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Abstract. This note details how a recent structure theorem for normal 1-
currents proved by the first and third author allows to prove a conjecture of
Cheeger concerning the structure of Lipschitz differentiability spaces. More
precisely, we show that the push-forward of the measure from a Lipschitz
differentiability space under a chart is absolutely continuous with respect
to Lebesgue measure.
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1. Introduction

In [Che99] Cheeger proved that in every doubling metric measure space
(X, ρ, µ) satisfying a Poincaré inequality, Lipschitz functions are differentiable
µ-almost everywhere. More precisely, he showed the existence of a family
{(Ui, ϕi)}i∈N of Borel charts (that is, Ui ⊂ X is a Borel set, X =

⋃
i Ui up to a

µ-negligible set, and ϕi : X → Rd(i) is Lipschitz) such that for every Lipschitz
map f : X → R at µ-almost every x0 ∈ Ui there exists a unique (co-)vector

df(x0) ∈ Rd(i) with

lim sup
x→x0

|f(x)− f(x0)− df(x0) · (ϕ(x)− ϕ(x0))|
ρ(x, x0)

= 0.

This fact was later axiomatized by Keith [Kei04], leading to the notion of
Lipschitz differentiability space, see Section 2 below.

Cheeger also conjectured that the push-forward of the reference measure
µ under every chart ϕi has to be absolutely continuous with respect to the
Lebesgue measure, that is,

(ϕi)#(µ Ui)� Ld(i) ,

see [Che99, Conjecture 4.63]. Some consequences of this fact concerning exis-
tence of bi-Lipschitz embeddings of X into some RN are detailed in [Che99,
Section 14], also see [CK06, CK09]

Let us assume that (X, ρ, µ) = (Rd, ρE , ν) with ρE the Euclidean distance
and ν a positive Radon measure, is a Lipschitz differentiability space when
equipped with the (single) identity chart (note that it follows a-posteriori from
the validity of Cheeger’s conjecture that no mapping into a higher-dimensional
space can be a chart in a Lipschitz differentiability structure of Rd). In this
case the validity of Cheeger’s conjecture reduces to the validity of the (weak)
converse of Rademacher’s theorem, which states that a positive Radon measure
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ν on Rd with the property that all Lipschitz functions are differentiable ν-
almost everywhere must be absolutely continuous with respect to Ld. Actually,
it is well known to experts that this converse of Rademacher’s theorem implies
Cheeger’s conjecture in any metric space, see for instance [Kei04, Section
2.4], [Bat15, Remark 6.11], and [Gon12].

The (strong) converse of Rademacher’s theorem has been known to be true
in R since the work of Zahorski [Zah46], where he characterized the sets E ⊂ R
that are sets of non-differentiability points of some Lipschitz function. In
particular, he proved that for every Lebesgue negligible set E ⊂ R there exists
a Lipschitz function which is nowhere differentiable on E.

The same result for maps f : Rd → Rd has been proved by Alberti, Csörnyei
& Preiss for d = 2 as a consequence of a deep structural result for negligible sets
in the plane [ACP05, ACP10]. In 2011, Csörnyei & Jones [Jon11] announced
the extension of the above result to every Euclidean space. For Lipschitz maps
f : Rd → Rm with m < d the situation is fundamentally different and there
exists a null set such that every Lipschitz function is differentiable at at least
one point from that set, see [Pre90, PS15]. We finally remark that the weak
converse of Rademacher’s theorem in R2 can also be obtained by combining
the results of [Alb93] and [AM16], see [AM16, Remark 6.2 (iv)].

Recently, a result concerning the singular structure of measures satisfying
a differential constraint was proved in [DR16]. When combined with the main
result of [AM16], this proves the weak converse of Rademacher’s theorem in
any dimension, see [DR16, Theorem 1.14].

In this note we detail how the results in [AM16, DR16] in conjunction with
Bate’s result on the existence of a sufficient number of independent Alberti
representations in a Lipschitz differentiability space [Bat15] imply Cheeger’s
conjecture; see Section 2 for the relevant definitions.

Theorem 1.1. Let (X, ρ, µ) be a Lipschitz differentiability space and let
(U,ϕ) be a d-dimensional chart. Then, ϕ#(µ U)� Ld.

Note that by the same arguments of this paper Cheeger’s conjecture would
also follow from the results announced in [ACP05] and [Jon11].

After we finished writing this note we learned that similar results have been
proved by Kell and Mondino [KM16] and by Gigli and Pasqualetto [GP16].
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support from an EPSRC Research Fellowship on “Singularities in Nonlinear
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2. Setup

2.1. Lipschitz differentiability spaces. In the sequel, the triple (X, ρ, µ)
will always denote a metric measure space, that is, (X, ρ) is a separable, com-
plete metric space and µ ∈M+(X) is a positive Radon measure on X.
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We call a pair (U,ϕ) such that U ⊂ X is a Borel set and ϕ : X → Rd is
Lipschitz, a d-dimensional chart, or simply a d-chart. A function f : X → R
is said to be differentiable with respect to a d-chart (U,ϕ) at x0 ∈ U if there
exists a unique (co-)vector df(x0) ∈ Rd such that

lim sup
x→x0

|f(x)− f(x0)− df(x0) · (ϕ(x)− ϕ(x0))|
ρ(x, x0)

= 0.

We call a metric measure space (X, ρ, µ) a Lipschitz differentiability space
(also called a metric measure space that admits a measurable differentiable
structure) if there exists a countable family of d(i)-charts (Ui, ϕi) (i ∈ N) such
that X =

⋃
i Ui and any Lipschitz map f : X → R is differentiable with respect

to every (Ui, ϕi) at µ-almost every point x0 ∈ Ui.

2.2. Alberti representations. We denote by Γ(X) the set of curves in X,
that is, the set of all Lipschitz maps γ : Dom γ → X, for which the domain
Dom γ ⊂ R is non-empty and compact. Note that we are not requiring Dom γ
to be an interval and thus the set Γ(X) is sometimes also called the set of
curve fragments on X. We equip Γ(X) with the Hausdorff metric distH on
graphs and we consider it as a subspace of the Polish space

K =
{
K ⊂ R×X : K compact

}
, (2.1)

endowed with the Hausdorff metric. Moreover, by arguing as in [Sch16, Lemma
2.20], it is easy to see that Γ(X) is an Fσ-subset of K, i.e. a countable union
of closed sets.

The decomposition of a measure into a family of 1-dimensional Hausdorff
measures supported on curves leads to the notion of Alberti representation.
First introduced in [Alb93] for the study of the rank-one property of BV-
derivatives, this decomposition has turned out to be a key tool in the study
of differentiability properties of Lipschitz functions, see for instance [ACP05,
ACP10, AM16, Bat15].

Definition 2.1. Let (X, ρ, µ) be a metric measure space. An Alberti rep-
resentation of µ on a µ-measurable set A ⊂ X is a parametrized family
(µγ)γ∈Γ(X) of positive Borel measures µγ ∈M+(X) with

µγ � H1 Im γ,

together with a Borel probability measure π ∈ P(Γ(X)) such that

µ(B) =

∫
µγ(B) dπ(γ) for all Borel sets B ⊂ A. (2.2)

Here, the measurability of the integrand is part of the requirement of being an
Alberti representation

Remark 2.2. Note that this definition is slightly different from the one
in [Bat15, Definition 2.2] since there the set Γ(X) consist of bi-Lipschitz curves.
Clearly, the existence of a representation in the sense of [Bat15] implies the
existence of a representation in our sense and this will suffice for our purposes.
Let us, however, point out that the converse holds true as well. Indeed, the
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part of γ that contributes to the integral in (2.2) can be decomposed into
countably many bi-Lipschitz pieces, see [Sch16, Remark 2.17].

We will further need the notion of independent Alberti-representations of
a measure. Let C ⊂ Rd be a closed, convex, one-sided cone, i.e. a set of the
form

C :=
{
v ∈ Rd : v · w ≥ (1− θ)‖v‖

}
for some w ∈ Sd−1 and θ ∈ (0, 1). With a Lipschitz map ϕ : X → Rd, we say
that an Alberti representation

∫
νγ dπ(γ) has ϕ-directions in C if

(ϕ ◦ γ)′(t) ∈ C \ {0} for π-a.e. curve γ and H1-a.e. t ∈ Dom γ.

A number of m Alberti representations of µ are ϕ-independent if there are
linearly independent cones C1, . . . , Cm such that the i’th Alberti representation
has ϕ-directions in Ci. Here, linear independence of the cones C1, . . . , Cm
means that any collection of vectors vi ∈ Ci \ {0} is linearly independent. In
the case X = Rd we will always consider ϕ = Id.

One of the main results of [Bat15] asserts that a Lipschitz differentiabil-
ity space necessarily admits many independent Alberti representations, also
cf. [AM16, Theorem 1.1]. Recall that according to Remark 2.2 any representa-
tion in the sense of [Bat15] is also a representation in the sense of Definition 2.1.

Theorem 2.3. Let (X, ρ, µ) be a Lipschitz differentiability space with a d-
chart (U,ϕ). Then, there exists a countable decomposition

U =
⋃
k∈N

Uk, Uk ⊂ U Borel sets,

such that every µ Uk has d ϕ-independent Alberti representations.

A proof of this theorem can be found in [Bat15, Theorem 6.6].

2.3. One-dimensional currents. In order to use the results of [DR16] we
need a link between Alberti representation and 1-dimensional currents. Recall
that a 1-dimensional current T in Rd is a continuous linear functional on
the space of smooth and compactly supported differential 1-forms on Rd. The
boundary of T , ∂T is the distribution (0-current) defined via 〈∂T, f〉 := 〈T, df〉
for every smooth and compactly supported function f : Rd → R. The mass
of T , denoted by M(T ), is the supremum of 〈T, ω〉 over all 1-forms ω such
that |ω| ≤ 1 everywhere. In particular, finite-mass currents can be naturally
identified with Rd-valued Radon measures. A current T is called normal if
both T and ∂T have finite mass; we denote the set of normal 1-currents by
N1(Rd).

By the Radon–Nikodým theorem, a 1-dimensional current T with finite

mass can be written in the form T = ~T‖T‖ where ‖T‖ is a finite positive

measure and ~T is a vector field in L1(Rd, ‖T‖) with |~T (x)| = 1 for ‖T‖-almost
every x ∈ Rd. In particular, the action of T on a smooth and compactly
supported 1-form ω is given by

〈T, ω〉 =

∫
Rd
〈ω(x), ~T (x)〉 d‖T‖(x) .
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An integer-multiplicity rectifiable 1-current (in the following called simply
rectifiable 1-current) T = JE, τ,mK is a 1-current which acts on 1-forms ω as

〈T, ω〉 =

∫
E
〈ω(x), τ(x)〉m(x) dH1(x) ,

where E is a 1-rectifiable set, τ(x) is a unit vector spanning the approxi-
mate tangent space Tan(E, x) and m is an integer-valued function such that∫
Em dH1 <∞. More information on currents can be found in [Fed69].

The relation between Alberti representations and normal 1-currents is par-
tially encoded in the following decomposition theorem, due to Smirnov [Smi93].

Theorem 2.4. Let T = ~T‖T‖ ∈ N1(Rd) be a normal 1-current with |~T (x)| =
1 for ‖T‖-almost every x. Then, there exists a family of rectifiable 1-currents

Tγ = JEγ , τγ , 1K, γ ∈ Γ,

where Γ is a measure space endowed with a finite positive Borel measure π ∈
M+(Γ), such that the following assertions hold:

(i) T can be decomposed as

T =

∫
Γ
Tγ dπ(γ)

and

M(T ) =

∫
Γ

M(Tγ) dπ(γ) =

∫
Γ
H1(Eγ) dπ(γ) ;

(ii) τγ(x) = ~T (x) for H1-almost every x ∈ Eγ and for π-almost every γ ∈ Γ;
(iii) ‖T‖ can be decomposed as

‖T‖ =

∫
Γ
µγ dπ(γ) ,

where each µγ is the restriction of H1 to the 1-rectifiable set Eγ.

An Alberti representation of a Euclidean measure splits it into measures
concentrated on “fragments” of curves. In general, these fragments cannot be
glued together to obtain a 1-dimensional normal current since the boundary
may have infinite mass. Nevertheless, the “holes” of every curve appearing
in an Alberti representation of a measure ν ∈ M+(Rd) can be “filled” in
such a way as to produce a normal 1-current T with ν � ‖T‖. Moreover, if
the representation has directions in a cone C, then the constructed normal

current T has orienting vector ~T in C \ {0} almost everywhere (with respect
to ‖T‖). Indeed, we have the following lemma, which is essentially [AM16,
Corollary 6.5]; it can be interpreted as a partial converse to Theorem 2.4:

Lemma 2.5. Let ν ∈ M+(Rd) be a finite Radon measure. If there is an
Alberti representation ν =

∫
νγ dπ(γ) with directions in a cone C, then there

exists a normal 1-current T ∈ N1(Rd) such that ~T (x) ∈ C\{0} for ‖T‖-almost
every x ∈ Rd and ν � ‖T‖.
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Proof. For the purpose of illustration we sketch the proof.
Step 1. Given ν as in the statement, we claim that there exists a normal

1-current T = ~T‖T‖ with M(T ) ≤ 1 and M(∂T ) ≤ 2 such that ~T (x) ∈ C, for
‖T‖-almost every x and that ν is not singular with respect to ‖T‖.

The claim follows from the proof of [AM16, Lemma 6.12]. For the sake
of completeness let us present the main line of reasoning. By arguing as in
Step 1 of the proof of [AM16, Lemma 6.12], to every γ ∈ Γ(Rd) with γ′(t) ∈ C
and a Borel measure νγ � H1 Im γ, we can associate a 1-Lipschitz map

ψνγ : [0, 1]→ Rd satisfying

νγ(Im(ψνγ )) > 0 and ψ′νγ (t) ∈ C \ {0} for H1-a.e. t ∈ [0, 1].

This map can moreover be chosen such that γ 7→ ψνγ coincides with a Borel
measurable map π-almost everywhere once we endow the set of curves with
the topology of uniform convergence, see Step 3 in the proof of [AM16, Lemma
6.12].

Let Tνγ := JImψνγ , τψνγ , 1K be the rectifiable 1-current associated to ψνγ
and set

T :=

∫
Tνγ dπ(γ) .

Since ψνγ is 1-Lipschitz, H1(Imψνγ ) ≤ 1 and thus M(T ) ≤ 1. Moreover, for

all smooth compactly supported functions f : Rd → R we have

〈∂T, f〉 = 〈T, df〉 =

∫
f(ψνγ (1))− f(ψνγ (0)) dπ(γ) ,

so that M(∂T ) ≤ 2.

By assumption, ~T (x) ∈ C \ {0} for ‖T‖-almost every x ∈ Rd. To show that
‖T‖ and ν are not mutually singular, for π-almost every γ set

ν ′γ := νγ Im ψνγ and ν ′ :=

∫
ν ′γ dπ(γ) ,

so that ν ′ 6= 0 and ν ′ ≤ ν. We will now establish that ν ′ � ‖T‖, for which
we will prove that ν and ‖T‖ are not mutually singular. Let E ⊂ Rd be such
that ‖T‖(E) = 0. Using

T =

∫
JImψνγ , τψνγ , 1K dπ(γ) with τψνγ =

ψ′νγ
|ψ′νγ |

∈ C ,

we get

H1(Imψνγ ∩ E) = 0 for π-a.e. γ.

Since by definition νγ � H1 Im γ, we have that ν ′γ � H1 Imψνγ . Thus,
ν ′(E) = 0.

Step 2. Let us define

T :=
{
T ∈ N1(Rd) : M(T ) ≤ 1, M(∂T ) ≤ 2 and ~T ∈ C ‖T‖-a.e.

}
and

Tν :=
{
T ∈ T : ν and T are not singular

}
.
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Note that if C = { v ∈ Rd : v ·w ≥ (1− θ)‖v‖ } for some w ∈ Sd−1, θ ∈ (0, 1),

then ~T ∈ C almost everywhere implies that

‖T‖ ≥ T · w ≥ (1− θ)‖T‖ (2.3)

as measures (here we are identifying T with an Rd-valued Radon measure
and use the pointwise scalar product). Moreover, as a consequence of the
Radon–Nikodým theorem, for every T ∈ Tν we may write

ν = g‖T‖‖T‖+ νs‖T‖ with νs‖T‖ ⊥ ‖T‖ ,
∫
g‖T‖ d‖T‖ > 0 .

Let us set M := supT∈Tν
∫
g‖T‖ d‖T‖ > 0 and let Tk ∈ Tν be a sequence with∫

g‖Tk‖ d‖Tk‖ →M.

Define

T :=
∑
k

2−kTk

and note that T ∈ T . Moreover, by (2.3), ‖Tk‖ � ‖T‖ for all k ∈ N, so that
there exist hk : Rd → R with∫

E
hk d‖T‖ =

∫
E
g‖Tk‖ d‖Tk‖ ≤ ν(E) for all Borel sets E ⊂ Rd.

In particular, T ∈ Tν and hk ≤ g‖T‖. Set mk = max1≤j≤k hj . By the monotone

convergence theorem, mk → m∞ ≤ g‖T‖ in L1(Rd, ‖T‖) and

M ≤ lim
k→∞

∫
mk d‖T‖ =

∫
m∞ d‖T‖ ≤

∫
g‖T‖ d‖T‖ ≤M.

Hence, M is actually a maximum and it is attained by T .
We now claim that ν � ‖T‖. Indeed, assume by contradiction that ν =

g‖T‖ d‖T‖+ νs‖T‖ with νs‖T‖ 6= 0. Since the Alberti representation of ν induces

an Alberti representation of νs‖T‖, we can apply Step 1 to find a normal 1-
current

S ∈ Tνs‖T‖ ⊂ Tν

such that νs‖T‖ and ‖S‖ are not mutually singular. In particular, if ν =

g‖S‖ d‖S‖+ νs‖S‖, then there exists a Borel set F ⊂ Rd such that

‖T‖(F ) = 0 and

∫
F
g‖S‖ d‖S‖ > 0. (2.4)

Let us define W := (T +S)/2 and note that by (2.3) it holds that ‖T‖, ‖S‖ �
‖W‖ so that W ∈ Tν . Moreover, there are functions hT , hS ≤ g‖W‖ such that∫

E
hT d‖W‖ =

∫
E
g‖T‖ d‖T‖ ,

∫
E
hS d‖W‖ =

∫
E
g‖S‖ d‖S‖

for all Borel sets E. However, for F as in (2.4) we obtain

M ≥
∫
Rd
g‖W‖ d‖W‖ ≥

∫
Rd
g‖T‖ d‖T‖+

∫
F
g‖S‖ d‖S‖ > M,

a contradiction. �
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3. Proof of Cheeger’s conjecture

The key tool to prove Cheeger’s conjecture is the following result from [DR16,
Corollary 1.12]:

Theorem 3.1. Let T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Rd) be 1-dimensional
normal currents. Let ν ∈M+(Rd) be a positive Radon measure such that

(i) ν � ‖Ti‖ for i = 1, . . . , d, and

(ii) span{~T1(x), . . . , ~Td(x)} = Rd for ν-almost every x.

Then, ν � Ld.

Combining the above result with Lemma 2.5 we immediately get the fol-
lowing:

Lemma 3.2. Let ν ∈ M+(Rd) have d independent Alberti representations.
Then, ν � Ld.

Proof. Denote by C1, . . . , Cd independent cones such that there are d Alberti
representations having directions in these cones. By Lemma 2.5 there are d

normal 1-dimensional currents T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Rd) such
that

ν � ‖Ti‖ for i = 1, . . . , d,

and ~Ti(x) ∈ Ci for ν-almost every x ∈ Rd. By the independence of the cones,

span
{
~T1(x), . . . , ~Td(x)

}
= Rd for ν-a.e. x ∈ Rd.

This implies ν � Ld via Theorem 3.1. �

In order to use the above result to prove Theorem 1.1 one further needs the
following “push-forward lemma”.

Lemma 3.3. Let (X, ρ, µ) be a Lipschitz differentiability space with a d-chart
(U,ϕ). If µ U has d ϕ-independent Alberti representations, then also the
push-forward ϕ#(µ U) ∈M+(Rd) has d independent Alberti representations.

Proof. It is enough to show that if there exists a representation of the form
µ U =

∫
µγ dπ(γ) with ϕ-directions in a cone C (i.e. such that (ϕ ◦ γ)′(t) ∈

C \ {0} for almost all t ∈ Dom γ and for π-almost every γ), then we can build
an Alberti representation

ϕ#(µ U) =

∫
νγ̄ dπ̄(γ̄) with π̄ ∈ P(Γ(Rd)).

with γ̄′(t) ∈ C \ {0} for π̄-almost every γ̄ and almost every t ∈ Dom γ̄. To
this end consider the map Φ: Γ(X) → Γ(Rd) given by Φ(γ) := ϕ ◦ γ and let
π̄ := Φ#π ∈M+(Γ(Rd)). Note that, by the very definition of the push-forward
measure, for π̄-almost every γ̄, it holds that γ̄ = ϕ ◦ γ for some γ ∈ Γ(X).

By considering π as a probability measure defined on the Polish space K
defined in (2.1), and noting that π is concentrated on Γ(X), we can apply the
disintegration theorem for measures [AGS05, Theorem 5.3.1] to show that for
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π̄-almost every γ̄, there exists a Borel probability measure ηγ̄ concentrated on
Φ−1(γ̄) and such that

π(A) =

∫
ηγ̄(A) dπ̄(γ̄) for all Borel sets A ⊂ Γ(X).

Note also that, by the disintegration theorem, the map γ̄ 7→ ηγ̄ is Borel mea-
surable. Let us now set

νγ̄ :=

∫
Φ−1(γ̄)

ϕ#(µγ) dηγ̄(γ).

Clearly, we have the representation

ϕ#(µ U) =

∫
νγ̄ dπ̄(γ̄)

and γ̄′(t) = (ϕ ◦ γ)′(t) ∈ C \ {0} for π̄-almost every γ̄ and almost every
t ∈ Dom γ̄. Hence, to conclude we only have to show that

νγ̄ � H1 Im γ̄ for π̄-a.e. γ̄.

Let E be a set with H1(E ∩ Im γ̄) = 0. Since γ̄′(t) 6= 0 for almost every
t ∈ Dom γ, the area formula implies that L1(γ̄−1(E)) = 0. If γ ∈ Φ−1(γ̄), say
γ̄ = ϕ ◦ γ, then

H1(ϕ−1(E) ∩ Im γ) ≤ H1(γ(γ̄−1(E))) = 0 for all γ ∈ Φ−1(γ̄).

Hence, µγ(ϕ−1(E)) = 0 for all γ ∈ Φ−1(γ̄), which immediately gives

νγ̄(E) =

∫
Φ−1(γ̄)

µγ(ϕ−1(E)) dηγ̄(γ) = 0 .

This concludes the proof. �

Proof of Theorem 1.1. Let (U,ϕ) be a d-chart. By Theorem 2.3 there are d
ϕ-independent Alberti representations of µ Uk, where U =

⋃
k∈N Uk is the

decomposition from Bate’s theorem. Then, via Lemma 3.3, the push-forward
ϕ#(µ Uk) also has d independent Alberti representations. Finally, Lemma 3.2

yields ϕ#(µ Uk)� Ld and this concludes the proof. �
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