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Abstract

Given a complete metric measure space whose measure is doubling and supports an ∞-
Poincaré inequality, and a bounded domain Ω in such a space together with a Lipschitz
function f : ∂Ω→ R, we show the existence and uniqueness of an ∞-harmonic extension of
f to Ω. To do so, we show that there is a metric that is bi-Lipschitz equivalent to the original
metric, such that with respect to this new metric the metric space has an ∞-weak Fubini
property and that a function which is ∞-harmonic in the original metric must also be ∞-
harmonic with respect to the new metric. We also show that if the metric on the metric space
has an ∞-weak Fubini property, then the notion of ∞-harmonic functions coincide with the
notion of AMLEs proposed by Aronsson. The notion of∞-harmonicity is in general distinct
from the notion of strongly absolutely minimizing Lipschitz extensions found in [12, 24, 25],
but coincides when the metric space supports a p-Poincaré inequality for some finite p ≥ 1.
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1 Introduction

Since the pioneering work of Aronsson [2], the notions of absolute minimizing Lipschitz exten-
sions (AMLEs) and ∞-harmonic functions in Euclidean domains have been extensively studied
in connection with a variety of applications. We refer to the survey [3] for general information
on this subject. Recent applications of these notions include image processing and inpainting or
brain and surface warping. The articles [6] and [28] give a good overview of such applications.

The idea behind AMLEs is simple. The Lipschitz constant of a Lipschitz function f : Y → R
for a set Y ⊂ Rn is denoted LIP(f, Y ). Then we can construct at least two Lipschitz extensions
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F : Rn → R of f to Rn with the same Lipschitz constant, that is, LIP(f, Y ) = LIP(F,Rn) as
follows. We can set:

F (x) = sup{f(y)− LIP(f, Y )d(x, y) : y ∈ Y }

for all x ∈ Rn or, we can set:

F (x) = inf{f(y) + LIP(f, Y )d(x, y) : y ∈ Y }

for all x ∈ Rn. These two extensions were first studied by McShane [31]. Note that the quantity
LIP(F,Rn) does not care about the local behavior of F , only the global behavior. Aronsson
sought to take into account also the local behavior. More precisely, given a domain Ω ⊂ Rn and
a Lipschitz function f on Y := ∂Ω, Aronsson looked for a Lipschitz extension F : Ω→ R of f to
Ω such that in addition to the above requirement that LIP(f, ∂Ω) = LIP(F,Ω), F also satisfies
LIP(F, ∂V ) = LIP(F, V ) for all subdomains V ⊂ Ω. Functions F that satisfy this condition are
called absolutely minimizing Lipschitz extensions, or AMLEs for short. In [2], existence of such
a function was demonstrated using a variant of the Perron method. Note that such F would
equivalently satisfy the condition that whenever V ⊂ Ω is a subdomain and ϕ : V → R such
that ϕ = F on ∂V , we must have LIP(F, V ) ≤ LIP(ϕ, V ). Thus the local nature of minimizing
Lipschitz constant is established for AMLEs. It was also shown in [2] and [23] that AMLEs F
in Euclidean domains are ∞-harmonic in the sense that they satisfy ∆∞F = 0, where

∆∞F =
n∑

i,j=1

∂F

∂xi

∂F

∂xj

∂2F

∂xi∂xj
.

In fact, a function on an Euclidean domain is an AMLE if and only if it is ∞-harmonic. In
the Euclidean setting, one can construct ∞-harmonic functions via p-harmonic approximations,
that is, p-harmonic functions in Ω that take on the value f on ∂Ω approximate the ∞-harmonic
functions as p→∞. While the definition of AMLEs requires only the metric d, the definition of
∞-harmonicity requires in addition the knowledge of measure on the space as well (for the notion
of weak partial derivatives). The interested reader is referred to [3] for further information.

In applications to image processing, ∞-harmonic extensions are used for image inpainting.
In image inpainting an image with a patch of loss is corrected by “painting in” the lost image.
Usually it is preferable to make the extension of the image into the lost patch as smooth as
possible. For each 1 ≤ p < ∞ the p-harmonic extension is the extension F whose p-th energy
Jp(F ) :=

∫
Ω |∇F |

p dLn is minimal amongst all Sobolev functions with the same boundary (out-
side image) data. When p = 1, the corresponding minimizer preserves edges found in the image
(see for example [1]); as p → ∞, the corresponding processed image becomes smoother, with
p = ∞ corresponding to Lipschitz smoothness. See [33] for a survey on this subject. By the
local nature of Jp, if F minimizes the energy Jp, then it does so locally as well. This is not the
case for p = ∞. Thus in requiring minimization of ∞-energy, we require the minimizers to do
so locally as well; this is in keeping with the behavior of Euclidean solutions to the equation
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∆∞u = 0. In keeping with the nomenclature that minimizers of Jp are called p-harmonic, we
call the global-local minimizers of ∞-energy ∞-harmonic.

In the abstract setting of separable length spaces, the existence of AMLEs with given Lips-
chitz boundary data was studied in [24] using a Perron’s method approach. The existence and
uniqueness of AMLEs in general length spaces is obtained in [34] using random games. Thanks
to the development of a Sobolev theory in the setting of metric measure spaces, the notion of
p-harmonic function has been considered as well (see [22] and [7]). In [25], for doubling metric
measure spaces satisfying a p-Poincaré inequality for some finite p ≥ 1, it was shown that the
limit (as p→∞) of p-harmonic solutions to the Dirichlet problem on the domain, with a given
Lipschitz boundary data, yields a so-called strongly absolutely minimizing Lipschitz extension.
It was also shown there that when X satisfies a “weak Fubini property” of exponent p, a func-
tion is an AMLE if and only if it is a strongly absolutely minimizing Lipschitz extension. This
latter notion coincides with our notion of ∞-harmonic functions in the metric setting when the
metric space supports a p-Poincaré inequality for some finite p ≥ 1. While strongly absolutely
minimizing Lipschitz extensions minimize (with respect to the L∞-norm), both locally and glob-
ally, the local Lipschitz constant function Lipu associated with the Lipschitz function u, the
∞-harmonic functions minimize the minimal ∞-weak upper gradient of u (see Definition 2.5).
It was shown in [11] that when the metric space supports a p-Poincaré inequality for some finite
p, the minimal p-weak upper gradient of a Lipschitz function u agrees almost everywhere with
Lipu. Since in our setting the metric space may not support any p-Poincaré inequality for any
finite p > 1, the Euclidean notion of ∞-harmonicity is more naturally related to our notion of
minimizing ∞-weak upper gradients; hence this is the object we study in this paper.

In [19] it was shown that there are complete metric measure spaces whose measure is doubling
and supports an ∞-Poincaré inequality but not supporting any p-Poincaré inequality for finite
p ≥ 1. The examples in [19] can still be addressed using the techniques in [25] since the domain
in consideration is a bounded domain, and the failure of p-Poincaré inequality occurs only at
large scales. However, the sphericalization of the examples in [19], using the procedure described
in [30], also supports an ∞-Poincaré inequality but does not support any p-Poincaré inequality
for finite p, see [17] and [18], and the techniques of [25] fail for domains in this sphericalized
space that contain the image of infinity from the original space of [19].

In light of these examples we are interested in knowing whether, given a bounded domain
in a doubling metric measure space supporting an ∞-Poincaré inequality, and given a Lipschitz
function defined on the boundary of the domain, there is an∞-harmonic function on the domain
with the prescribed boundary data. Our main result is the following:

Theorem 1.1 Let (X, d, µ) be a complete metric measure space with µ doubling and supporting
an ∞-Poincaré inequality, and let Ω ⊂ X be a bounded domain such that X \ Ω has positive
measure. Given a Lipschitz function f : ∂Ω→ R, there is a unique Lipschitz function u : Ω→ R
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such that u = f on ∂Ω and u is ∞-harmonic in Ω.

The problem of existence of ∞-harmonic functions is studied in Section 3, and the corre-
sponding result is given in Theorem 3.3. The standard technique of considering p-harmonic
extensions of the Lipschitz boundary data and letting p tend to ∞ does not work in our setting
as in the absence of p-Poincaré inequality for finite p we do not have control of the behavior of
p-harmonic functions. Instead, we consider a different minimization problem for each finite p,
and the family of solutions to this problem is shown to have the desirable limit as p→∞.

The question of uniqueness is related to the equivalence between AMLEs and ∞-harmonic
functions. In [25], in order to obtain this equivalence, a p-weak Fubini property with 1 < p <∞
is needed for showing that one can neglect zero measure sets when computing the Lipschitz
constant of a function. In Section 4, we prove the equivalence between AMLEs and∞-harmonic
functions under the weaker hypothesis of ∞-weak Fubini property (see Definition 4.1). This is
the content of the second main result of this paper, Theorem 1.2 below.

Theorem 1.2 Let (X, d, µ) be a complete metric measure space with µ doubling and satisfying
an ∞-weak Fubini property. Consider a bounded domain Ω ⊂ X such that X \ Ω has positive
measure and a Lipschitz function f : ∂Ω → R. A Lipschitz function u : Ω → R is ∞-harmonic
in Ω if and only if it is an AMLE of f to Ω.

In the Euclidean setting uniqueness of AMLEs for a given boundary data was established
via the tool of viscosity solutions in [23], and an alternate proof using viscosity solutions and
tug-of-war games was provided in [34]. A simpler proof of this uniqueness is given in [4]. In
the setting of Heisenberg groups, uniqueness was demonstrated in [5]. Uniqueness for AMLEs
in metric spaces that are length spaces was established in [34, Theorem 1.4], see also [4]. In the
Euclidean setting the notion of AMLEs coincide with the notion of ∞-harmonic functions, but
in the metric setting this is not the case.

Proposition 4.2 gives a simple metric characterization of ∞-weak Fubini property. It shows
that the link between ∞-weak Fubini property and the measure µ is only via µ-null sets. Note
that the hypotheses of Theorem 1.1 do not guarantee that the space has a weak Fubini property.
Hence, to prove Theorem 1.1, we will show that under the hypotheses of this theorem there is a
bi-Lipschitz equivalent metric d̂ on X such that (X, d̂, µ) satisfies an ∞-weak Fubini property,
see Proposition 4.4. We then show that a function that is ∞-harmonic with respect to the
original metric is also ∞-harmonic with respect to d̂, and as d̂ does support a weak Fubini
property, we then know that the function is an AMLE with respect to the metric d̂. Finally
invoking the uniqueness result of [34, 4], we have uniqueness of functions that are ∞-harmonic
solutions with respect to the metric d̂ and hence with respect to the original metric d. Observe
that Theorem 1.1 deals with∞-harmonic functions; we do not know uniqueness of AMLEs with
respect to the original metric d as (X, d) need not be a length space.
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We also provide an example of a (length) space that does not satisfy any ∞-weak Fubini
property, and for which uniqueness of solutions to ∞-harmonic Dirichlet problem fails, see
Example 4.12. Given the uniqueness of AMLEs, this example also shows that there are ∞-
harmonic functions that are not AMLEs when we do not have ∞-weak Fubini property.

In the final section of this paper we study the issue of stability of ∞-harmonic functions,
and show that uniform limits of ∞-harmonic functions are ∞-harmonic.

2 Notation and definitions

In this paper we will assume that (X, d, µ) is a complete metric measure space. That is, (X, d)
is a complete metric space equipped with a Borel measure µ which is positive and finite on each
ball. We also require that the measure µ is doubling on X, that is, there is a constant CD ≥ 1
such that whenever x ∈ X and r > 0, µ(B(x, 2r)) ≤ CD µ(B(x, r)).

Given a set A ⊂ X and a Lipschitz function u : A→ R, we set for x ∈ A,

Lipu(x) := lim sup
x6=y→x

|u(x)− u(y)|
d(x, y)

, and LIP(u,A) := sup
x,y∈A,x 6=y

|u(x)− u(y)|
d(x, y)

.

We say that u is L-Lipschitz on A if LIP(u,A) ≤ L. The class of all bounded Lipschitz functions
on X is denoted LIP∞(X). This class is equipped with the norm

‖u‖LIP∞(X) := sup
x∈X
|u(x)| + LIP(u,X).

We refer the reader to [22] for an exposition on path integrals in metric spaces. A metric
space (X, d) is a length space if for each pair x, y ∈ X, d(x, y) = infγ `(γ), the infimum being
over curves with end points x, y. The metric space X is C-quasiconvex, or quasiconvex for some
C ≥ 1, if for each pair x, y ∈ X there is a curve γ connecting x and y with `(γ) ≤ Cd(x, y).

In the setting of non-smooth metric measure spaces, the role of derivatives is taken on by
the upper gradients (see [21]). Given a function u : X → R, we say that a Borel-measurable
function g : X → [0,∞] is an upper gradient of f if

|u(y)− u(x)| ≤
∫
γ
g ds (1)

whenever γ is a non-constant compact rectifiable curve in X connecting the points x and y, and
that

∫
γ g ds =∞ if at least one of u(x), u(y) is not finite. We refer the interested reader to [22]

for more on the theory of upper gradients.
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Definition 2.1 Given a family Γ of curves in X and 1 ≤ p ≤ ∞, we say that Modp(Γ) = 0 if
there is a non-negative Borel function ρ ∈ Lp(X) such that

∫
γ ρ ds =∞ for each curve γ ∈ Γ.

The now-classical definition of Modp can be found in [22], and from [27] we have the equiv-
alence of zero Modp-families with the above definition.

Remark 2.2 Here Mod∞(Γ) = 0 if and only if there is a non-negative Borel function ρ that is
zero a.e. in X such that

∫
γ ρ ds =∞ for each γ ∈ Γ, see [14, Lemma 5.7].

Definition 2.3 A non-negative Borel measurable function g on X is said to be a p-weak upper
gradient of a function u : X → R if the collection Γ of all non-constant rectifiable curves γ in
X for which the inequality (1) fails has zero p-modulus.

The Newton-Sobolev space N1,p(X) 1 ≤ p ≤ ∞) is defined as follows. First consider the
class Ñ1,p(X) of all functions in Lp(X) that have a p-weak upper gradient in Lp(X). For
u1, u2 ∈ Ñ1,p(X) we say that u1 ∼ u2 if ‖u1 − u2‖Lp(X) + infg ‖g‖Lp(X) = 0, where the infimum
is taken over all p-weak upper gradients g of u1 − u2. The relation ∼ is an equivalence relation
on the vector space Ñ1,p(X), and we set N1,p(X) to be the collection of all equivalence classes
of Ñ1,p(X). If A ⊂ X is a measurable set, we can consider A to be endowed with the metric d|A
and the measure µ|A, and consider the space N1,p(A).

From Remark 2.2 we have the following lemma.

Lemma 2.4 Let u ∈ N1,∞(X). Every ∞-weak upper gradient g of u can be modified on a set
of measure zero so that the modification g̃ is an upper gradient of u.

From [32, Lemma 4.1], we know that if g1, g2 are ∞-weak upper gradients of a function
u ∈ N1,∞(X), then g = min{g1, g2} is also an ∞-weak upper gradient of u. In fact, we
know from [32, Theorem 4.6] that for each u ∈ N1,∞(X) there is an ∞-weak upper gradient
gu ∈ L∞(X) which is minimal in the sense that whenever g ∈ L∞(X) is an ∞-weak upper
gradient of u, we have that gu ≤ g a.e. in X. Furthermore, gu is unique up to sets of measure
zero. By Lemma 2.4 we can also assume that gu is an upper gradient of u.

We now define ∞-harmonic functions as follows. By a domain in a metric space we mean a
non-empty connected open subset.

Definition 2.5 Let X be a metric measure space, and Ω a bounded domain in X such that
X \Ω has positive measure. We say that a function u : Ω→ R is ∞-harmonic in Ω if it admits
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an extension, also denoted u, to X such that u ∈ N1,∞(X) and whenever V ⊂ Ω is an open set
and v ∈ N1,∞(X) such that v = u on X \ V , we have

‖gu‖L∞(V ) ≤ ‖gv‖L∞(V ). (2)

Furthermore, we say that u ∈ N1,∞(X) is ∞-harmonic in Ω with boundary data f ∈ N1,∞(X)
if u is ∞-harmonic in Ω and u = f on X \ Ω.

Remark 2.6 If N1,∞(X) = L∞(X), then for each x ∈ X and r > 0 the function χB(x,r) ∈
L∞(X) = N1,∞(X); so χB(x,r) is absolutely continuous on ∞-modulus almost every curve in

X. Hence the collection of all rectifiable curves that intersect both B(x, r) and X \ B(x, r)
has zero ∞-modulus. Recall that µ is doubling and supported on X; hence X is separable.
As the collection of all non-constant compact rectifiable curves in X is the union of the family
Γ(B(xi, rj)) of all rectifiable curves in X intersecting both B(xi, ri) and X \B(xi, rj), with {xi}i
a countable dense subset of X and {ri}i is the set of positive rational numbers, we must have by
the countable subadditivity of modulus that the∞-modulus of the collection of all non-constant
compact rectifiable curves is zero and zero is an ∞-weak upper gradient of each u ∈ L∞(X).
Thus the following three conditions are equivalent:
1. N1,∞(X) = L∞(X);
2. With Γ(X) the collection of all non-constant rectifiable curves in X, Mod∞(Γ(X)) = 0;
3. For each u ∈ L∞(X), g ≡ 0 is an ∞-weak upper gradient of u.
For X that satisfies any of the above three conditions, zero is an∞-weak upper gradient of each
u ∈ N1,∞(X), and so each u ∈ N1,∞(X) = L∞(X) is ∞-harmonic, and hence uniqueness of
solutions to the Dirichlet problem for ∞-harmonic functions fails here.

There are many metric measure spaces where the triviality N1,∞(X) = L∞(X) does not hap-
pen. For example, if X supports an∞-Poincaré inequality, then N1,∞(X) 6= L∞(X), see [14, 15].
Of such spaces, there is a collection of metric spaces that do not support a p-Poincaré inequal-
ity for any finite p > 1, and in such a setting the currently known approaches of constructing
∞-harmonic functions fail. Thus in this paper we focus on giving a construction of∞-harmonic
functions that does not rely on the existence of p-Poincaré inequality for any finite p > 1.

In the Euclidean setting, ∞-harmonic functions u are precisely those which satisfy the equa-
tion ∆∞u = 0, see for example [12] or [3, Theorem 4.13]. This notion depends intrinsically on
the measure µ as well as the metric d. The following related notion, due to Aronsson [2] (see
also [3]), relies only on the metric d. Under certain conditions on the metric measure space X
we show that both these notions coincide; see also [25] for a discussion in the metric setting,
where a stronger assumption on the metric measure space was required. See the beginning of
this section for the definition of LIP(u, V ).
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Definition 2.7 Let (X, d) be a metric space, Ω a domain in X and f : ∂Ω → R a Lipschitz
function. We say that a Lipschitz function u defined on the closure Ω is an absolutely minimizing
Lipschitz extension (AMLE for short) of f to Ω if f = u on ∂Ω and whenever V ⊂ Ω is an open
set and v : V → R is a Lipschitz function with v = u on ∂V , we have

LIP(u, V ) ≤ LIP(v, V ).

If u is an N1,∞(Ω)-function that has a minimal ∞-weak upper gradient gu on Ω such that
gu ≤ L a.e. in Ω, and f is a Lipschitz function on X \Ω such that L is an upper gradient of f and
u = f on ∂Ω, then u has an extension û = f to X \Ω such that the extension ĝu of gu to X \Ω
by the constant L is an∞-weak upper gradient of û, see [7, Proposition 2.39]. As a consequence,
we see that if u ∈ N1,∞(Ω) has an ∞-weak upper gradient that is a.e. in Ω bounded by L and
u = f on ∂Ω, then u has an extension û ∈ N1,∞(X) to X that has an ∞-weak upper gradient
dominated a.e. in X by L.

Lemma 2.8 Let Ω, G be two non-empty open subsets of X, G ⊂ Ω with dist(G,X \Ω) > 0, and
u ∈ N1,p(Ω), f ∈ N1,∞(X). If u = f on ∂G, then the function û given by

û(x) =

{
u(x) if x ∈ G,
f(x) if x ∈ X \G

is in N1,p
loc (X).

Proof. To prove the lemma, it suffices to show that û has a bounded p-weak upper gradient.
We set u0 = û− f , and then it suffices to show that u0 ∈ N1,p

loc (X). Let g ∈ Lp(Ω) be an upper
gradient of u− f in Ω, and let g0 be the zero extension of g to X \Ω. We wish to show that g0

is a p-weak upper gradient of u0 in X.

Let γ be a non-constant compact rectifiable curve in X, and let x, y denote the two end
points of γ. It suffices to consider only γ for which x ∈ G. Then, with γ : [a, b] → X and
γ(a) = x, there is some t0 ∈ (a, b] such that γ((a, t0)) ⊂ G. Let t0 be the largest such number
in (a, b]. If t0 < b, then γ(t0) ∈ ∂G and u0(γ(t0)) = u(γ(t0))− f(γ(t0)). If t0 = b, then again we
have that u0(γ(b)) = u0(y) = u(y) − f(y). In either case, from the facts that g0 ◦ γ = g ◦ γ on
[a, t0) and g is an upper gradient of u we can infer that

|u0(x)− u0(γ(t0))| = |u(x)− u(γ(t0))| ≤
∫
γ|[a,t0]

g0 ds.

If γ(b) 6∈ G, then from the above we have that |u0(x) − u0(y)| = |u0(x) − u0(γ(t0))| ≤
∫
γ g0 ds.

It now follows that g0 is a p-weak upper gradient of u0 and so u0 ∈ N1,∞(X). �

We next introduce the notion of p-Poincaré inequalities, which play a main role in this paper.
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Definition 2.9 Given 1 ≤ p ≤ ∞, we say that a metric measure space X supports a p-Poincaré
inequality if there are positive constants C, λ such that whenever B = B(x, r) is a ball in X and
g is an upper gradient of u, ∫

B
|u− uB| dµ ≤ C r

(∫
λB
gp dµ

)1/p

,

where the right-hand side of the above is replaced with Cr‖g‖L∞(λB) when p = ∞. Here uB :=
µ(B)−1

∫
B u dµ =:

∫
B u dµ is the average of u on the ball B, and λB := B(x, λr).

By Hölder’s inequality, we know that every metric measure space supporting a p-Poincaré
inequality for some 1 ≤ p <∞ must necessarily support an∞-Poincaré inequality. The converse
need not hold true, as demonstrated in [19].

The following geometric characterization of∞-Poincaré inequality was established in [15, 16].

Theorem 2.10 ([16, Theorem 3.1]) Let (X, d, µ) be a complete metric measure space with µ
be doubling. Then the following are equivalent:
(1) X supports an ∞-Poincaré inequality.
(2) There exists a constant C ≥ 1 such that if u ∈ N1,∞(X) with an ∞-weak upper gradient
g ∈ L∞(X), then u is C‖g‖L∞(X)-Lipschitz continuous on X.
(3) There is a constant C ≥ 1 such that whenever N ⊂ X with µ(N) = 0 and x, y ∈ X with
x 6= y, then there is a rectifiable curve γ with end points x, y such that `(γ) ≤ Cd(x, y) and
H1(γ−1(N)) = 0.

Each of the criteria listed above imply that X is connected. Note that in Criterion (2), if we
remove the requirement that u is C‖g‖L∞(X)-Lipschitz, then we need to add the requirement
that X is connected.

Example 2.11 Let (X, d, µ) be the Sierpiński carpet equipped with the Euclidean metric and
the corresponding Hausdorff measure. Then X does not support an ∞-Poincaré inequality (see
[15, Example 4.14]). From the discussion in [8], we know the existence of a set N̂ ⊂ [0, 1] such
that, with the Hausdorff measure on X denoted by µ, the “first coordinate projection” Π1µ of
µ to [0, 1] given by Π1µ(A) = µ(Π−1

1 (A)) for Borel sets A ⊂ [0, 1] sees N̂ as of measure zero but

H1(N̂) = 1. Let N = (Π−1
1 (N̂) ∪ Π−1

2 (N̂)). Here Π1 and Π2 are the first coordinate and the
second coordinate projection maps from X to the interval [0, 1]. Note that µ(N) = 0. Given
any non-constant curve γ in X, by breaking the curve up into two sub-curves if necessary, we
can assume that its end points x, y satisfy (x1, x2) = x 6= y = (y1, y2). Then

H1(γ−1(N)) ≥ H1(γ ∩N) ≥ max{H1(Π1 ◦ γ(γ−1(N))),H1(Π2 ◦ γ(γ−1(N)))}
≥ max{|x1 − y1|, |x2 − y2|} > 0.
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Hence Mod∞(Γ(X)) = 0 where Γ(X) is the collection of all non-constant rectifiable curves in
the carpet X. By Remark 2.6, we obtain N1,∞(X) = L∞(X). Moreover, for each distinct pair
x, y ∈ X and each rectifiable curve γ connecting x to y we must have that H1(γ−1(N)) > 0,
with N independent of x, y. Therefore in some situations where ∞-Poincaré inequality fails, we
might have a universal choice of null set N (that is, independent of x, y) that violates the third
condition of the above theorem.

We end this section with a technical lemma that will be needed in Section 3, showing a
locality property of minimal ∞-weak upper gradients of functions in N1,∞(X). This lemma
follows from [7, Theorem 2.18], [32, Lemma 4.1] and Lemma 2.4.

Lemma 2.12 Let X be a metric measure space and E a measurable subset of X. Suppose that
u, v ∈ N1,∞(X) are such that u = v on E. Then gu = gv a.e. on E.

3 Existence of ∞-harmonic functions

In this section we show the existence of an ∞-harmonic function on a domain Ω ⊂ X with
prescribed Lipschitz boundary data. To do so, we solve a variational (minimization) problem
corresponding to each exponent p > 1 and then let p → ∞ to obtain the solution. A similar
technique was employed in [25] where the variational problem was to minimize the Lp-energy
and obtain a p-harmonic function for each finite p; however, without a p-Poincaré inequality for
some finite value of p, we have no control over the behavior of p-harmonic functions, and hence
the variational problem we consider is different.

Standing Assumptions: Throughout this section we assume that (X, d, µ) is a complete metric
measure space with µ doubling and supporting an ∞-Poincaré inequality. We fix a bounded
domain Ω ⊂ X and we assume that µ(X \ Ω) > 0 in order to avoid trivial statements.

Definition 3.1 Given L > 0, let N1,∞
L (X) be the collection of all functions u in N1,∞(X) that

have an upper gradient g with ‖g‖L∞(X) ≤ L. For u ∈ N1,∞
L (X) we set DL(u) to be the collection

of all upper gradients g of u such that ‖g‖L∞(X) ≤ L.

Let f : X → R with f ∈ N1,∞(X). In this section we establish the existence of a function
u ∈ N1,∞(X) that is∞-harmonic in Ω with boundary data f . Since X is complete and supports
an ∞-Poincaré inequality, by Theorem 2.10 we know that every function in N1,∞

L (X) is CL-

Lipschitz on X, so as N1,∞(X) =
⋃
L≥0N

1,∞
L (X), f is Lipschitz. Let L > 0 such that DL(f) 6= ∅.
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Definition 3.2 Fix 1 < p <∞. For u ∈ N1,∞
L (X) we set

IpL(u) :=

∫
Ω
gpu dµ = inf

{∫
Ω
gp dµ : g ∈ DL(u)

}
, (3)

Jpf := inf
{
IpL(u) : u ∈ N1,∞

L (X); u = f on X \ Ω
}
. (4)

Theorem 3.3 Given a Lipschitz function f : X → R, there is a Lipschitz function ϕ : Ω → R
such that ϕ = f on ∂Ω and ϕ is ∞-harmonic in Ω.

If f : ∂Ω → R is an L-Lipschitz function, then using the McShane extension theorem [31]
(see Section 1 of this paper), we can extend f to a bounded Lipschitz function defined on X.
Hence in the above theorem it suffices to prescribe f only on ∂Ω. The remainder of this section
is devoted to the proof of this theorem. The proof is divided into different steps:

Step 1. Fix L > 0 such that f is L-Lipschitz on X, and note that the constant function g = L
is an upper gradient of f . For every 1 < p <∞, we will show that there is a Lipschitz solution
up of the variational problem defined in (4) such that up = f on X \ Ω.

Note that Jpf ≤ IpL(f) ≤ Lpµ(Ω) <∞, and hence we can find a sequence {uk}k ⊂ N1,∞
L (X)

such that uk = f on X \ Ω and limk I
p
L(uk) = Jpf . Since each uk is CL-Lipschitz, the family

{uk}k is equicontinuous on X, and since uk = f on X \ Ω with Ω bounded, it follows that the
family is also equibounded on X. Thus an invocation of the Arzela-Ascoli theorem leads us to
conclude that, passing to a subsequence if necessary, there is a CL-Lipschitz function up on X
such that {uk}k → up uniformly on X.

Lemma 3.4 For each 1 < p <∞ we have that up ∈ N1,∞
L (X), up = f on X \ Ω, and

Jpf = IpL(up) =

∫
Ω

(gup)p dµ. (5)

Proof. Since {uk}k → up uniformly on X, we only need to consider upper gradients of up now.
By passing to a subsequence if needed, for each k we can find an upper gradient gk of uk such
that gk ≤ L a.e. on X and

∫
Ω g

p
k dµ ≤ J

p
f + 1/k.

Fix a bounded domain Ω0 in X such that Ω b Ω0. Thus {gk}k is a bounded sequence in
Lp(Ω0). By the reflexivity of Lp(Ω0), taking a further subsequence we may assume that {gk}k
is weakly convergent in Lp(Ω0) to a non-negative Borel function gp ∈ Lp(Ω0). By Mazur’s

lemma, there is a convex combination subsequence {hk}k (with hk =
∑N(k)

j=k λk,jgk) such that
{hk}k → gp both in Lp(Ω0) and pointwise outside a set E ⊂ Ω0 with µ(E) = 0. From [26,
Lemma 3.1] we know that gp is a p-weak upper gradient of up on Ω0. Note that gp is defined

11



only on Ω0. On the other hand, since uk = f on Ω0 \Ω, the extension of each uk by f to X \Ω0

is also in N1,∞(X) with the extension of gp by L to X \Ω0 a p-weak upper gradient of up on X,
see Lemma 2.8. Because each guk ≤ L a.e. in X, we have that gp ≤ L on X \ (E∪

⋃
k Ek), where

each Ek = {gk > L}; and note that by assumption on gk, we have µ(Ek) = 0. However, we do
not know that gp is an upper gradient of up. Thus we need to modify gp suitably as follows.

Setting F = E ∪
⋃
k Ek, we have µ(F ) = 0. Let Γ+

F denote the collection of all non-
constant rectifiable (arc-length parametrized) curves γ in X such that H1(γ−1(F )) > 0. Then,
by considering ρ = ∞ · χF in Remark 2.2, we obtain that Mod∞(Γ+

F ) = 0. For rectifiable non-
constant curves γ in X that do not belong to Γ+

F we know that {hk ◦ γ}k → gp ◦ γ H1-a.e. on
the domain of γ, and that a.e. there we also have each hk ≤ L and gp ≤ L. Therefore by the
Lebesgue dominated convergence theorem, limk

∫
γ hk ds =

∫
γ gp ds. Denoting the endpoints of

γ by x, y, and noting that the convex combination sequence vk =
∑N(k)

j=k λk,juk, with N(k), λk,j
as in the choice of hk, converges uniformly to up as well on X, we have that

|up(x)− up(y)| = lim
k
|vk(x)− vk(y)| ≤ lim

k

∫
γ
hk ds =

∫
γ
gp ds.

Therefore gp is an ∞-weak upper gradient of up (this is stronger than saying that gp is a p-weak
upper gradient of up), with (1) being satisfied for all rectifiable curves in X that are not in Γ+

F .
Therefore ĝp := gp +∞χF is an upper gradient of up on X such that ĝp ≤ L on X \ F . Hence

up ∈ N1,∞
L (X), and by construction, up = f on X \ Ω. This also means that IpL(up) ≥ Jpf .

Finally, since hk → ĝp in Lp(Ω) we have that limk

∫
Ω h

p
k dµ =

∫
Ω ĝp

p dµ. By the lower
continuity of Lp-norms, we deduce that

Jpf ≤ I
p
L(up) ≤

∫
Ω
ĝp
p dµ ≤ lim

k

∫
Ω
gpk dµ ≤ J

p
f .

Suppose now that g ∈ DL(u). Then by the lattice property of ∞-weak upper gradients (see [32,
Lemma 4.1]) we have that min{gp, g} is an ∞-weak upper gradient of up. Hence by the mini-
mality of IpL(up) we must have gp ≤ g a.e. in Ω, that is, gp = gup . �

Now let U be a subdomain of Ω, and consider the analogous variational problem on U with
boundary data up. For u ∈ N1,∞

L (X) we set IpL,U (u) to be as in (3), with Ω replaced with U ,

and for functions w ∈ N1,∞(X), we set

Jpw,U := inf

{∫
U
gpu dµ : u ∈ N1,∞

L (X); u = w on ∂U

}
. (6)

The next Lemma shows that up solves the minimization problem (6).
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Lemma 3.5 Let 1 < p <∞ and v ∈ N1,∞
L (X) such that v = up on ∂U . Then∫

U
(gup)p dµ ≤

∫
U
gpv dµ.

Proof. Consider the Lipschitz function w = v ·χU +up ·χX\U . By Lemma 2.12, we have gw = gv

a.e. on U and gw = gup a.e. on X \ U . In particular w ∈ N1,∞
L (X), and since w = f on X \ Ω,∫

Ω
(gup)p dµ = Jpf ≤ I

p
L(w) ≤

∫
Ω
gpw dµ =

∫
U
gpv dµ+

∫
Ω\U

(gup)p dµ.

�

Step 2: In this step we show that the function up obtained in Step 1 is unique and satisfies
the comparison property. We start with the following lemma, which shows a strong locality
property for functions in N1,∞(X).

The following lemma can be proven by showing with the aid of ∞-Poincaré inequality that
such u is locally constant on Ω, and then using the fact that Ω is connected.

Lemma 3.6 Let u ∈ N1,∞(X) and suppose that g ∈ L∞(X) is an upper gradient of u such that
g = 0 a.e. in Ω. Then u is constant on Ω.

Next we show uniqueness of up.

Lemma 3.7 Let 1 < p <∞. If vp is another minimizer of Jpf , then vp = up.

Proof. The proof of this follows exactly as in [11, Theorem 7.14] (see [7, Theorem 7.2] for a
more detailed proof, considering the obstacle ψ = −∞ there), upon noticing that DL(u) is a
convex subset of Lp(X) (since Ω is bounded, we may without loss of generality assume that
µ(X) < ∞), and by the proof of Lemma 3.4, DL(u) is closed in Lp(X) as well. Now invoking
Lemma 3.6 we obtain the desired result. �

The next lemma yields the desired comparison theorem for functions up.

Lemma 3.8 Let 1 < p < ∞. Let f, F be two bounded functions in N1,∞
L (X) such that f ≤ F

on X \ Ω, and let up, Up be the two respective minimizers of Jpf and JpF . Then up ≤ Up on Ω.
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Proof. Since both up and Up are Lipschitz continuous on X, and since up = f ≤ F = Up on
X \ Ω, it follows that W := {x ∈ X : up(x) > Up(x)} is an open subset of Ω with up = Up on
∂W . Suppose that W is non-empty (if W is empty, then the claim of the lemma follows). Then
up = Up on ∂W and hence has a common L-Lipschitz extension Ψ to X \W . It follows from
the local nature of the Lp-norm that both up and Up solve the minimization problem JpΨ on W ,
and hence by Lemma 3.7 we must have up = Up in W , which contradicts the choice of W . Thus
W must be empty. This concludes the proof of the lemma. �

Step 3. In this step we fix a monotone increasing sequence {pk}k with 1 < pk < ∞ and
{pk}k → ∞, and for each k let upk be the function constructed in Step 1. Note that {upk} is
an equicontinuous and equibounded sequence of CL-Lipschitz functions on X. So, by passing
to a subsequence if necessary, and noting that each upk = f in X \ Ω with Ω compact, by
the Arzela-Ascoli theorem we can assume that {upk} converges uniformly on X to a Lipschitz
function ϕ on X, with ϕ = f on X \ Ω.

Lemma 3.9 The function ϕ is ∞-harmonic in Ω.

Proof. For each k ∈ N, we will denote for simplicity by gk the minimal ∞-weak upper gradient
gupk of upk . Now for each fixed k0 ∈ N we have that

∫
Ω g

pk0
k dµ ≤ Lpk0 µ(Ω), and so {gk}k≥k0

forms a bounded sequence in Lpk0 (Ω). An appeal to reflexivity of Lpk0 (Ω) and to Mazur’s
lemma gives us a convex combination subsequence of the sequence {gk}k≥k0 that converges both
in Lpk0 (Ω) and pointwise a.e. in Ω (and hence in X) to some non-negative Borel function ρk0 .
Since each gk ≤ L a.e. in X, by a repeat of the proof of Lemma 3.4 we see that a modification
of ρk0 on a set of measure zero makes it an upper gradient of ϕ with ρk0 ≤ L a.e. in X.

To check that ϕ is ∞-harmonic on Ω, consider v ∈ N1,∞(X) such that v = f on X \ Ω and
let gv be its minimal ∞-weak upper gradient. If ‖gv‖L∞(Ω) > L then as ‖ρk0‖L∞(Ω) ≤ L, we
have the comparison (2). Therefore, without loss of generality, we assume that gv ≤ L a.e. in
Ω. Since v = f on X \ Ω, we have by the pasting lemma [7, Theorem 2.18] together with the
lattice property that the extension of gv by L to X \Ω is an ∞-weak upper gradient of v. Thus
we have gv ≤ L a.e. in X. That is, gv ∈ DL(v).

For each k ∈ N we know from Lemma 3.4 that

IpkL (upk) =

∫
Ω
gpkk dµ ≤

∫
Ω
gpkv dµ.

Therefore, using Hölder’s inequality, for each k0 ∈ N and each k ≥ k0, we have that(∫
Ω
g
pk0
k dµ

)1/pk0
≤
(∫

Ω
gpkk dµ

)1/pk

≤
(∫

Ω
gpkv dµ

)1/pk

≤ ‖gv‖L∞(Ω).
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As pointed out above, ρk0 ≤ L a.e. in X. An argument analogous to the one given in the proof
of Lemma 3.4 also tells us that ρk0 is an∞-weak upper gradient of ϕ. Therefore gϕ ≤ ρk0 a.e. in
X. Since ρk0 is a weak limit of {gpk}k≥k0 in Lpk0 (Ω), it follows by letting k →∞ that(∫

Ω
g
pk0
ϕ dµ

)1/pk0
≤
(∫

Ω
ρ
pk0
k0

dµ

)1/pk0
≤ ‖gv‖L∞(Ω).

Now letting k0 →∞ we obtain
‖gϕ‖L∞(Ω) ≤ ‖gv‖L∞(Ω). (7)

We now need to prove the above inequality for every open subset V ⊂ Ω rather than just Ω, and
for every v ∈ N1,∞(V ) such that v = ϕ on X \V . To do so, consider first a connected component
U of V . Note that, because of the quasiconvexity of X, each connected component of V is an
open set. Furthermore, since Ω is connected and U ⊂ Ω, it follows that ∂U is non-empty and
we have v = ϕ on ∂U . Thus the extension of v by ϕ to X \ U is a test function for checking
∞-harmonicity of ϕ in U . Now for each k ∈ N consider the problem of minimizing the functional
IpkL,U (·) considered in (6) over all u ∈ N1,∞

L (X) for which u = ϕ on ∂U . As in Lemma 3.4, for

each k ∈ N we obtain a minimizing function wpk ∈ N
1,∞
L (X) such that Jpkϕ,U = IpkL,U (wpk). See (6)

for the definition of Jpkϕ,U . As before, {wpk}k is an equicontinuous and equibounded sequence of
Lipschitz functions on X. Then, there is a subsequence {wpk}k that converges uniformly on X
to some Lipschitz function ψ (in the same manner that we have obtained ϕ). Then as in (7),
for every u ∈ N1,∞(U) such that u = ϕ on X \ U , ‖gψ‖L∞(U) ≤ ‖gu‖L∞(U). In particular,

‖gψ‖L∞(U) ≤ ‖gv‖L∞(U).

Since {upk}k converges uniformly to ϕ in X, for each ε > 0 there is some kε ∈ N such that
whenever k ∈ N with k ≥ kε,

wpk − ε = ϕ− ε < upk < ϕ+ ε = wpk + ε on X \ U.

From Lemma 3.5 we know that upk is a minimizer Jpkupk ,U
. Now by Lemma 3.8, applied to the

pair of functions wpk − ε and upk on U , and again to the pair of functions upk and wpk + ε on U ,

wpk − ε ≤ upk ≤ wpk + ε on U.

Thus, letting k → ∞, we obtain that ψ − ε ≤ ϕ ≤ ψ + ε on V whenever ε > 0, that is, ψ = ϕ
on U . Thus from Lemma 2.12 we have that gψ = gϕ a.e. on U . Then

‖gϕ‖L∞(U) = ‖gψ‖L∞(U) ≤ ‖gv‖L∞(U) ≤ ‖gv‖L∞(V ).

To complete the proof, note that, since X is complete and µ doubling, we have that X is a
proper metric space, that is, every closed ball in X is compact (see, e.g. pg. 102 in [22]). In
particular X is separable, and the open set V has at most a countable number of connected
components. Then we obtain that ‖gϕ‖L∞(V ) ≤ ‖gv‖L∞(V ) as required. �

The above three steps together complete the proof of Theorem 3.3.
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4 Coincidence of∞-harmonicity and AMLEs under the assump-
tion of ∞-weak Fubini property

In this section we compare the notions of∞-harmonicity and AMLE. We show that if X supports
an ∞-weak Fubini property, then the two notions coincide.

In [25] it was shown that if the metric measure space supports a p-Poincaré inequality for
some finite p ≥ 1 and satisfies a notion of weak Fubini property associated with the index p,
then a function is an AMLE if and only if it is ∞-harmonic. In our paper we only require X
to support an ∞-weak Fubini property (see below). Note that ∞-weak Fubini property implies
that X supports an ∞-Poincaré inequality. However, the support of a weak Fubini property
as in [25] does not imply the support of a p-Poincaré inequality, but does imply the support of
∞-weak Fubini property, which in turn implies the support of an ∞-Poincaré inequality. As
described in Section 2, there are metric measure spaces equipped with a doubling measure and
supporting an ∞-Poincaré inequality, but supporting no p-Poincaré inequality, 1 ≤ p <∞.

Definition 4.1 We say that (X, d, µ) satisfies an∞-weak Fubini property if there exist constants
C > 0 and τ0 > 0 such that, for every 0 < τ < τ0 and for every pair of balls B1, B2 in X with
dist(B1, B2) > τ · max{diam(B1),diam(B2)}, we have that Mod∞ (Γ(B1, B2, τ)) > 0, where
Γ(B1, B2, τ) denotes the family of all paths γ from B1 to B2 with `(γ) ≤ dist(B1, B2) + Cτ .

Given a subset N of a metric measure space X, we say that a curve γ is transversal to N if
H1(γ−1(N)) = 0. The terminology of transversality is from [9, 10]. The next characterization
of ∞-weak Fubini property will be useful to us.

Proposition 4.2 The space X satisfies an ∞-weak Fubini property if and only if for every set
N ⊂ X with µ(N) = 0 and every ε > 0, for each pair of distinct points x, y ∈ X, there is
a rectifiable curve γ transversal to N , with end points x, y and such that `(γ) ≤ d(x, y) + ε.
Moreover, if X satisfies an ∞-weak Fubini property, then X supports an ∞-Poincaré inequality.

Proof. Note first that the support of∞-Poincaré inequality is a consequence of∞-weak Fubini
property, and this can be seen by following the proof of (b)⇒ (f) given in [16, Theorem 3.1.].

Suppose first that for every null set N ⊂ X and ε > 0, for each x, y ∈ X there is a transversal
curve γ with end points x, y and `(γ) ≤ d(x, y)+ε. Let B1, B2 be as in Definition 4.1 with τ = ε.
If, with C = 2, we have Mod∞ Γ(B1, B2, ε) = 0, then there is a non-negative Borel measurable
function ρ such that ρ = 0 µ-a.e. in X and for all γ ∈ Γ(B1, B2, ε) we have

∫
γ ρ ds = ∞ (see

Remark 2.2). Let N = {x ∈ X : ρ(x) > 0}. We choose x1 ∈ B1 and x2 ∈ B2 such that

d(x1, x2) ≤ dist(B1, B2) + ε.
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Then by assumption of ρ we have µ(N) = 0 and so there is a transversal curve γ0 connecting
x1 and x2 such that `(γ0) ≤ d(x1, x2) + ε. But then we have

∫
γ0
ρ ds = 0 < ∞, and `(γ0) ≤

dist(B1, B2) + 2ε, which means that γ0 ∈ Γ(B1, B2, ε), contradicting the choice of ρ. Thus we
must have Mod∞ (Γ(B1, B2, ε)) > 0, that is, an ∞-weak Fubini property holds.

Conversely, suppose X satisfies an ∞-weak Fubini property. Let N ⊂ X with µ(N) = 0,
ε > 0, and x, y ∈ X be two distinct points. Choose ε > 0 such that τ < min{ε, τ0, d(x, y)}/(10C).
Let B1, B2 be the balls of radius τ , centered at x and y respectively. These balls satisfy the
hypotheses in Definition 4.1, and so Mod∞ Γ(B1, B2, τ) > 0. Thus we can find xτ ∈ B1, yτ ∈ B2

and a transversal rectifiable curve γτ with end points xτ , yτ such that `(γτ ) ≤ dist(B1, B2)+Cτ .

By choosing τ to be small enough, we can ensure that `(γτ ) ≤ d(x, y) + ε
2 . Note that

d(x, xτ ) < τ and d(y, yτ ) < τ , and so by the ∞-Poincaré inequality (a consequence of the
∞-weak Fubini property as noted above), there exist curves βτ connecting x to xτ and ατ
connecting y to yτ such that `(βτ ) < Cτ and `(ατ ) < Cτ , with H1(β−1

τ (N)∪α−1
τ (N)) = 0. The

concatenation γ = ατ ∗ γτ ∗ βτ is a transversal rectifiable curve connecting x to y with

`(γ) ≤ d(x, y) + ε
2 + 2Cτ.

By choosing τ small enough so that we also have 2Cτ < ε/2, we obtain the result. �

Now, we define a geodesic distance on the metric measure space by using the notion of
transversality for a given null set. This distance has been used in [9] and [10] for example.

Definition 4.3 Let X be a metric measure space. For each null set N in X we define

d̂N (x, y) = inf{`(γ) : γ is a curve transversal to N and connecting x to y}.

It is easily seen that for null sets N ⊂ X, d̂N is an extended metric on X, in the sense that
d̂N can possibly take infinite values (since the infimum of the empty set is ∞). Furthermore, if
X supports an ∞-Poincaré inequality, then by Theorem 2.10 there exists C ≥ 1 such that for
each null set N ⊂ X,

d(x, y) ≤ d̂N (x, y) ≤ Cd(x, y). (8)

The next result shows that, if a metric measure space X satisfies an ∞-Poincaré inequality,
then there is a bi-Lipschitz equivalent length metric on X that makes X satisfy the ∞-weak
Fubini property. For x, y ∈ X we set

d̂(x, y) = sup{d̂N (x, y) : N null set in X}. (9)

Proposition 4.4 Let (X, d, µ) be a complete metric measure space with µ doubling.
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(a) If d̂ <∞, then it is a length metric on X and (X, d̂, µ) satisfies an∞-weak Fubini property.

(b) If X supports an ∞-Poincaré inequality, then
(i) There exists C ≥ 1 such that d(x, y) ≤ d̂(x, y) ≤ Cd(x, y) whenever x, y ∈ X. Further-
more, (X, d̂, µ) satisfies an ∞-weak Fubini property.
(ii) For every domain Ω in X, a function u on Ω is ∞-harmonic in Ω with respect to d̂
and µ if and only if it is ∞-harmonic with respect to d and µ.

(c) (X, d, µ) satisfies an ∞-weak Fubini property if and only if d = d̂.

Proof. To prove (a), suppose that d̂ is finite-valued on X × X. Denoting by ` and ̂̀ the
corresponding length functionals associated to d and d̂, for every curve γ in X we have that
`(γ) = ̂̀(γ). Indeed, since d ≤ d̂ it is clear that `(γ) ≤ ̂̀(γ). On the other hand, given ε > 0,
choose first a subdivision P = {t0 < t1 < · · · < tn} of the interval where γ is defined so that

̂̀(γ)− ε ≤
n∑
i=1

d̂(γ(ti−1), γ(ti)).

For each i = 1, 2, · · · , n choose a null set Mi of X such that

d̂(γ(ti−1), γ(ti)) ≤ d̂Mi(γ(ti−1), γ(ti)) +
ε

n
.

Letting M =
⋃n
i=1Mi, we have that d̂Mi ≤ d̂M for every i = 1, 2, · · · , n. Then

̂̀(γ)− ε ≤
n∑
i=1

d̂M (γ(ti−1), γ(ti)) + ε ≤
n∑
i=1

`(γ|[ti−1,ti]) + ε = `(γ) + ε.

Hence we obtain that ̂̀(γ) ≤ `(γ). Thus d̂ is a length metric on X. Now, by Proposition 4.2,
given x, y ∈ X, a null set N ⊂ X and ε > 0, from the definition of metric d̂N we obtain a curve
γ transversal to N , joining x and y, and such that ̂̀(γ) = `(γ) ≤ d̂N (x, y) + ε ≤ d̂(x, y) + ε, and
the rest of the claim of (a) follows.

Claim (b)(i) follows from the discussion preceding (8). We next show (b)(ii). First note
that, by the remark given at the beginning of this proof, the arc-length parametrization of every
curve γ in X coincides for (X, d) and (X, d̂). Thus, if ρ : X → [0,∞] is a Borel function,∫
γ ρ ds coincides for (X, d, µ) and (X, d̂, µ). This means that given a function u on X, a func-

tion g is an upper gradient of u with respect to d if and only if it is an upper gradient of u
with respect to d̂. Analogous statements hold for ∞-weak upper gradients of u. In particular,
N1,∞(X, d, µ) = N1,∞(X, d̂, µ). Now the result follows from the definition of ∞-harmonicity.
Finally, using Proposition 4.2 again we obtain (c). �
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The following example shows that Part (b)(i) of the above proposition is not true without
the hypothesis of ∞-Poincaré inequality.

Example 4.5 Without ∞-Poincaré inequality d̂ may possibly take infinite values, and in par-
ticular it may not be equivalent to d. The Sierpiński carpet X from Example 2.11 does not
support an ∞-Poincaré inequality and hence cannot satisfy any ∞-weak Fubini property. Since
the length metric on this carpet is bi-Lipschitz equivalent to the Euclidean metric, it follows
that the above statement holds also when X is equipped with the length metric. To see that d̂
is not equivalent to d in this case, we consider the set N constructed in Example 2.11. Observe
that d̂N (x, y) =∞, and so d̂ is not equivalent to d in X.

Lemma 4.6 Suppose that (X, d, µ) is a complete metric measure space with µ doubling and
supporting an ∞-weak Fubini property. Then for each u ∈ LIP∞(X) = N1,∞(X),

LIP(u,X) = sup
x∈X

Lipu(x) = ‖Lipu‖L∞(X) = ‖gu‖L∞(X). (10)

Furthermore, if V ⊂ X is a non-empty open set, then for each u ∈ N1,∞(V ) (noting that such
functions are necessarily locally Lipschitz continuous in V ),

sup
x∈V

Lipu(x) = ‖Lipu‖L∞(V ) = ‖gu‖L∞(V ). (11)

Proof. Note that as Lipu is an upper gradient of u and gu is the minimal ∞-weak upper
gradient of u, we have that gu ≤ Lipu a.e. in X.

Let u ∈ LIP∞(X), and define N = {x ∈ X : Lipu(x) > ‖Lipu‖L∞(X)}. Now, fix x, y ∈ X.
Given ε > 0 take γ in X connecting x and y that is transversal to N , parametrized by the
arc-length, such that `(γ) ≤ d(x, y) + ε. Then

|u(x)− u(y)| ≤
∫ `(γ)

0
Lipu(γ(t))dt ≤ ‖Lipu‖L∞(X)`(γ) ≤ ‖Lipu‖L∞(X)[d(x, y) + ε].

Now, let ε→ 0 and then take the supremum over x, y ∈ X to obtain LIP(u,X) ≤ ‖Lipu‖L∞(X).

Replacing the role of Lipu in the above with gu and noting that the collection Γ of curves
for which the function-upper gradient inequality does not hold has ∞-modulus zero, there must
be a set N ⊂ X with µ(N) = 0 such that for each γ ∈ Γ we must have H1(γ−1(N)) > 0, which
gives the last equality in the first claim.

Let V ⊂ X be open and non-empty set, and u ∈ N1,∞(V ) with B(x, 2r) ⊂ V Fix r > 0 such
that B(x, 2r) ⊂ V , and 0 < ε < r/2. Let x ∈ V and N = {y ∈ B(x, r) : gu(y) > ‖gu‖L∞(B(x,r))}.
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Then µ(N) = 0. Note in the above inequality that for each y ∈ B(x, r/2) there is a rectifiable
curve γ with end points x, y such that `(γ) ≤ d(x, y) + ε, γ is transversal to N , and

|u(x)− u(y)|
d(x, y)

≤ `(γ)

d(x, y)

∫
[0,`(γ)]

gu ◦ γ ds ≤
`(γ)

d(x, y)
‖gu‖L∞(B(x,r)).

By the choice of r and ε, γ ⊂ V . It follows that Lipu(x) ≤ limr→0+ ‖gu‖L∞(B(x,r)). From the
previous inequality we also have that whenever V ⊂ X is a non-empty open set, then

‖gu‖L∞(V ) ≤ ‖Lipu‖L∞(V ).

On the other hand, for each ε > 0 there exists z0 ∈ V such that

‖Lipu‖L∞(V ) − ε ≤ Lipu(z0) ≤ lim
r→0+

‖gu‖L∞(B(z0,r)) ≤ ‖gu‖L∞(V ).

Therefore ‖gu‖L∞(V ) = ‖Lipu‖L∞(V ) for any non-empty open set V ⊂ X. �

Remark 4.7 A converse of the above lemma also holds. Suppose that LIP∞(X) = N1,∞(X)
and that (10) holds for each u ∈ N1,∞(X). Then X satisfies an ∞-weak Fubini property. To
see this, note that under the above hypotheses, by Theorem 2.10 we know that X supports an
∞-Poincaré inequality. Fix a set N ⊂ X with µ(N) = 0 and consider d̂N as in Definition 4.3. It
follows from Theorem 2.10 that there is a constant C ≥ 1 with d̂N (z, w) ≤ C d(z, w) whenever
z, w ∈ X. We fix y ∈ X, R > 1, and consider the function

u(x) = min

{
R, inf

γ

∫
γ
[1 +∞ · χN ] ds

}
,

where the infimum is over all rectifiable curves γ connecting x to y. Note that u(x) ≤ d̂N (x, y)
for each x ∈ X, and so u ∈ N1,∞(X). Furthermore, g = 1+∞χN ∈ L∞(X) is an upper gradient
of u, and so by the hypothesis we have LIP(u,X) = ‖gu‖L∞(X) ≤ ‖g‖L∞(X) = 1, that is, u is
1-Lipschitz on X. Hence for each x ∈ X and ε > 0 we can find a curve γ connecting x to y that
is transversal to N and with `(γ) ≤ d(x, y) + ε. Therefore, from Proposition 4.2, X satisfies an
∞-weak Fubini property.

Under the∞-weak Fubini property (which implies the∞-Poincaré inequality), we know that
LIP∞(X) = N1,∞(X), see Theorem 2.10. Hence the property of every u ∈ N1,∞(X) satisfy-
ing (10) characterizes complete metric measure spaces that support ∞-weak Fubini property.
The property (10) is crucial in understanding the connections between AMLEs and∞-harmonic
functions, see for example [25] and [13].
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Example 4.8 In this example we construct a metric measure space X ⊂ R2 where the measure
is doubling and supports an ∞-Poincaré inequality, and a function u for which

sup
X

Lipu > ‖Lipu‖L∞(X).

We start with the interval [0, 1], and for each n ∈ N we replace [1/(n+1), 1/n] with the union of
the two line segments in R2, one joining (1/n, 0) to Pn ∈ R2 and the other joining (1/(n+ 1), 0)
to Pn, where Pn is a point such that

‖Pn − (1/n, 0)‖ = ‖Pn − (1/(n+ 1), 0)‖ = 1/[n(n+ 1)] = ‖(1/(n+ 1), 0)− (1/n, 0)‖.

By doing this we obtain X, equipped with the restriction of the Euclidean metric from R2 to
X, and with the measure µ = H1. Consider the function u on X given by

u(x, y) = H1(X ∩ {(s, t) ∈ R2 : s ≥ x}).

Note that gu = 1 is a minimal ∞-weak upper gradient of u, and that for X 3 (x, y) 6= (0, 0) we
have Lipu(x, y) = 1. On the other hand,

Lipu(0, 0) ≥ lim sup
n→∞

u(0, 0)− u(1/n, 0)

1/n
= lim sup

n→∞

∑∞
k=n

2
k(k+1)

1/n
= lim sup

n→∞
2 = 2.

It follows that supX Lipu ≥ 2 > 1 = ‖Lipu‖L∞(X).

Lemma 4.9 [25, Lemma 5.4] If X is proper (that is, every closed ball in X is compact) and
is a length space, then whenever V ⊂ X is a non-empty open set, we have

LIP(u, V ) = max

{
LIP(u, ∂V ), sup

z∈V
Lipu(z)

}
.

We are now ready to prove the first main theorem of this paper, Theorem 1.1.

Proof. [Proof of Theorem 1.1] The existence of ∞-harmonic extensions is obtained in Theo-
rem 3.3. Recall that the notion of ∞-harmonicity yields the same class of functions under each
of the metrics d and d̂, see Proposition 4.4 (b) (ii). By Proposition 4.4 (a) we have that (X, d̂)
is a length space, (X, d̂, µ) satisfies an ∞-weak Fubini property, and the function u := ϕ given
by Theorem 3.3 is∞-harmonic in Ω for (X, d̂, µ). Also, since (X, d̂) is complete and µ doubling,
we have that (X, d̂) is a proper metric space.

By Lemma 4.6 and by Lemma 4.9, if V ⊂ Ω is a non-empty open set and if v : V → R is
such that v = u on ∂V , then by (11),

LIP(u, V ) = max

{
LIP(v, ∂V ), ‖gu‖L∞(V )

}
≤ max

{
LIP(v, ∂V ), ‖gv‖L∞(V )

}
= max

{
LIP(v, ∂V ), sup

z∈V
Lip v(z)

}
= LIP(v, V ).
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Note that the above is with respect to the metric d̂. It follows that u is AMLE in Ω for (X, d̂).
Finally, by [34, Theorem 1.4] AMLEs are unique; hence the uniqueness of u. �

The proof of Theorem 1.1 also shows that, under the ∞-weak Fubini property, every ∞-
harmonic function is an AMLE. The converse is also true, as the following shows.

Theorem 4.10 Let X be a complete metric measure space with the measure µ be a doubling
measure satisfying an ∞-weak Fubini property. Let Ω be a bounded domain in X with ∂Ω
non-empty. If u : Ω→ R is an AMLE in Ω, then u is ∞-harmonic in Ω.

Proof. Under the hypotheses of the theorem, we know that X is a proper length space. The
result [25, Proposition 4.1] together with [25, Proposition 5.8] shows that if X is a proper length
space, then AMLEs on a domain Ω ⊂ X are of strong-AMLE class. The proof of [25, Proposi-
tion 5.8] would work even if their notion of weak Fubini property is replaced with our weaker
notion of ∞-weak Fubini property. The notion of strong-AMLE of [25] agrees with our notion
of ∞-harmonicity under our hypotheses on X, see Lemma 4.6 above (more specifically, equa-
tion (11)). Therefore we know that AMLEs are ∞-harmonic. �

Combining Theorem 4.10 with Theorem 1.1 we have a proof of Theorem 1.2.

Remark 4.11 If (X, d, µ) is a complete metric measure space with µ a doubling measure and
d̂ < ∞ one can also guarantee the existence of an ∞-harmonic function. Indeed, by Proposi-
tion 4.4(a), (X, d̂) is a length space and (X, d̂, µ) satisfies an ∞-weak Fubini property. By [24]
we can always find an AMLE in (X, d̂) and by Theorem 4.10 they are ∞-harmonic with respect
to d̂ and therefore with respect to d.

In the absence of ∞-Poincaré inequality, an ∞-harmonic function need not be an AMLE
even if X is a geodesic space, as the next example shows.

Example 4.12 As in Example 4.5 and Example 2.11, consider the Sierpiński Carpet X endowed
with its length metric and the corresponding Hausdorff measure. Then X is a geodesic space,
but by Remark 2.6 every u ∈ L∞(X) is∞-harmonic, but if it is not Lipschitz continuous on the
carpet then it cannot be an AMLE.

The next example shows that ∞-weak Fubini property is crucial for Theorem 1.2. This
example can also be found in [34, Page 171], but for the reader’s convenience we give the details
here.
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Example 4.13 Let X = {0}× [0,∞)∪ [0,∞)×{0} ⊂ R2 be equipped with the metric obtained
as the restriction of the Euclidean metric on R2 to X, and with the measure µ = H1|X . With
Ω = {0} × [0, 1) ∪ [0, 1)× {0}, we set u : X → R by

u(x, y) =

{
x if y = 0,

−y if x = 0.

It is not difficult to see that u is∞-harmonic on Ω (by noting for example that (X, d̂) is isometric
to R), but fails to be AMLE in Ω. To see that u is not an AMLE, we argue as follows. For
0 < ε < 1 let Vε = {0} × [0, ε) ∪ [0, 1)× {0}, note that

LIP(u, Vε) ≥
u(ε, 0)− u(0, ε)√

2 ε
=
√

2,

whereas

LIP(u, ∂Vε) =
1 + ε√
1 + ε2

<
√

2 for sufficiently small ε.

Therefore u is not AMLE on Ω with the boundary values u(1, 0) = 1, u(0, 1) = −1 (observe
that any AMLE of this boundary function must be linear on each arm of Ω, and symmetry
considerations together with uniqueness of AMLEs would then tell us that if such AMLE exists
then it must be the above function u(x, y)). Note that (X, d, µ) is Ahlfors 1-regular and supports
an ∞-Poincaré inequality, but does not have any ∞-weak Fubini property. Here we have the
existence of unique ∞-harmonic extension but no AMLE extension.

5 Stability of ∞-harmonic functions

In this section we consider sequences of ∞-harmonic functions on a complete metric measure
space X equipped with a doubling measure supporting an ∞-Poincaré inequality. It is known
that if X supports a p-Poincaré inequality for some 1 < p < ∞, then a locally uniformly
bounded sequence of p-harmonic functions on a fixed domain have a locally uniformly convergent
subsequence that converges to a p-harmonic function on the domain. See [29] and [36]. This
property is known as the stability property of p-harmonic functions. This is in general not true
for∞-harmonic functions, given the lack of Caccioppoli-type (or De Giorgi type) inequality that
controls the local energy of the ∞-harmonic function in terms of its local bound. But we have
the following weaker stability.

Consider a sequence of ∞-harmonic functions, {ui}i, of ∞-harmonic functions on Ω such
that each ui is L-Lipschitz continuous on X. Then by the Arzela-Ascoli theorem, there is a
subsequence, also denoted {ui}i, and a Lipschitz function u0 on X such that ui → u0 locally
uniformly in X (and hence uniformly on the bounded domain Ω). We now show that u0 is
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∞-harmonic in Ω. To see this, fix ε > 0 and note that there is some Nε ∈ N such that whenever
i ≥ Nε, we have ui − ε ≤ u0 ≤ ui + ε on Ω. Let w be the unique ∞-harmonic function on Ω
such that w = u0 on X \ V , as promised by Theorem 1.1. Given the uniqueness of ∞-harmonic
solutions and given Lemma 3.8, we have a comparison theorem for ∞-harmonic functions as
well in the manner of Lemma 3.8. Therefore on Ω we have ui − ε ≤ wV ≤ ui + ε, and so

wV ≤ u0 + 2ε ≤ wV + 4ε.

As the above holds for all ε > 0, we see that u0 = w on Ω, that is, u0 is∞-harmonic in Ω. Thus
we have the following proposition.

Proposition 5.1 If {ui}i is a bounded sequence of L-Lipschitz functions on X such that each
ui is ∞-harmonic in Ω, then there is a subsequence that converges locally uniformly in X to an
L-Lipschitz function u0 such that u0 is ∞-harmonic in Ω.

Example 5.2 Let Ω = (0, 1)× (0, 1) ⊂ R2 and for each k ∈ N let Fk be the sawtooth function
Fk : R→ R given as the periodic extension of the function ϕk : [0, 2/k]→ R:

ϕk(t) =

{
kt when t ∈ [0, 1/k],

−kt+ 2 when t ∈ [1/k, 2/k].

Then Fk is k-Lipschitz continuous and is bounded by 1, that is, Fk ∈ N1,∞(X). Let fk : R2 → R
be given by fk(x, y) = Fk(x), and let uk be the ∞-harmonic extension of fk to Ω. Then each uk
is bounded by 1 on R2, but by Lemma 4.9, we know that uk has no locally uniformly convergent
subsequence that can converge to a Lipschitz function on Ω.

On the other hand, we have the following stability theorem.

Theorem 5.3 For each k ∈ N let fk ∈ N1,∞(X) and let f ∈ N1,∞(X) such that fk → f0 in
N1,∞(X). Let uk be the ∞-harmonic extension of fk to Ω. Then uk converges locally uniformly
in X to a function u0 ∈ N1,∞(X) such that u0 is the ∞-harmonic extension of f0 to Ω.

Proof. Since fk → f in N1,∞(X), there is some L > 0 such that each fk and f0 is L-Lipschitz
on X, and fk converges uniformly to f0 on X. By the above proposition, we know that ev-
ery subsequence of {uk}k has a further subsequence that converges uniformly to the unique
function that is the ∞-harmonic extension of f0 to Ω. Therefore the entire sequence {uk}k con-
verges uniformly in X to a Lipschitz function u0 that is the ∞-harmonic extension of f0 to Ω.

�
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