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Abstract. We prove that local weak solutions of the orthotropic p−harmonic equation in R2 are
C1 functions.
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1. Introduction

1.1. The result. Let Ω ⊂ R2 be an open set and let u ∈ W 1,p
loc (Ω) be a local weak solution of the

orthotropic p−Laplace equation

(1.1)
2∑
i=1

(
|uxi |p−2 uxi

)
xi

= 0.

Date: September 11, 2016.
2010 Mathematics Subject Classification. 49N60, 49K20, 35B65.
Key words and phrases. Degenerate and singular problems; regularity of minimizers.

1



2 BOUSQUET AND BRASCO

This means that for every Ω′ b Ω and every ϕ ∈W 1,p
0 (Ω′), we have

(1.2)
2∑
i=1

ˆ
Ω′
|uxi |p−2 uxi ϕxi dx = 0.

In the recent literature, such an equation has sometimes been called the pseudo p−Laplace equation.
We decided to adopt the terminology orthotropic p−Laplace equation in order to emphasize the role
played by the coordinate system. Indeed, let us recall that if u ∈ W 1,p

loc (Ω) is a local weak solution
of the usual p−Laplace equation, i.e.

2∑
i=1

(
|∇u|p−2 uxi

)
xi

= 0,

then for every linear isometry A : R2 → R2, u ◦ A is still a local weak solution of this equation
on A−1(Ω). This property fails to be true for equation (1.1), but it still holds if A belongs to the
dihedral group D2, i.e. the group of symmetries of the square (−1, 1)× (−1, 1).

A function u ∈W 1,p
loc (Ω) is a local weak solution if and only of it is a local minimizer of the functional

F(ϕ; Ω′) :=

2∑
i=1

1

p

ˆ
Ω′
|ϕxi |p dx, ϕ ∈W 1,p

loc (Ω), Ω′ b Ω ⊂ R2.

This easily follows from the convexity of the functional F. We recall that u ∈ W 1,p
loc (Ω) is a local

minimizer of F if

F(u; Ω′) ≤ F(ϕ; Ω′), for every u− ϕ ∈W 1,p
0 (Ω′), Ω′ b Ω.

In the recent paper [3], we proved that for p ≥ 2 any such local minimizer is a locally Lipschitz
function (actually, the case 1 < p < 2 is a mere application of [8, Theorem 2.2]). The aim of this
paper is to go one step further and prove the following additional regularity.

Main Theorem. Every local minimizer U ∈W 1,p
loc (Ω) of the functional F is a C1 function.

Remark 1.1. It is easy to see that the function

u(x1, x2) = |x1|
p
p−1 − |x2|

p
p−1 , (x1, x2) ∈ R2,

is a local weak solution of (1.1). Observe that for p > 2, u is not C2, but only C1,1/(p−1). As in
the case of the standard p−Laplacian, we conjecture this to be the sharp regularity of local weak
solutions.

1.2. Method of proof. The proof of the Main Theorem is greatly inspired by that of [12, Theorem
11] by Santambrogio and Vespri, which in turn exploits an idea introduced by DiBenedetto and
Vespri in [6]. However, since our equation is much more singular/degenerate than theirs, most of
the estimates have to be recast and the argument needs various nontrivial adaptations. In order
to neatly explain the method of proof and highlight the differences with respect to [12], let us first
recall their result.

In [12] it is shown that in R2, local weak solutions of the variational equation

(1.3) div∇H(∇u) = 0,

are such that x 7→ ∇H(∇u(x)) is continuous, provided that:

• ∇H(∇u) ∈W 1,2
loc ∩ L

∞
loc;
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• H : R2 → [0,∞) is a C2 convex function such that there exist M ≥ 0 and 0 < λ ≤ Λ for
which

(1.4) λ |z|p−2 |ξ|2 ≤ 〈D2H(z) ξ, ξ〉 ≤ Λ |z|p−2 |ξ|2, for every ξ ∈ R2, |z| ≥M.

The last assumption implies that (1.3) is a degenerate/singular elliptic equation, with confined
degeneracy/singularity. Indeed, on the set where the gradient of a Lipschitz solution u satisfies
|∇u| ≥M , the equation behaves as a uniformly elliptic equation. By using the terminology of [3],
we can say that (1.3) has a p−Laplacian type structure at infinity.

The proof of the continuity of ∇H(∇u) in [12] relies on the following De Giorgi–type lemma:
given a ball BR of radius R, if a component Hxi(∇u) of the vector field ∇H(∇u) has large oscil-
lations only on a small portion of BR, then the global oscillation of Hxi(∇u) on the ball BR/2 is
reduced (in a precise quantitative sense). Such a result amounts to an L∞ estimate for (a nonlin-
ear function of) the gradient, which in turn relies on the Caccioppoli inequality for the linearized
equation

(1.5) div
(
D2H(∇u)∇uxi

)
= 0.

On the contrary, if Hxi(∇u) has large oscillations on a large portion of BR, then one exploits the
fact that a function W 1,2 ∩ L∞ in the plane is such that:

(A1) either its Dirichlet energy in a crown contained in BR is large;

(A2) or the function itself is large on a circle contained in BR.

When (A2) occurs, the structure of the linearized equation (1.5) allows to prove a minimum prin-
ciple for Hxi(∇u), which implies that Hxi(∇u) is large on the whole disc bounded by the above
mentioned circle. This again leads to a decay of the oscillation of Hxi(∇u) (this time because the
infimum increases when shrinking the ball).

Then the continuity result of [12] is achieved by constructing inductively a decreasing sequence
of balls and using the dichotomy above at each step. The important point is that since Hxi(∇u)
has finite Dirichlet energy, then possibility (A1) can occur only finitely many times. Hence, the
oscillation of Hxi(∇u) decays to 0, as desired.

Unfortunately, our equation (1.1) has not a p−Laplacian structure at infinity, i. e. (1.4) is not
satisfied. Indeed, in our case we have

H(z) =
2∑
i=1

|zi|p

p
so that D2H(z) = (p− 1)

[
|z1|p−2 0

0 |z2|p−2

]
, z = (z1, z2) ∈ R2.

In particular, D2H(z) is degenerate/singular on the union of the two axes {z1 = 0}∪ {z2 = 0} and
our equation does not fit in the framework of [12]. Thus, even if the proof of the Main Theorem will
follow the guidelines illustrated above, we have to overcome the additional difficulties linked to the
more degenerate/singular structure of (1.5). In particular, in the case p > 2, we will need a new
Caccioppoli inequality, which weirdly mixes different components of the gradient (see Proposition
3.1). This is one of the main novelties of the paper.

Remark 1.2 (Stream functions). For 1 < p <∞, let us set p′ = p/(p−1). When Ω ⊂ R2 is simply

connected, to every local weak solution u ∈ W 1,p
loc (Ω) of (1.1) one can associate a stream function

v ∈W 1,p′

loc (Ω), such that

vx1 = |ux2 |p−2 ux2 and vx2 = −|ux1 |p−2 ux1 .
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Existence of such a function v is a straightforward consequence of the Poincaré Lemma, once it is
observed that (1.1) implies that the vector field(

|ux1 |p−2 ux1 , |ux2 |p−2 ux2
)
,

is divergence free (in the distributional sense). It is readily seen that v is a weak solution of

2∑
i=1

(
|vxi |p

′−2 vxi

)
xi

= 0.

This would allow to reduce the proof of the Main Theorem to the case 1 < p ≤ 2 only. However,
this kind of argument is very specific to the homogeneous equation and already fails in the case

2∑
i=1

(
|uxi |p−2 uxi

)
xi

= λ ∈ R,

which on the contrary is covered by our method (indeed, observe that the previous equation and
(1.1) have the same linearization (1.5), thus the Main Theorem still applies). More generally, we
observe that our method of proof can be adapted to treat the case (as in [12]) of

2∑
i=1

(
|uxi |p−2 uxi

)
xi

= f,

under suitable (not sharp) assumptions1 on f . For these reasons, we avoided to use this argument
based on stream functions.

1.3. Plan of the paper. First, it should be noticed that almost every section is divided in two
parts, one for the degenerate case p > 2 and the other for the singular one 1 < p < 2 ( the case
p = 2 corresponds to the standard Laplacian). Though the methods of proof for the two cases look
very much the same, there are some important differences which lead us to think that it is better
to separate the two cases.

In Section 2 we introduce the technical machinery and present some basic integrability properties
of solutions and their derivatives, needed throughout the whole paper. Section 3 is devoted to
some new Caccioppoli inequalities for the gradient of a local minimizer. The core of the paper is
represented by Sections 4 and 5, concerning decay estimates for a nonlinear function of the gradient
(case p > 2) or for the gradient itself (case 1 < p ≤ 2). Finally, the proof of the Main Theorem is
postponed to Section 6. The paper ends with two Appendices containing technical facts.

Acknowledgements. The idea for the weird Caccioppoli inequality of Proposition 3.1 comes from
a conversation with Guillaume Carlier in March 2011, we wish to thank him. Peter Lindqvist is
gratefully acknowledged for a discussion on stream functions in June 2014. Part of this work has
been written during some visits of the first author to Marseille and Ferrara and of the second author
to Toulouse. Hosting institutions and their facilities are kindly acknowledged. The second author
is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

1As in the case of the ordinary p−Laplacian (see [11, Corollary 1.6]), the sharp assumption should be f ∈ L2,1
loc ,

the latter being a Lorentz space. For p > 2 our proof requires

|uxj |
p−2
2 uxj ∈W

1,2
loc (Ω),

a result which is true only when f enjoys suitable differentiability properties.
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2. Preliminaries

2.1. Notation. Given λ > 0 and a ball B ⊂ R2 of radius R > 0, we denote by λB the ball with
the same center and radius λR.

We define for every q > −1 the function gq : R→ R as

(2.1) gq(t) = |t|q t, t ∈ R.

Then gq is a homeomorphism and g−1
q = g−q/(q+1). Observe that

|t|q t ≤ α ⇐⇒ t ≤ |α|−
q
q+1 α,

a fact that will be used repeatedly.
Let U ∈ W 1,p

loc (Ω) be a given local minimizer of F. We fix a ball B b Ω. There exists λB > 1
such that λB B b Ω as well. If {ρε}ε>0 ⊂ C∞0 (Bε) is a smooth convolution kernel (here, Bε refers
to the ball with center 0 and radius ε), we define U ε := U ∗ ρε ∈ W 1,p(Ωε) where Ωε := {x ∈ Ω :
dist(x, ∂Ω) > ε}. By definition of U ε there exists 0 < ε0 < 1 such that for every 0 < ε < ε0

(2.2) ‖U ε‖W 1,p(B) = ‖∇U ε‖Lp(B) + ‖U ε‖Lp(B) ≤ ‖∇U‖Lp(λB B) + ‖U‖Lp(λB B).

2.2. Regularization scheme, case p > 2. As in [3], we consider the minimization problem

(2.3) min

{
2∑
i=1

1

p

ˆ
B
|wxi |p dx+

p− 1

2
ε

ˆ
B
|∇w|2 dx : w − U ε ∈W 1,p

0 (B)

}
.

Since the functional is strictly convex, there exists a unique solution uε, which is smooth on B (see
e.g. [3, Theorem 2.4]). Moreover, uε satisfies the Euler-Lagrange equation

2∑
i=1

ˆ
B

(|uεxi |
p−2 + (p− 1) ε)uεxi ϕxi dx = 0, for every ϕ ∈W 1,p

0 (B).

We take ϕ ∈ C2 with compact support in B. Then for j ∈ {1, 2}, the partial derivative ϕxj is still
an admissible test function. An integration by parts leads to

(2.4)
2∑
i=1

ˆ
B

(
|uεxi |

p−2 + ε
)
uεxixj ϕxi dx = 0, j = 1, 2.

As usual, by a density argument, the equation still holds with ϕ ∈W 1,2
0 (B). We now collect some

uniform estimates on uε.

Lemma 2.1 (Uniform energy estimate). There exists a constant C = C(p) > 0 such that for every
0 < ε < ε0 the following estimate holds

(2.5)

ˆ
B
|∇uε|p dx ≤ C

(ˆ
λB B
|∇U |p dx+ ε

p
p−2 |B|

)
.

Moreover, the family {uε}0<ε<ε0 converges weakly in W 1,p(B) and strongly in Lp(B) to U .

Proof. The estimate (2.5) is standard, it is sufficient to test the minimality of uε against U ε, which
is admissible. In particular, the family {uε}0<ε<ε0 is uniformly bounded in W 1,p(B). Moreover, by
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[3, Lemma 2.9] there exists a sequence {εk}k∈N ⊂ (0, ε0) such that uεk converges weakly in W 1,p(B)
and strongly in Lp(B) to a solution w of

min

{
2∑
i=1

1

p

ˆ
B
|ϕxi |p dx : ϕ− U ∈W 1,p

0 (B)

}
.

Since U is a local minimizer of F and the solution of this problem is unique (by strict convexity),
we get w = U and full convergence of the whole family. �

Lemma 2.2 (Uniform regularity estimates). For every 0 < ε < ε0 and every Br b B we have

(2.6) ‖uε‖L∞(Br) ≤ C,

(2.7) ‖∇uε‖L∞(Br) ≤ C,
and

(2.8)

ˆ
Br

∣∣∣∇(|uεxj | p−2
2 uεxj

)∣∣∣2 dx ≤ C, j = 1, 2,

for some constant C > 0 independent of ε > 0.

Proof. The proof of the L∞ estimate (2.6) is standard, it can be obtained as in [10, Chapter 7].

The Lipschitz estimate (2.7) is more delicate and is one of the main outcome of [3]. Indeed, we
know from [3, Proposition 4.1] that there exists C = C(p) > 0 such that for every Br b BR b B

(2.9)
∥∥∥uεxi∥∥∥L∞(Br)

≤ C
(

R

R− r

)8 [ 
BR

|∇uε|p dx+ 1

]2+ 1
p

, i = 1, 2,

With the notation introduced in [3], this corresponds to the particular case δ1 = δ2 = 0 and f = 0
there. By combining this with (2.5), we get (2.7).

We now prove the W 1,2 estimate for the nonlinear function of ∇uε. We take η ∈ C∞0 (B) a standard
cut-off function such that

0 ≤ η ≤ 1, η ≡ 1 on Br, η ≡ 0 on R2 \BR, |∇η| ≤ C

R− r
.

Then we test (2.4) against ϕ = uεxj η
2. With standard manipulations, we get the Caccioppoli

inequality

2∑
i=1

ˆ (
|uεxi |

p−2 + ε
) ∣∣∣uεxixj ∣∣∣2 η2 dx ≤ C

2∑
i=1

ˆ (
|uεxi |

p−2 + ε
)
|uεxj |

2 |ηxi |2 dx.

By dropping the term containing ε on the left and observing that

|uεxi |
p−2

∣∣∣uεxixj ∣∣∣2 =
4

p2

∣∣∣∣(|uεxi | p−2
2 uεxi

)
xj

∣∣∣∣2 ,
we get

(2.10)

2∑
i=1

ˆ
Br

∣∣∣∣(|uεxi | p−2
2 uεxi

)
xj

∣∣∣∣2 dx ≤ C

(R− r)2

2∑
i=1

ˆ
BR

(
|uεxi |

p−2 + ε
)
|uεxj |

2 dx,

where we used the properties of η. In order to conclude, it is sufficient to use again (2.5). �

From the bounds obtained in Lemma 2.2, we can deduce the following convergence result.
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Proposition 2.3 (Convergence). With the notation above, for every Br b B we have:

i) {uε}0<ε<ε0 converges uniformly to U on Br;

ii)
{
|uεxi |

p−2
2 uεxi

}
0<ε<ε0

converges to |Uxi |
p−2
2 Uxi weakly in W 1,2(Br) and strongly in L2(Br).

In particular, we have

|Uxi |
p−2
2 Uxi ∈W 1,2(Br);

iii) {∇uε}0<ε<ε0 converges to ∇U strongly in Lp(Br).

Proof. We already know from Lemma 2.1 that uε converges to U weakly in W 1,p(B) and strongly
in Lp(B).

In view of (2.6) and (2.7), the Arzelà-Ascoli Theorem implies that the convergence is indeed
uniform on Br, for every Br b B.

By (2.8), there exists a sequence {εk}k∈N ⊂ (0, ε0) such that{
|uεkxi |

p−2
2 uεkxi

}
k∈N

, i = 1, 2,

converges to some function Vi ∈ W 1,2(Br), weakly in W 1,2(Br) and strongly in L2(Br). In partic-
ular, this is a Cauchy sequence in L2(Br). By using the elementary inequality

|t− s|p ≤ C
∣∣∣|t| p−2

2 t− |s|
p−2
2 s
∣∣∣2, t, s ∈ R,

where C > 0 depends only on p, we obtain that {uεkxi}k∈N is a Cauchy sequence as well, this time
in Lp(Br). This implies that

lim
k→+∞

‖∇uεk −∇U‖Lp(Br)
= 0.

We now prove that Vi = |Uxi |(p−2)/2 Uxi . We use the elementary inequality∣∣∣|t| p−2
2 t− |s|

p−2
2 s
∣∣∣ ≤ C (|t| p−2

2 + |s|
p−2
2

)
|t− s|, t, s ∈ R,

valid for some C = C(p) > 0. Then we obtainˆ
Br

∣∣∣|uεkxi | p−2
2 uεkxi − |Uxi |

p−2
2 Uxi

∣∣∣2 dx ≤ C ˆ
Br

(
|uεkxi |

p−2
2 + |Uxi |

p−2
2

)2
|uεkxi − Uxi |

2 dx

≤ C
(ˆ

Br

(
|uεkxi |

p−2
2 + |Uxi |

p−2
2

) 2 p
p−2

dx

) p−2
p

×
(ˆ

Br

|uεkxi − Uxi |
p dx

) 2
p

.

By using the strong convergence of the gradients proved above, this implies that Vi = |Uxi |(p−2)/2 Uxi .
Since the above argument can be repeated for every subsequence of {uε}0<ε<ε0 , it follows from the
uniqueness of the limit that the convergence holds true for the whole family {uε}0<ε<ε0 , both in
ii) and iii). The proof is complete. �

From the convergence results stated in the above proposition, we can obtain some regularity
properties for the local minimizer U that we state in the following theorem. These properties,
which come with local scaling invariant a priori estimates, have already been established in [3], [4]
and [8].
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Theorem 2.4 (A priori estimates, p > 2). Every local minimizer U ∈W 1,p
loc (Ω) of the functional F

is a locally Lipschitz function, such that for every α ≥ p/2 we have

|Uxi |α−1 Uxi ∈W
1,2
loc (Ω), i = 1, 2.

Moreover, for every BR b Ω we have

(2.11) ‖Uxi‖L∞(BR/2) ≤ C
( 

BR

|∇U |p dx
) 1
p

, i = 1, 2,

(2.12)

ˆ
BR/2

∣∣∇ (|Uxi |α−1 Uxi
)∣∣2 dx ≤ C α2

( 
BR

|∇U |p dx
) 2α

p

, i = 1, 2,

for some C(p) > 0.

Proof. Let us prove the estimates (2.11) and (2.12). By taking the limit as ε goes to 0 in (2.9) and
using the convergence result of Proposition 2.3, we obtain∥∥∥Uxi∥∥∥

L∞(BR/2)
≤ C

[ 
BR

|∇U |p dx+ 1

]2+ 1
p

, i = 1, 2.

In order to obtain (2.11), it is sufficient to observe that if U is a local minimizer of F, then for
every λ > 0 the function λU is still a local minimizer of the same functional. Thus the previous
Lipschitz estimate holds true, i.e.

λ
∥∥∥Uxi∥∥∥

L∞(BR/2)
≤ C

[
λp

 
BR

|∇U |p dx+ 1

]2+ 1
p

, i = 1, 2.

This can be rewritten as

λ
p

2 p+1

∥∥∥Uxi∥∥∥ p
2 p+1

L∞(BR/2)
− C λp

 
BR

|∇U |p dx ≤ C, i = 1, 2,

for a different constant C = C(p) > 0. If we now maximize the left-hand side with respect to λ > 0,
we get (2.11) as desired.

We already know from Proposition 2.3 that |Uxi |(p−2)/2 Uxi ∈ W
1,2
loc (Ω). By passing to the limit in

(2.10) and using the convergences at our disposal from Proposition 2.3, we obtainˆ
BR/2

∣∣∣∇(|Uxi | p−2
2 Uxi

)∣∣∣2 dx ≤ C

R2

ˆ
BR

|∇U |p dx,

which is (2.12) for α = p/2. In order to prove (2.12) for a general α > p/2, it is sufficient to observe
that

(2.13) |Uxi |α−1 Uxi =
∣∣∣|Uxi | p−2

2 Uxi

∣∣∣ 2p α−1
|Uxi |

p−2
2 Uxi ,

and the function t 7→ |t|(2α−p)/p t is C1. By using that

|Uxi |
p−2
2 Uxi ∈W

1,2
loc (Ω) ∩ L∞loc(Ω),
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we get that |Uxi |α−1 Uxi ∈ W
1,2
loc (Ω) ∩ L∞loc(Ω) as well. Finally, to prove the estimate, we observe

that (2.13) impliesˆ
BR/2

∣∣∇ (|Uxi |α−1 Uxi
)∣∣2 dx ≤ C ‖Uxi‖2α−pL∞(BR/2)

ˆ
BR/2

∣∣∣∇(|Uxi | p−2
2 Uxi

)∣∣∣2 dx.
By using (2.11) and (2.12) for α = p/2, we get the desired conclusion. �

We proceed with a technical result which will be needed to handle the case p > 2.

Lemma 2.5. Let p > 2 and let U ∈ W 1,p
loc (Ω) still denote a local minimizer of F. Let β ∈ R and

set

F (t) =
p

2

ˆ t

β
|s|

p−2
2 (s− β)+ ds, t ∈ R.

Then F (Uxj ) ∈W
1,2
loc (Ω) and we have

(2.14)
(
|Uxj |

p−2
2 Uxj

)
xk

(Uxj − β)+ =
(
F (Uxj )

)
xk
, almost everywhere in Ω.

Proof. In order to prove that F (Uxj ) ∈W
1,2
loc (Ω), we can observe that if we introduce the function

G(t) = F
(
|t|

2−p
p t
)

=
p

2

ˆ |t| 2−pp t

β
|s|

p−2
2 (s− β)+ ds,

then we have

(2.15) F (Uxj ) = G
(
|Uxj |

p−2
2 Uxj

)
.

With the simple change of variable τ = |s|(p−2)/2 s, the function G can be rewritten as

G(t) =

ˆ t

|β|
p−2
2 β

(
|τ |

2−p
p τ − β

)
+
dτ.

Hence, G is a C1 function. By using Theorem 2.4 and (2.15), we thus get that F (Uxj ) ∈W
1,2
loc (Ω).

In order to prove (2.14), we use the approximation scheme introduced in this section. For every
ε > 0, thanks to the smoothness of uε, we have

(2.16)
(
|uεxj |

p−2
2 uεxj

)
xk

(uεxj − β)+ =
(
F (uεxj )

)
xk
.

By Proposition 2.3, we know that ∇uε converges to ∇U strongly in Lp(Br) and

|uεxj |
p−2
2 uεxj weakly converges in W 1,2(Br) to |Uxj |

p−2
2 Uxj .

This implies that the left-hand side of (2.16) converges weakly in L1(Br) to the left-hand side of
(2.14).

By using the uniform bounds of Lemma 2.2, the local Lipschitz character of G and the relation
(2.15), we getˆ

Br

|∇F (uεxj )|
2 dx =

ˆ
Br

∣∣∣∇G(|uεxj | p−2
2 uεxj

)∣∣∣2 dx ≤ C ˆ
Br

∣∣∣∇(|uεxj | p−2
2 uεxj

)∣∣∣2 dx ≤ C,
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and

lim
ε→0

ˆ
Br

∣∣∣F (Uxj )− F (uεxj )
∣∣∣2 dx = lim

ε→0

ˆ
Br

∣∣∣G(|Uxj | p−2
2 Uxj

)
−G

(
|uεxj |

p−2
2 uεxj

)∣∣∣2 dx
≤ C lim

ε→0

ˆ
Br

∣∣∣|Uxj | p−2
2 Uxj − |uεxj |

p−2
2 uεxj

∣∣∣2 dx = 0,

where we used Proposition 2.3 for the last limit. We thus obtain that F (uεxj ) converges weakly in

W 1,2(Br) and strongly in L2(Br) to F (Uxj ). We can then pass to the limit in the right-hand side
of (2.16). �

We end this subsection with two results on the solutions uε of the problem (2.3). The first one
is a standard minimum principle.

Lemma 2.6 (A minimum principle, p > 2). With the notation above, let Br b B. We have

|uεxj |
p−2
2 uεxj ≥ C, on ∂Br =⇒ |uεxj |

p−2
2 uεxj ≥ C, in Br.

Proof. In the differentiated equation (2.4) we insert the test function

Φ =

{ (
C − |uεxj |

p−2
2 uεxj

)
+

, in Br,

0 , in B \Br,
which is admissible thanks to the hypothesis. Observe that

(2.17) |uεxj |
p−2
2 uεxj ≤ C ⇐⇒ uεxj ≤ |C|

2−p
p C,

thus we obtain
2∑
i=1

ˆ{
x∈Br :uεxj≤|C|

2−p
p C

} (|uεxi |p−2 + ε
)
|uεxj |

p−2
2

∣∣∣uεxixj ∣∣∣2 dx = 0.

Observe that the two terms are non-negative, thus for i = j we can also infer

0 =

ˆ{
x∈Br :uεxj≤|C|

2−p
p C

} |uεxj | 32 (p−2)
∣∣∣uεxjxj ∣∣∣2 dx

=

(
4

3 p− 2

)2 ˆ{
x∈Br :uεxj≤|C|

2−p
p C

} ∣∣∣∣(|uεxj | 34 (p−2) uεxj

)
xj

∣∣∣∣2 dx
=

(
4

3 p− 2

)2 ˆ
Br

∣∣∣∣(min
{
|uεxj |

3
4

(p−2) uεxj , |C|
p−2
2 p C

})
xj

∣∣∣∣2 dx,
where we used that

(2.18) uεxj ≤ |C|
2−p
p C ⇐⇒ |uεxj |

3
4

(p−2) uεxj ≤ |C|
p−2
2 p C.

This entails that (
min

{
|uεxj |

3
4

(p−2) uεxj , |C|
p−2
2 p C

})
xj

= 0, a. e. in Br,

so that the Sobolev function

min
{
|uεxj |

3
4

(p−2) uεxj , |C|
p−2
2 p C

}
,
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does not depend on the variable xj in Br. By assumption, this function is constant on ∂Br. The
last two facts imply that

min
{
|uεxj |

3
4

(p−2) uεxj , |C|
p−2
2 p C

}
= |C|

p−2
2 p C, a. e. in Br,

which is the desired conclusion, thanks to (2.17) and (2.18). �

Finally, we will need the following result about convergence of traces.

Lemma 2.7. Let Br b B. With the notation above, there exists a sequence {εk}k∈N ⊂ (0, ε0) such
that for almost every s ∈ [0, r], we have

lim
k→+∞

∥∥∥|uεkxj | p−2
2 uεkxj − |Uxj |

p−2
2 Uxj

∥∥∥
L∞(∂Bs)

= 0, j = 1, 2.

Proof. We first observe that {
|uεxj |

p−2
2 uεxj − |Uxj |

p−2
2 Uxj

}
0<ε<ε0

,

weakly converges to 0 in W 1,2(Br), thanks to Proposition 2.3. Thus for every 0 < τ < 1, there
exists a subsequence which strongly converges to 0 in the fractional Sobolev space W τ,2(Br). We
take 1/2 < τ < 1 and observe that the previous convergence implies that we can extract again a
subsequence which strongly converges to 0 in W τ,2(∂Bs), for almost every s ∈ [0, r] (see Lemma
B.2). In order to conclude, it is now sufficient to use that for 1/2 < τ < 1, the space W τ,2(∂Bs) is
continuously embedded in C0(∂Bs) (since ∂Bs is one-dimensional, see [1, Theorem 7.57]). �

2.3. Regularization scheme, case 1 < p ≤ 2. In this case, the functional in (2.3) is not smooth
enough, in particular is not C2. Thus the regularized problem is now

(2.19) min

{
2∑
i=1

1

p

ˆ
B

(
ε+ |wxi |2

) p
2 : w − U ε ∈W 1,p

0 (B)

}
.

This problem admits a unique solution uε, which is smooth on B, see again [3, Theorem 2.4].
Moreover, the solution uε satisfies the corresponding Euler-Lagrange equation, i. e.

(2.20)

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi ϕxi dx = 0, for every ϕ ∈W 1,p

0 (B).

We still have the following uniform estimate. The proof is standard routine and is left to the reader.

Lemma 2.8 (Uniform energy estimate). There exists a constant C = C(p) > 0 such that for every
0 < ε < ε0 the following estimate holds

(2.21)

ˆ
B
|∇uε|p dx ≤ C

(ˆ
λB B
|∇U |p dx+ ε

p
2 |B|

)
.

Moreover, the family {uε}0<ε<ε0 converges weakly in W 1,p(B) and strongly in Lp(B) to U .

We will rely on the following Caccioppoli inequality to obtain certain bounds on the family
{uε}0<ε<ε0 .
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Proposition 2.9 (Caccioppoli inequality for the gradient, 1 < p ≤ 2). Let ζ : R → R be a C1

monotone function, then for every η ∈ C2 with compact support in B we have

2∑
i=1

ˆ
(ε+ |uεxi |

2)
p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx

≤ C
ˆ

(ε+ |∇uε|2)
p
2 |ζ ′(uεxj )| |∇η|

2 dx

+ C

ˆ
(ε+ |∇uε|2)

p−1
2 |ζ(uεxj )|

(
|∇η|2 + |η| |D2η|

)
dx,

(2.22)

for some C = C(p) > 0.

Proof. We suppose that ζ ∈ C2, then the general result can be obtained with a standard approxi-
mation argument. In order to obtain (2.22), we use a trick by Fonseca and Fusco [8] to avoid the
use of the upper bound on the Hessian of

Hε(z) :=

2∑
i=1

1

p
(ε+ |zi|2)

p
2 , z ∈ R2,

see also [7] and [9].
We start by testing (2.20) against ϕ = (ζ(uεxj ) η

2)xj . Thus we get

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi (ζ(uεxj ) η

2)xj xi dx = 0.

By using the smoothness of uε and η, we have

(ζ(uεxj ) η
2)xj xi = (ζ(uεxj ) η

2)xi xj

=
(
ζ ′(uεxj )u

ε
xj xi η

2 + 2 ζ(uεxj ) η ηxi

)
xj

=
(
ζ ′(uεxj )u

ε
xj xi η

2
)
xj

+ 2
(
ζ(uεxj ) η ηxi

)
xj
.

By using an integration by parts, we thus obtain

−
2∑
i=1

ˆ
B

(
(ε+ |uεxi |

2)
p−2
2 uεxi

)
xj
ζ ′(uεxj )u

ε
xj xi η

2 dx

+ 2
2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi (ζ(uεxj ) η ηxi)xj dx = 0.
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With simple manipulations, this becomes

2∑
i=1

ˆ
B

(
ε+ |uεxi |

2
) p−2

2
ζ ′(uεxj )

∣∣∣uεxj xi∣∣∣2 η2 dx

+ (p− 2)
2∑
i=1

ˆ
B

(
ε+ |uεxi |

2
) p−4

2 |uεxi |
2 ζ ′(uεxj )

∣∣∣uεxj xi∣∣∣2 η2 dx

= 2

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi ζ

′(uεxj )u
ε
xj xj η ηxi dx

+ 2

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi ζ(uεxj ) (η ηxi)xj dx.

(2.23)

We now observe that

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 ζ ′(uεxj )

∣∣∣uεxj xi∣∣∣2 η2 dx

+ (p− 2)

2∑
i=1

ˆ
B

(
ε+ |uεxi |

2
) p−4

2 |uεxi |
2 ζ ′(uεxj )

∣∣∣uεxj xi∣∣∣2 η2 dx

=

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−4
2 (ε+ (p− 1) |uεxi |

2) ζ ′(uεxj )
∣∣∣uεxj xi∣∣∣2 η2 dx

so that the left-hand side of (2.23) has a sign. Thus we obtain2

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−4
2 (ε+ (p− 1) |uεxi |

2) |ζ ′(uεxj )|
∣∣∣uεxj xi∣∣∣2 η2 dx

≤ 2
2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 |uεxi | |ζ

′(uεxj )|
∣∣∣uεxj xj ∣∣∣ η |ηxi | dx

+ 2

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 |uεxi | |ζ(uεxj )|

∣∣(η ηxi)xj ∣∣ dx.
(2.24)

2Recall that by hypothesis, ζ′ has constant sign.
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We now estimate the left-hand side of (2.24) from below

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−4
2 (ε+ (p− 1) |uεxi |

2) |ζ ′(uεxj )|
∣∣∣uεxj xi∣∣∣2 η2 dx

≥ (p− 1)
2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx

≥ p− 1

2

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx

+
p− 1

2

2∑
i=1

ˆ
B

(ε+ |∇uε|2)
p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx,

where we used that p − 2 < 0. We will use the last term as a sponge term in order to absorb the
second derivatives of uε contained in the right-hand side.

As for the first term in the right-hand side of (2.24)ˆ
B

(ε+ |uεxi |
2)

p−2
2 |uεxi | |ζ

′(uεxj )|
∣∣∣uεxj xj ∣∣∣ η |ηxi | dx

≤
ˆ
B

(ε+ |uεxi |
2)

p−1
2 |ζ ′(uεxj )| |u

ε
xj xj | η |ηxi | dx

≤
ˆ
B

(ε+ |∇uε|2)
p−1
2 |ζ ′(uεxj )| |u

ε
xj xj | η |ηxi | dx

≤ 1

2 τ

ˆ
BR

(ε+ |∇uε|2)
p
2 |ζ ′(uεxj )| |∇η|

2 dx

+
τ

2

ˆ
B

(ε+ |∇uε|2)
p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xj ∣∣∣2 η2 dx.

Also, for the last term of (2.24), we simply getˆ
B

(ε+ |uεxi |
2)

p−2
2 |uεxi | |ζ(uεxj )|

∣∣(η ηxi)xj ∣∣ dx
≤
ˆ
BR

(ε+ |∇uε|2)
p−1
2 |ζ(uεxj )|

(
|∇η|2 + |η| |D2η|

)
dx.

By using these estimates in (2.23) and taking τ = (p − 1)/2 in order to absorb the Hessian term
on the right-hand side, we obtain

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx

≤ C
ˆ
BR

(ε+ |∇uε|2)
p
2 |ζ ′(uεxj )| |∇η|

2 dx

+ C

ˆ
BR

(ε+ |∇uε|2)
p−1
2 |ζ(uεxj )|

(
|∇η|2 + |η| |D2η|

)
dx,

(2.25)

which is exactly (2.22). �

We now collect some bounds on the family {uε}0<ε<ε0 .
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Lemma 2.10 (Uniform estimates, 1 < p ≤ 2). Let 1 < p ≤ 2, then for every Br b B we have

(2.26) ‖uε‖L∞(Br) + ‖∇uε‖L∞(Br) ≤ C,

(2.27)

2∑
i=1

ˆ
Br

(
ε+ |uεxi |

2
) p−2

2

∣∣∣uεxi xj ∣∣∣2 ≤ C, j = 1, 2,

and

(2.28)

ˆ
Br

|∇uεxj |
2 dx ≤ C, j = 1, 2,

for some C > 0 independent of ε.

Proof. The L∞ estimate can be found in [10, Chapter 7] again, while the Lipschitz estimate follows
from [8, Theorem 2.2]. More precisely, for every ball Bs such that B2s b B,

(2.29) sup
Bs

(
ε+ |∇uε|2

) p
2 dx ≤ C

 
B2s

(
ε+ |∇uε|2

) p
2 dx.

By covering a given ball Br b B with a finite number of balls Bs such that B2s b B and using the
bound on the Lp norm of ∇uε, one easily gets the Lipschitz estimate in (2.26) for some constant
C > 0 which may depend on Br but not on ε.

In order to prove (2.27), we introduce two balls Br b BR b B and a standard cut-off function
η ∈ C2 such that

0 ≤ η ≤ 1, η ≡ 1 on Br, η ≡ 0 on R2 \BR,

|∇η| ≤ C

R− r
, |D2η| ≤ C

(R− r)2
.

By taking ζ(t) = t in (2.22), one gets

2∑
i=1

ˆ
(ε+ |uεxi |

2)
p−2
2

∣∣∣uεxj xi∣∣∣2 η2 dx

≤ C
ˆ

(ε+ |∇uε|2)
p
2 |∇η|2 dx+ C

ˆ
(ε+ |∇uε|2)

p−1
2 |uεxj |

(
|∇η|2 + |D2η|

)
dx.

(2.30)

By recalling the uniform bound on the Lp norm of ∇uε, (2.30) gives (2.27).

We now observe that
2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2

∣∣∣uεxj xi∣∣∣2 η2 dx ≥
ˆ
B

(ε+ |∇uε|2)
p−2
2

∣∣∣uεxj xi∣∣∣2 η2 dx

≥
(
ε+ ‖∇uε‖2L∞(BR)

) p−2
2

ˆ
Br

∣∣∣uεxj xi∣∣∣2 dx.
By appealing to (2.30), this yieldsˆ

Br

∣∣∣uεxj xi∣∣∣2 dx ≤ C

(R− r)2

(
ε+ ‖∇uε‖2L∞(BR)

) 2−p
2

ˆ
BR

(ε+ |∇uε|2)
p
2 dx.

In order to conclude, it is sufficient to use (2.26) for the ball BR b B and again the uniform
estimate on the Lp norm of ∇uε. �
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Proposition 2.11. With the notation above, for every Br b B, we have:

(1) {uε}0<ε<ε0 converges uniformly to U on Br;

(2) {∇uε}0<ε<ε0 converges to ∇U weakly in W 1,2(Br) and strongly in L2(Br). In particular,
we have

Uxi ∈W 1,2(Br);

(3)
{

(ε+ |uεxi |
2)

p−2
4 uεxi

}
0<ε<ε0

converges to |Uxi |
p−2
2 Uxi weakly in W 1,2(Br) and strongly in

L4/p(Br). In particular, we have

|Uxi |
p−2
2 Uxi ∈W 1,2(Br).

Proof. We already know from Lemma 2.8 that uε converges to U weakly in W 1,p(B) and strongly
in Lp(B).

By (2.26) and the Arzelà-Ascoli Theorem, the convergence of {uε}0<ε<ε0 to U is uniform on Br,
for every Br b B.

From estimates (2.26) and (2.28), we get that {uεxi}0<ε<ε0 is uniformly bounded in W 1,2(Br). By

Rellich-Kondrašov Theorem, we can infer strong convergence in L2(Br) to Uxi , for every i = 1, 2.
We now observe that∣∣∣∇((ε+ |uεxi |

2)
p−2
4 uεxi

)∣∣∣2 =

∣∣∣∣p− 2

2
(ε+ |uεxi |

2)
p−6
4

∣∣uεxi∣∣2 ∇uεxi + (ε+ |uεxi |
2)

p−2
4 ∇uεxi

∣∣∣∣2
= (ε+ |uεxi |

2)
p−6
2 |∇uεxi |

2
∣∣∣p
2
|uεxi |

2 + ε
∣∣∣2

≤ (ε+ |uεxi |
2)

p−2
2 |∇uεxi |

2,

where we used that 1 < p ≤ 2. By (2.27), this implies that

(2.31)
{

(ε+ |uεxi |
2)

p−2
4 uεxi

}
0<ε<ε0

, i = 1, 2,

is bounded in W 1,2(Br). Again by Rellich-Kondrašov Theorem we can assume that, up to a
subsequence (we do not relabel), it converges to some function Vi ∈W 1,2(Br), weakly in W 1,2(Br)

and strongly in L2(Br). We now show at the same time that Vi = |Uxi |
p−2
2 Uxi and that actually

we have strong convergence in L4/p(Br). Indeed, by using the elementary inequality of Corollary
A.3, we obtainˆ

Br

∣∣∣(ε+ |uεxi |
2)

p−2
4 uεxi − |Uxi |

p−2
2 Uxi

∣∣∣ 4p dx
≤ C

ˆ
Br

∣∣∣(ε+ |uεxi |
2)

p−2
4 uεxi − (ε+ |Uxi |2)

p−2
4 Uxi

∣∣∣ 4p dx
+ C

ˆ
Br

∣∣∣(ε+ |Uxi |2)
p−2
4 Uxi − |Uxi |

p−2
2 Uxi

∣∣∣ 4p dx
≤ C

ˆ
Br

∣∣uεxi − Uxi∣∣2 dx+ C

ˆ
Br

∣∣∣(ε+ |Uxi |2)
p−2
4 Uxi − |Uxi |

p−2
2 Uxi

∣∣∣ 4p dx.
By using the strong convergence of the gradients proved above (for the first term) and the Dom-

inated Convergence Theorem (for the second one), this implies that Vi = |Uxi |
p−2
2 Uxi and the
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convergence of the full original sequence in (2.31), weakly in W 1,2(Br) and strongly in L4/p(Br).
The proof is complete. �

Using the above convergence result, one can establish the following regularity properties for the
local minimizer U .

Theorem 2.12 (A priori estimates, 1 < p ≤ 2). Every local minimizer U ∈ W 1,p
loc (Ω) of the

functional F is a locally Lipschitz function, such that for every α ≥ p/2 we have

|Uxi |α−1 Uxi ∈W
1,2
loc (Ω), i = 1, 2.

In particular, we have ∇U ∈W 1,2
loc (Ω;R2). Moreover, for every BR b Ω, we have

(2.32) ‖Uxj‖L∞(BR/2) ≤ C1

( 
BR

|∇U |p dx
) 1
p

, j = 1, 2,

(2.33)

ˆ
BR/2

∣∣∇ (|Uxj |α−1 Uxj
)∣∣2 dx ≤ C2

( 
BR

|∇U |p dx
) 2α

p

, j = 1, 2,

for some C1 = C1(p) > 0 and C2 = C2(p, α) > 0.

Proof. Local Lipschitz regularity and the scaling invariant estimate (2.32) follow from [8, Theorem
2.2].

We already know from Proposition 2.11 that |Uxi |(p−2)/2 Uxi ∈ W
1,2
loc (Ω). In order to get (2.33) for

α = p/2, we first recall that∣∣∣∣∇((ε+ |uεxj |
2
) p−2

4
uεxj

)∣∣∣∣2 ≤ (ε+ |uεxj |
2
) p−2

2 |∇uεxj |
2.

We multiply the above inequality by the cut-off function η2 as in (2.30), associated to the balls
BR/2 b BR. Integrating the resulting inequality, we get

ˆ
BR/2

∣∣∣∣∇((ε+ |uεxj |
2
) p−2

4
uεxj

)∣∣∣∣2 dx ≤ ˆ
BR

(
ε+ |uεxj |

2
) p−2

2 |∇uεxj |
2η2 dx.

Using (2.30), this implies

ˆ
BR/2

∣∣∣∣∇((ε+ |uεxj |
2
) p−2

4
uεxj

)∣∣∣∣2 dx ≤ C

R2

ˆ
BR

(
ε+ |∇uε|2

) p
2 dx.

By taking the limit in the previous inequality and using the convergences of Proposition 2.11, we
get (2.33) for α = p/2.

The last part of the statement now follows as in Theorem 2.4 above (observe that this time
0 < p/2 ≤ 1). �

Remark 2.13. For later reference, we observe that for every k, j = 1, 2,

(2.34)
(
|Uxj |

p−2
2 Uxj

)
xk

=
p

2
|Uxj |

p−2
2 Uxjxk a. e. on {Uxj 6= 0}.
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Since the function t 7→ |t|
p−2
2 t is not C1 for 1 < p < 2, nor locally Lipschitz, the identity (2.34)

does not follow from the chain rule in a straightforward way. We start instead from the following
identity, which results from the classical chain rule for smooth functions:

(2.35)
(
ε+ |uεxj |

2
) 2−p

4
(

(ε+ |uεxj |
2)

p−2
4 uεxj

)
xk

=

ε+
p

2
|uεxj |

2

ε+ |uεxj |2

uεxjxk .

In the left-hand side, (ε + |uεxj |
2)(2−p)/4 is uniformly bounded on BR b B and converges (up to a

subsequence) almost everywhere to |Uxj |(2−p)/2, while(
(ε+ |uεxj |

2)
p−2
4 uxj

)
xk

weakly converges in L2(BR) to
(
|Uxj |

p−2
2 Uxj

)
xk
.

Hence, the product converges weakly in L2(BR) to |Uxj |(2−p)/2 (|Uxj |(p−2)/2 Uxj )xk .
A similar argument proves that the right-hand side of (2.35) converges to (p/2)Uxjxk weakly in

L2(BR). We have thus proved that for almost every x ∈ BR,

|Uxj |
2−p
2

(
|Uxj |

p−2
2 Uxj

)
xk

=
p

2
Uxjxk .

The identity (2.34) follows at once.

As in the case p > 2, we end this subsection on the case 1 < p ≤ 2 with two additional results
on the solutions uε of the problem 2.19.

Lemma 2.14 (A minimum principle, 1 < p ≤ 2). Let Br b B. With the notation above, we have

uεxj ≥ C, on ∂Br =⇒ uεxj ≥ C, in Br.

Proof. By inserting in (2.20) a test function of the form ϕxj with ϕ smooth with compact support
in B and integrating by parts, we get

2∑
i=1

ˆ
B

(
(ε+ |uεxi |

2)
p−2
2 uεxi

)
xj
ϕxi dx = 0.

This is the same as
2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−2
2 uεxi xj ϕxi dx+ (p− 2)

2∑
i=1

ˆ
B

(ε+ |uεxi |
2)

p−4
2

∣∣uεxi∣∣2 uεxi xj ϕxi dx = 0.

By regularity of uε, the previous identity is still true for functions ϕ ∈ W 1,2
0 (B). In the previous

identity, we insert the test function

Φ =

{
(C − uεxj )+ , in Br,

0 , in B \Br,
which is admissible thanks to the hypothesis on uεxj . We obtain

2∑
i=1

ˆ
{
x∈Br :uεxj≤C

}(ε+ |uεxi |
2)

p−2
2

∣∣∣uεxi xj ∣∣∣2 dx
+ (p− 2)

2∑
i=1

ˆ
{
x∈Br :uεxj≤C

}(ε+ |uεxi |
2)

p−4
2

∣∣uεxi∣∣2 ∣∣∣uεxi xj ∣∣∣2 dx = 0.
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The previous can be rewritten as

2∑
i=1

ˆ
{
x∈Br :uεxj≤C

}(ε+ |uεxi |
2)

p−4
2 (ε+ (p− 1) |uεxi |

2)
∣∣∣uεxj xi∣∣∣2 dx = 0,

which in turn implies

2∑
i=1

ˆ
{
x∈Br :uεxj≤C

} ∣∣∣uεxj xi∣∣∣2 dx = 0, i. e.

ˆ
{
x∈Br :uεxj≤C

} ∣∣∣∇uεxj ∣∣∣2 dx = 0.

From this identity, we get that the Sobolev function

(C − uεxj )+,

is constant in Br and thanks to the fact that uεxj ≥ C on ∂Br, we get

(C − uεxj )+ = 0, in Br,

as desired. �

Lemma 2.15. Let Br b B. With the notation above, there exists a sequence {εk}k∈N ⊂ (0, ε0)
such that for almost every s ∈ [0, r], we have

lim
k→+∞

‖uεkxj − Uxj‖L∞(∂Bs) = 0, j = 1, 2.

Proof. Observe that {uεxj − Uxj}0<ε<ε0 weakly converges to 0 in W 1,2(Br), thanks to Proposition

2.11. The proof then runs similarly to that of Lemma 2.7. �

3. Caccioppoli inequalities

3.1. The case p > 2. One of the key ingredients in the proof of Theorem 1.1 for p > 2 is the
following “weird” Caccioppoli inequality for the gradient of the local minimizer U . Observe that
the inequality contains quantities like the product of different components of ∇U .

Proposition 3.1. Let Φ : R → R be a C2 function such that Φ Φ′′ ≥ 0 and ζ : R → R+ be a
nonnegative convex function. For every B b Ω, every η ∈ C∞0 (B) and every j, k ∈ {1, 2},

2∑
i=1

ˆ ∣∣∣∣(|Uxi | p−2
2 Uxi

)
xk

∣∣∣∣2 [Φ′(Uxk)]2 ζ(Uxj ) η
2 dx ≤ C

(
2∑
i=1

ˆ
|Uxi |p−2 Φ(Uxk)4 |ηxi |2 dx

) 1
2

×

(
2∑
i=1

ˆ
|Uxi |p−2 ζ(Uxj )

2 |ηxi |2 dx

) 1
2

.

(3.1)

Proof. By a standard approximation argument, one can assume ζ to be a smooth function. We
fix ε > 0 and we take as above uε the minimizer of (2.3), subject to the boundary condition

uε − U ε ∈ W 1,p
0 (B). We divide the proof in two parts: we first show (3.1) for uε and then prove

that we can take the limit.

Caccioppoli for uε. We consider equation (2.4) with k in place of j and plug in the test function

ϕ = Ψ(uεxk) ζ(uεxj ) η
2, with Ψ(t) = Φ(t) Φ′(t),
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where η is as in the statement. In order to simplify the notation, we write u in place of uε in what
follows. Since

ϕxi = uxk xiΨ
′(uxk) ζ(uxj ) η

2 + Ψ(uxk)
(
ζ(uxj )

)
xi
η2 + 2 η ηxi Ψ(uxk) ζ(uxj ),

we obtain

2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xi xk
Ψ′(uxk) ζ(uxj ) η

2 dx

= −
2∑
i=1

ˆ
(|uxi |p−2 + ε)uxixk Ψ(uxk)

(
ζ(uxj )

)
xi
η2 dx

− 2
2∑
i=1

ˆ
(|uxi |p−2 + ε)uxixk Ψ(uxk) ζ(uxj ) η ηxi dx.

(3.2)

For the second term in the right-hand side, the Young inequality implies

2

ˆ
(|uxi |p−2 + ε)uxixk Ψ(uxk) ζ(uxj ) η ηxi dx ≤

1

2

ˆ
(|uxi |p−2 + ε)u2

xixk
Φ′(uxk)2 ζ(uxj ) η

2 dx

+ 2

ˆ
(|uxi |p−2 + ε) Φ(uxk)2 ζ(uxj ) η

2
xi dx,

where we used the definition of Ψ. The first term can be absorbed in the left-hand side of (3.2),
thanks to the fact that

Ψ′ = (Φ Φ′)′ = Φ′2 + Φ Φ′′ ≥ Φ′2.

Hence, for the moment we have obtained

2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xixk
Φ′(uxk)2 ζ(uxj ) η

2 dx

≤ 2
2∑
i=1

ˆ
(|uxi |p−2 + ε) |uxixk | |Ψ(uxk)|

∣∣∣(ζ(uxj )
)
xi

∣∣∣ η2 dx

+ 4
2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)2ζ(uxj ) η

2
xi dx.

(3.3)

In the particular case when ζ ≡ 1, we observe for later use that

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(Φ(uxk))xi

∣∣∣2 η2 dx =

2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xixk
Φ′(uxk)2 η2 dx

≤ 4
2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)2 η2

xi dx.

(3.4)
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We go back to (3.3). By Hölder inequality, we can estimate the last term of the right-hand side:

2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)2 ζ(uxj ) η

2
xi dx ≤

(
2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)4 η2

xi dx

) 1
2

×

(
2∑
i=1

ˆ
(|uxi |p−2 + ε) ζ(uxj )

2 η2
xi dx

) 1
2

.

(3.5)

In a similar fashion, for the first term in the right-hand side of (3.3), we have

2∑
i=1

ˆ
(|uxi |p−2 + ε) |uxixk | |Ψ(uxk)|

∣∣∣(ζ(uxj )
)
xi

∣∣∣ η2 dx

≤

(
2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xixk
Ψ(uxk)2η2 dx

) 1
2
(

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(ζ(uxj )
)
xi

∣∣∣2 η2 dx

) 1
2

=
1

2

(
2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(Φ(uxk)2
)
xi

∣∣∣2 η2 dx

) 1
2
(

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(ζ(uxj )
)
xi

∣∣∣2 η2 dx

) 1
2

.

(3.6)

In the last equality, we have used the fact that

u2
xixk

Ψ(uxk)2 =
1

4

((
Φ(uxk)2

)
xi

)2
.

It follows from (3.3), (3.5) and (3.6) that

2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xixk
Φ′(uxk)2ζ(uxj )η

2

≤

(
2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(Φ(uxk)2
)
xi

∣∣∣2 η2 dx

) 1
2
(

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(ζ(uxj )
)
xi

∣∣∣2 η2 dx

) 1
2

+ 4

(
2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)4 η2

xi dx

) 1
2
(

2∑
i=1

ˆ
(|uxi |p−2 + ε) ζ(uxj )

2 η2
xi dx

) 1
2

.

By (3.4) with3 Φ2 in place of Φ, one has

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(Φ(uxk)2
)
xi

∣∣∣2 η2 dx ≤ 4

2∑
i=1

ˆ
(|uxi |p−2 + ε) Φ(uxk)4 η2

xi dx.

Similarly, by using (3.4) with ζ in place of Φ and j in place of k,

2∑
i=1

ˆ
(|uxi |p−2 + ε)

∣∣∣(ζ(uxj )
)
xi

∣∣∣2 η2 dx ≤ 4
2∑
i=1

ˆ
(|uxi |p−2 + ε) ζ(uxj )

2 η2
xi dx.

3Observe that Φ2 still verifies Φ2 (Φ2)′′ ≥ 0. Indeed, (Φ2)′′ = 2 (Φ′)2 + 2 Φ Φ′′ ≥ 0, by hypothesis.
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Hence, we have obtained

2∑
i=1

ˆ
(|uxi |p−2 + ε)u2

xixk
Φ′(uxk)2 ζ(uxj ) η

2 dx

≤ C

(ˆ 2∑
i=1

(|uxi |p−2 + ε) Φ(uxk)4 η2
xi dx

) 1
2
(ˆ 2∑

i=1

(|uxi |p−2 + ε) ζ(uxj )
2 η2

xi dx

) 1
2

,

for some universal constant C > 0. We now observe that

(|uxi |p−2 + ε)u2
xixk
≥ |uxi |p−2u2

xixk
=

4

p2

∣∣∣∣(|uxi | p−2
2 uxi

)
xk

∣∣∣∣2 ,
thus, by restoring the original notation uε, we get

2∑
i=1

ˆ ∣∣∣∣(|uεxi | p−2
2 uεxi

)
xk

∣∣∣∣2 Φ′(uεxk)2 ζ(uεxj ) η
2 dx

≤ C

(
2∑
i=1

ˆ
(|uεxi |

p−2 + ε) Φ(uεxk)4 η2
xi dx

) 1
2
(

2∑
i=1

ˆ
(|uεxi |

p−2 + ε) ζ(uεxj )
2 η2

xi dx

) 1
2

.

(3.7)

Passing to the limit ε → 0. By Lemma 2.2, for every Br b B the gradient ∇uε is uniformly
bounded in L∞(Br). Moreover, by Proposition 2.3, up to a subsequence (we do not relabel),
it converges almost everywhere to ∇U . By recalling that η has compact support in B, then
the Dominated Convergence Theorem implies that the right-hand side of (3.7) converges to the
corresponding quantity with U in place of uε and ε = 0.

As for the left-hand side, we use the fact that for a subsequence (still denoted by uε)∥∥∥Φ′(uεxk)
√
ζ(uεxj ) η

∥∥∥
L∞(spt(η))

≤ C, Φ′(uεxk)
√
ζ(uεxj ) η → Φ′(Uxk)

√
ζ(Uxj ) η, a. e.,

and that

|uεxi |
p−2
2 uεxi weakly converges in W 1,2(spt(η)) to |Uxi |

p−2
2 Uxi ,

still by Proposition 2.3. Hence, we can infer weak convergence in L2(spt(η)) of(
|uεxi |

p−2
2 uεxi

)
xk

Φ′(uεxk)
√
ζ(uεxj ) η.

Finally, by semicontinuity of the L2 norm with respect to weak convergence, one gets

ˆ ∣∣∣∣(|Uxi | p−2
2 Uxi

)
xk

∣∣∣∣2 Φ′(Uxk)2 ζ(Uxj ) η
2 dx ≤ lim inf

ε→0

ˆ ∣∣∣∣(|uεxi | p−2
2 uεxi

)
xk

∣∣∣∣2 Φ′(uεxk)2 ζ(uεxj ) η
2 dx.

This yields the desired estimate (3.1) for U . �

3.2. The case 1 < p ≤ 2. In this case, the Caccioppoli inequality we need is more standard.
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Proposition 3.2. Let ζ : R→ R be a C1 monotone function. For every B b Ω, every η ∈ C∞0 (B)
and every j = 1, 2 we have

2∑
i=1

ˆ
{Uxi 6=0}

|Uxi |p−2
∣∣∣(Z(Uxj )

)
xi

∣∣∣2 η2 dx

≤ C
ˆ
|∇U |p−1

(
|∇U | |ζ ′(Uxj )|+ |ζ(Uxj )|

)(
|∇η|2 + |η| |D2η|

)
dx,

(3.8)

where Z : R→ R is the C1 function defined by

(3.9) Z(t) =

ˆ t

0

√
|ζ ′(s)| ds.

Proof. We fix ε > 0 and we take as above uε the minimizer of (2.19), subject to the boundary

condition uε − U ε ∈W 1,p
0 (B). Then by Proposition 2.9, we have

2∑
i=1

ˆ
(ε+ |uεxi |

2)
p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 dx

≤ C
ˆ

(ε+ |∇uε|2)
p
2 |ζ ′(uεxj )| |∇η|

2 dx

+ C

ˆ
(ε+ |∇uε|2)

p−1
2 |ζ(uεxj )|

(
|∇η|2 + |η| |D2η|

)
dx,

for some C = C(p) > 0. Since p < 2,

(ε+ |uεxi |
2)

p−2
2 |ζ ′(uεxj )|

∣∣∣uεxj xi∣∣∣2 η2 ≥
((

(ε+ |uεxi |
2)

p−2
4 uεxi

)
xj

√
|ζ ′(uεxj )| η

)2

.

Hence,

2∑
i=1

ˆ ((
(ε+ |uεxi |

2)
p−2
4 uεxi

)
xj

√
|ζ ′(uεxj )| η

)2

≤ C
ˆ

(ε+ |∇uε|2)
p
2 |ζ ′(uεxj )| |∇η|

2 dx

+ C

ˆ
(ε+ |∇uε|2)

p−1
2 |ζ(uεxj )|

(
|∇η|2 + |η| |D2η|

)
dx.

(3.10)

In order to pass to the limit as ε goes to 0, we observe that by Lemma 2.10, for every Br b B
the gradient ∇uε is uniformly bounded in L∞(Br). Moreover, by Proposition 2.11 it converges
almost everywhere to ∇U (up to a subsequence). By recalling that η has compact support in B,
then the Dominated Convergence Theorem implies that the right-hand side of the above inequality
converges to the corresponding quantity with U in place of uε and ε = 0.

As for the left-hand side, we observe that by Proposition 2.11

(ε+ |uεxi |
2)

p−2
4 uεxi weakly converges in W 1,2(spt(η)) to |Uxi |

p−2
2 Uxi ,

and (up to a subsequence),∥∥∥√|ζ ′(uεxj )| η∥∥∥L∞(spt(η))
≤ C,

√
|ζ ′(uεxj )| η →

√
|ζ ′(Uxj )| η a. e.
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Thus as in the case p > 2, we can infer weak convergence in L2(spt(η)) of(
(ε+ |uεxi |

2)
p−2
4 uεxi

)
xj

√
|ζ ′(uεxj )| η.

By the same semicontinuity argument as before, we get

lim inf
ε→0

2∑
i=1

ˆ ((
(ε+ |uεxj |

2)
p−2
4 uεxi

)
xj

√
|ζ ′(uεxj )|η

)2

dx ≥
2∑
i=1

ˆ ∣∣∣∣(|Uxi | p−2
2 Uxi

)
xj

√
|ζ ′(Uxj )| η

∣∣∣∣2 dx.
The right-hand side is greater than or equal to

2∑
i=1

ˆ
{Uxi 6=0}

∣∣∣∣(|Uxi | p−2
2 Uxi

)
xj

∣∣∣∣2 |ζ ′(Uxj )| η2 dx =
p2

4

2∑
i=1

ˆ
{Uxi 6=0}

∣∣∣|Uxi | p−2
2 Uxi xj

∣∣∣2 |ζ ′(Uxj )| η2 dx.

The last equality follows from (2.34). Now, applying the standard chain rule for the C1 function

Z defined in (3.9) (remember also that Uxj ∈W
1,2
loc (Ω) ∩ L∞loc(Ω)) yields

lim inf
ε→0

2∑
i=1

ˆ ((
(ε+ |uεxj |

2)
p−2
4 uεxi

)
xj

√
|ζ ′(uεxj )| η

)2

dx

≥ p2

4

2∑
i=1

ˆ
{Uxi 6=0}

|Uxi |p−2
∣∣∣(Z(Uxj )

)
xi

∣∣∣2 η2 dx.

In view of (3.10), this completes the proof. �

4. Decay estimates for a nonlinear function
of the gradient for p > 2

We already know from Theorem 2.4 that

|Uxj |
p−2
2 Uxj ∈W

1,2
loc (Ω) ∩ L∞loc(Ω).

This nonlinear function of the gradient of U will play a crucial role in the sequel, for the case p > 2.
Thus we introduce the expedient notation

vj = |Uxj |
p−2
2 Uxj , j = 1, 2.

For every BR b Ω, we will also use the following notation:

(4.1) mj = inf
BR

vj , Vj = vj −mj , Mj = sup
BR

Vj = osc
BR

vj , j = 1, 2,

and

(4.2) LR = 1 + ‖∇U‖L∞(BR).

4.1. A De Giorgi-type Lemma. We first need the following result on the decay of the oscillation
of vj . This is the analogue of [12, Lemma 4]. As explained in the Introduction, our operator is
much more degenerate then the one considered in [12], thus the proof has to be completely recast.
We crucially rely on the Caccioppoli inequality of Proposition 3.1.
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Lemma 4.1. Let BR b Ω and 0 < α < 1. By using the notation in (4.1) and (4.2), there exists a
constant ν = ν(p, α, LR) > 0 such that if∣∣∣{Vj > (1− α)Mj} ∩BR

∣∣∣ ≤ ν M2 p+4
(

1− 2
p

)
j |BR|,

then

0 ≤ Vj ≤
(

1− α

2

)
Mj , on BR

2
.

Proof. We first observe that if Mj = 0, then Vj identically vanishes in BR and there is nothing to
prove. Thus, we can assume that Mj > 0.

For n ≥ 1, we set

kn = Mj

(
1− α

2
− α

2n

)
, Rn =

R

2
+
R

2n
, An = {Vj > kn} ∩BRn ,

where the ball BRn is concentric with BR. Let θn be a smooth cut-off function such that

0 ≤ θn ≤ 1, θn ≡ 1 on BRn+1 , θn ≡ 0 on R2 \BRn , |∇θn| ≤ C
2n

R
.

Recalling the definition (2.1) of gq, we then set for every n ≥ 1

(4.3) βn = g−1
p−2
2

(mj + kn) = |mj + kn|
2−p
p (mj + kn),

with mj defined in (4.1). We start from (3.1) with the choices

Φ(t) = t, ζ(t) = (t− βn)2
+ and η = θn.

Observe that
ζ(Uxj ) = (Uxj − βn)2

+ > 0 ⇐⇒ Vj > kn,

and also4

0 ≤ ζ(Uxj ) ≤
∣∣∣∣g−1

p−2
2

(vj)− g−1
p−2
2

(mj + kn)

∣∣∣∣2
≤ C |vj −mj − kn|

4
p ≤ CM

4
p

j , a. e. on BRn .

(4.4)

By using (4.4) and the definition of An, we then obtain

2∑
i=1

ˆ
|(vi)xk |

2 ζ(Uxj ) θ
2
n ≤ C

(
2∑
i=1

ˆ
|Uxi |p−2 |Uxk |

4 |(θn)xi |
2 dx

) 1
2
(

2∑
i=1

ˆ
|Uxi |p−2 ζ(Uxj )

2 |(θn)xi |
2 dx

) 1
2

≤ C LpRM
4
p

j

(ˆ
BRn

|∇θn|2
) 1

2 (ˆ
An

|∇θn|2
) 1

2

.

In view of the properties of θn, it follows that

2∑
i=1

ˆ
|(vi)xk |

2 ζ(Uxj ) θ
2
n dx ≤ C L

p
RM

4
p

j

(
2n

R

)2

|BRn \BRn+1 |
1
2 |An|

1
2

≤ C 4n LpRM
4
p

j

|An|
1
2

R
,

4In the second inequality we use that t 7→ g−1
(p−2)/2(t) is 2/p−Hölder continuous.
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for some C = C(p) > 0. Here, we have used that

|BRn \BRn+1 | = π
(
R2
n −R2

n+1

)
= π (Rn −Rn+1) (Rn +Rn+1) ≤ R

2n+1
2π R = π

R2

2n
.

In the left-hand side, we only keep the term i = j and use that by Lemma 2.5

(vj)xk

√
ζ(Uxj ) =

(
F (Uxj )

)
xk
,

where

F (t) =
p

2

ˆ t

βn

|s|
p−2
2

√
ζ(s) ds =

p

2

ˆ t

βn

|s|
p−2
2 (s− βn)+ ds, t ∈ R.

We thus obtain ˆ ∣∣(F (Uxj ))xk
∣∣2 θ2

n dx ≤ C 4n LpRM
4
p

j

|An|
1
2

R
.

Summing over k = 1, 2, this yields an estimate for the gradient of F (Uxj ), i. e.

(4.5)

ˆ
|∇(F (Uxj ))|2 θ2

n dx ≤ C 4n LpRM
4
p

j

|An|
1
2

R
.

Since mj ≤ mj + kn ≤ mj +Mj = supBR vj and by definition of LR, |mj + kn| ≤ L
p/2
R . Hence, by

definition of βn, see (4.3),

(4.6) |βn| ≤ LR.

By keeping this in mind and using Lemma A.1 below,

0 ≤ F (Uxj ) ≤ C
(
|Uxj |

p−2
2 + |βn|

p−2
2

)
(Uxj − βn)2

+ ≤ C L
p−2
2

R (Uxj − βn)2
+.

This implies that F (Uxj ) = 0 on BRn \An and also that

0 ≤ F (Uxj ) ≤ C L
p−2
2

R ζ(Uxj ) ≤ C L
p−2
2

R M
4
p

j ,

for some C = C(p) > 0. In the last inequality, we have used (4.4). Hence,

ˆ
|∇θn|2(F (Uxj ))

2 dx ≤ C Lp−2
R M

8
p

j

ˆ
An

|∇θn|2 dx

≤ C 4n Lp−2
R M

8
p

j

|An|
R2
≤ C 4n LpRM

4
p

j

|An|
1
2

R
,

(4.7)

where in the last inequality we used that |An|1/2 ≤
√
π R and Mj ≤ 2L

p/2
R . By adding (4.5) and

(4.7), with some simple manipulations we get

ˆ
BRn

|∇(F (Uxj ) θn)|2 ≤ C 4n LpRM
4
p

j

|An|
1
2

R
,
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where as usual C = C(p) > 0. We now rely on the following Poincaré inequality5 for the function

F (Uxj ) θn ∈W
1,2
0 (BRn)∣∣{x ∈ BRn : F (Uxj ) θn > 0}

∣∣ ˆ
BRn

|∇(F (Uxj ) θn)|2 dx ≥ c
ˆ
BRn

|F (Uxj ) θn|2 dx.

Since θn ≡ 1 on BRn+1 and by construction

|An| ≥
∣∣{F (Uxj ) θn > 0}

∣∣ ,
one gets

ˆ
BRn+1

|F (Uxj )|2 dx ≤ C
4n LpRM

4
p

j

R
|An|

3
2 ,

for some C = C(p) > 0. By using that F is non-decreasing and

An+1 = {Vj > kn+1} ∩BRn+1 = {Uxj > βn+1} ∩BRn+1 ,

we obtain ˆ
BRn+1

|F (Uxj )|2 dx ≥
ˆ
An+1

|F (Uxj )|2 dx ≥ |An+1|F (βn+1)2.

This gives

(4.8) |An+1|F (βn+1)2 ≤ C
4n LpRM

4
p

j

R
|An|

3
2 .

We now use the lower bound of Lemma A.1 to get

(4.9) F (βn+1)2 ≥ c (βn+1 − βn)p+2.

Remember that

βn = g−1
p−2
2

(mj + kn) and βn+1 = g−1
p−2
2

(mj + kn+1).

If we use again that for every s, t ∈ R,∣∣∣g p−2
2

(t)− g p−2
2

(s)
∣∣∣ ≤ C (|t| p−2

2 + |s|
p−2
2

)
|t− s|,

then one gets

|kn+1 − kn|p+2 =
∣∣(kn+1 +mj)− (kn +mj)

∣∣p+2 ≤ C
(
|βn+1|

p−2
2 + |βn|

p−2
2

)p+2
(βn+1 − βn)p+2.

By using (4.6) and (4.9) we obtain

|kn+1 − kn|p+2 ≤ C L
p2−4

2
R F (βn+1)2.

5For every bounded open set Ω ⊂ R2, the Sobolev embedding W 1,1
0 (Ω) ↪→ L2(Ω) implies that for every f ∈

W 1,2
0 (Ω), ˆ

|f |2 dx ≤ C
(ˆ
|∇f | dx

)2

= C

(ˆ
{f 6=0}

|∇f | dx

)2

≤ C |{x : f(x) 6= 0}|
ˆ
|∇f |2 dx,

where C is a universal constant.
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so that by (4.8),

|An+1| |kn+1 − kn|p+2 ≤ C
4n L

p2−4+2 p
2

R M
4
p

j

R
|An|

3
2 .

By definition of kn, the previous inequality gives

|An+1|
R2

≤ C

(
2n (p+4)

αp+2
L
p2−4+2 p

2
R M

4
p
−p−2

j

) (
|An|
R2

) 3
2

.

Since Mj > 0, the right-hand side is well-defined. If we now set Yn = |An|/R2, this finally yields

Yn+1 ≤
(
C0 L

p2−4+2 p
2

R M
4
p
−p−2

j

) (
2p+4

)n
Y

3
2
n , for every n ∈ N \ {0}.

for some C0 = C0(α, p) which can be supposed to be larger than 1. If follows from Lemma B.1
below that

lim
n→+∞

Yn = 0, provided that Y1 ≤
(2p+4)−6

C2
0

L4−p2−2 p
R M

2 p+4
(

1− 2
p

)
j ,

The condition on Y1 means

(4.10) |{Vj > (1− α)Mj} ∩BR| ≤ ν M
2 p+4

(
1− 2

p

)
j |BR|, with ν :=

(2p+4)−6

C2
0 π

L4−p2−2p
R .

By assuming this condition and recalling the definition of Yn, we get

Vj ≤ lim
n→+∞

kn =
(

1− α

2

)
Mj , a. e. on BR/2.

This completes the proof. �

Remark 4.2 (Quality of the constant ν). For later reference, it is useful to record that

ν M
2 p+4

(
1− 2

p

)
j <

1

2
.

This follows by direct computation, using the definition of ν and observing that

Mj ≤ 2 ‖vj‖L∞(BR) = 2 ‖Uxj‖
p
2

L∞(BR) ≤ 2 (LR − 1)
p
2 .

Also observe that by its definition (4.10), the constant ν is monotone non-increasing as a function
of the radius of the ball BR (since R 7→ LR is monotone non-decreasing and 4 − p2 − 2 p < 0 for
p ≥ 2).

4.2. Alternatives.

Lemma 4.3. We still use the notation in (4.1) and (4.2). Let BR b Ω and let ν be the constant
in Lemma 4.1, for α = 1/4. If we set

δ =

√
ν

2
M

2 p+4
(

1− 2
p

)
j ,

then one of the two following alternatives occur:
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(B1) either

(4.11) osc
BδR

vj ≤
7

8
osc
BR

vj ,

(B2) or

(4.12)

ˆ
BR\BδR

|∇vj |2 dx ≥
1

512π
ν M2

j M
2 p+4

(
1− 2

p

)
j .

Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities:
either ∣∣∣∣{Vj > 3

4
Mj

}
∩BR

∣∣∣∣ < νM
2 p+4

(
1− 2

p

)
j |BR|,

or not. In the first case, by Lemma 4.1 with α = 1/4 we obtain

osc
BδR

vj ≤ osc
BR/2

vj ≤
7

8
osc
BR

vj ,

which corresponds to alternative (B1) in the statement. In the first inequality we used that δ < 1/2,
see Remark 4.2.

In the second case, we appeal to Lemma B.3 with the choices

q = 2, ϕ = Vj , M = Mj and γ = ν M
2 p+4

(
1− 2

p

)
j ,

with δ as in the statement above. It follows that:

• either ˆ
BR\BδR

|∇Vj |2 dx ≥
1

512π
ν M2

j M
2 p+4

(
1− 2

p

)
j ;

• or the following subset of [δ R,R]

A =

{
s ∈ [δR,R] : Vj ≥

5

8
Mj , H1−a. e. on ∂Bs

}
,

has positive measure.

If the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider uε the solution of the regularized problem (2.3) in a ball B b Ω

such that BR b B. Then we know from Lemma 2.7

lim
k→+∞

∥∥∥|uεkxj | p−2
2 uεkxj − vj

∥∥∥
L∞(∂Bs)

= 0, for a. e. s ∈ [0, R],

for an infinitesimal sequence {εk}n∈N. Since A has positive measure, we can then choose a radius
s ∈ A such that the previous convergence holds. For every n ∈ N \ {0}, by taking k large enough
we thus obtain

|uεkxj |
p−2
2 uεkxj ≥

5

8
Mj +mj −

1

n
, H1−a. e. on ∂Bs.

We can now apply the minimum principle of Lemma 2.6 with C = 5/8Mj +mj − 1/n and get

(4.13) |uεkxj |
p−2
2 uεkxj ≥

5

8
Mj +mj −

1

n
, in Bs.
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Thanks to Proposition 2.3, we know that {|uεkxj |
p−2
2 uεkxj}k∈N converges strongly in L2(Bs) to vj . It

then follows from (4.13) that

vj ≥
5

8
Mj +mj −

1

n
, a. e. in Bs, that is Vj ≥

5

8
Mj −

1

n
, a. e. in Bs.

Hence, by arbitrariness of n we get

osc
BδR

vj ≤ osc
Bs

vj ≤ sup
BR

Vj − inf
Bs
Vj ≤

3

8
Mj ,

which implies again alternative (B1). The proof is complete. �

5. Decay estimates for the gradient for 1 < p ≤ 2

5.1. A De Giorgi-type Lemma. For every BR b Ω, we introduce the alternative notation

(5.1) mj = inf
BR

Uxj , Vj = Uxj −mj , Mj = sup
BR

Vj = osc
BR

Uxj , j = 1, 2,

and still use the notation (4.2) for LR.

Lemma 5.1. Let BR b Ω and 0 < α < 1. By using the notation in (5.1) and (4.2), there exists a
constant ν = ν(p, α, LR) > 0 such that if∣∣∣{Vj > (1− α)Mj} ∩BR

∣∣∣ ≤ ν M2
j |BR|,

then
0 ≤ Vj ≤

(
1− α

2

)
Mj , on BR

2
.

Proof. We first observe that if Mj = 0, then Vj identically vanishes in BR and there is nothing to
prove. Thus, we can assume that Mj > 0.

For n ≥ 1, we set

kn = Mj

(
1− α

2
− α

2n

)
, Rn =

R

2
+
R

2n
, An = {Vj > kn} ∩BRn ,

where the ball BRn is concentric with BR. Let θn be a cut-off function such that

0 ≤ θn ≤ 1, θn ≡ 1 on BRn+1 , θn ≡ 0 on R2 \BRn

|∇θn| ≤ C
2n

R
and |D2θn| ≤ C

4n

R2
.

We then set for every n ≥ 1

(5.2) βn = mj + kn.

For every δ > 0, we take a C1 non-decreasing function ξδ : R→ [0 +∞) such that6

ξδ(t) = 0, for t ≤ 0, |ξ′δ(t)| ≤ C, for t ∈ R,
and

ξ′δ(t) = C, for t ≥ δ,
6One can take for example the function ξδ of the form

ξδ(t) =


0 , for t ≤ 0,
t3/δ2 , for 0 < t < δ,
3 t− 2 δ , for t ≥ δ.
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for some universal constant C > 0. This has to be thought as a smooth approximation of the
“positive part” function, up to the constant C > 0. In the setting of Proposition 3.2, we take

ζ(t) = ξδ(t− βn) and η = θn.

We observe that

ζ(t) ≤ C (t− βn)+,

so that

(5.3) ζ(Uxj ) ≤ C (Uxj −mj − kn)+ ≤ CMj ≤ 2C LR.

By using (5.3), the definition of An and the properties of ζ, one gets from (3.8)

C
2∑
i=1

ˆ
{Uxj≥βn+δ}∩{Uxi 6=0}

|Uxi |
p−2 |Uxj xi |2 θ2

n dx ≤ C
ˆ
{Uxj≥βn}

|∇U |p
(
|∇θn|2 + |D2θn|

)
dx

+

ˆ
{Uxj≥βn}

|∇U |p−1 |ζ(Uxj )|
(
|∇θn|2 + |D2θn|

)
dx

≤ C LpR
ˆ
{Uxj≥βn}

(
|∇θn|2 + |D2θn|

)
dx.

Since p < 2 and |Uxi | ≤ LR a.e., one gets

2∑
i=1

ˆ
{Uxj≥βn+δ}

|Uxj xi |2 θ2
n dx ≤ C L2

R

ˆ
{Uxj≥βn}

(
|∇θn|2 + |D2θn|

)
dx.

Here, we have also used the fact that Uxj xi = 0 a.e. on the set {Uxi = 0}. We now take the limit
as δ goes to 0 in the left-hand side. By the Monotone Convergence Theorem, we get

2∑
i=1

ˆ
{Uxj≥βn}

|Uxj xi |2 θ2
n dx ≤ C L2

R

ˆ
{Uxj≥βn}

(
|∇θn|2 + |D2θn|

)
dx.

In view of the properties of θn, it follows that

(5.4)

ˆ ∣∣∣∇ (Uxj − βn)+∣∣∣2 θ2
n dx ≤ C L2

R 4n
|An|
R2

,

for some C = C(p) > 0. Observe that

(5.5)

ˆ
|∇θn|2 (Uxj − βn)2

+ dx ≤ C L2
R 4n

|An|
R2

,

thanks to (5.3). By adding (5.4) and (5.5), we getˆ
BRn

|∇
(
(Uxj − βn)+ θn

)
|2 dx ≤ C 4n L2

R

|An|
R2

,

where as usual C = C(p) > 0. We rely again on the Poincaré inequality and obtain∣∣{x ∈ BRn : (Uxj − βn)+ θn > 0}
∣∣ ˆ

BRn

|∇
(
(Uxj − βn)+ θn

)
|2 dx

≥ c
ˆ
BRn

|(Uxj − βn)+ θn|2 dx.
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Since θn ≡ 1 on BRn+1 and by construction

|An| ≥
∣∣{(Uxj − βn)+ θn > 0}

∣∣ ,
one gets ˆ

BRn+1

(Uxj − βn)2
+ dx ≤ C

4n L2
R

R2
|An|2,

for some C = C(p) > 0. By using that

An+1 = {Vj > kn+1} ∩BRn+1 = {Uxj > βn+1} ∩BRn+1 ,

we obtain ˆ
BRn+1

(Uxj − βn)2
+ dx ≥

ˆ
An+1

(Uxj − βn)2
+ dx ≥ |An+1| (βn+1 − βn)2.

This gives

(5.6) |An+1| (βn+1 − βn)2 ≤ C
4n L2

R

R2
|An|2.

By recalling the definition of βn and kn, the previous inequality gives

|An+1|
R2

≤ C
(

42n

α2
L2
RM

−2
j

) (
|An|
R2

)2

.

Since Mj > 0, the right-hand side is well-defined. As before, we set Yn = |An|/R2 and obtain

Yn+1 ≤
(
C0 L

2
RM

−2
j

)
16n Y 2

n , for every n ∈ N \ {0},

for some C0 = C0(α, p) ≥ 1. Again by Lemma B.1 we get

lim
n→+∞

Yn = 0, provided that Y1 ≤
(16)−2

C0
L−2
R M2

j ,

This means

|{Vj > (1− α)Mj} ∩BR| ≤ ν M2
j |BR|, with ν :=

16−2

C2
0 π

L−2
R .

By assuming this condition and recalling the definition of Yn, we get

Vj ≤ lim
n→+∞

kn =
(

1− α

2

)
Mj , a. e. on BR/2.

This completes the proof. �

Remark 5.2 (Quality of the constant ν). For later reference, as in the previous case we observe
that

ν M2
j <

1

2
,

and that the constant ν is monotone non-increasing as a function of R.



ORTHOTROPIC p−HARMONIC FUNCTIONS IN THE PLANE 33

5.2. Alternatives.

Lemma 5.3. We still use the notation in (5.1) and (4.2). Let BR b B2R b Ω and let ν be the
constant in Lemma 5.1, for α = 1/4. If we set

δ =

√
ν

2
M2
j ,

then one of the two following alternatives occur:

(B1) either

(5.7) osc
BδR

Uxj ≤
7

8
osc
BR

Uxj ,

(B2) or

(5.8)

ˆ
BR\BδR

|∇Uxj |2 dx ≥
1

512π
ν M4

j .

Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities:
either ∣∣∣∣{Vj > 3

4
Mj

}
∩BR

∣∣∣∣ < νM2
j |BR|,

or not. In the first case, by Lemma 5.1 with α = 1/4 we obtain

osc
BδR

Uxj ≤ osc
BR/2

Uxj ≤
7

8
osc
BR

Uxj ,

which corresponds to alternative (B1) in the statement. In the first inequality we used again that
δ < 1/2, see Remark 5.2.

In the second case, we appeal to Lemma B.3 with the choices

q = 2, ϕ = Vj , M = Mj and γ = ν M2
j ,

with δ as in the statement above. It follows that:

• either ˆ
BR\BδR

|∇Vj |2 dx ≥ c ν M4
j ,

for some universal constant c > 0;

• or the set

A =

{
s ∈ [δR,R] : Uxj −mj ≥

5

8
Mj , H1−a. e. on ∂Bs

}
,

has positive measure.

Again, if the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider uε the solution of the regularized problem (2.19) in a ball B b Ω

such that BR b B. Then we know from Lemma 2.15

lim
k→+∞

‖uεkxj − Uxj‖L∞(∂Bs) = 0, for a. e. s ∈ [0, R].
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for an infinitesimal sequence {εk}k∈N. Since A has positive measure, we can then choose a radius
s ∈ A such that the previous convergence holds. For every n ∈ N \ {0}, by taking k large enough
we thus obtain

uεxj ≥
5

8
Mj +mj −

1

n
, H1−a. e. on ∂Bs,

By proceeding as in the proof of Lemma 4.3 and using this time the minimum principle of Lemma
2.14 and Proposition 2.11, we obtain

Uxj −mj ≥
5

8
Mj −

1

n
, a. e. in Bs.

By arbitrariness of n, we get

osc
BδR

Uxj ≤ osc
Bs

Uxj ≤

(
sup
BR

Uxj −mj

)
−
(

inf
Bs
Uxj −mj

)
≤ 3

8
Mj ,

which implies again alternative (B1). The proof is complete. �

6. Proof of the Main Theorem

6.1. Case p > 2. We already observed that for every q > −1 the function t 7→ t |t|q is a homeo-
morphism on R. This implies the following

Lemma 6.1. Let f : E → R be a measurable function such that for some q > −1 the function
|f |q f is continuous. Then f itself is continuous.

In view of this result, in order to prove the Main Theorem in the case p > 2 it is sufficient to prove
that each function

vj = |Uxj |
p−2
2 Uxj , j = 1, 2,

is continuous on Ω. Thus Theorem 1.1 for p > 2 is a consequence of the following

Proposition 6.2. Let p > 2, x0 ∈ Ω and R0 > 0 such that BR0(x0) b Ω. We consider the family
of balls {BR(x0)}0<R≤R0 centered at x0. Then we have

lim
R↘0

(
osc

BR(x0)
vj

)
= 0, j = 1, 2.

Proof. For simplicity, in what follows we omit to indicate the center x0 of the balls. Since the map
R 7→ oscBR vj is non decreasing, we only need to find a decreasing sequence {Rn}n∈N converging
to 0 such that

lim
n→+∞

(
osc
BRn

vj

)
= 0.

For simplicity we now drop the index j and write v in place of vj . We set

M0 = osc
BR0

v and δ0 =

√
ν0

2
M

2 p+4
(

1− 2
p

)
0 ,

where ν0 is the constant of Lemma 4.1 for R = R0 and α = 1/4. We construct by induction the
sequence of triples {(Rn,Mn, δn)}n∈N defined by

Mn := osc
BRn

v, δn =

√
νn
2
M

2 p+4
(

1− 2
p

)
n , Rn+1 = δnRn,
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and νn is the constant of Lemma 4.1 for R = Rn and α = 1/4. Since δn < 1/2 for every n ∈ N (see
Remark 4.2), the sequence {Rn}n∈N is monotone decreasing and goes to 0. In order to conclude,
we just need to prove that

(6.1) lim
n→∞

Mn = 0.

Observe that we can suppose Mn > 0 for every n ∈ N, otherwise there is nothing to prove. We set

I :=

{
n ∈ N :

ˆ
BRn\BRn+1

|∇v|2 dx ≥ 1

512π
νnM

2 p+4
(

1− 4
p

)
n M2

n

}
,

and we have

ν0

512π

∑
n∈I

M
2 p+2+4

(
1− 2

p

)
n ≤ 1

512π

∑
n∈I

νnM
2 p+2+4

(
1− 2

p

)
n

≤
∑
n∈I

ˆ
BRn\BRn+1

|∇v|2 dx ≤
ˆ
BR0

|∇v|2 dx,
(6.2)

thanks to the fact that νn ≥ ν0 > 0 for every n ∈ N (see Remark 4.2). We now have two
possibilies: either I is infinite or it is finite. If the first alternative occurs, then (6.2) and the fact

that v ∈W 1,2
loc (Ω) imply

lim
I3n→∞

Mn = 0.

This means that the monotone sequence {Mn}n∈N has a subsequence which converges to 0, thus
we have (6.1) and this completes the proof in that case.

Otherwise, if I is finite then there exists ` ∈ N such that for every n ≥ ` we have

ˆ
BRn\BRn+1

|∇v|2 dx < 1

512π
νnM

2 p+4
(

1− 2
p

)
n M2

n.

By Lemma 4.3, this in turn implies that

Mn+1 = osc
BRn+1

v ≤ 7

8
osc
BRn

v =
7

8
Mn, for every n ≥ `.

This again implies (6.1). The proof is complete. �

6.2. Case 1 < p ≤ 2. The case 1 < p ≤ 2 is similar, but more direct. This time Theorem 1.1
follows from the following result, whose proof is exactly as above. It is sufficient to use Lemma 5.1
in place of Lemma 4.1 and Lemma 5.3 in place of Lemma 4.3. We leave the details to the reader.

Proposition 6.3. Let 1 < p ≤ 2, x0 ∈ Ω and R0 > 0 such that BR0(x0) b Ω. We consider the
family of balls {BR(x0)}0<R≤R0 centered at x0. Then we have

lim
R↘0

(
osc

BR(x0)
Uxj

)
= 0, j = 1, 2.
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Appendix A. Inequalities

In the proof of Lemma 5.1 we crucially relied on the following double-sided estimate for the
function

F (t) =
p

2

ˆ t

β
|s|

p−2
2 (s− β)+ ds, t ∈ R.

Lemma A.1. Let β ∈ R and p > 2. There exists a constant C = C(p) > 1 such that for every
t ∈ R,

(A.1)
1

C
(t− β)

p+2
2

+ ≤ F (t) ≤ C
(
|t|

p−2
2 + (max{0,−β})

p−2
2

)
(t− β)2

+.

Proof. Since F (t) = 0 when t ≤ β, both inequalities are true in this case. Thus let us assume that
t > β. Moreover, if β = 0,

F (t) =
p

2

ˆ t

0
s
p−2
2 s ds =

p

p+ 2
t
p+2
2 , for t > 0,

which implies the result.

Case β > 0. By Hölder’s inequality

(t− β)p+

2
p
2

=

(ˆ t

β
(s− β)+ ds

) p
2

=

(ˆ t

β
s
p−2
p

(s− β)+

s
p−2
p

ds

) p
2

≤
(ˆ t

β
s
p−2
2 (s− β)+ ds

) (ˆ t

β

(s− β)+

s
ds

) p−2
2

≤ 2

p
F (t) (t− β)

p−2
2

+ ,

where we used that (s− β)+ ≤ s and this gives the lower bound in (A.1). As for the upper bound,
by the change of variables τ = s/β one has

F (t) = β
p+2
2 F+

(
t

β

)
, where F+(X) =

p

2

ˆ X

1
τ
p−2
2 (τ − 1) dτ, τ > 1.

Observe that
F+(X) =

p

p+ 2

(
X

p+2
2 − 1

)
−
(
X

p
2 − 1

)
, X > 1.

Moreover, by convexity of the function X 7→ Xp/2 we have

−
(
X

p
2 − 1

)
≤ −p

2
(X − 1),

while a second order Taylor expansion gives

p

p+ 2

(
X

p+2
2 − 1

)
=
p

2
(X − 1) +

p2

4

ˆ X

1
s
p−2
2 (X − s) ds ≤ p

2
(X − 1) +

p2

8
X

p−2
2 (X − 1)2.

Thus we obtain

F+(X) ≤ p2

8
X

p−2
2 (X − 1)2, X > 1,

and finally for t > β

F (t) = β
p+2
2 F+

(
t

β

)
≤ p2

8
t
p−2
2 (t− β)2,
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which proves the upper bound in (A.1).

Case β < 0. This case is slightly more complicated. We introduce the function

F−(X) =
p

2

ˆ X

−1
|s|

p−2
2 (s+ 1) ds =

p

p+ 2

(
|X|

p+2
2 − 1

)
+
(
|X|

p−2
2 X + 1

)
, X > −1.

It is sufficient to prove that there exists C > 1 such that

(A.2)
1

C
(X + 1)

p+2
2 ≤ F−(X) ≤ C

(
|X|

p−2
2 + 1

)
(X + 1)2.

Indeed, F (t) = |β|(p+2)/2 F−(t/|β|) and this would give

1

C
(t− β)

p+2
2 ≤ F (t) ≤ C

(
|t|

p−2
2 + |β|

p−2
2

)
(t− β)2,

as desired.
The upper bound in (A.2) for −1 < X < 0 can be obtained as before, by using a second order

Taylor expansion for the first term and using that τ 7→ |τ |(p−2)/2 τ is concave on −1 < τ < 0. This
gives

F−(X) =
p

p+ 2

(
|X|

p+2
2 − 1

)
+
(
|X|

p−2
2 X + 1

)
≤ −p

2
(X + 1) +

p2

4

ˆ X

−1
|s|

p−2
2 (X − s) ds+

p

2
(X + 1)

≤ p2

8
(X + 1)2.

Observe that the upper bound is trivial for 0 ≤ X ≤ 1, since

p

p+ 2

(
|X|

p+2
2 − 1

)
+
(
|X|

p−2
2 X + 1

)
≤ 2 ≤ 2

(
|X|

p−2
2 + 1

)
(X + 1)2.

Finally, for X > 1 we still use a second order Taylor expansion for the first term and the elementary
inequality

X
p
2 + 1 ≤ 1

2
X

p−2
2 (X + 1)2,

for the second one. These yield

F−(X) ≤ p2

4

ˆ X

−1
|s|

p−2
2 (X − s) ds+

1

2
X

p−2
2 (X + 1)2 ≤

(
p2

8
+

1

2

)
X

p−2
2 (X + 1)2.

In order to prove the lower bound, we just observe that the function

X 7→ (X + 1)
p+2
2

F−(X)
, X > −1

is positive continuous on (−1,+∞) and such that

lim
X→(−1)+

(X + 1)
p+2
2

F−(X)
< +∞ and lim

X→+∞

(X + 1)
p+2
2

F−(X)
< +∞.

Thus it is bounded on (−1,+∞) and this concludes the proof of the lower bound. �



38 BOUSQUET AND BRASCO

Lemma A.2. Let 1 < q ≤ 2, for every z0, z1 ∈ RN we have

(A.3)
∣∣∣|z0|q−2 z0 − |z1|q−2 z1

∣∣∣ ≤ 22−q |z0 − z1|q−1.

Proof. The proof is the same as that of [5, Lemma 4.4], which proves a slightly different inequality.
We first observe that if z1 = z0 there is nothing to prove, thus we can suppose |z1 − z0| > 0. Let
us set

zt = (1− t)z0 + t z1, t ∈ [0, 1],

then we have

|z1|q−2 z1 − |z0|q−2 z0 =

ˆ 1

0

d

dt

(
|zt|q−2 zt

)
dt =

ˆ 1

0
|zt|q−2 (z1 − z0) dt

+ (q − 2)

ˆ 1

0
|zt|q−4 〈zt, z1 − z0〉 zt dt,

which implies

(A.4)
∣∣∣|z0|q−2 z0 − |z1|q−2 z1

∣∣∣ ≤ (q − 1) |z1 − z0|
ˆ 1

0

∣∣∣|z0| − t |z1 − z0|
∣∣∣q−2

dt,

where we used triangle inequality and q − 2 ≤ 0. We now distinguish two cases:

either |z0| ≥ |z1 − z0| or |z0| < |z1 − z0|.

In the first case, we have

ˆ 1

0

∣∣∣|z0| − t |z1 − z0|
∣∣∣q−2

dt =

ˆ 1

0

(
|z0| − t |z1 − z0|

)q−2
dt =

|z0|q−1 −
(
|z0| − |z1 − z0|

)q−1

(q − 1) |z1 − z0|

≤ |z1 − z0|q−2

q − 1
,

which inserted in (A.4) gives the desired conclusion. In the second case, let 0 < κ < 1 be such that

|z0| = κ |z0 − z1|,

then we haveˆ 1

0

∣∣∣|z0| − t |z1 − z0|
∣∣∣q−2

dt =

ˆ κ

0

(
|z0| − t |z1 − z0|

)q−2
dt+

ˆ 1

κ

(
t |z1 − z0| − |z0|

)q−2
dt

=
|z0|q−1

(q − 1) |z1 − z0|
+

(
|z1 − z0| − |z0|

)q−1

(q − 1) |z1 − z0|

≤ 22−q |z1 − z0|q−2

q − 1
.

In view of (A.4), this gives the desired conclusion. �

Corollary A.3. Let 1 < p ≤ 2, for every ε ≥ 0 and every t, s ∈ R we have∣∣∣(ε+ t2)
p−2
4 t− (ε+ s2)

p−2
4 s
∣∣∣ ≤ 2

2−p
2 |t− s|

p
2 , t, s ∈ R.
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Proof. We use (A.3) with the choices

N = 2, q =
p+ 2

2
, z0 =

(
t,
√
ε
)

and z1 =
(
s,
√
ε
)
.

This implies ∣∣∣(ε+ t2)
p−2
4
(
t,
√
ε
)
− (ε+ s2)

p−2
4
(
s,
√
ε
) ∣∣∣ ≤ 2

2−p
2 |t− s|

p
2 .

By further observing that∣∣∣(ε+ t2)
p−2
4
(
t,
√
ε
)
− (ε+ s2)

p−2
4
(
s,
√
ε
) ∣∣∣ ≥ ∣∣∣(ε+ t2)

p−2
4 t− (ε+ s2)

p−2
4 s
∣∣∣,

we get the conclusion. �

Appendix B. Some general tools

In the proof of Lemmas 4.1 and 5.1, we used the following classical result. This can be found for
example in [10, Lemma 7.1].

Lemma B.1. If {Yn}n∈N is a sequence of nonnegative numbers satisfying

Yn+1 ≤ c bn Y 1+β
n , Y1 ≤ c−1/βb−(β+1)/β2

, for some c, β > 0, b > 1,

then limn→+∞ Yn = 0.

The next lemma is a Fubini-type result on the convergence of Sobolev functions. We denote by
H1 the one-dimensional Hausdorff measure.

Lemma B.2. Let 0 < τ < 1 and 1 ≤ p < ∞. Let BR(x0) ⊂ R2 be the disc centered at x0 with
radius R > 0 and let {un}n∈N ⊂ W τ,p(BR(x0)) be a sequence strongly converging to 0, i.e. such
that

lim
n→∞

[ˆ
BR(x0)

|un|p dx+

ˆ
BR(x0)

ˆ
BR(x0)

|un(x)− un(y)|p

|x− y|2+τ p
dx dy

]
= 0.

Then there exists a subsequence {uni}i∈N such that for almost every r ∈ [0, R], {uni}i∈N strongly
converges to 0 in W τ,p(∂Br(x0)), i.e.

lim
i→∞

[ˆ
∂Br(x0)

|uni |p dH1 +

ˆ
∂Br(x0)

ˆ
∂Br(x0)

|uni(x)− uni(y)|p

|x− y|1+τ p
dH1(x) dH1(y)

]
= 0.

Proof. Let us consider the convergence of the double integral, that for the Lp norm being similar
and simpler. Without loss of generality, we can assume x0 = 0, then we omit to precise the center
of the ball. We use polar coordinates x = % ei ϑ. We need to show that up to a subsequence, for
almost every % ∈ [0, R] we have

(B.1) lim
n→∞

[un]pW τ,p(∂B%) = lim
n→∞

%2

ˆ
[0,2π]×[0,2π]

|un(% ei ϑ)− un(% ei ω)|p

|ei ϑ − ei ω|1+τ p
dϑ dω = 0.

. For every u ∈W τ,p(R2) and ε > 0, we introduce

Wε(u) :=

ˆ ∞
ε

ˆ
[0,2π]×[0,2π]

|u(% ei ϑ)− u(% ei ω)|p

|ei ϑ − ei ω|1+τ p
dϑ dω

% d%

%1+τ p
.

We claim that

(B.2) Wε(u) ≤ C

ε
[u]p

W τ,p(R2)
=
C

ε

ˆ
R2

ˆ
R2

|u(x)− u(y)|p

|x− y|2+τ p
dx dy,
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for some constant C = C(p, τ) > 0. Let us assume (B.2) for a moment and explain how to conclude:
we can extend {un}n∈N to a sequence {ũn}n∈N ⊂W τ,p(R2) such that

ũn = un, on BR and [ũn]p
W τ,p(R2)

≤ C [un]pW τ,p(BR),

see [1, Lemma 7.45]. The latter and (B.2) imply that

lim
n→∞

Wε(ũn) = 0, for every ε > 0.

By definition of Wε, this means that the sequence of functions

fn(%) =
%

%1+τ p

ˆ
[0,2π]×[0,2π]

|un(% ei ϑ)− un(% ei ω)|p

|ei ϑ − ei ω|1+τ p
dϑ dω,

converges to 0 in Lp((ε,R)). Hence, there exists a subsequence {fni}i∈N which converges almost
everywhere to 0 on (ε,R). By taking a sequence {εk}k∈N converging to 0 and repeating the above
argument for each εk, a diagonal argument leads to the existence of a subsequence still denoted by
{fni}i∈N which converges almost everywhere to 0 on (0, R). Equivalently, {uni}i∈N satisfies (B.1)
for almost every % ∈ [0, R].

Let us now show (B.2). The proof is similar to that of [2, Lemma A.4]. For % ≥ ε, t ≥ 0 and
ϑ, ω ∈ [0, 2π] we have∣∣∣u(% ei ϑ)− u(% ei ω)

∣∣∣p ≤ C ∣∣∣u(% ei ϑ)− u
(

(%+ t) ei
ω+ϑ
2

)∣∣∣p + C
∣∣∣u((%+ t) ei

ω+ϑ
2

)
− u(% ei ω)

∣∣∣p ,
and (for ϑ 6= ω)

%−τ p−1 |ei ϑ − ei ω|−τ p−1 = (1 + τ p)

ˆ ∞
0

[
t+ % |ei ϑ − ei ω|

]−τ p−2
dt.

Thus from the definition of Wε(u), we obtain with simple manipulations

Wε(u) ≤ C
ˆ ∞

0

ˆ ∞
ε

ˆ
[0,2π]×[0,2π]

∣∣∣u(% ei ϑ)− u
(

(%+ t) ei
ϑ+ω
2

)∣∣∣p
(t+ % |ei ϑ − ei ω|)2+τ p % dϑ dω d% dt.

Observe that ∣∣∣% ei ϑ − (%+ t) ei
ϑ+ω
2

∣∣∣ ≤ t+ %
∣∣∣ei ϑ − ei ϑ+ω2 ∣∣∣ ,

and ∣∣∣ei ϑ − ei ω+ϑ2 ∣∣∣ ≤ C |ei ϑ − ei ω|.
Hence,

Wε(u) ≤ C
ˆ ∞

0

ˆ ∞
ε

ˆ
[0,2π]×[0,2π]

∣∣∣u(% ei ϑ)− u((%+ t) ei
ϑ+ω
2 )
∣∣∣p∣∣∣% ei ϑ − (%+ t) ei

ϑ+ω
2

∣∣∣2+τ p % dϑ dω d% dt

≤ 2
C

ε

ˆ
[0,∞)×[0,∞)

ˆ
[0,2π]×[0,2π]

|u(% ei ϑ)− u(s ei ψ)|p

|% ei ϑ − s ei ψ|2+τ p
% s dϑ dψ d% ds,

which completes the proof of (B.2). �

The following result is a general fact for bounded Sobolev functions in the plane. This is exactly
the same as [12, Lemma 5], we reproduce the proof for the reader’s convenience.
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Lemma B.3. Let q > 1 and let ϕ ∈W 1,q(BR) ∩ L∞(BR) be a function such that 0 ≤ ϕ ≤M . Let
us suppose that there exists 0 < γ < 1 such that∣∣∣∣{ϕ > 3

4
M

}
∩BR

∣∣∣∣ ≥ γ |BR|.
If we set δ =

√
γ/2, one of the following two alternatives occur:

(A1) either ˆ
BR\BδR

|∇ϕ|q dx ≥ R2−q

8q · 4 · (2π)q−1
γM q;

(A2) or the following subset of [δR,R]{
s ∈ [δR,R] : ϕ ≥ 5

8
M, H1−a. e. on ∂Bs

}
,

has positive measure.

Proof. We first observe that thanks to the hypothesis we have∣∣∣∣{ϕ > 3

4
M

}
∩ (BR \BδR)

∣∣∣∣ =

∣∣∣∣{ϕ > 3

4
M

}
∩BR

∣∣∣∣− ∣∣∣∣{ϕ > 3

4
M

}
∩BδR

∣∣∣∣
≥ γ |BR| − |BδR| = (γ − δ2) |BR|.

By definition of δ, we get ∣∣∣∣{ϕ > 3

4
M

}
∩ (BR \BδR)

∣∣∣∣ ≥ γ

2
|BR|.

We define the set

X =

{
s ∈ [δR,R] : H1

({
x ∈ ∂Bs : ϕ(x) ≥ 3

4
M

})
> 0

}
.

Then

γ

2
|BR| ≤

∣∣∣∣{ϕ > 3

4
M

}
∩ (BR \BδR)

∣∣∣∣ =

ˆ
X

ˆ
∂Bs

1{ϕ>3/4M} dH1 ds

≤ 2π

ˆ
X
s ds ≤ 2π R |X |.

This in turn implies that

|X | ≥ γ

4
R.

Let us now suppose that alternative (A2) does not occur. This implies that

H1

({
x ∈ ∂Bs : ϕ(x) <

5

8
M

})
> 0, for a. e. s ∈ [δR,R].

Thus for almost every s ∈ X , we have

osc
∂Bs

ϕ ≥ 3

4
M − 5

8
M =

M

8
.

By observing that ∂Bs is one-dimensional, we obtain

M

8
≤ osc

∂Bs
ϕ ≤

ˆ
∂Bs

|∇τϕ| dH1 ≤ (2π R)
1− 1

q

(ˆ
∂Bs

|∇τϕ|q dH1

) 1
q

,
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where ∇τ denotes the tangential gradient (by using polar coordinates x = % ei ϑ, this is nothing but
the ϑ−derivative). By taking the power q in the previous estimate and integrating in s ∈ X , we
get ˆ

BR\BδR
|∇ϕ|q dx ≥

ˆ
X

ˆ
∂Bs

|∇ϕ|q dH1 ≥
(
M

8

)q 1

(2π R)q−1
|X |.

Using the lower-bound on |X | yields alternative (A1). �
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