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Abstract

Given a complete metric measure space whose measure is doubling and supports an ∞-
Poincaré inequality, and a bounded domain Ω in such a space together with a Lipschitz
function f : ∂Ω → R we show the existence and uniqueness of an ∞-harmonic extension of
f to Ω. We also show that in the event that the metric on the metric space has an ∞-weak
Fubini property, the notion of ∞-harmonic functions coincide with the notion of AMLEs
proposed by Aronsson. As an auxiliary tool we show that given that the measure on the
metric space is doubling and supports an ∞-Poincaré inequality, one can construct a metric
bi-Lipschitz equivalent to the original one, with respect to which the metric space has an
∞-weak Fubini property. The notion of∞-harmonicity is in general distinct from the notion
of strongly absolutely minimizing Lipschitz extensions found in [11, 23, 24], but coincides
when the metric space supports a p-Poincaré inequality for some finite p ≥ 1.
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1 Introduction

Since the pioneering work of Aronsson [2], the notions of absolute minimizing Lipschitz exten-
sions (AMLEs) and ∞-harmonic functions in Euclidean domains have been extensively studied
in connection with a variety of applications. We refer to the survey paper [3] for general in-
formation on this subject. Recent applications of these notions include image processing and
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inpainting or brain and surface warping. The articles [5] and [26] give a good overview of such
applications.

The idea behind AMLEs is simple. For a set A ⊂ Rn and a Lipschitz function f : A → R,
we denote

LIP(f,A) := sup
x,y∈A,x 6=y

|f(x)− f(y)|
d(x, y)

.

Now given a Lipschitz function f : Y → R with Y ⊂ Rn, we can construct at least two Lipschitz
extensions F : Rn → R of f to Rn with the same Lipschitz constant, that is, LIP(f, Y ) =
LIP(F,Rn) as follows. We can set:

F (x) = sup{f(y)− LIP(f, Y )d(x, y) : y ∈ Y }

for all x ∈ Rn or, we can set:

F (x) = inf{f(y) + LIP(f, Y )d(x, y) : y ∈ Y }

for all x ∈ Rn. These two extensions were first studied by McShane [28]. Note that the quantity
LIP(F,Rn) does not care about the local behavior of F , only the global behavior. Aronsson
sought to take into account also the local behavior. More precisely, given a domain Ω ⊂ Rn and
a Lipschitz function f on Y := ∂Ω, Aronsson looked for a Lipschitz extension F : Ω→ R of f to
Ω such that in addition to the above requirement that LIP(f, ∂Ω) = LIP(F,Ω), F also satisfies
LIP(F, ∂V ) = LIP(F, V ) for all subdomains V ⊂ Ω. Functions F that satisfy this condition are
called absolutely minimizing Lipschitz extensions, or AMLEs for short. In [2], existence of such
a function was demonstrated using a variant of the Perron method. Note that such F would
equivalently satisfy the condition that whenever V ⊂ Ω is a subdomain and ϕ : V → R such
that ϕ = F on ∂V , we must have LIP(F, V ) ≤ LIP(ϕ, V ). Thus the local nature of minimizing
Lipschitz constant is established for AMLEs. It was also shown in [2] and [22] that AMLEs F
in Euclidean domains are ∞-harmonic in the sense that they satisfy ∆∞F = 0, where

∆∞F =
n∑

i,j=1

∂F

∂xi

∂F

∂xj

∂2F

∂xi∂xj
.

In fact, a function on an Euclidean domain is an AMLE if and only if it is∞-harmonic. One can
construct ∞-harmonic functions via p-harmonic approximations, that is, p-harmonic functions
in Ω that take on the value f on ∂Ω approximate the ∞-harmonic functions as p→∞. While
the definition of AMLEs requires only the metric d, the definition of ∞-harmonicity requires
in addition the knowledge of measure on the space as well (for the notion of weak partial
derivatives). The interested reader is referred to [3] for further information on this topic.

In applications to image processing, ∞-harmonic extensions are used for image inpainting.
In image inpainting an image with a patch of loss is corrected by “painting in” the lost image.
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To do so, usually it is preferable to make the extension of the image into the lost patch as
smooth as possible. For each 1 ≤ p < ∞ the p-harmonic extension is the extension F whose
p-th energy Jp(F ) :=

∫
Ω |∇F |

p dLn is minimal amongst all Sobolev functions with the same
boundary (outside image) data. When p = 1, the corresponding minimizer preserves edges
found in the image (see for example [1]); as p→∞, the corresponding processed image becomes
smoother, with p = ∞ corresponding to Lipschitz smoothness. See [30] for a survey on this
subject.

In the abstract setting of separable metric spaces that are length spaces, the existence of AM-
LEs with given Lipschitz boundary data was studied in [23] using a Perron’s method approach.
The existence of AMLEs in general length spaces is obtained in [31] using random games. On
the other hand, thanks to the development of a Sobolev theory in the setting of metric measure
spaces, the notion of p-harmonic function has been considered as well (see [21] and [6]). In [24],
for doubling metric measure spaces satisfying a p-Poincaré inequality for some finite p ∈ [1,∞),
it was shown that the limit (as p→∞) of p-harmonic solutions to the Dirichlet problem on the
domain, with a given Lipschitz boundary data, yields a so-called strongly absolutely minimizing
Lipschitz extension. It was also shown there that when X satisfies a “weak Fubini property”
of exponent p, a function is an AMLE if and only if it is a strongly absolutely minimizing Lip-
schitz extension. The notion of strongly absolutely minimizing Lipschitz extensions coincides
with our notion of ∞-harmonic functions in the metric setting when the metric space supports
a p-Poincaré inequality for some finite p ≥ 1. While strongly absolutely minimizing Lipschitz
extensions minimize (with respect to the L∞-norm), both locally and globally, the local Lips-
chitz constant function Lipu associated with the Lipschitz function u, the∞-harmonic functions
minimize the minimal∞-weak upper gradient of u (see Definition 2.4). It was shown in [10] that
when the metric space supports a p-Poincaré inequality for some finite p, the minimal p-weak
upper gradient of a Lipschitz function agrees almost everywhere with the local Lipschitz con-
stant function associated with the Lipschitz function. Since in this paper we do not know that
the metric space supports a p-Poincaré inequality for any finite p > 1, the Euclidean notion of
∞-harmonicity is more naturally related to our notion of minimizing ∞-weak upper gradients;
hence this is the object we study in this paper.

In [18] it was shown that there are complete metric measure spaces whose measure is doubling
and supports an ∞-Poincaré inequality but not supporting any p-Poincaré inequality for finite
p ≥ 1. The examples in [18] can still be addressed using the techniques in [24] since the domain
in consideration is a bounded domain, and the failure of p-Poincaré inequality occurs only at
large scales. However, the sphericalization of the examples in [18], using the procedure described
in [27], also supports an ∞-Poincaré inequality but does not support any p-Poincaré inequality
for finite p, see [16] and [17], and the techniques of [24] fail for domains in this sphericalized
space that contain the image of infinity from the original space of [18].

In light of these examples we are interested in knowing whether, given a bounded domain
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in a doubling metric measure space supporting an ∞-Poincaré inequality, and given a Lipschitz
function defined on the boundary of the domain, there is an∞-harmonic function on the domain
with the prescribed boundary data. Since we do not assume p-Poincaré inequality for any finite
p ≥ 1, the challenge is to construct such an∞-harmonic function without Aronsson’s prescription
of first constructing p-harmonic functions. This is one of the principal foci of the current paper.
Our main result is the following:

Theorem 1.1 Let (X, d, µ) be a complete metric measure space with µ doubling and supporting
an ∞-Poincaré inequality, and let Ω ⊂ X be a bounded domain such that X \ Ω has positive
measure. Given a Lipschitz function f : ∂Ω→ R, there is a unique Lipschitz function u : Ω→ R
such that u = f on ∂Ω and u is ∞-harmonic in Ω.

The problem of existence of ∞-harmonic functions is studied in Section 3, and the corre-
sponding result is given in Theorem 3.3. The question of uniqueness is related to the equivalence
between AMLEs and ∞-harmonic functions. In [24], in order to obtain this equivalence, a p-
weak Fubini property with 1 < p <∞ is needed for showing that one can neglect zero measure
sets when computing the Lipschitz constant of a function. In this paper, we prove the equiva-
lence between AMLEs and∞-harmonic functions under the weaker hypothesis of∞-weak Fubini
property (see Definition 4.1). Proposition 4.2 gives a simple metric characterization of ∞-weak
Fubini property. This characterization shows that the link between ∞-weak Fubini property
and the measure µ is weak, and depends only on the collection of µ-null sets. We will also show
that under the hypotheses of Theorem 1.1, there is a bi-Lipschitz equivalent metric d̂ on X such
that (X, d̂, µ) satisfies an ∞-weak Fubini property, see Proposition 4.4.

The second main result of this work is the following.

Theorem 1.2 Let (X, d, µ) be a complete metric measure space with µ doubling and satisfying
an ∞-weak Fubini property. Consider a bounded domain Ω ⊂ X such that X \ Ω has positive
measure and a Lipschitz function f : ∂Ω → R. A Lipschitz function u : Ω → R is ∞-harmonic
in Ω if and only if it is an AMLE of f to Ω.

In the Euclidean setting uniqueness of AMLEs for a given boundary data was established
via the tool of viscosity solutions in [22], and an alternate proof using viscosity solutions and
tug-of-war games was provided in [31]. In the setting of Heisenberg groups, uniqueness was
demonstrated in [4]. Uniqueness for AMLEs in metric spaces that are length spaces was estab-
lished in [31, Theorem 1.4]. Combining this with some tools we develop here, in Theorem 4.9
we obtain uniqueness of ∞-harmonic functions with prescribed Lipschitz boundary data in the
setting of complete doubling metric measure spaces satisfying an∞-Poincaré inequality. We also
provide an example of a (length) space that does not satisfy any ∞-weak Fubini property, for
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which uniqueness of solutions to ∞-harmonic Dirichlet problem fails, see Example 4.12. Given
the uniqueness of AMLEs, this example also shows that there are ∞-harmonic functions that
are not AMLEs when we do not have ∞-weak Fubini property.

2 Notation and definitions

In this paper we will assume that (X, d, µ) is a complete metric measure space. That is, (X, d)
is a complete metric space equipped with a Borel measure µ which is positive and finite on each
ball. We say that the measure µ is doubling on X if there is a constant CD ≥ 1 such that
whenever x ∈ X and r > 0,

µ(B(x, 2r)) ≤ CD µ(B(x, r)).

Given a set A ⊂ X and a Lipschitz function u : A→ R, we set for x ∈ A,

Lipu(x) := lim
r→0+

sup
y∈A∩B(x,r),y 6=x

|u(x)− u(y)|
d(x, y)

and

LIP(u,A) := sup
x,y∈A,x 6=y

|u(x)− u(y)|
d(x, y)

.

We say that u is L-Lipschitz on A if LIP(u,A) ≤ L. The class of all bounded Lipschitz functions
on X is denoted LIP∞(X). This class is equipped with the norm

‖u‖LIP∞(X) := sup
x∈X
|u(x)| + LIP(u,X).

By a curve in X we mean a continuous function γ : I → X defined on some compact interval
I ⊂ R. The length of a curve γ : I → X is defined by

`(γ) := sup
t0<t1<···<tn

n∑
j=1

d(γ(tj−1), γ(tj)),

where the supremum is taken over all finite subdivisions t0 < t1 < · · · < tn of the interval I.
The curve γ is said to be rectifiable if it has finite length. Note that every rectifiable curve can
be re-parametrized so that it is arc-length parametrized, that is, I = [0, `(γ)] and for each s ∈ I,
if we denote Is := {t ∈ I : t ≤ s} we have that

`(γ|Is) = s.
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Henceforth in the paper we will assume all rectifiable curves, unless otherwise indicated, to be
arc-length parametrized as above. The integral of a Borel function ρ : X → [0,∞] over an
arc-length parametrized curve γ is defined as∫

γ
ρ ds :=

∫ `(γ)

0
ρ(γ(t)) dt.

A metric space (X, d) is said to be a length space if for each pair of points x, y ∈ X the
distance d(x, y) coincides with the infimum of all lengths of curves in X connecting x with y.
The metric space X is C-quasiconvex, or quasiconvex, for some C ≥ 1 if for each pair of points
x, y ∈ X, there exists a curve γ connecting x and y with `(γ) ≤ Cd(x, y).

In the setting of non-smooth metric measure spaces, the role of derivatives is taken on by
the upper gradients (see [20]). Given a function u : X → R, we say that a Borel-measurable
function g : X → [0,∞] is an upper gradient of f if

|u(y)− u(x)| ≤
∫
γ
g ds (1)

whenever γ is a non-constant compact rectifiable curve in X connecting the points x and y. The
above inequality should be interpreted to mean that

∫
γ g ds =∞ if at least one of u(x), u(y) is

not finite.

Note that a function with an almost-everywhere finite upper gradient will have more than
one upper gradient, since the sum of an upper gradient and any non-negative Borel measurable
function will also be an upper gradient. The set of all upper gradients of a given function f is a
convex set. We refer the reader to [21] and [6] for more on the properties of upper gradients. In
the Euclidean setting, the function |∇u| of a smooth function f acts as its upper gradient (and
in fact, no function that is smaller than |∇u| on a set of positive measure can act as an upper
gradient). However, |∇u| of a more general Sobolev function u ∈ W 1,p(Rn) is not in general
an upper gradient of u, for the inequality (1) may fail for a few curves γ, but |∇u| will be a
p-weak upper gradient of u in the sense that the upper gradient inequality (1) fails for at most
a negligible family of curves γ in the following sense of p-modulus.

Definition 2.1 Given a family Γ of curves in a metric measure space X, set A(Γ) to be the
family of all Borel measurable functions ρ : X → [0,∞] such that∫

γ
ρ ds ≥ 1 for all γ ∈ Γ.

In current literature on analysis in metric spaces the functions in A(Γ) are said to be admissible
for Γ.
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We define the ∞-modulus of Γ by

Mod∞(Γ) = inf
ρ∈A

(Γ) ‖ρ‖L∞(X),

and for 1 ≤ p <∞ the p-modulus of Γ is

Modp(Γ) = inf
ρ∈A

(Γ)

∫
X
ρp dµ.

A non-negative Borel measurable function g on X is said to be a p-weak upper gradient of
a function u : X → R if the collection Γ of all non-constant rectifiable curves γ in X for which
the inequality (1) fails has zero p-modulus.

It can be shown (see e.g. [21]) that a family Γ of curves in X has zero p-modulus if, and
only if, there is a non-negative Borel measurable function ρ ∈ Lp(X) such that

∫
γ ρ ds =∞ for

each γ ∈ Γ. When p =∞, one can even require that ρ = 0 almost everywhere:

Lemma 2.2 [13, Lemma 5.7] Let Γ be a family of curves in a metric measure space X. Then
Mod∞(Γ) = 0 if and only if there is a Borel function ρ ≥ 0 with ‖ρ‖L∞(X) = 0 such that∫
γ ρ ds =∞ for each γ ∈ Γ.

The Newton-Sobolev space N1,p(X) 1 ≤ p ≤ ∞) is defined as follows. First consider the class
Ñ1,p(X) of all functions in Lp(X) that have an ∞-weak upper gradient in Lp(X). Foru1, u2 ∈
Ñ1,p(X) we say that u1 ∼ u2 if

‖u1 − u2‖Lp(X) + inf
g
‖g‖Lp(X) = 0,

where the infimum is taken over all p-weak upper gradients g of u1 − u2. The relation ∼ is an
equivalence relation on the vector space Ñ1,p(X), and we set N1,p(X) to be the collection of all
equivalence classes of Ñ1,p(X). The space N1,p(X) is equipped with the norm

‖u‖N1,p(X) := ‖u‖Lp(X) + inf
g
‖g‖Lp(X),

the infimum being taken over all ∞-weak upper gradients of u. It was proven in [13] that
N1,∞(X) is a Banach space. If A ⊂ X is a measurable set, we can consider the space N1,p(A)
endowed with the metric d|A and the measure µ|A.

Taking into account the following lemma we can, without loss of generality, assume that
∞-weak upper gradients of a function u ∈ N1,∞(X) are in fact upper gradients after modifying
them on a set of µ-measure zero.
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Lemma 2.3 Let X be a metric measure space, and u ∈ N1,∞(X). Every∞-weak upper gradient
g of u can be modified on a set of measure zero such that the modification g̃ is an upper gradient
of u.

Proof. Let g be an ∞-weak upper gradient of u, and let Γ denote the family of curves in X
for which the inequality (1) fails. By Lemma 2.2 there exists a Borel function ρ ≥ 0 on X with
‖ρ‖L∞(X) = 0 such that

∫
γ ρ ds = ∞ for each γ ∈ Γ. Then E = {x ∈ X : ρ(x) > 0} has

zero-measure, and it is easily seen that

g̃ = g + ρ

is an upper gradient of u. �

It follows from [29, Lemma 4.1] that if g1, g2 are ∞-weak upper gradients of a function
u ∈ N1,∞(X), then the pointwise minimum g = min{g1, g2} is also an ∞-weak upper gradient
of u. In fact, we know from [29, Theorem 4.6] that for each u ∈ N1,∞(X) there is an ∞-weak
upper gradient gu ∈ L∞(X) which is minimal in the sense that whenever g ∈ L∞(X) is an
∞-weak upper gradient of u, we have that gu ≤ g almost everywhere in X. Furthermore, gu is
unique up to sets of measure zero. As we mentioned above, by Lemma 2.3 we can also assume
that gu is an upper gradient of u.

We can now define ∞-harmonic functions as follows. Note that by a domain in a metric
space we mean a non-empty connected open subset.

Definition 2.4 Let X be a metric measure space, and Ω a bounded domain in X such that
X \Ω has positive measure. We say that u ∈ N1,∞(X) is ∞-harmonic in Ω if whenever V ⊂ Ω
is an open set and v ∈ N1,∞(X) such that v = u on X \ V , we have

‖gu‖L∞(V ) ≤ ‖gv‖L∞(V ). (2)

Furthermore, we say that u ∈ N1,∞(X) is ∞-harmonic in Ω with boundary data f ∈ N1,∞(X)
if u is ∞-harmonic in Ω and u = f on X \ Ω.

Remark 2.5 In the case when N1,∞(X) = L∞(X), we have that gu = 0 almost everywhere
for every u ∈ N1,∞(X), because the ∞-modulus of the collection of all non-constant compact
rectifiable curves in X is zero in this instance. To see that the modulus of this collection is
zero, note that because for each x ∈ X and r > 0 the function χB(x,r) ∈ L∞(X) and hence in
N1,∞(X) by hypothesis, we must have that this function is absolutely continuous on∞-modulus
almost every curve in X. In particular, this means that the collection of all rectifiable curves
that intersect both B(x, r) and X \B(x, r) has zero ∞-modulus. Since the collection of all non-
constant compact rectifiable curves in X is the union of the family Γ(B(xi, rj)) of all rectifiable
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curves in X intersecting both B(xi, ri) and X \B(xi, rj), with {xi}i a countable dense subset of
X and {ri}i is the set of positive rational numbers, we must have by the countable subadditivity
of modulus that the ∞-modulus of the collection of all non-constant compact rectifiable curves
is zero. Therefore given a boundary data function f ∈ N1,∞(X), any u ∈ N1,∞(X) with u = f
on X \ Ω is ∞-harmonic in Ω.

In metric measure spaces where the∞-modulus of the collection of all non-constant compact
rectifiable curves is zero, one can justifiably argue that N1,∞(X) is the wrong Sobolev type space
to use. However, there are many metric measure spaces where the triviality N1,∞(X) = L∞(X)
does not happen. For example, if X supports an ∞-Poincaré inequality, then N1,∞(X) 6=
L∞(X), see [13, 14]. Of such spaces, there is a collection of metric spaces that do not support a
p-Poincaré inequality for any finite p > 1, and in such a setting the currently known approaches
of constructing∞-harmonic functions known so far fail. Thus in this paper we focus on giving a
construction of∞-harmonic functions that does not rely on the existence of p-Poincaré inequality
for any finite p > 1.

Example 2.6 Let (X, d, µ) be the Sierpinski carpet equipped with the Euclidean metric and
the corresponding Hausdorff measure. The Sierpinski carpet does not support an ∞-Poincaré
inequality (see [14, Example 4.14]). From the discussion in [7], we know the existence of a set
N̂ ⊂ [0, 1] such that, with the Hausdorff measure on X denoted by µ, the “first coordinate
projection” Π1µ of µ to [0, 1] given by Π1µ(A) = µ(Π−1

1 (A)) for Borel sets A ⊂ [0, 1] sees N̂ as

of measure zero but H1(N̂) = 1. Let N = (Π−1
1 (N̂) ∪ Π−1

2 (N̂)). Here Π1 and Π2 are the first
coordinate and the second coordinate projection maps from X to the interval [0, 1]. Note that
µ(N) = 0, but given any curve γ in X with end points x, y such that (x1, x2) = x 6= y = (y1, y2),
we must have

H1(γ−1(N)) ≥H1(γ ∩N) ≥ max{H1(Π1 ◦ γ(γ−1(N))),H1(Π2 ◦ γ(γ−1(N)))}
≥max{|x1 − y1|, |x2 − y2|} > 0.

Now, let ρ =∞·χN . Observe that ρ is a non-negative Borel function in X and, as shown above,
given any x, y ∈ X and any rectifiable curve γ connecting x and y, H1(γ−1(N)) > 0 and so we
have that ∫

γ
ρds =

∫ `(γ)

0
ρ(t)dt ≥ ∞×H1(γ−1(N)) =∞.

By Lemma 2.2, we obtain that Mod∞(Γxy) = 0, where Γxy denotes the family of rectifiable
curves connecting x and y and by the previous remark N1,∞(X) = L∞(X).

In the Euclidean setting, ∞-harmonic functions u are precisely those which satisfy the equa-
tion ∆∞u = 0, see for example [11] or [3, Theorem 4.13]. This notion depends intrinsically on
the measure µ as well as the metric d. The following related notion, due to Aronsson [2] (see
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also [3]), relies only on the metric d. Under certain conditions on the metric measure space X
we show that both these notions coincide; see also [24] for a discussion in the metric setting,
where a stronger assumption on the metric measure space was required. See the beginning of
this section for the definition of LIP(u, V ).

Definition 2.7 Let (X, d) be a metric space, Ω a domain in X and f : ∂Ω → R a Lipschitz
function. We say that a Lipschitz function u defined on the closure Ω is an absolutely minimizing
Lipschitz extension (AMLE for short) of f to Ω if f = u on ∂Ω and whenever V ⊂ Ω is an open
set and v : V → R is a Lipschitz function with v = u on ∂V , we have

LIP(u, V ) ≤ LIP(v, V ).

If u is an N1,∞(Ω)-function that has a minimal ∞-weak upper gradient gu on Ω such that
gu ≤ L almost everywhere in Ω, and f is a Lipschitz function on X \Ω such that L is an upper
gradient of f and u = f on ∂Ω, then u has an extension û to X such that the extension ĝu of
gu to X \Ω by the constant L is an ∞-weak upper gradient of û as well. To see this, for x ∈ X
we set

û(x) =

{
u(x) if x ∈ Ω,

f(x) if x ∈ X \ Ω.

The proof that ĝu is an ∞-weak upper gradient of û follows from [6, Proposition 2.39]. As
a consequence, we see that if u ∈ N1,∞(Ω) has an ∞-weak upper gradient that is almost
everywhere in Ω bounded by L and u = f on ∂Ω, then u has an extension û ∈ N1,∞(X) to X
that has an ∞-weak upper gradient dominated almost everywhere in X by L.

Lemma 2.8 Let Ω, G be two non-empty open subsets of X, G ⊂ Ω with dist(G,X \Ω) > 0, and
u ∈ N1,p(Ω), f ∈ N1,∞(X). If u = f on ∂G, then the function û given by

û(x) =

{
u(x) if x ∈ G,
f(x) if x ∈ X \G

is in N1,p
loc (X).

Proof. Let u be a function satisfying the hypotheses of the lemma, and let û be the correspond-
ing extension of u to X \G. To prove the lemma, it suffices to show that û has a p-weak upper
gradient in the class L∞(X). We set u0 = û−f , and then it suffices to show that u0 ∈ N1,p

loc (X).

Let g ∈ Lp(Ω) be an upper gradient of u − f in Ω, and let g0 be the zero extension of g to
X \ Ω. Note that g0 ∈ Lp(X), and as Ω is open and g is Borel, we also have that g0 is Borel.
We wish to show that g0 is a p-weak upper gradient of u0 in X.
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Let γ be a non-constant compact rectifiable curve in X, and let x, y denote the two end
points of γ. If both x and y belong to X \G, then trivially we have |u0(x)−u0(y)| ≤

∫
γ g0 ds. So

it suffices to consider only γ for which x ∈ G. Because x ∈ G, with γ : [a, b]→ X and γ(a) = x,
there is some t0 ∈ (a, b] such that γ((a, t0)) ⊂ G. Let t0 be the largest such number in (a, b]. If
t0 < b, then γ(t0) ∈ ∂G and u0(γ(t0)) = u(γ(t0))− f(γ(t0)). If t0 = b, then again we have that
u0(γ(b)) = u0(y) = u(y)− f(y). In either case, from the facts that g0 ◦ γ = g ◦ γ on [a, t0) and
g is an upper gradient of u we can infer that

|u0(x)− u0(γ(t0))| = |u(x)− u(γ(t0))| ≤
∫
γ|[a,t0]

g0 ds.

If γ(b) 6∈ G, then from the above we have that |u0(x) − u0(y)| = |u0(x) − u0(γ(t0))| ≤
∫
γ g0 ds.

It now follows that g0 is a p-weak upper gradient of u0 and so u0 ∈ N1,∞(X). �

We next introduce the notion of p-Poincaré inequalities, which play a main role in this paper.

Definition 2.9 Given 1 ≤ p <∞, we say that a metric measure space X supports a p-Poincaré
inequality if there are positive constants C, λ such that whenever B = B(x, r) is a ball in X and
g is an upper gradient of u, ∫

B
|u− uB| dµ ≤ C r

(∫
λB
gp dµ

)1/p

.

Here uB := µ(B)−1
∫
B u dµ =:

∫
B u dµ is the average of u on the ball B, and λB := B(x, λr).

We say that X supports an ∞-Poincaré inequality if there are positive constants C, λ such that
whenever B = B(x, r) is a ball in X and g is an upper gradient of u,∫

B
|u− uB| dµ ≤ C r ‖g‖L∞(λB).

By Hölder’s inequality, we know that every metric measure space supporting a p-Poincaré
inequality for some 1 ≤ p <∞ must necessarily support an∞-Poincaré inequality. The converse
need not hold true, as demonstrated in [18].

The following geometric characterization of ∞-Poincaré inequality was established in [15].

Theorem 2.10 ([15, Theorem 3.1]) Let (X, d, µ) be a complete metric measure space with µ
be doubling. Then the following are equivalent:

(1) X supports an ∞-Poincaré inequality.
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(2) There exists a constant C ≥ 1 such that if u ∈ N1,∞(X) with an ∞-weak upper gradient
g ∈ L∞(X), then u is C‖g‖L∞(X)-Lipschitz continuous on X.

(3) There is a constant C ≥ 1 such that whenever N ⊂ X with µ(N) = 0 and x, y ∈ X with
x 6= y, then there is a rectifiable curve γ with end points x, y such that `(γ) ≤ Cd(x, y)
and H1(γ−1(N)) = 0

Criteria (1) and (3) above immediately imply that X is connected. The following argument
shows that Criterion (2) also implies the connectivity of X. Indeed, if X is not connected, then
there are two non-empty open subsets U, V ⊂ X such that U ∪ V = X and U ∩ V is empty. We
set u = χU , and note that then u ∈ N1,∞(X) with gu ≡ 0. Observe that u is not 0-Lipschitz
continuous as u is not constant on X, violating Criterion (2) above. Note that in Criterion (2), if
we remove the requirement that u is C‖g‖L∞(X)-Lipschitz, then we need to add the requirement
that X is connected.

We end this section with a technical lemma that will be needed in Section 3, showing a
locality property of minimal ∞-weak upper gradients of functions in N1,∞(X).

Lemma 2.11 Let X be a metric measure space and E a measurable subset of X. Suppose that
u, v ∈ N1,∞(X) are such that u = v on E. Then gu = gv almost everywhere on E.

Proof. By Lemma 2.3, the minimal gradients gu and gv are assumed to be upper gradients
of u and v respectively. It can be shown as in [6, Theorem 2.18] that g1 = gu + gv · χE and
g2 = gu · χX\E + gv are upper gradients of u. Then by [29, Lemma 4.1] we have that the
pointwise minimum g = inf{g1, g2} is an ∞-weak upper gradient of u, and it is clear that
g = gu · χX\E + gv · χE . By Lemma 2.3 we can modify g in a set of zero measure to obtain an
upper gradient of u. In the same way, a modification of gv ·χX\E + gu ·χE is an upper gradient
of v. By minimality, we obtain that gu = gv a.e. on E. �

3 Existence of ∞-harmonic functions

In this section we show the existence of an ∞-harmonic function on a domain Ω ⊂ X with
prescribed Lipschitz boundary data. To do so, we solve a variational (minimization) problem
corresponding to each exponent p > 1 and then let p → ∞ to obtain the solution. A similar
technique was employed in [24] where the variational problem was to minimize the Lp-energy
and obtain a p-harmonic function for each finite p; however, without a p-Poincaré inequality for
some finite value of p, we have no control over the behavior of p-harmonic functions, and hence
the variational problem we consider is different.
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Standing Assumptions: Throughout this section we assume that (X, d, µ) is a complete metric
measure space with µ doubling and supporting an ∞-Poincaré inequality. We fix a bounded
domain Ω ⊂ X and we assume that µ(X \ Ω) > 0 in order to avoid trivial statements.

As a tool for the proof of the main theorem of this section, Theorem 3.3, we need the following
notions.

Definition 3.1 Given L > 0, let N1,∞
L (X) be the collection of all functions u in N1,∞(X) that

have an upper gradient g with ‖g‖L∞(X) ≤ L. For u ∈ N1,∞
L (X) we set DL(u) to be the collection

of all upper gradients g of u such that ‖g‖L∞(X) ≤ L.

Now consider a function f : X → R with f ∈ N1,∞(X). Our goal in this section is to
establish the existence of an ∞-harmonic function u in Ω with boundary data f . Note that,
since X is complete and supports an ∞-Poincaré inequality, by Theorem 2.10 we know that
every function in N1,∞(X) is in fact Lipschitz continuous on X, so f is Lipschitz. Let L > 0
such that DL(f) is non-empty.

Definition 3.2 Fix 1 < p <∞. For u ∈ N1,∞
L (X) we set

IpL(u) :=

∫
Ω
gpu dµ = inf

{∫
Ω
gp dµ : g ∈ DL(u)

}
,

and let
Jpf = inf

{
IpL(u) : u ∈ N1,∞

L (X); u = f on X \ Ω
}
. (3)

Theorem 3.3 Let (X, d, µ) be a complete metric measure space with µ doubling and supporting
an ∞-Poincaré inequality, and let Ω ⊂ X be a bounded domain such that X \ Ω has positive
measure. Given a Lipschitz function f : X → R, there is a Lipschitz function ϕ : Ω → R such
that ϕ = f on ∂Ω and ϕ is ∞-harmonic in Ω.

If f : ∂Ω → R is an L-Lipschitz function, then using the McShane extension theorem [28]
(see Section 1 of this paper), we can extend f to a bounded Lipschitz function defined on X.
Hence in the above theorem it suffices to prescribe f only on ∂Ω. The remainder of this section
is devoted to the proof of this theorem. The proof will be divided into different steps:

Step 1. Fix L > 0 such that f is L-Lipschitz on X, and note that the constant function g = L
is an upper gradient of f .

For every 1 < p < ∞, we will show that there is a Lipschitz function up on X, which is a
solution of the variational problem Jpf defined in (3), and such that up = f on X \ Ω. Recall
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that, by Theorem 2.10, there is a constant C > 0 such that every function in N1,∞
L (X) is in fact

CL-Lipschitz on X.

Note that Jpf ≤ IpL(f) ≤ Lpµ(Ω) <∞, and hence we can find a sequence {uk}k ⊂ N1,∞
L (X)

such that uk = f on X \ Ω and limk I
p
L(uk) = Jpf . Since each uk is CL-Lipschitz, the family

{uk}k is equicontinuous on X, and since uk = f on X \ Ω with Ω bounded, it follows that the
family is also equibounded on X. Thus an invocation of the Arzela-Ascoli theorem leads us to
conclude that, passing to a subsequence if necessary, there is a CL-Lipschitz function up on X
such that {uk}k → up uniformly on X.

Lemma 3.4 For each 1 < p <∞ we have that up ∈ N1,∞
L (X), up = f on X \ Ω, and

Jpf = IpL(up) =

∫
Ω

(gup)p dµ. (4)

Proof. Since {uk}k → up uniformly on X, we only need to consider upper gradients of up now.
By passing to a subsequence if needed, for each k we can find an upper gradient gk of uk such
that gk ≤ L almost everywhere on X and∫

Ω
gpk dµ ≤ J

p
f + 1/k.

Fix a bounded domain Ω0 in X such that Ω b Ω0. Thus {gk}k is a bounded sequence in Lp(Ω0).
By the reflexivity of Lp(Ω0), taking a further subsequence we may assume that {gk}k is weakly
convergent in Lp(Ω0) to a non-negative Borel function gp ∈ Lp(Ω0). By Mazur’s lemma, there is

a convex combination subsequence {hk}k (with hk =
∑N(k)

j=k λk,jgk) such that {hk}k → gp both
in Lp(Ω0) and pointwise outside a set E ⊂ Ω0 with µ(E) = 0. From the results of [25] we know
that gp is a p-weak upper gradient of up on Ω0. Note that gp is defined only on Ω0. On the
other hand, since uk = f on Ω0 \Ω, the extension of each uk by f to X \Ω0 is also in N1,∞(X)
with the extension of gp by L to X \ Ω0 a p-weak upper gradient of up on X. See Lemma 2.8.
Because each guk ≤ L almost everywhere in X, we have that gp ≤ L on X \ (E ∪

⋃
k Ek), where

each Ek = {gk > L}; and note that by assumption on gk, we have µ(Ek) = 0. However, we do
not know that gp is an upper gradient of up. Thus we need to modify gp suitably as follows.

Setting F = E ∪
⋃
k Ek, we have µ(F ) = 0. Let Γ+

F denote the collection of all non-
constant rectifiable (arc-length parametrized) curves γ in X such that H1(γ−1(F )) > 0. Then,
by considering ρ = ∞ · χF in Lemma 2.2, we obtain that Mod∞(Γ+

F ) = 0. For rectifiable non-
constant curves γ in X that do not belong to Γ+

F we know that {hk ◦γ}k → gp ◦γ H1-a.e. on the
domain of γ, and that almost everywhere there we also have each hk ≤ L and gp ≤ L. Therefore
by the Lebesgue dominated convergence theorem,

lim
k

∫
γ
hk ds =

∫
γ
gp ds.
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Denoting the endpoints of γ by x and y, and noting that the convex combination sequence

vk =
∑N(k)

j=k λk,juk, with N(k), λk,j as in the choice of hk, converges uniformly to up as well on
X, we have that

|up(x)− up(y)| = lim
k
|vk(x)− vk(y)| ≤ lim

k

∫
γ
hk ds =

∫
γ
gp ds.

Therefore gp is an ∞-weak upper gradient of up (this is stronger than saying that gp is a p-weak
upper gradient of up), with the upper gradient inequality being satisfied for all non-constant
rectifiable curves in X that do not belong to Γ+

F . Therefore the function ĝp := gp +∞χF is
an upper gradient of up on X such that ĝp ≤ L on X \ F . This allows us to conclude that

up ∈ N1,∞
L (X), and by construction we also have that up = f on X \ Ω. This also means that

IpL(up) ≥ Jpf .

Finally, since hk → ĝp in Lp(Ω) we have that

lim
k

∫
Ω
hpk dµ =

∫
Ω
ĝp
p dµ.

By the lower continuity of Lp-norms, we deduce that

Jpf ≤ I
p
L(up) ≤

∫
Ω
ĝp
p dµ ≤ lim

k

∫
Ω
gpk dµ ≤ J

p
f .

Suppose now that g ∈ DL(u). Then by the lattice property of ∞-weak upper gradients (see [29,
Lemma 4.1]) we have that min{gp, g} is an ∞-weak upper gradient of up. Hence by the min-
imality of IpL(up) we must have gp ≤ g almost everywhere in Ω, that is, gp = gup . Since you
removed the old Lemma 3.2 and modified the statement of this lemma, the above argument is
essential to put in here.

This completes the proof of the lemma. �

Now let U be a subdomain of Ω, and consider the analogous variational problem on U with
boundary data up. For u ∈ N1,∞

L (X) we set

IpL,U (u) :=

∫
U
gpu dµ = inf

{∫
U
gp dµ : g ∈ DL(u)

}
,

and for functions w ∈ N1,∞(X), we set

Jpw,U := inf

{∫
U
gpu dµ : u ∈ N1,∞

L (X); u = w on ∂U

}
. (5)

The next Lemma shows that the function up obtained above solves the minimization prob-
lem (5).
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Lemma 3.5 Let 1 < p <∞. Let U be a subdomain of Ω and let v ∈ N1,∞
L (X) such that v = up

on ∂U . Then ∫
U

(gup)p dµ ≤
∫
U
gpv dµ.

Proof. Consider the Lipschitz function w = v · χU + up · χX\U . By Lemma 2.11, we have
that gw = gv almost everywhere on U and gw = gup almost everywhere on X \ U . In particular

w ∈ N1,∞
L (X), and since w = f on X \ Ω, we obtain that:∫

Ω
(gup)p dµ = Jpf ≤ I

p
L(w) ≤

∫
Ω
gpw dµ =

∫
U
gpv dµ+

∫
Ω\U

(gup)p dµ.

Then the conclusion follows. �

Step 2: In this step we show that the function up obtained in Step 1 is unique and satisfies
the comparison property. We start with the following lemma, which shows a strong locality
property for functions in N1,∞(X).

Lemma 3.6 Let u ∈ N1,∞(X) and suppose that g ∈ L∞(X) is an upper gradient of u such that
g = 0 almost everywhere in Ω. Then u is constant on Ω.

Proof. Suppose that g = 0 almost everywhere in Ω, and let E = {x ∈ Ω : g(x) > 0}.
Then µ(E) = 0. Since X is complete and supports an ∞-Poincaré inequality, by Theorem 2.10
we know that there is a constant C ≥ 1 such that, for each x ∈ Ω, with r > 0 such that
B(x, 2Cr) ⊂ Ω, and for each y ∈ B(x, r) there is a C-quasiconvex curve γ connecting x to y
such that H1(γ−1(E)) = 0. Since g is an upper gradient of u, it follows that for all y ∈ B(x, r),

|u(x)− u(y)| ≤
∫
γ
g ds = 0,

that is, u(y) = u(x). Thus we conclude that u is locally constant on Ω, and hence by the
connectivity of Ω we also have that u is constant on Ω. �

Next we show uniqueness.

Lemma 3.7 Let 1 < p <∞. If vp is another minimizer of Jpf , then vp = up.

Proof. The proof of this follows exactly as in [10, Theorem 7.14] (see [6, Theorem 7.2] for a more
detailed proof, considering the obstacle ψ = −∞ there), upon noticing that DL(u) is a convex
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subset of Lp(X) (since Ω is bounded, we may without loss of generality assume that µ(X) <∞),
and by the proof of Lemma 3.4, DL(u) is closed in Lp(X) as well. Strictly speaking, the proofs
referred to above show that vp − up has an upper gradient that is zero almost everywhere in Ω.
Now invoking Lemma 3.6 we obtain the desired result. �

The next lemma yields the desired comparison theorem for functions up.

Lemma 3.8 Let 1 < p < ∞. Let f, F be two bounded functions in N1,∞
L (X) such that f ≤ F

on X \ Ω, and let up, Up be the two respective minimizers of Jpf and JpF . Then up ≤ Up on Ω.

Proof. Since both up and Up are Lipschitz continuous on X, and since up = f ≤ F = Up on
X \ Ω, it follows that W := {x ∈ X : up(x) > Up(x)} is an open subset of Ω with up = Up on
∂W . Suppose that W is non-empty (if W is empty, then the claim of the lemma follows). Then
up = Up on ∂W and hence has a common L-Lipschitz extension Ψ to X \W . It follows from
the local nature of the Lp-norm that both up and Up solve the minimization problem JpΨ on W ,
and hence by Lemma 3.7 we must have up = Up in W , which contradicts the choice of W . Thus
W must be empty. This concludes the proof of the lemma. �

Step 3. In this step we fix a monotone increasing sequence {pk}k with 1 < pk < ∞ and
{pk}k → ∞, and for each k we consider the function upk constructed in Step 1. Note that
{upk} is an equicontinuous and equibounded sequence of CL-Lipschitz functions on X. So, by
passing to a subsequence if necessary, and noting that each upk = f in X \Ω with Ω compact, by
the Arzela-Ascoli theorem we can assume that {upk} converges uniformly on X to a Lipschitz
function ϕ on X, and it is clear that ϕ = f on X \ Ω. We next see that this limit function ϕ is
∞-harmonic in Ω.

Lemma 3.9 The function ϕ is ∞-harmonic in Ω.

Proof. For each k ∈ N, we will denote for simplicity by gk the minimal ∞-weak upper gradient
gupk of upk . Now for each fixed k0 ∈ N we have that∫

Ω
g
pk0
k dµ ≤ Lpk0 µ(Ω),

and so {gk}k≥k0 forms a bounded sequence in Lpk0 (Ω). An appeal to reflexivity of Lpk0 (Ω) and
to Mazur’s lemma gives us a convex combination subsequence of the sequence {gk}k≥k0 that
converges both in Lpk0 (Ω) and pointwise almost everywhere in Ω (and hence in X) to some
non-negative Borel function ρk0 . Since each gk ≤ L almost everywhere in X, by a repeat of the
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proof of Lemma 3.4 we see that a modification of ρk0 on a set of measure zero gives an upper
gradient of ϕ and that ρk0 ≤ L almost everywhere in X.

In order to check that ϕ is∞-harmonic on Ω, consider v ∈ N1,∞(Ω) such that v = f on X \Ω
and let gv be its minimal∞-weak upper gradient. If ‖gv‖L∞(Ω) > L then as ‖ρk0‖L∞(Ω) ≤ L, we
have the desired comparison (2). Therefore, without loss of generality, we assume that gv ≤ L
almost everywhere in Ω. Since v = f on X \Ω, we have by the pasting lemma [6, Theorem 2.18]
together with the lattice property that the extension of gv by L to X \ Ω is an ∞-weak upper
gradient of v. Thus we have gv ≤ L almost everywhere in X. That is, gv ∈ DL(v).

For each k ∈ N we know from Lemma 3.4 that

IpkL (upk) =

∫
Ω
gpkk dµ ≤

∫
Ω
gpkv dµ.

Therefore, using Hölder’s inequality, for each k0 ∈ N and each k ≥ k0, we have that(∫
Ω
g
pk0
k dµ

)1/pk0
≤
(∫

Ω
gpkk dµ

)1/pk

≤
(∫

Ω
gpkv dµ

)1/pk

≤ ‖gv‖L∞(Ω).

As pointed out above, ρk0 ≤ L almost everywhere in X. An argument analogous to the one given
in the proof of Lemma 3.4 also tells us that ρk0 is an ∞-weak upper gradient of ϕ. Therefore
gϕ ≤ ρk0 almost everywhere in X. Since ρk0 is a weak limit of {gpk}k≥k0 in Lpk0 (Ω), it follows
by letting k →∞ that(∫

Ω
g
pk0
ϕ dµ

)1/pk0
≤
(∫

Ω
ρ
pk0
k0

dµ

)1/pk0
≤ ‖gv‖L∞(Ω).

Now letting k0 →∞ we obtain

‖gϕ‖L∞(Ω) ≤ ‖gv‖L∞(Ω). (6)

We now need to prove the above inequality for every open subset V ⊂ Ω rather than just Ω, and
for every v ∈ N1,∞(V ) such that v = ϕ on X \V . To do so, consider first a connected component
U of V . Note that, because of the quasiconvexity of X, each connected component of V is an
open set. Furthermore, since Ω is connected and U ⊂ Ω, it follows that ∂U is non-empty and
we have v = ϕ on ∂U . Thus the extension of v by ϕ to X \ U is a test function for checking
∞-harmonicity of ϕ in U . Now for each k ∈ N consider the problem of minimizing the functional
IpkL,U (·) considered in (5) over all u ∈ N1,∞

L (X) for which u = ϕ on ∂U . As in Lemma 3.4, for

each k ∈ N we obtain a minimizing function wpk ∈ N
1,∞
L (X) such that Jpkϕ,U = IpkL,U (wpk). See (5)

for the definition of Jpkϕ,U . As before, {wpk}k is an equicontinuous and equibounded sequence of
Lipschitz functions on X. Then, passing to a subsequence we may assume that {wpk}k converges
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uniformly on X to some Lipschitz function ψ (in the same manner that we have obtained ϕ).
Then as in (6) we have that, for every u ∈ N1,∞(U) such that u = ϕ on X \ U ,

‖gψ‖L∞(U) ≤ ‖gu‖L∞(U).

In particular,
‖gψ‖L∞(U) ≤ ‖gv‖L∞(U).

Since {upk}k converges uniformly to ϕ in X, for each ε > 0 there is some kε ∈ N such that
whenever k ∈ N with k ≥ kε,

wpk − ε = ϕ− ε < upk < ϕ+ ε = wpk + ε on X \ U.

From Lemma 3.5 we know that upk is a minimizer Jpkupk ,U
. Now by Lemma 3.8, applied to the

pair of functions wpk − ε and upk on U , and again to the pair of functions upk and wpk + ε on
U , we get that

wpk − ε ≤ upk ≤ wpk + ε on U.

Thus, letting k → ∞, we obtain that ψ − ε ≤ ϕ ≤ ψ + ε on V whenever ε > 0, that is, ψ = ϕ
on U . Thus from Lemma 2.11 we have that gψ = gϕ almost everywhere on U . Then

‖gϕ‖L∞(U) = ‖gψ‖L∞(U) ≤ ‖gv‖L∞(U) ≤ ‖gv‖L∞(V ).

To complete the proof, note that, since X is complete and µ doubling, we have that X is a
proper metric space, that is, every closed ball in X is compact (see, e.g. pg. 102 in [21]). In
particular X is separable, and the open set V has at most a countable number of connected
components. Then we obtain that

‖gϕ‖L∞(V ) ≤ ‖gv‖L∞(V ),

as required. �

The above three steps together complete the proof of Theorem 3.3. In the next section we
consider the relationships between ∞-harmonic functions and AMLEs.

4 Coincidence of∞-harmonicity and AMLEs under the assump-
tion of ∞-weak Fubini property

Recall the notion of AMLEs from Definition 2.7. In this section we compare the notion of ∞-
harmonicity and the notion of AMLE. We show that if X supports an ∞-weak Fubini property,
then the two notions coincide.
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In [24] it was shown that if the metric measure space supports a p-Poincaré inequality for
some finite p ≥ 1 and satisfies a notion of weak Fubini property associated with the index p,
then a function is an AMLE if and only if it is ∞-harmonic. In our paper we only require X
to support an ∞-weak Fubini property (see below). Note that ∞-weak Fubini property implies
that X supports an ∞-Poincaré inequality. However, the support of a weak Fubini property
as in [24] does not imply the support of a p-Poincaré inequality, but does imply the support of
∞-weak Fubini property, which in turn implies the support of an ∞-Poincaré inequality. As
described in Section 2, there are metric measure spaces equipped with a doubling measure and
supporting an ∞-Poincaré inequality, but supporting no p-Poincaré inequality, 1 ≤ p <∞.

Definition 4.1 We say that the metric measure space (X, d, µ) satisfies an ∞-weak Fubini
property if there exist constants C > 0 and τ0 > 0 such that, for every 0 < τ < τ0 and for every
pair of balls B1, B2 in X with dist(B1, B2) > τ ·max{diam(B1), diam(B2)}, we have that

Mod∞ (Γ(B1, B2, τ)) > 0,

where Γ(B1, B2, τ) denotes the family of all paths γ in X from B1 to B2, with length `(γ) ≤
dist(B1, B2) + Cτ .

The next characterization of∞-weak Fubini property will be useful to us. First we introduce
the following notion. Given a subset N of a metric measure space X, we say that a curve γ is
transversal to N if H1(γ−1(N)) = 0. The terminology of transversality is from [8] and [9].

Proposition 4.2 Let (X, d, µ) be a complete metric measure space with µ be doubling. Then
X satisfies an ∞-weak Fubini property if and only if for every set N ⊂ X with µ(N) = 0 and
every ε > 0, for each pair of distinct points x, y ∈ X, there is a rectifiable curve γ transversal
to N , with end points x, y and such that `(γ) ≤ d(x, y) + ε. Moreover, if X satisfies an ∞-weak
Fubini property, then X supports an ∞-Poincaré inequality.

Proof. Note first that the support of ∞-Poincaré inequality is a consequence of ∞-weak
Fubini property, and this can be seen by following the same proof of (b) ⇒ (f) given in [15,
Theorem 3.1.].

Suppose first that for every set N ⊂ X with µ(N) = 0 and every ε > 0, for each pair of
distinct points x, y ∈ X, there is a transversal rectifiable curve γ with end points x, y such that

`(γ) ≤ d(x, y) + ε.

Let B1, B2 satisfy the hypotheses in the definition of ∞-weak Fubini property with τ = ε.
If, with the choice of C = 2, we have Mod∞ Γ(B1, B2, ε) = 0, then there is a non-negative
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Borel measurable function ρ such that ρ = 0 µ-a.e. in X and for all γ ∈ Γ(B1, B2, ε) we have∫
γ ρ ds =∞ (see 2.2). Let N = {x ∈ X : ρ(x) > 0}. We choose x1 ∈ B1 and x2 ∈ B2 such that

d(x1, x2) ≤ dist(B1, B2) + ε.

Then by assumption of ρ we have µ(N) = 0 and so there is a transversal curve γ0 connecting
x1 and x2 such that `(γ0) ≤ d(x1, x2) + ε. But then we have

∫
γ0
ρ ds = 0 < ∞, and `(γ0) ≤

dist(B1, B2) + 2ε, which means that γ0 ∈ Γ(B1, B2, ε), contradicting the choice of ρ. Thus we
must have Mod∞ (Γ(B1, B2, ε)) > 0, that is, an ∞-weak Fubini property holds.

Conversely, suppose X satisfies an ∞-weak Fubini property. Let N ⊂ X with µ(N) = 0,
ε > 0, and x, y ∈ X be two distinct points. Choose ε > 0 such that τ < min{ε, τ0, d(x, y)}/(10C).
Let B1 be the ball centered at x with radius τ and B2 be the ball centered at y with radius
τ . Then B1, B2 satisfy the hypotheses in the definition of ∞-weak Fubini property, and so
Mod∞ Γ(B1, B2, τ) > 0. Thus we can find xτ ∈ B1, yτ ∈ B2 and a transversal rectifiable curve
γτ with end points xτ , yτ such that

`(γτ ) ≤ dist(B1, B2) + Cτ.

By choosing τ to be small enough, we can ensure that `(γτ ) ≤ d(x, y) + ε
2 . Note that

d(x, xτ ) < τ and d(y, yτ ) < τ , and so by the ∞-Poincaré inequality (a consequence of the
∞-weak Fubini property as noted above), there exist curves βτ connecting x to xτ and ατ
connecting y to yτ such that `(βτ ) < Cτ and `(ατ ) < Cτ , with H1(β−1

τ (N)∪α−1
τ (N)) = 0. The

concatenation γ = ατ ∗ γτ ∗ βτ is a transversal rectifiable curve connecting x to y with

`(γ) ≤ d(x, y) + ε
2 + 2Cτ.

By choosing τ small enough so that we also have 2Cτ < ε/2, we obtain the desired result.
�

Now, we define a geodesic distance on the metric measure space by using the notion of
transversality for a given null set. This distance has been used in [8] and [9] for example.

Definition 4.3 Let X be a metric measure space. For each null set N in X we define

d̂N (x, y) = inf{`(γ) : γ is a curve transversal to N and connecting x to y}.

It is easily seen that for null sets N ⊂ X, d̂N is an extended metric on X, in the sense that
d̂N can possibly take infinite values (since the infimum of the empty set is ∞). Furthermore, if
X supports an ∞-Poincaré inequality, then by Theorem 2.10 there exists C ≥ 1 such that for
each null set N ⊂ X,

d(x, y) ≤ d̂N (x, y) ≤ Cd(x, y). (7)
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The next result shows that, if a metric measure space X satisfies an ∞-Poincaré inequality,
then there is a bi-Lipschitz equivalent length metric on X that makes X satisfy the ∞-weak
Fubini property.

For x, y ∈ X we set

d̂(x, y) = sup{d̂N (x, y) : N null set in X}. (8)

Proposition 4.4 Let (X, d, µ) be a complete metric measure space with µ doubling.

(a) If d̂ is finite on X, then it is a length metric on X and (X, d̂, µ) satisfies an∞-weak Fubini
property.

(b) If X supports an ∞-Poincaré inequality, then

(i) There exists C ≥ 1 such that

d(x, y) ≤ d̂(x, y) ≤ Cd(x, y)

whenever x, y ∈ X. Furthermore, (X, d̂, µ) satisfies an ∞-weak Fubini property.

(ii) For every domain Ω in X, a function u on Ω is ∞-harmonic in Ω with respect to d̂
and µ if and only if it is ∞-harmonic with respect to d and µ.

(c) (X, d, µ) satisfies an ∞-weak Fubini property if and only if d = d̂.

Proof. To prove (a), suppose that d̂ is finite-valued on X × X. Denoting by ` and ̂̀ the
corresponding length functionals associated respectively to d and d̂, for every curve γ in X we
have that

`(γ) = ̂̀(γ).

Indeed, since d ≤ d̂ it is clear that `(γ) ≤ ̂̀(γ). On the other hand, given ε > 0, choose first a
subdivision P = {t0 < t1 < · · · < tn} of the interval where γ is defined so that

̂̀(γ)− ε ≤
n∑
i=1

d̂(γ(ti−1), γ(ti)).

For each i = 1, 2, · · · , n choose a null set Mi of X such that

d̂(γ(ti−1), γ(ti)) ≤ d̂Mi(γ(ti−1), γ(ti)) +
ε

n
.

Letting M =
⋃n
i=1Mi, we have that d̂Mi ≤ d̂M for every i = 1, 2, · · · , n. Then

̂̀(γ)− ε ≤
n∑
i=1

d̂M (γ(ti−1), γ(ti)) + ε ≤
n∑
i=1

`(γ|[ti−1, ti]) + ε = `(γ) + ε.

22



As a consequence, we obtain that ̂̀(γ) ≤ `(γ). Thus d̂ is a length metric on X. Now, by
Proposition 4.2, given x, y ∈ X, a null set N ⊂ X and ε > 0, from the definition of metric d̂N
we obtain a curve γ transversal to N , joining x and y, and such that

̂̀(γ) = `(γ) ≤ d̂N (x, y) + ε ≤ d̂(x, y) + ε,

and the rest of the claim of (a) follows.

Claim (b)(i) follows from the discussion preceding (7). We next show (b)(ii). First note
that, by the remark given at the beginning of this proof, the arc-length parametrization of every
curve γ in X coincides for (X, d) and (X, d̂). Thus, if ρ : X → [0,∞] is a Borel function, the
path integral

∫
γ ρ ds coincides for (X, d, µ) and (X, d̂, µ). This means that given a function u

on X, a non-negative Borel measurable function g on X is an upper gradient of u with re-
spect to the metric d if and only if it is an upper gradient of u with respect to the metric d̂.
Analogous statements hold for ∞-weak upper gradients of u. In particular, the corresponding
Newton-Sobolev spaces coincide: N1,∞(X, d, µ) = N1,∞(X, d̂, µ). Now the result follows di-
rectly from the definition of∞-harmonicity. Finally, using Proposition 4.2 again we obtain (c).

�

The following example shows that Part (b)(i) of the above proposition is no longer true
without the hypothesis of ∞-Poincaré inequality.

Example 4.5 Without∞-Poincaré inequality d̂ may possibly take infinite values, and in partic-
ular it may not be equivalent to d, as shown by the example of the Sierpinski carpet endowed with
the corresponding Hausdorff measure. The Sierpinski carpet does not support an ∞-Poincaré
inequality and hence cannot satisfy any ∞-weak Fubini property. Since the length metric on
this carpet is bi-Lipschitz equivalent to the Euclidean metric, it follows that the above statement
holds also when the carpet X is equipped with the length metric. To see that d̂ is not equivalent
to d in this case, we consider the set N constructed in Example 2.6. Observe that d̂N (x, y) =∞,
and so d̂ is not equivalent to d in the carpet.

Lemma 4.6 Suppose that (X, d, µ) is a complete metric measure space with µ doubling and
supporting an ∞-weak Fubini property. Then for each u ∈ LIP∞(X) = N1,∞(X),

LIP(u,X) = sup
x∈X

Lipu(x) = ‖Lipu‖L∞(X) = ‖gu‖L∞(X).

Furthermore, if V ⊂ X is a non-empty open set, then for each u ∈ N1,∞(V ) (noting that such
functions are necessarily locally Lipschitz continuous in V ),

sup
x∈V

Lipu(x) = ‖Lipu‖L∞(V ) = ‖gu‖L∞(V ). (9)
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Proof. Note that as Lipu is an upper gradient of u and gu is the minimal ∞-weak upper
gradient of u, we have that gu ≤ Lipu almost everywhere in X.

Let u ∈ LIP∞(X), and define N = {x ∈ X : Lipu(x) > ‖Lipu‖L∞(X)}. Now, fix x, y ∈ X.
Given ε > 0 take γ in X connecting x and y that is transversal to N , parametrized by the
arc-length, such that `(γ) ≤ d(x, y) + ε. Then

|u(x)− u(y)| ≤
∫ `(γ)

0
Lipu(γ(t))dt ≤ ‖Lipu‖L∞(X)`(γ) ≤ ‖Lipu‖L∞(X)[d(x, y) + ε].

Now, first let ε → 0 and then take the supremum over x, y ∈ X in the above to obtain
LIP(u,X) ≤ ‖Lipu‖L∞(X).

Replacing the role of Lipu in the above with gu and noting that the collection Γ of curves
for which the function-upper gradient inequality does not hold has ∞-modulus zero, there must
be a set N ⊂ X with µ(N) = 0 such that for each γ ∈ Γ we must have H1(γ−1(N)) > 0, which
gives the last equality in the first claim.

Let V ⊂ X be open and non-empty set, and u ∈ N1,∞(V ) with B(x, 2r) ⊂ V Fix r > 0 such
that B(x, 2r) ⊂ V , and 0 < ε < r/2. Let x ∈ V and N = {y ∈ B(x, r) : gu(y) > ‖gu‖L∞(B(x,r))}.
Then µ(N) = 0. Note in the above inequality that for each y ∈ B(x, r/2) there is a rectifiable
curve γ with end points x, y such that `(γ) ≤ d(x, y) + ε, γ is transversal to N , and

|u(x)− u(y)|
d(x, y)

≤ `(γ)

d(x, y)

∫
[0,`(γ)]

gu ◦ γ ds ≤
`(γ)

d(x, y)
‖gu‖L∞(B(x,r)).

Note that by the choice of r and ε, γ ⊂ V . It follows that (by letting ε→ 0 and then y → x)

Lipu(x) ≤ lim
r→0+

‖gu‖L∞(B(x,r)).

From the previous inequality we also have that whenever V ⊂ X is a non-empty open set, then

‖gu‖L∞(V ) ≤ ‖Lipu‖L∞(V ).

On the other hand, for each ε > 0 there exists z0 ∈ V such that

‖Lipu‖L∞(V ) − ε ≤ Lipu(z0) ≤ lim
r→0+

‖gu‖L∞(B(z0,r)) ≤ ‖gu‖L∞(V ).

Therefore it follows that
‖gu‖L∞(V ) = ‖Lipu‖L∞(V ),

for any non-empty open set V ⊂ X. �
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Remark 4.7 A converse of the above lemma also holds. Let (X, d, µ) be a complete metric
measure space with µ doubling. Suppose that for each u ∈ N1,∞(X) we have

LIP(u,X) = sup
x∈X

Lipu(x) = ‖Lipu‖L∞(X) = ‖gu‖L∞(X). (10)

Then X satisfies an ∞-weak Fubini property. To see this, fix a set N ⊂ X with µ(N) = 0.
We consider the metric d̂N as in Definition 4.3. By the above hypothesis, it follows from
Theorem 2.10 that X supports an ∞-Poincaré inequality, and so again by Theorem 2.10 it
follows that there is a constant C ≥ 1 with d̂N (z, w) ≤ C d(z, w) whenever z, w ∈ X. We fix
y ∈ X, R > 1, and consider the function

u(x) = min

{
R, inf

γ

∫
γ
[1 +∞ · χN ] ds

}
,

where the infimum is over all rectifiable curves γ in X connecting x to y. Note that u(x) ≤
d̂N (x, y) for each x ∈ X, and so u ∈ N1,∞(X). Furthermore, g = 1 +∞χN ∈ L∞(X) is an
upper gradient of u, and so by the hypothesis we have

LIP(u,X) = ‖gu‖L∞(X) ≤ ‖g‖L∞(X) = 1,

that is, u is 1-Lipschitz continuous on X. It follows that for each x ∈ X and ε > 0 we can find a
curve γ connecting x to y that is transversal to N and satisfying `(γ) ≤ d(x, y) + ε. Therefore,
from Proposition 4.2, X satisfies an ∞-weak Fubini property.

Under the∞-weak Fubini property (which implies the support of∞-Poincaré inequality), we
know that LIP∞(X) = N1,∞(X), see Theorem 2.10. Hence the property of every u ∈ N1,∞(X)
satisfying (10) characterizes proper metric measure spaces that support∞-weak Fubini property.
The property (10) is crucial in understanding the connections between AMLEs and∞-harmonic
functions, see for example [24] and [12].

The following lemma is from [24], but we provide a proof here for the reader’s convenience.
Recall that a metric space is said to be proper if every closed ball in that space is compact.

Lemma 4.8 If X is a proper length space, then whenever V ⊂ X is a non-empty open set, we
have

LIP(u, V ) = max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
. (11)

Proof. Since X is a proper length space, it follows from an application of the Arzela-Ascoli
theorem that for each x, y ∈ X there is a rectifiable curve, called a geodesic curve, with end
points x, y such that `(γ) = d(x, y). The fact that

LIP(u, V ) ≥ max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
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is immediate. So it only remains to prove the reverse inequality. For x, y ∈ V let γ be a geodesic
in X connecting x to y. If γ lies within V , then

|u(x)− u(y)|
d(x, y)

≤ 1

d(x, y)

∫
γ

Lipu ds ≤ sup
z∈V

Lipu(z).

If γ intersects ∂V , let x0 ∈ ∂V be the first time γ intersects ∂V , and y0 ∈ ∂V be the last time
γ intersects ∂V ; that is, there are ts, tl ∈ [0, d(x, y)] such that γ([0, ts)) ⊂ V , γ(ts) = x0, and
γ((tl, d(x, y)]) ⊂ V , γ(tl) = y0. Then

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(x0)− u(y0)|+ |u(y0)− u(y)|
≤ [sup

z∈V
Lipu(z)]d(x, x0) + LIP(u, ∂V ) d(x0, y0) + [sup

z∈V
Lipu(z)]d(y, y0)

≤ max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
[d(x, x0) + d(x0, y0) + d(y0, y)]

≤ max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
d(x, y).

Combining this with the above inequality yields that for each x, y ∈ V with x 6= y,

|u(x)− u(y)|
d(x, y)

≤ max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
.

Taking the supremum over x, y ∈ V of the above yields (11). �

The following is the main theorem of this section.

Theorem 4.9 Let (X, d, µ) be a complete metric measure space with µ a doubling measure
supporting an ∞-Poincaré inequality. Let Ω ⊂ X be a bounded domain such that X \ Ω has
positive measure. Let f : ∂Ω→ R be a Lipschitz function, there is exactly one function u : Ω→ R
such that u = f on ∂Ω and u is ∞-harmonic in Ω. Furthermore, u is an AMLE of f to Ω when
X is equipped with the metric d̂ as defined in (8).

Proof. Recall that the notion of ∞-harmonicity yields the same class of functions under each
of the metrics d and d̂, see Proposition 4.4 (b) (ii). By Proposition 4.4 (a) we have that (X, d̂)
is a length space, (X, d̂, µ) satisfies an ∞-weak Fubini property, and the function u := ϕ given
by Theorem 3.3 is∞-harmonic in Ω for (X, d̂, µ). Also, since (X, d̂) is complete and µ doubling,
we have that (X, d̂) is a proper metric space.
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By Lemma 4.6 and by Lemma 4.8, if V ⊂ Ω is a non-empty open set and if v : V → R is
such that v = u on ∂V , then

LIP(u, V ) = max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
= max

{
LIP(v, ∂V ), ‖gu‖L∞(V )

}
≤ max

{
LIP(v, ∂V ), ‖gv‖L∞(V )

}
= max

{
LIP(v, ∂V ), sup

z∈V
Lip v(z)

}
= LIP(v, V ).

It follows that u is AMLE in Ω for (X, d̂).

Finally, by [31, Theorem 1.4] AMLEs are unique; hence the uniqueness of u. This completes
the proof of the theorem. �

The proof of Theorem 4.9 also shows that, under the ∞-weak Fubini property, every ∞-
harmonic function is an AMLE. The converse is also true, as the following shows.

Theorem 4.10 Let X be a complete metric measure space with the measure µ be a doubling
measure satisfying an ∞-weak Fubini property. Let Ω be a bounded domain in X with ∂Ω
non-empty. If u : Ω→ R is an AMLE in Ω, then u is ∞-harmonic in Ω.

The proof of this theorem uses a notion called comparison with cones property. We say that
a continuous function u : Ω → R satisfies the comparison with cones in Ω if for all domains
V ⊂ Ω and all a ≥ 0, all b ∈ R and all w0 ∈ X \ V both the following two conditions are
satisfied:

1. u(x) ≤ b+ ad(w0, x) for all x ∈ V whenever u(x) ≤ b+ ad(w0, x) for all x ∈ ∂V ,

2. u(x) ≥ b− ad(w0, x) for all x ∈ V whenever u(x) ≥ b− ad(w0, x) for all x ∈ ∂V

Proof. In [24, Proposition 4.1] it was shown that if X is a proper length space, then AMLEs on
a domain Ω ⊂ X satisfy a comparison with cones in Ω. Since X is complete, µ is doubling and
X satisfies an ∞-weak Fubini property, we know that X is a proper length space. Therefore we
know that the AMLE u : Ω→ R satisfies the comparison with cones property.

Next, it was shown in [24, Proposition 5.8] that a function that satisfies the comparison
with cones property on Ω must be of strong-AMLE class in Ω provided X is a proper length
space satisfying a weak Fubini property. The notion of strong-AMLE of [24] agrees with our
notion of ∞-harmonicity under our hypotheses on X, see Lemma 4.6 above (more specifically,
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equation (9)). The proof of [24, Proposition 5.8] given there would work even if their notion of
weak Fubini property is replaced with our weaker notion of ∞-weak Fubini property.

Combining the above two paragraphs, we conclude that the AMLE u must be ∞-harmonic
in Ω. �

Combining the above two theorems we have a proof of Theorem 1.2.

Remark 4.11 If (X, d, µ) is a complete metric measure space with µ a doubling measure and
d̂ < ∞ one can also guarantee the existence of an ∞-harmonic function. Indeed, by Proposi-
tion 4.4(a), (X, d̂) is a length space and (X, d̂, µ) satisfies an ∞-weak Fubini property. By [23]
we can always find an AMLE in (X, d̂) and by Theorem 4.10 they are ∞-harmonic with respect
to d̂ and therefore with respect to d.

Example 4.12 Example 4.5 also gives a situation where an ∞-harmonic function is not neces-
sarily an AMLE. To construct such a function, consider the Sierpinski Carpet X endowed with
its length metric and the corresponding Hausdorff measure. Set g := χN , where N is the set
given in Example 2.6. We fix the set E := {(0, x2) : (0, x2) ∈ X} = {0} × [0, 1] in X, and for
points x = (x1, x2) in X we define

f(x) := inf
γ

∫
γ
g ds,

where the infimum is over all rectifiable curves γ in the carpet with one end point at x and
the other at E. Note that f(E) = {0}, but for x 6∈ E we have f(x) ≥ |x1| > 0. Hence f is
non-constant. We claim that f is Lipschitz on X. To see this, note that if x, y are two points in
X, then

|f(x)− f(y)| ≤
∫
β
g ds ≤ `(β)

for every rectifiable curve β in X with end points x, y. Since we are considering the length metric
on X, we obtain that f is 1-Lipschitz continuous. On the other hand, g is an upper gradient for
f (see [14, Lemma 3.5.]). Its minimal ∞-weak upper gradient gf then satisfies gf ≤ g almost
everywhere on X, and so by the fact that µ(N) = 0, we have ‖gf‖L∞(X) ≤ ‖g‖L∞(X) = 0,
and therefore f is automatically ∞-harmonic in X. However, LIP(f,X) > 0 because f is non-
constant. Consider the domain Ω = X \ E. Then f is not an AMLE in Ω, since f = 0 on
∂Ω = E and the only AMLE extension is the zero extension.
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in metric measure spaces. Michigan Math. Journal. 60 (2011), 63–85.

[15] E. Durand-Cartagena, J. A. Jaramillo, N. Shanmugalingam: Geometric characterizations
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http://cvgmt.sns.it/paper/2571/.

[17] E. Durand-Cartagena, X. Li: Preservation of p-Poincaré inequality for large p under spher-
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