)
+ min{p2, p3, p4} ≥

π

c11
+
k8√

3
≥ c12 := 1.6829. (21)

Finally we apply Lemma 2.7 to the region E0 to obtain

(6 + 3)π

3
= p2`2 + p3`3 + p4`4 ≤ max{`1, `2, `4} · (p2 + p3 + p4)

hence, using also (20)

p2 + p3 + p4 ≥
3π

k0 − k10
.

So, using also (21), we have

P (E) = 2p1 + 2(p2 + p3 + p4) ≥ 2c12 +
6π

k0 − k10
≥ 11.2124 > k0

which is a contradiction.

Theorem 7.3. Let E ∈M(1, 1, 1, 1). Then E has the sandwich topology as in
Figure 1.

Proof. By Theorem 6.5 we know that E is connected so by Proposition 7.1
we know that E can either have the flower or the sandwich topology. With
Proposition 7.2 we exclude the flower topology and the result follows.
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