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ABSTRACT. Second-order structured deformations of continua provide an extension of the mul-
tiscale geometry of first-order structured deformations by taking into account the effects of sub-
macroscopic bending and curving. We derive here an integral representation for a relaxed energy
functional in the setting of second-order structured deformations. Our derivation covers inhomo-
geneous initial energy densities (i.e., with explicit dependence on the position); finally, we provide
explicit formulas for bulk relaxed energies as well as anticipated applications.

1. INTRODUCTION

A first-order structured deformation (g, G) from a region 2 C R provides not only a macro-
scopic deformation field ¢ : Q — R? but also a field G : Q2 — R**" intended to capture the con-
tributions at the macrolevel of smooth submacroscopic geqmetrical changes such as stretching,
shearing, and rotation. Indeed, in a variety of settings i ; 12,15, 321, one can prove an ap-
proximation theorem to the effect that there exist a sequence of mappings u, : Q2 — R? that
converges to ¢ and whose gradients Vu,, : Q — R?*" converge to . In addition, one obtains
a formula that identifies the difference M := Vg — G = Vlim,, .o, u, — lim, .o, Vu, as a limit
of “disarrangements”, i.e., of averages of directed jumps [u,] ® v, in the approximating map-
pings (here, v, denotes the normal to the jump-set of u, ). These disarrangements include
the formation of voids, slips, and separations occuring at submacroscopic levels. M is called
the (volume) density of disarrangements, and, because G = lim,,_,,, Vu,, does not reflect the
jumps in u,, the field G is called the deformation without disarrangements.

The additive decomposition Vg = G + M along with the identifications above of G and M
provides a richer geometrical setting in which to study mechanisms for storing mechanical en-
ergy. The main approach to assigning an energy to a continuum undergoing structured defor-
mations (g, () is to assume that such an assignment F(u,,) is available for the approximating
deformations u,, in the form of a bulk energy plus an interfacial energy, Eg(u,)+ E(u,), and
to assign to (g, G) the relaxed energy

E(g,G) := {inf} {liminf(EB(un) + Er(un)) : up — g, Vi, — G} (1.1
Uy, n— 00

where the class of approximating functions and the two senses of convergence are to be spec-

ified in such a way that an appropriate version of the approximation theorem can be verified.

This approach was first studied in [T2], where additive decompositions

E(g,G) = Eyu(9, G) + Eint(9, G)

of the relaxed energies as well as a variety of properties of the associated lk and inter-
facial energy densities were established. In a different setting, the study i[?Tused similar
techniques to obtain an additive decomposition of this form along wit Elge additional decom-
position Epui(g,G) = By (M) + Egulk(G Vg). See the survey article [6]for details and ¢
parlsoB)1§ The artlcle ] addresses issues related to additional decomposition of Ey in
while h4] obtains detailed information about relaxed energies in the case of one- dimensmnal
structured deformations.
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The various studies of relaxed energies in the case of first-order structured deformations
(g, G) cited above do not account explicitly for the contributions to the energy of “gradient dis-
arrangements”, i.e., of jumps in Vu,, with u, converging to g and Vy, converging to G. The
multiscale geometry of structured deformations was broadened [28,30], to provide additional
fields capable of describing effects at the macrolevel of gradient disarrangements. A second-
order structured deformation is a triple (¢, G,T) in which (g, G) is a first-order structured
deformation (with additional smoothness granted to ¢ and G) and I' : Q — R¥>*NXN jg a field
intended to describe the ¢ &trgggtions at the macrolevel of smooth bending and of curving at
submacroscopic levels. In [28,30], various versions of approximation theorems are obtained
that provide sequences of approximations u, with u, converging to g, Vu, converging to G,
and V?u, converging to I'. The decomposition Vg = G + M remains valid here and implies
the higher-order decomposition

V2g=VM+ (VG -T)+T.
In view of the approximation theorem, we can write

VG -T =V lim Vu, — lim V?u,.

n— oo n—roo

As a consequence, VG—T can be shown to be a limit of averages of directed jumps [Vu,]|®vy.,
in analogy with the corresponding result for Vg — G, so that VG — I emerges as a density of
gradient disarrangements.

In this article, we use this background to study the relaxation of energies in a specific
mathematic &etting for second-grder str ot red deformations (g, G,T'), the so-called “SBV?-
setting”, see [16]. The g(cjafults in [12] and [7] for the energetics of first-order structured defor-
mations and those of bU] provide a guide for our analysis of energetics in the second-order
case. Beyond providing an analysis in the second-order case, we broaden the scope further by
following ideas in an order to include in our analysis the case of “inhomogeneous energetic
response”, i.e., the case in which initial bulk and interfacial densities can depend explicitly on
location in the body. oot iorel

The overall plan of this work in the ensuing sections is as follows. In Section 2 we fix
the notation and recall some auxiliary 1"esu]1tasi used throughout the paper, e’lc‘?:e Eroble%é QUL lres

. n . . stateme
hypotheses and the main result, Theorem 8.2, are presented in Section 3. In Section 4 we

prove some preliminary results and, in particular, show that o r_energy ffl}llr}%tional can be
decomposegli%nto a sum of two lowe - é)crtd:ear functionals. Section l5 is devoted to the proof of
%‘genorem %T,and finally, in Section E?, we give an example in which the formula in Theorem
}‘Iﬂor the bulk relaxed energy density can be calculated explicitly, thus providing an explicit
formula in terms of VG — T for the volume density of the non-tangential part of jumps in
directional derivatives of approximations. We further indicate in Section %ﬁ%ﬁons of the
energetics of second-order structured deformations in the study of elastic bodies undergoing
disarrangements.

2. PRELIMINARIES

The purpose of this section is to give a brief overview of the concepts and results that are used
in the sequel. Almost all these results are stated without proofs as they can be readily found
in the references given below.

2.1. Notation. Throughout the text Q ¢ RY, N > 1, will denote an open bounded set and we
will use the following notations:

0O(9) is the family of all open subsets of €2,

M(Q) is the set of finite Radon measures on (,

MT(Q) is the set of finite and positive Radon measures on (2,

||p|| stands for the total variation of a measure p € M(Q),

SN-1 stands for the unit sphere in RY,

e; denotes the i*" element of the canonical basis of RY, for i =1,..., N.

Q denotes the unit cube centered at the origin with faces orthogonal to the coordinate
axes,
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e Q(z,9) denotes a cube centered at = € 2 with side length § and with two of its faces
orthogonal to ey,

Q.(z,9) is a cube centered at = € Q with side length ¢ and with two of its faces
orthogonal to v € SN—1,

o Q= QV(O7 1)7
e (C represents a generic constant whose value might change from line to line,
° lim := lim lim while lim := lim lim ,

n,m—-+o0o n—4oo m—-+o0o m,n—4o0 m—-+00 n—4o00

2.2. Measure Theory, We recall Reshetnyak’s Theorem on Wealj convergence of vector mea-
sures (see Reshetnyak [31]; see also Ambrosio, Fusco and Pallara .

Theorem 2.1. Let i, 1, be Ré—valued finite Radon measures in Q such that pu, —pin Q
and such that ||, ||(2) — ||u]|(Q). Then

Jin [ 1 (e @) ) o) = [ 7 (@ ) o)

for every continuous and bounded function f:Q x S ! = R.

2.3. BV Functions. In this section we briefly summarize some facts on fupctions of bounded
variation that will be used throughout the paper. We refer to §I, 91,22, 23, 33] for a detailed

description of this subject.

A function u € L'(Q;R?) is said to be of bounded variation, and we write u € BV (;R?), if
all its first order distributional derivatives D,u; € M(Q) for i =1,....d and j = 1,..., N. The
matrix-valued measure whose entries are D;u; is denoted by Du. By the Lebesgue Decompo-
sition Theorem Dwu can be split into the sum of two mutually singular measures D%u and D*u
(the absolutely continuous part and the singular part, respectively, of Du with respect to the
Lebesgue measure £V). By Vu we denote the Radon-Nikodym derivative of D% with respect
to £V, so that we can write

Du = Vul™ |Q + Du.

Let Q, be the set of points where the approximate limit of u exists, i.e., points z € Q for

which there exists z € R" such that

li —z|dy = 0.
T A luly) — 2| dy
If € Q, and z = u(z) we say that u is approximately continuous at x (or that z is a Lebesgue
point of u). The function u is approximately continuous for £V -a.e. = € Q,.
The jump set of the function u, denoted by S, is the set of points « € Q\ Q,, for which there
exist a, b € R? and a unit vector » € SV~!, normal to S, at x, such that a # b and

1 1
lim — lu(y)—aldy =0, lim — / |u(y)—b| dy = 0.
=0t &N Jiyequ @0 (y—2)v>0) =0" &N Jiyequ @0 (y—)v<0)
The triple (a, b, v) is uniquely determined by the conditions above up to a permutation of (a, b)
and a change of sign of v and is denoted by (u™(z),u™ (), vy (x)). P
If w € BV(Q) it is well known that S, is countably (N — 1)-rectifiable, see hT, and the

following decomposition holds
Du = VulM|Q+ [u] @ v, HN 7S, + Du,

where [u] := u™ —u~ and D¢u is the Cantor part of the measure Du.

Throughout this paper we shall employ for convenience the slightly abusive notation [f(z)]
in place of the more accurate notation [f](z) for the difference f*(z) — f~(z).

We also recall that a measurable subset £ C RY is a set of finite perimeter in ) if the
characteristic function yg of E is a function of bounded variation. In this case, the perimeter
of E in () is given by the total variation of x g in Q, i.e., Perq(E) := |Dxg|(£2).

The following theorem is a variant of a well-known approximation result for sets of fi 31};)%

erinterfacial

perimeter and it, will be used in the proof of the upper bound inequalities in Proposition 5.6
and Theorem 5.7.
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Theorem 2.2 (Fg%%ma 3.11). Let Q2 be an open, bounded set with Lipschitz boundary and
let E be a subset of ) with Perq(E) < 4+o0o. There exists a sequence {E,} of polyhedral sets
(i.e., for each n, E, is a bounded Lipschitz domain with 0E, = Hi, UH,,U...Hy, ,, where
each Hj, is a closed subset of a hyperplane {x € RN : x-v; = ¢;}, for some ¢; € R and
v; e SN=1, j=1,...,L,, L, €N) satisfying the following properties:
i) Xp, = Xgin L'(Q), as n — +oo,
(i) lim Perg(E,) = Perq(E),
o Eee . AEP
(iii) HNYO*E,, NON) =0 (0*E being the reduced boundary of E, see m,
Gv) .N(E,) = LN (E).
If ©Q is an open and bounded set with Lipschitz boundary then the outer unit normal to 92
(denoted by ) exists HV~!-a.e. and the trace for functions in BV (Q;R9) is defined.

Lemma 2.3. Let u € BV (;R?). There exist piecewise constant functions u,, such that u, — u
in L'(Q;R?) and

[Dul[(©2) = Tim ||Duy||(2) = lim [wn] ()] dHY " ().

n—-+oo n—-+o0o S

The space of special functions of bounded variation SBV (Q;R?), introduced in Ff%] to study
free discontinuity problems, is the space of functions u € BV (Q;R?) such that D°u = 0, i.e.
for which

Du = Vul® + [u] @ v, HN 71| S,.

The next result is a Lusin-type theorem for gradients due to Alberti %], and is essential for

our arguments.

Theorem 2.4. Let f € L'(Q;R¥N). There exists u € SBV(;RY) and a Borel function g :
Q — RN such that
Du= fLN + gHN 'Sy,

[ lal a3 < Ol o,
Moreover,
ullLr @) < Ol @irax ).
The following technical result is a simplified version of Lemma 4.3 in FQG].

Lemma 2.5. Let Q C RY be open and bounded and let A € RN, Then there exists u €
SBV (2;R?) such that ulpq = 0 and Vu = A a.e in 2. In addition

IDul(@) < C(N)|Al|).
Following %We define

If w € SBV?({;R?) we use the notation V2u = V(Vu) to denote the absolutely continuous
part of D(Vu) with respect to the Lebesgue measure. Analogously, we let

BV?(Q;RY) = {v € BV(®%;RY) : Vv € BV(Q;R>N)],
3. STATEMENT OF THE PROBLEM AND MAIN RESULT
We define a second order structured deformation as a triplet
(9,G,T) € SBV?(;RY) x SBV (RN x L1 (Q; RIXN*NY,

The set of second order structured deformations will be denoted in the sequel by SD?(Q;R?).
Given a function u € SBV?(Q;R?), consider the energy defined by

B(u) = / W (2, Vu(z), V2u(z)) da + / Uy (z, [u(@)], vu(z) dHN ' (2)
’ o 3.1)
+ /S Uy(z, [Vu(@)], vou () dHN (2),
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where the densities W : Q x RN x RIXNXN [0 4oo], ¥y : Q x RY x SN=1 — [0, +00[ and
Wy : Q x RN x §N=1 10, +-00[ satisfy the following hypotheses:
(H1) there exists C > 0 such that
1
oAl +IM]) - C < W(z, 4, M) < C(1+|A]+|M])
forall x € Q, A € RN and M € RIXN*N
(H2) there exists C' > 0 such that
(W (, A1, My) = W (2, Ay, Ma)| < C(|A1 — Ag| + [My — Mo|)

forall z € Q, A; € RN and M; € RXNXN 5 =1,2;

(H3) for every zo € 2 and for every & > 0 there exists a 6 > 0 such that
|$ — (ﬂ()‘ <d= |W(£L',A,M) — W((ﬂ(hA,M)‘ < EC(]. + |A‘ + |M|),

forall x € Q, A € RN and M € RIXNXN
(H4) there exist 0 < a <1 and L > 0 such that
Wz, A, tM) o c

t = e
forallt > L, 2 € QA€ R>N M e RXNXN with |M| = 1, where W> denotes the
recession function of W in the variable M, i.e.,
W(x, A, tM)

)

W (z, A, M) —

Wee(x, A, M) = limsup

t—+00 t
(H5) there exist ¢; > 0, K; > 0, such that
Cl|)\| < \Ijl(xv)‘7l/) < K1|)\|7
forall z € QA€ R and v € SV 1;
there exist ¢y > 0, K5 > 0, such that
ca| Al < Wa(z, A, v) < KalAl,
forall z € QA € RN and v € SV,
(H6) for every xg € 2 and for every > 0 there exist § > 0 and Cy,Cs > 0 such that
‘I — l‘0| <= |\111(I0,>\,V) — \I’l(l',)\,V)‘ < E'Cl|)\|,
|Jf — J)0| <= |\IJQ(J307A,Z/) — \IIQ(JZ,A,V)I < €CQ|A‘
forall Ae R4, A e RN and v € SN-1;
(H7) (homogeneity of degree one)
\Ijl(xv t)‘v l/) = t\Ijl(xv )‘1 V)? l:[12("177 tA7 I/) = t\P2($7 A7 l/)v
forall z € Q,v e SN"1L AN e RV, A € RN and t > 0;
(H8) (sub-additivity)
Uy (2, A1 + A2, v) < Ui (z, A1, v) + Uiz, A2, v),
\112(I7A1 +A27V) < \112(‘T7A11V) + \IIQ(z7A27V)a
forall z € Qv e SN=1 N\, e RE A, e RN 4 =1,2.
Remark 3.1. (1) We extend ¥;,i = 1,2 as homogeneous functions of degree one in the
third variable to all of R .
CF BMS
(2) The hypotheses listed above are similar to the ones i E@] and hTwhere there is no
explicit dependence on x, and with the hypotheses in [9] where the density functions
depended explicitly on the variable z.

(3) It is well known that the bulk energy may have potential wells and for this reason it
is desirable to consider

0< Wz, A, M) < C(1+|A| + | M]),

CF
instead of (H1). However, following the same arguments as in h2], the coercivity
assumption can be removed.
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(4) In the case of no explicit dependence on the position variable x, the coercivity hypoth-

esis on the interfacial energy densities can be replaced by the extra condition that
admissible sequences are bounded in BV?-nor Sécélf}alis standard modification of our
model covers the case of the example in Section % ]

(5) It follows immediately from the definition of the recession function and from hypothe-

ses (H1), (H2) and (H3) that there exists C' > 0 such that for all z € Q, A; € R*Y and
M; € RNXN 15 —1,2

é|M1| < W (z, Ay, My) < C|M,|; (3.2)
W (z, Ay, My) — W™ (x, Ag, M)| < C|My — My| (3.3)

and, for every xg € Q and for every ¢ > 0 there exists a ¢ > 0 such that
|z — x0| <8 = |[W>(x, Ay, My) — W (20, Ay, My)| < eC|M|. (3.4)

Consider now the relaxed energy

1 1
I(9,G,T) := liminf E(uy,) : uy, L, g, Vuy, L, G, V?u, = F}. (3.5) |200

inf {
{u,}CSBV2(Q;R4) L n—+o00

The main result of this work reads as follows

Theorem 3.2. For all (9,G,T) € SD?(;R?), under hypotheses (H1) - (H8), we have that

I(9,G,T) = /Q{Wl(x, G(z) — Vyg(z)) + Wa(x,G(z), VG(z),T'(x))} dx
[ @) @) o) 3.6)
5,N0

+ / o(z, G(z), [G ()], va(x)) dHN " (z),
SanN

where, for t € Q, A, A e RN L M e R>*NXN N cR? and v e SN,

Wi(z, A) = inf U, (z, va(y) dHN () =0, Vu=Aa.e. i ,
ey =t S ) ) 8 0) oo =0, Vu= Aae in @)
7A7 = i f ql ) ) u dHN_l : = V)
m(@, A v) ueSB\}'rzl(Qu;Rd){/SunQu 1(@, [u(y)], vu(y)) ) : uloq, =Y
Vu=0a.e in QV},
with
A ifz-v>0
T =9y o ifx-v <O,
and
Wa(z, A, L, M) = inf Wiz, A,V d Uy (2, () dHY T (y)
warin= it S W avu@)a [ v ) nm) i)
o) = L-v. [ Vuty)dy =2},
A\ v) = inf W (z, A d v W () dHN " (y)
wadn= ot WAV d [ e ) ) )

ulaq, = V(aw); /Q Vu(y)dy = 0} :
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4. PRELIMINARY RESULTS

In this section we derive some preliminary results which will be used in the proof of the
main theorem.

nonempty | Lemma 4.1. Let (g,G,T") € SD?(Q;R?). Then 1(g,G,T") < +occ.

1
Proof. Let (g9,G,T) € SD?(2; R?) be given. By applying Theorem %4, there exists h € SBV (Q; R¥>Y)
such that VA =T a.e. in 2 and

[D*R[[(R2) < Cl|T|| L1 (qraxvxny, (4.1) [203

for some C'= C(N) > 0. By Lemma 53 here exists a sequence {v,} C L'(Q;RY) of piecewise

1
constant functions such that v, LG~ hand

1Dv, () = | D30, ]| () \DG — Dhl|(Q). 4.2) [204

— |
n——+0o

Define w,, € SBV(Q; R™>YN) by w,, = 4+ h. We have w,, — G in LY(Q;R>Y) and Vw, =T
a.e. in 2. By applying again Theorem 2.4, for every n € N, there exists h,, € SBV (£ R?) such
that Vh, = w, a.e. in Q and

| D*hn[|(2) < Cllwy | p2 (e x).- (4.3) [205

t _
By Lemma bc.Sa, for every n € N, there exists a sequence {h,.,} C L'(;R?) of piecewise

— 1 ~
constant functions such that h,, ,, L, g — h, as m — +oo and

IDFumll(@) — [ Dg = Dhnl(€).

Thus, for every n € N, there exists m(n) € N such that
_ - 1 — . 1
ey = (0= Bl < o [IDFwmll (@) = [Dg = Dhall(@)] < 5. (44) [202

Hence the sequence wu,, := h, + Ay n(n) is such that u, — g in L'(Q;RY), Vu, = wy,~ G in
LY (S R¥>N) and V2u,, =T, so that it is a competitor for the infimization problem (%ﬁ),
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. 003 204|205 202 .
By the growth assumptions (H1) and (H5), and (h, (&EZ), (&ES) and (h?ﬂ, we can estimate

<limi
I(vavr) \lnlgl_"l_ggE<un)

<liminf
n—-+oo

W(J}, vu”(x)’ V2u7l(x)) dx + / \111(1'7 [Un(x)]? V., (.I‘)) dHN?l(x)

Q S

Un

+ / Uy (z, [Vun(x)], vvu, () d”HN_l(x)]
SV up

< liminf
n—-+o0o

¢ /Qﬂ + |V (@) + [V2un (2)]) de + K /5 [ ()] AN ()

Unp

we /S |[Vun<m>]cmN-1<x>]

n—-+4oo

< lim inf Mcaﬂa(x)+|r(x)|)dx+K1|DSunll(Q)+K2|DS(Vun)II(Q)] (4.5)

+ thU.p CH’LUn - G”Ll(Q;RdXN)
n—-+oo

<C{EN(Q) + Gl L1 @maxvy + IVl L1 @iraxany + | Dgll(€2)

+ limsup ||DG — Dh||(£2) + lim sup ||w,L||L1(Q;Rde)}
n—-+4oo

n—-+oo

<C |:£N(Q) + ||G||L1(Q;Rd><N) + ||F||L1(Q;Rd><N><N)

+11Dgll(©) + DG () + limsup |, — Gnm;wm]
n—+0oo
<O+ [DgI(Q) + 1G]z + IDGIE) + [Tl cmasrvy).
O

Remark 4.2. As the above proof shows, given (g, G,T') € SD?(Q;R?) there exists a sequence
{un} C SBV?(Q;R?) such that u, — g in L'(;R?), Vu, — G in, LH(Q;RN) and V?u, = T.
Our proof is essentially the same as the proof of Theorem 3.2 in [30].

4.1. Decomposition.

decomposition| Theorem 4.3. We may decompose I(g,G,T) as I(g9,G,T) = I,(g,G,T) + I2(G,T), where

e . . . N*l .
Li(g,G,I) = {u”}ng?(Q;Rd){ggrg/Sun Uy (@, [un ()], va, (x) dHY " (z) :

1 1
Unp, L—>g, Vuy, L—>G, VQUHiF}
and

I,(G,T) = liminf[/QW(:v,vn(x),an(x)) dx

inf
{v, }CSBV (;RIXN) | n—+o0

+/ \112(3:,[vn(x)},vvn(a:))dHNfl(a:)} DUy L—1>G, Vo, —*\F}.
S

Un

Proof. 1t is clear that
1(97 G7 F) 2 Il(ga le—‘) + 12(05 F)
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To show the reverse inequality let {u,} C SBV?2(Q;R?) be such that u, Ly, Vu, 56,
V2u, 2T and

h(g.GT) = T [ W, ()] v, () aHY ' (0)

Un

and let {v,} C SBV?(;R¥*Y) be such that v, L G, Vv, > T and

L(G,I) = lim l / W (2, vn(2), Vun(2)) dz + / Wy (, [vn(2)], v, () AHN " (2)
n o) Q Su,,

By Theorem 2.4 let {1} C SBV(®:R?) be such that Vh, = v, — Vu, and [[D*h,[(©) <

Cl|vn =V L1 (orax vy, and by Lemma 2.3 Tet h,, be a sequence of piecewise constant functions

with [|h, — hy |z < L and [|[Dh,[[(Q) — | Dh,[|(Q)] < L. Define {w,} C SBVZ(Q;R?) by

n

Wy 1= U + Py — Iy

Then w,, L—1>g, Vw, = v, AN G, V2w, = Vv, =T and so, by (H8) and (H5),

I(g’ G’ F) < lim inf [/(ZW(x7 an(x)> Van(x)) dx + / \Ill(xa [wn(l')]v Vw, (x)) dHN_l(-’L')

n—-4oo S
n

+/ Uy(z, [an(as)],uvw"(a:))d’HN_l(m)]
s

Vwn

n—-+oo S

< lim l/QW(x,an(x),an(;v))dx—k /\Ilg(x, [vn (2)], Vo, (x))d?—[N—l(a:)]

Un

+ lim Uy (2, [un ()], Va, () dHN 7 ()

n—-+4+oo Su
n

+ lim sup/ Vi(z, [hy — ho](@), vy, _j (%)) dHN ()
ShnUS;Ln

n—-+oo

< IL(G,T) + Ii(g,G,T') + limsup C [ — B ()] dHY ()

n—-+4o0o S,Lnusﬁn

< L(G,T)+ L1(9,G,T) +limsup C | |v,(x) — Vuy,(x)| dz
Q

n——4oo

= 12(071—‘) + Il(g,G,F),

where we have used the properties of the functions w,,, v, h, and h,. O

4.2. Localization. In this section we localize the functionals I; and I; and show that they
are Radon measures. For each U € O(2) we define the localized functionals

a . . . N—1 .
Ii(g,G.,IU) = {un}CSII?\f/‘Q(U;Rd){Eglilg/sunm(] Vi (@, [un(2)], va, (2) dH™ ™ (2) :
U, L—1>g, Vu, L—1>G, Viu, iI‘} (4.6)
and
L(G,IU) := {vn}CSBiI‘}f(‘U;RdXN) {lﬁgligg [/UW(x,vn(x),an(x)) dx

n / Uo(z, [vn(x)],yvn(x))dw*l(x)} e 5@, Vo, ir}. 4.7)
Syp MU
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bd
It is clear that localized versions of the upper bound (&55 still hold, namely

Ii(9,G,T,U) < C [|IGllpr wmraxv) + | Dgll(U)] (4.8)

L(G,T,U) < C[1+ |Gl 1 wrzax vy + [Tl o agax v eny + | DGI(T)] - (4.9)

We will now prove that I;(¢,G,T,)|O(Q) and I,(G,T,-)|O(Q) are Radon measures. For this
purpose we first show that these functionals are nested subadditive.

Lemma 4.4. Let U V,W € O(Q) be such that U CCV C W. Then

Il<g?G7FaW) < Il(g7GaF7v> + Il(g7G7F7 W\U)7 (410)

L(G,T,W) < L(G,T,V) + L(G,T,W\U). (4.11)

Proof. We provide the details of the proof only for I; since for I, it is analogous.

Let u, € SBV%(V;R%) and v, € SBV?(W \ U;R?) be two sequences such that u,, — ¢ in
LY(V;RY), Vu, — G in LY (V;R>N), V24, 5T in M(V;R>*NXNY g — g in LYW \ U;RY),
Vo, — G in LYW\ U; RN, V20, 5T in M(W \ U; R>*N*N) "and that, in addition,

Ii(g,G,T,V) = lim Uy (2, [un ()], v, (2)) dHN " (2)

n—-+oo SunﬁV

and
Li(g,G,T,W\U)= lim Uy (x, [vn(x)], vy, (x)) dHNfl(a:).

no+0 Jg, A(W\T)

Note that
Uy — vy — 0 in LYV N (W \T);RY) (4.12)

and

Vu, — Vo, =0 in LYV 0 (W \ T); R>N),

V2u, — Vv, 20 in M(V N (W \ T); RHN*N),
For § > 0 define
Us:={x e V: dist(z,U) < ¢}.

For z € W let d(z) := dist(z,U). Since the distance function to a fixed set js Lipschitz
continuous (see hS Exercise 1.1]), we can apply the change of variables formula [21, Section
3.4.3, Theorem 2], to obtain

_ ’ _ N—-1
o fonle) — e Vi) e = | le(y)wn(x) )] M <x>] dy

and, as |det Vd| is bounded and (Eiflfﬁ%olds, it follows that for almost every p € [0, §] we have

lim Un(x) — vp(2)| dHN " (z) = lim un(x) — vy (2)| dHN 1 (2) = 0. (4.13)
Lm dil(p)l (z) (2)] (z) = lim aUpl (2) ()] (2)

Fix pg € [0,6] such that [I'xv|[(9U,,) = 0, [I'xy\z(0U,,) = 0 and such that (4:13) holds. We
observe that U, is A set with locally Lipschitz boundary since it is a level set of a Lipschitz
function (see, e.g., [21]). Hence we can consider u,,, v, Vu,, Vv, on 0U,, in the sense of traces

and define
w, = Jtn %n Up, B
v, AW\ Up,.

aer
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Then, by the choice of pg, w,, is admissible for I; (g, G,T', W) so, by (H5), (&IL?ICZOH) and (%3), we

obtain
L(g,G, I, W) < liminf Uy (2, [wn (2)], v, () dHY 71 (2)
n—+oo S, "W
< liminf / Uy (a2, [ ()], v, (2)) dHY " (2)
n—-+oo Sun vV
+f W (2 o (2)]. v, (2)) A1V (2)
Sy, N(W\D)
t [ Clunte) - (o) W a)
S NOU,,
= 11(97G»F7V)+Il(97G7F7W\U)v
which concludes the proof. O

Theorem 4.5. Assume that hypotheses (H1) and (H5) hold. Then I,(g,G,T,-)|O(Q) and I,(G,T,-)|O(Q)
are Radon measures, absolutely continuous with respect to LN +HN~1|S, and to LN +HN 1| S¢,
respectively.

Proof. Let u, € SBV?(;R?) be such that u, — g in L'(;RY), Vu, — G in L (RN,
V2u, =T in M(Q;R>N*N) and

Ii(g,G,T,Q) = lim Uy (x, [un(x)], va, (2)) dHN ().

n—+oo Jg. N

For every Borel set B C ) define the sequence of measures

in(B) = /S @ ), @) AR ),

Un

By (H5) this sequence of non-negative Radon measures is uniformly bounded in M(Q2) and
thus, upon passing if necessary to a subsequence, we conclude that

fn = g in M(Q).

In particular,

w() =I(g,G,T,Q).
We want to show that, for all V € O(1),

(V) = L(g,G,T, V). (4.14)

Let V € O(Q), let ¢ > 0 and choose W cC V such that u(V \ W) <. Since W cC V C Q, by
the nested subadditivity property it follows that

N/(ﬁ) = Il (ga G7F7 Q)
< Il(gaG7F7V)+[1(97G7FaQ\W)
< L(g, G V) + @\ W),

and so,
(V) < p(W)+e
= (@)~ u(@\ ) e
< Il(vavr‘aQ)_Il(g7G7P’Q\W)+E
< Il(va7F7V)+€'

Thus, letting € — 0%, we conclude that

w(V) < Ii(9,G,T, V). (4.15)
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To prove the reverse inequality define, for U € O(Q2),

AU) :=/(IVg(fE)IJr\G(x)\)dérJrllegll(U) (4.16)
Let K CC V bea compact set such that /} 4 \ K) < ¢ and choose an open set W such that
K cC W cC V. Lemma #.4, and (&I 8) yield
Il(g,G,F,V) < Il(g7GF W)+Il(g7G7FaV\K)
< hgmfun( )+ CAV\K)
< limsup p,(W) + Ce
n—-+oo
< (W) +Ce
< w(V)+ Ce,

so to conclude the result it suffices to let ¢ — 0F.
In the case of I the proog is analogous, using hypotheses (H1) and (H5), (h 9) and the nested
subadditivity property (hI O

We now define

L(G,T) := inf {liminf{/QW(QJ,G(J;),VU,I(J:))CZ:U

v, CSBV (Q;RIXN) | n—+o00

+ /S e, [vn(x)],um))dHN1<m>] v 56, V“"“}'

Un

Proposition 4.6. Let (G,T) € BV (Q;R¥>N) x LY(Q; R>*NXN) Then we have that
12(Ga F) = jQ(Gv F)
Proof Let {v,} ¢ SBV(Q;R*") be such that v, — G in L'(Q;R>*N), Vo, 2T and

AVE { /Q Wz, v (), Von(2)) da + /S R [vn(x)],zzvn(x))dHN_l(x)}.

By (H2) it follows that

fg(GJ‘) < nli}r_‘r_loo|:/QW(:L‘7G(LL‘),V’U7L(CE))dCC+/S OQ\Ilg(x,[vn(x)]wvn(x))dHN_l(m)}

Un

< limsup [/Q W(z,G(x), Vo, (z)) — W(x,v,(x), Vo, (z)) d:c]

n—-+o0o

+ lim [/QW(:E,vn(x),an(z))der/

n—-+4oo S

Wy (. [0 ()] v, (w))d%“(w)}

nQ

Un

< limsupC |G( ) —vp(x)]dx + I(G,T) = I(G,T).

n—-+o0o

The reverse inequality is proved similarly. O

A standard diagonalization argument yields the following lower semicontinuity property of
both I; and I5.

1sc| Proposition 4.7. Let (9,G,T) € SD*(Q;RY) and g, € SBV?(;R?), G,, € SBV(Q;R>*N) be
such that g, — g in L'(Q;RY) and G,, — G in L*(Q;R¥>*N). Then

Il(g7 G7 F7 Q) < hgl_"l_nf Il(g’n7 G,F, Q)

and
I,(G, T, Q) < lim 1anQ(Gn, I, Q).

n—-+o0o
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4.3. Properties of the density functions. In order to prove the upper bound inequality for
the surface energy terms of both I; and I, we need the following properties of the density
functions Wy, Wy, 1 and ~-.

Proposition 4.8. i) Wi(x,0) =0,Vz € Q;
ii) |Wi(z,A) — Wi(z, B)| < C|A — B|,Vz € Q,VA, B € RN,

Proof: The proof of i) is immediate by noticing that the function v = 0 is admissible for
W1 (x,0). To prove ii) we will show that W, (x, B) < Wy(x, A)+C|A—B|, Vz € Q,VA, B € RN
the reverse inequality follows by interchanging the roles of A and B.

Fix ¢ > 0 and let u € SBV?(Q;R?) be such that u|sg =0, Vu = A a.e. in Q and

[ e ) o) a1 (o) < Wae, 4) 4=

S.NQ

By Lemma bm%t,l T SBV?(Q;R?) be such that v|sg = 0, Vo = B — A ae. in @ and
|D%v|(Q) < C|B — Al, and define w = u + v. Then w is admissible for W, (z, B) so by (H8) and
(H5),

Wi(z,B) < /S T )l v ) i )

s / \I}l(x’[“(y)],uu(y))dHN‘l(y)+/ Uy (2, [v(y)), vo(y)) dHY " (y)
5.NQ S

.NQ
< Wiz, A) + e+ CD*v[(Q) < Wiz, A) + e+ C|B - Al

Hence the result follows by letting ¢ — 0F. O

Proposition 4.9. i) vz, \v) <CALV(z,\,v) € QxR x SVNL;

ii) for every xo € Q2 and for every £ > 0 there exists 6 > 0 such that

|z — 20| <8 = |y1(z0, A\, ) — 71, A\, v)| < eC(1+|A),V(z,\,v) € QxR x SN,
iii) |y (z, A v) — v (2, N,v)| < CIA = N, Y(z, \,v), (2, N, v) € Q x RY x §N—1;
iv) 7y is upper semicontinuous in Q x R4 x SN-1,

Proof. The proof of i) follows immediately from the fact that the function ~, , is admissible
for 1 (z, A\, v) and from hypotheses (H5).
To prove i) fix zp € Q@ and € > 0. By (H6) let § > 0 be such that

|z — o] <0 = |Ui(x0, A\, v) — Uyi(x,\, V)] < eCI\|. (4.17)
Let u, € SBV?(Q,;R?) be such that u,|sg, = Yu), Vu, =0 a.e. in Q, and

1
/ ) (0, [t ()], v, (1)) AHY () < 7 (00, A ) +
SunNQu n
By (H5) and i) we have

/ lun(@)][dHY "M y) < C W1 (20, [un (9)]: v, () AN ()
Sun Qv S, NQu

1
< C <71(x0,)\,u) + n) < C(1L+|A). (4.18)
Hence, if |z — x¢| < ¢, it follows by (%17) and (EiTSlS) that
71(z, A, v) = (20, A, v)

<[ ) @) - [ Ve @), ) ) +
SunNQy SunNQy

1
< / £Clfun ()] dHY " () + ©
Su,, NQy n

1
<eC(1+ |A) + e
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Letting n — +oc we conclude that
y(z, A\ V) — y1(x0, A, v) < eC(1+ |A]).

Changing the roles of = and z;, we obtain the result.
We now prove iii). Let u € SBV?(Q,;R?) be such that u|sg, = Yoy, Vu =0 a.e. in Q,
and

/ Wy (2, [w(y)], () AHY M) < e Aw) + <.
SuNQw

Let v = v\ ,,) — Y(»,) and define w = u + v. Since w is admissible for v, (x, X', ) we have by
(H8) and (H5),

N

(N v) /S @) )

s / s (s [u(y)], va(y) dHY " (y) +/ Uy, [v(y)], vo(y) ALY (y)
SuNQ. $.10,
< 71($,>\,V)+6+/ \Ijl(x,)\/f)\,l/)dHNil(y)
{y€Q.:y-v=0}

< mz,\v)+e+CN =),

so to prove the first inequality it suffices to let ¢ — 07 . The other inequality is obtained in a
similar fashion.

To prove iv), taking into account the result of iii) it suffices to show that (z,v) — vi(z, A\, v)
is upper semicontinuous, for every A € R?. By a change of variables argument, choosing a
rotation R such that Rey = v, it is easy to see that

wean = e ] (e ) a0 4K 0) s ulag =90 V= Oae inGQ}.
(4.19)

Let (2, vy) — (2,v). Given € > 0, let u. € SBV?(Q;R?) be such that u.|asg = y(rey), Ve =0
a.e. in Q and

<e. (4.20)

neAn) = [ ). @)
5.,.NQ
Let K be a compact subset of Q containing a neighborhood of x and choose § > 0 such that
(H6) is satisfied uniformly in K, i.e.
y’y/ € K7 ‘y - yl| <= ‘\Ill(yv A7 V) - ‘lll(y/7 Aa V)| < €C|A|7 (4-21)

for all (\,v) € R? x SN=1. Choosing rotations R, such that R,ex = v,, R, — R, by (&EZLFE
(H5) and (4-20) we have that

/ \Ill(lE, [’U,E (y)L Vue (y)) dHN?l(y) a / \Ijl(xny [UE (y)L Vy, (y)) dHN?l(y)
Su.NQ 5..NQ

N-—1
< /S el

<eC Uy (2, [ue(y)], vu. (y) dHN 1 (y)
Su,NQ

<eCle+ vz, A\ v)) =0(e).
Thus, by B-19) and #20),

(@ ) < /S il ) v, ) a7 )

< 0(e)+ /S I ) v ) )

< O(€)+71(x7)\7l/)'

ueps
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Therefore, letting ¢ — 07, we conclude that

lim sup 1 (€, A, V) < 71 (z, A\, v).

n—-+o0o

O

Remark 4.10. v,(z,\,v) can be extended to 2 x R? x RY as a positively homogeneous of
degree one function in the third variable in the following way

0|y (z, N\, ), if0 e RN\ {0
71(3:,/\,9):{1)”1( or) o0 \ {0}

1
By Proposition E.rgo this extension is upper semicontinuous in 2 x R¢ x RV and satisfies
y1(z, A, 0) < CIA0],¥(z, A, 0) € Q x R x RN,

Thus there exists a non-increasing sequence of continuous functions 77" : Q x RY — [0, +00)
such that
Y1(z, A, 0) = inf 47" (x,0) = lim )" (x,0) < C|0],V(z,0) € Q x RN,
m m

Proposition 4.11. i) Wa(z,A,0,0) < W(z, A,0),V(x, A) € Q x RN,
ii) for every x € ), every Ay, Ay € RN and all L, My, My € R>*N*N we have that
|Wa(x, A1, L, My) — Wa(x, A, L, Ma)| < C(|A1 — Ag| + [My — Ma]).

Proof. The proof of i) is immediate since the function v = 0 is admissible for W5(x, A, 0,0).
To prove ii) we will show that

Wo(x, Ay, L, My) < Wa(x, Az, L, My) + C(|Ay — As| + | My — Ms)),

Vo € Q, VA1, Ay € RN YL M, My € R¥>*N*N - the reverse inequality follows by interchang-
ing the roles of A; and A, and M; and M.

Fix ¢ > 0 and let u € SBV(Q; R™) be such that u|sg(y) = Ly, / Vu(y) dy = M, and
Q

/W(x,Az,W(y))dy+/ Uy (z, [u(y)], vu(y)) dHN ' (y) < Walz, Az, L, My) + &
Q SuNQ
atias—lemma

By Lemma 2.5, let v € SBV(Q;R*Y) be such that v|sg = 0, Vo = M; — M, a.e. in Q and
|Dv|(Q) < C|M; — M|, and define w = v+ v. Then w is admissible for W5(x, A1, L, M7) so by
(H8), (H2) and (H5),

Wa(x, Ay, L, My) - < /QW(LL‘,AhV’LU(y))dy—i-/S OQ\I’2($7[w(y)LVw(y))dHN_l(y)

< / W (x, Ay, Vu(y) + My — Ms) dy
Q
+/ W (, [u(y)], vu () dHY 7 (y) +/ s (@, [v(y)], vo(y) AN (y)
SuNQ S,NQ
< / W(x, As, Vu(y)) dy + C(|A1 — As| + |M1 — Ms))
Q

+ [ el i) ) )+ 1D (@)
< Wh(z,As, L, M) + e+ C(|A1 — As| + | M1 — Ms)),
thus to conclude the desired inequality it suffices to let ¢ — 0. O
Proposition 4.12. i) Yoz, A, A, v) < C|AL Y (2, A, A, v) € Q x RIXN x RIXN 5 GN—1,
1) for every xg € Q) and for every ¢ > 0 there exists § > 0 such that
|z — zo| < 6 = |ya(wo, A, A, v) — yo(z, A, A, v)| < eC(1+ |A]),
V(z, A, A, v) € Q x RN x RIXN 5 gN-1L,
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iii) for every (z, Ay, A1, v), (2, Ag, Ag,v) € Q x RN x RIXN 5 SN=1 yye have that
|v2(x, A1, A1, v) — y2(x, A2, Ao, v)| < C(JA1 — Ag| + [Ar — Ag)),
iv) 7o is upper semicontinuous in  x RN x RIXN » gGN—1
Proof. The proof of i) follows immediately from the fact that the function v, , is admissible

for vo(z, A, A,v), from hypotheses (H5) a (jiisniﬁce Wee(z, A,0) =0.
To prove i) fix zp € 2 and £ > 0. By (3.4) and (H6) let 6 > 0 be such that

|z —zo] < 0= |W(x,A, M) - W>(zo,A, M)| < eC|M] (4.22)
and
|z — x0| < 0 = |Wa(z0, A, v) — Uz, A, v)| < eC|A. (4.23)

Let u, € SBV(Q,; R*™) be such that u,|og, = YA, / Vu,(y) dy = 0 and
Qv

W2 A Vun () dy+ [ Wl un ()], () Y 0) < (0, 4,4, 0) +

Qv Su, NQy

By (bh.l2mi, f( Fi5) and i) we have

L vulans [l )

v Un NQw

<C Wee (:Co, A,Vu, (y)) dy + C W, ($0, [un (y)}’ Va, (y)) deNfl (y)
@ Sun Q.

1

Hence, if |z — wo| < 6, it follows by (£:22), (1237 and (4345 that
72(377 A7A7 V) - 72(1'0714) A> V)

< | WS(z, A, Vu,(y)) dy +/ U (2, [un ()], vu, (1)) dHV " (y)
Qv S, Q.

[ WS ATy~ [ o, () v, () 4R )+
Qv SupNQu

_ 1
<[ coNum@ldyt [ el )+
v SupNQy n

<cC(+]A) + %
Letting n — +0o we conclude that
Yo(x, A, A, v) — vo(xo, A, A, v) < eC(1+|A]).
Changing the roles of © and 2y, we obtain the result.
We now prove iii). Let u € SBV(Q,;R?) be such that u|og, = Y(a,.), /Q Vu(y)dy = 0
and ’

wee (‘Tv A17 Vu(y)) dy + / \IJQ(xv [u(y)]7 Vu(y)) dHN_l(y) < 72(337 A17 A17 V) +e.

QV SqulI



SECOND-ORDER STRUCTURED DEFORMATIONS: RELAXATION, INTEGRAL REPRESENTATION AND APPLICATIONS7

Let v = Aok o V(A1) and define w = u + v. Since w is admissible for vo(z, A2, As,v) we
have by (3.3), (H8) and (H5),
(e Aadar) < [ WS An Vol di+ [ e fw()va) MY )
Qv SwNQu
< [ WAL V) g+ [ e ful) ) a4 )
Qu 5.NQ.

4 / Us(z, [0(y)], v (y)) dHN " (y)
S,NQ.

N

72(%14171\1,1/)—&-6—1—/ Wo(z, s — Ay, v) dHY " 1(y)
{y€Q.y-v=0}

< 72($7A17A17V)+5+C‘A2_A1|7

so to prove the first inequality it suffices to let ¢ — 07 . The other inequality is obtained in a
similar fashion.

To prove iv), due to the result of iii) it suffices to show that (z,v) — v (z, A, A,v) is up-
per semicontinuous, for every A, A € RN, By a change of variables argument, choosing a
rotation R such that Rey = v, it is easy to see that

vo(z, A, A v) = inf {/ W (z, A, Vu(y)RT) dy
Q

u€ESBV (Q;RIXN)

+ /S T L) AR ) o = e (425
N

/ Vu(y)dy =0, Rey =v, R € SO(N)}.
Q
Let (zn,vn) — (z,v). Given € > 0, let u. € SBV(Q;R*¥) be such that uclog = Y(a,en)
/ Vue(y)dy =0 and
Q

(s A, A, v) — /Q W (2, A, Vue (y)RT) dy — / s (2, [ue ()], v (4)) dHY ()| < .

Su.NQ

(4.26)
e3 K. be a compact subset of 2 containing a neighborhood of = and choose § > 0 such that
and (H6) are satisfied uniformly in K, i.e.

vy e K ly—y'| <d=|W>(y,A, M) —-W>(y', A M)| <C|M|, (4.27)
for every (A, M) € RN x RIXNXN “and
vy € K ly—y'| <d= |y, A,v) — Us(y',A,v)| <eClA|, (4.28)

f%lafllg(gzl@f% gl‘ixf]v x SN=1 Ch oosing rotations R, such that R.ey =v,, R, — R, by (hun21f7Ki2
(h.ZS),( .3), , (Hb5) and (IZI 56) we have that

/Q W (x, A, Vue(y) RT) dy + / o (, [ue(y)], vu. () dHN " (y)

Su.NQ

~ [ W AV di= [ Wl )] v, ) 40
9 S..0Q

< / |[We(x, A, Vue(y)RT) — W (zp, A, Vug(y)RT)| dy
Q

4 / W™ (20, A, Ve (5) RT) — W (2, A, Vu(y)RT) | dy
Q
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T /S Ol

< [ ownEy+ [ VIR - BT dy+ [ Ol

8.NQ

<0 [ WS A Vu )R dy+C [ e o)) ) 1)

+IRT — RT| /Q W (2, A, Ve (y) R dy

< (eC+ |RE — R"|) (e + 72(z, A, A, v)) = O(e) + O(|RE — R™)).

Thus, by (&IR'.EZN%% and (&Iu'.eﬁfis ;,is

V2, A, A vn) < /W‘”(:va,Vue(y)Rf)der/ s (@, [ue(y)], vu. () dHN " (y)
Q Su.NQ

/ W (2, A, Vuo(y)RT) dy + / (@, [ue (9)], v (4)) dHY ()
@ u.NQ

+0() + O(|R;, — R
< 0(@e) +O(|RY — R™|) + ya(z, A, A\, v).
Therefore, letting ¢ — 07, and passing to the limit as n — +o0, since R, — R, we conclude
that
lim sup ya(zy, A, A, vp) < vo(x, A, A, v). O

n—-4oo

Remark 4.13. ~,(z, A, A,v) can be extended to Q x RN x R¥*N x RN as a positively homo-
geneous of degree one function in the fourth variable in the following way
012 (2, A A, ), if0 € RY\ {0}

AN 0) =
(@ ) {o, if 6 = 0.

i %g%@ S . . . AXN AXN N
By Proposition 4. 1s extension is upper semicontinuous in 2 x R x R x RY and
satisfies

Yo(x, A, A, 0) < C|A||0],¥(z, A, A, 0) € Q x RN 5 RN RN,

Thus there exists a non-increasing sequence of continuous functions 74" : Q x RY — [0, +00)
such that

Yo(x, A, A, 0) = infy5"(x,0) = lim 5" (x,0) < C|0],V(x,0) € @ x RY.

5. INTEGRAL REPRESENTATION OF [(g,G,T")

The proof of § 1ntegral representation of [ follows ng the lines of the proofs in h2]
(for I) and in hT(for 1), together with arguments in Wn order to deal with the explicit
dependence on the position variable x. In what follows, we mostly restrict our attention to the
integral representation of I; since that of I can be derived in a similar manner.

5.1. Integral representation of I;(g,G,T"). In this section we will prove the following re-
sult.

Theorem 5.1. For all (g,G,T') € SD?(Q;R?), under hypotheses (H1)-(H8), we have that

11(97G7F):/QVVl(%G(I)—Vg(I))dSCJr/Sm%(% [9(2)], vy () dHN T (2).
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5.1.1. The lower bound inequality. We begin by obtaining a lower bound for I;(g,G,T).
Proposition 5.2. For all (g,G,T') € SD?(Q;R?), under hypotheses (H1) - (H8), we have that

L(g,G.T) > /Q Wi (, G(z) — Vg(z)) di + / (e lo(e). vy ) R ),

Sy

Proof. Let {u,} C SBV?(Q2;R?) be an admissible sequence for I,(g,G,T") such that

lim Uy (2, [un)(2), v, (2) dHY 71 () < +oo.

n——+oo Sun nQ

For each Borel set B C ) define the sequence of Radon measures {;,} by

jn(B) = /S @ (@), @) a1 ),

By the choice of u,, the sequence {u,} is bounded so there exists p € M™(Q) such that, up

to a subsequence (not relabeled), 11, — u in the sense of measures. By the Radon-Nikodym

theorem we may decompose p as the sum of three mutually singular non-negative measures
= pal™ 4 pHN TSy + g

Using the blow-up method it suffices to show that, for £V a.e. 7o € Q,

du
/,La(x()) dLN( ) 2 Wl (370, G(mo) - Vg(xo))7 (5'1) mua
and, for HV-1 a.e. 29 € S, NQ,
dp :
pj (o) = T[S, (zo) = 711(wo, [9(z0)], vg(z0))- (56.2) |muj

Assuming (%Tuf’) and (ELE) hold, we then obtain
lim Uy (2, [un)(x), v, () dHY 71 ()

n—-+oo S NN

>/Qﬂa(x)dz+/smuj(z) dHN " (x)

Wi (z, G(z) — Vg(x)) do + / 1 (z, [9(2)], vy(2)) dHY " (),

Q 5,n0

and the result follows by taking the infimum over all sequences {u,} satisfying the above
properties. d

The remainder of this section will be devoted to the proofs of inequalities G.1) and (El.li).
Proposition 5.3. For LV a.e. o € ) the following inequality holds,

O (w0) > Wi (o, Glao) ~ V(o).

Proof. Let z( € €2 be a point of approximate differentiability of ¢ and of approximate continu-
dc—ﬂN(xo) exists and is finite. Let {J;} be a sequence
of positive real numbers such that 6, — 07 and p(0Q(x¢,dx)) = 0. Therefore,

ngrfoc pn(Q(o, 61)) = p(Q(z0, 1)),

ity of G. Moreover, xq is chosen so that

and so
dp -~ (Q(zo, ))
acy o) = kEToo N (Q 0. 50))

—tm o [ s B @, () 4 ) 5.3)
n wp M $07k

= / U1 (20 + Sy, [un (2o + 0ky)], v, (To + 6ky)) dHN ~(y).
kon O QM {y: x0+0kYESu,, }
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For y € @ define

un (o + 0ry) — g(x0)
Op

Notice that, as x is a point of approximate differentiability of ¢ and of approximate continuity
of G,

Un i (y) == and vy (y) := Vg(xo)y.

Lt Lt
Unk —> vo and Vug, — G(xo). (5.4)
k,n—+o0 k,n—+o0

Then, by (H7), (H6) and for %k large enough, we have

du . N—
m(iﬂo) :1;1}11 ans., | Uy (20 4 0kY, [Un k()] Vo, (1) dHY " (y)
> llim Uy (2o, [Un,k(y)]> Yy, ke (v)) dHN_l(y) - EClevn,kKQ) (5.5)
g Qmsvn.k
2 llim \Ijl(an [Un,k(y)}, an,k (y)) d,HNil(y) + 0(6)7
n QNSy,,

i £b
where we have also used (H5) and (%1?31). %Ve must now modify {v,, ;} in order to obtain a new
sequence which is zero on the boundary of ) and whose gradient equals G(z¢) — Vg(zo). For

1
y € Q, define wy, k(y) := vy k(y) — vo(y). Since wy, i L, 0, we may choose r,, ;, €]0,1[ such
,m—+00

that r,, — 1and
k,n—+o0

lim |wn i ()| dHY " (y) = 0.
k’” 8@(0,7’”7;@)

By Theorem %4, let p,.1 € SBV(Q;R?) be such that Vp, 1 (y) = G(z0) — Vv, k(y),
1D? o,k [ (Q(0, 70 1)) < CIG(20) — VU k|
and define z,  := wy i + pni for y € Q(0,r, ;). Notice that Vz, r(y) = G(z¢) — Vg(zo). Also,

convLl

1
by (6.4), Vpn. i i L—J>r 0, s0 [|D?py i||(Q(0,7,%)) — 0. Thus, by the continuity of the trace
,n——+00

L',

operator with respect to the intermediate topology it follows that
lim |pn g (y)| AHY T (y) = 0.
ko JaQ(0.rm. k)

jas-1
We now apply Lemma bm%tll?lsorﬁrglqato obtain a sequence {1, 1} C SBV(Q\ Q(0,7,x);R?) such

that Vi, x(y) = G(z0) — Vg(xo), for LY ae. y € Q\ Q(0,7n.k), Mk = 0 on I(Q \ Q0,7 %))
and || D*ny, k]| (@ \ Q(0,7%)) < C|Q\ Q(0, 7y %)|. Then the sequence

3 k(y) — Zn,k(y)v lfy € Q(Ovrnyk)
’ k), ifyeQ\QO k)
is admissible for Wy (z, G(z¢) — Vg(zo)) and satisfies, by (H5) and (HS8),

/ W (20, s (), v5, (1)) dHY ()
QNSz,

N

< / U1 (0, [ ()], v, (1)) dHY 1 (1)
Q(O,Tn,k)ﬁswn

K

+ / U, (20, [ ()]s v () AHY (1)
Q(Oan,k)mSPnyk

+C 2n (W) dHY " (y) + C |,k ()] AHY ()
6Q(Ovrn,k) [Q\Q(O;Tn,k)]ms’ﬁn,k
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< / W (20, [0k ()] 70, o (1)) AHY 1 (1)
Qns

Vn,k
e / on i@ AHY 1 (y) + C i (5)] dHY ()
Q(Ofrn,k)mspn_’k aQ(O,’r‘n,k)
+C |Pn,k~(3/)| d,HNil(y) +C Hnnk(y)” d,HNil(y)'
BQ(Oarn,k) [Q\Q(O‘rr’"qk))]msnnyk

Since the 1 st four integrals in the above expression converge to zero as k,n — +oo we con-
clude from (5.5) that

d o - _
apwtm) > i [ ()] v ) 4K )+ 06)

> Wi(zo,G(z0) — Vg(x0)) + O(e)

Znk

so to conclude the result it suffices to let ¢ — 0. O

We proceed with the proof of (E%).

lowerinterfacial| Proposition 5.4. For HY ! a.e. 79 € S, N we have that

M(ﬂ«”o) = 71(20, [9(20)], V4 (0)).

Proof. Let zy € S, be such that (x0) exists and is finite, denote by v := v,(z() and

dp
dHN-1[S,
assume the point z( also satisfies

HN_l(Sg N QV(IE(), 5))

,;li%ﬂ SN-1 =1, (5.6) |x01
and
1
lim 7/ G(z)|dx = 0. (5.7 |x02
§—0t (5N71 Q. (z0,6) | ( )|

We point out that these conditions hold for HV~! a.e. x5 € S,. Let {6} be a sequence of
positive real numbers such that J, — 07 and u(9Q, (x¢,dx)) = 0. Therefore,

lim  p,(Qu (w0, 01)) = u(Qu (o, dr))

n——+oo
and so, by (%%), (H6) and for k large enough, we have
du . 1
s -]
dHN,I LSg (.1'0) klrgll HN,1(59 m Qy(xo, 5k>) MH(QV(J’b) 616))
1
= lim / Uy (z, [un ()], v, () dHY 1 (x
kn HN=L(S, N Qy(xo, k) S, NQu (x0,01) 1@ lun (@), 7, (@) @)
5N—1
. k
=lim ———
k.n H (Sq QQV(.ﬁo,(sk))
| W1 (20 + 0y, [ (20 + k1), v, (@0 + 01y)) AHY (1)
Qum{y:mO"F‘skyeSun}
2 lim Uy (20, [un (0 + 6kY)], va, (20 + 0ky)) dHN ' (y) — O(e)
k,n QuN{y:x0+6KYESu,, }
> lim Uy (o, [Wn,k (V)] Ve, i (¥)) dHN 1 (y) — O(e), (5.8)

ki JQunSu, .
where, for y € Q,,, we define

Wk (Y) 1= un(z0 + 1Y) — g~ (T0).
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02
By definition of ¢~ (z0), g (z0), by (%77), and since u,, — g in L'(;RY), and Vu, — G in
LY (;R¥N) | one has

Lt L' ,
Wh ks k,n:)-oory([g(mo)]’y) and Vwg,p k,nji—ooO. (5.9) |convLlbis

We must now modify {w,} in order to obtain a new sequence which is equal to v((4(z,)},,) On
the boundary of @, and whose gradient is zero a.e. in @, . For y € ), , define

Un,k(y) = wn,k(y) ~ Y(g(z0)],v) (y)

. Lt
Since v, — 0, we may choose r, ; €]0,1[ such that r,,;,, — 1 and
’ k,n—~+o0 k,n—~+o0

lim o, ()| dHY " (y) = 0.
k’” aQV (Ovrn,k‘)

By Theorem %4, let p, x € SBV(Q,;R?) be such that Vp, 1 (y) = —Vw, x(y),
D% o ke [ (Qu (0, 731)) < Cl[Vwy k|| 1
and define z,  := wy i + pni for y € Q, (0,7, ). Notice that Vz, x(y) =0 in Q, (0,7, k). Also,

convLlbis
bY( J)y VPnk A

operator with respect to the intermediate topology it follows that

1
L—J>r 0, 50 || D?pp k||(Q,(0,7,.%)) — 0. Thus, by the continuity of the trace
,n—-+00

lim |pnse(y)| dHN 1 (y) = 0.
kin JaQ, (0,rn k)

Then the sequence

ZTL,k(y)’ lfy S Qu(07 Tn,k)
2n,k(y) = )
Y(lg(z0)],v) (y)v lfy €Qu \ QV(O, 7“n,k)

is admissible for 7, (z¢, [g(20)], ¥) and satisfies, by (H5) and (HS),

/ \111(560, [2,L7k(y)], Vi (y)) d/HNil(y)

QVﬂSsn,k

< / Uy (20, [wnk(Y)], Vs, () AHY " ()
Qu(ovT'n,’v)mSwn,k

+/ U1 (20, [pn k(W) Vp,, . (1) AHY " (y)
Q(O,rn,k)ﬂS

Pnk

+C ‘Zn,k(y) ~ Y([g(z0)],v) (y)| dHN_l(y)
BQV(Oan,k)

+C g (o)l dH™ " (y)
[@AQu (07 )INSs (g a0

< / U (20, (W ()], v, () dHY 1 (1)
QuNSu, ,

Qu(0:rn,k)NSp, 0Q(0,7n k)
+C ok ()] dHY ' (y)

Q0,75 1)
+C g (o)l dHN " (y).

[QU\QU(Ovrn.k)]ns"r([g(wo)],y)
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Since the 1 st four integrals in the above expression converge to zero as k,n — +oo we con-
clude from (5.8) that

W (20) > liminf /Q Wl ) v, () HY ) + 000

dHN71 LSg k,n -
= 71(x07[g($0)]’y) +O(5)
so to conclude the result it suffices to let ¢ — 0. O

5.1.2. The upper bound inequality. We now prove the upper bound inequalities for both the
bulk and interfacial terms.

Proposition 5.5. For LV a.e. =o€ Q we have that

dl(g,G,T
%(Io) < Wi(zo, G(wo) — Vg(20)).
Proof. Let x4 be a point of approximate continuity for G and Vg, that is,
1
lim — |G(x) — G(z0)| + |Vg(z) — Vg(z0)|dz = 0. (5.10)

6=0% 0N J o (2o.5)

Given € > 0 let u € SBVZ(;R?) be such that u|sg = 0, Vu(z) = G(x¢) — Vg(zo) for a.e. z € Q
and

/Qms W1 (zo, [u(y)], vu(y)) dy < Wi(zo, G(20) — Vg(20)) + €. (5.11)

Extend u by periodicity to all of RV and for n € N and § > 0 define
Un s (2) = éu (M) )

n
For each 6 > 0, by Theorem %4, let vs € SBV(Q(xg,6); R4*Y) be such that
Vs =I'(z) — VG(z), (5.12)
for LN a.e. v € Q(x0,9), and
1Dus|(@(a0, 8)) < C(N) /Q @) - V6w

t
By Lemma Eﬁmlet Vs ¢+ Q(w0,0) — R¥N be a sequence of piecewise constant functions such
that

ves L —ug, (5.13)
k— 400

and
im [ Do [(Q(0,8) = [1Dos (@0, 8)).
Applying once more Theorem %4, let pis € SBV?(Q(x0,6); R?) be such that
Vors(z) = G(z) — G(xo) + Vg(xo) — Vg(z) + vs(x) + vi 5(2), (5.14)
for £V a.e. v € Q(w0,0), and

| Dor.sl(@(x0,8)) < C(N) /Q 6@ = Glao) +[Vgl) = Vgteo) + o) +via(e)] di. (6.15

By (%), for each § > 0 we can choose k = k(d) large enough so that
/ lvs(x) + vg s ()| de < SN T
Q(z0,9)

in3
Thus, defining ps == ps(s, by (5-10) and (B-I53t follows that

1Dl Qa8 516
550+ oN

701

702
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t
Again by Lemma bc.Ba, let p, s be a sequence of piecewise constant functions such that, for all

6>0,
~ —ps and [ Dpusl(Q0.9))  — [ Dpsll(@Q(zo, ). (5.17) [tv2

n——+00

Now define, for x € Q(z¢,0),

Pn,é

Wn,5(2) = g(x) + Un,5(x) + p5(x) + pns(2)-

C e . Lt .
By periodicity, w, s — g since,
7 n—+oo

n n—-+oo

5N+1
/ ()] dz = / )l dy —s 0.
Q(z0,9) Q

Notice also that V?w, s = I, and it is easy to verify that Vw,, s - G in LY(Q(xo,6); RY).
n—-+0oo
Thus the sequence w, s is admissible for I;(g,G,T', Q(xo,d)) and so, by (H8), we have

dIl(vavr) _ Il(vavraQ(x()a(;))
gy wo) = lim 5N
o 1 N—1
S 61—1}(1)1‘*'1@12141-25 |f$N /Sw sNQ(x0,9) \Ill(x’ [wnﬁé(x)Lan’é(m))dH (x)‘|
e e 1 _
< liminflimint [N Lo L) )
1 51 /n(r— o) n(x — zo) ) N1
+ = \I/<9c,u Wy ———=) ) dH x
5N {104_%5“}0@(3%751) Tl[ ( (S ):| ( 5 ) ( )
1 _
+ o W (2, [ps )] vy (2) A (2)
Sps NQ(w0,8)
1 _
+ o W1 (2, [ 5(0)] Vo s () AHY 1@)].
S0, 5NQ0,0)
d||D*g||

Since

ILN (zp) = 0, by (H5) we conclude that
1 N1 1
SN Ui (z, [g(z)] vg(2)) dH™ () <
SgNQ(x0,9)

N SgNQ(wo,0)
1D°9][(Q(zo, )

LV (Qe0,0) a0
Moreover, once again hypothesis (H5), together with (% ?It6va) and (%), also yields

1

. N—-1 _
Jm /SWM i (2, [ps(2)], vy, () dHN () = 0,

Cllg(a)]| dHY " ()

< C

and

§—0+ n—+o0

1
lim lim —N/ U (, [pn,s(2)],vp, () dHN " (z) = 0.
0N Js,. nQo.)

02
Finally, changing variables, using the periodicity of u, (H7) and (%TII), we obtain

(%N s 50100 U, (;z:, % {u(n(x g o) )} » (n(:c g ) )> dHN " (2)

= [ (o Sl ) a0

n
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= Uy (w0, [u(y)], vuly)) dHN " (y)
1(Zo, (U\Y) ], VulY Yy
QNS,

+ \/Qﬂsu \:[11 ("L'O + %% [u(y)]7 Vu(y)) - \IJI(:EO, [u(y)}7 l/u(y)) dHN_l(y)
< Wi(ao, Glwo) = V(o)) +¢
+ /Qmsu Uy (:L’o + gy, [u(y)], z/u(y)> — Uy (w0, [u(y)], vu(y)) dHNﬂ(y)7

where, by (H6) and for ¢ small enough,
5
[ ow (a: oy ) uu<y>> 0 (0, )]s v (9)) AV ()
QNS n

<eC [u(y)]] a1 (y) < C|IDull(Q).
QNS,

Thus the result follows by letting ¢ — 0. O
Proposition 5.6. For HV~! a.e. g € S, we have that
dl (gv Ga F)
dHN-1[S,
. ) L BMT | i ub
Proof. Following an argument of Ambrosio, Mortola and Tortorelli FST, it suffices to prove (%Tr8)

when g = A\ 5 where A € R? and X  is the characteristic function of a set of finite perimeter
E. We start by addressing the case where E is a polyhedral set. Let zy € S; be such that

1
Jim /Q Ja@ldr=o (5.19)

where we are denoting by v := v,(z¢), and [g(zo)] = A. By definition of ~;(zo, A, v), given
e >0, consider u € SBV?(Q,;R?) such that usg, (¥) = y(r.)(z), Vu=0 a.e. in Q,, and

/ Wy (o, [u()] va(y)) dHY ' (y) < (w0, A v) + e (5.20)

v

(o) < 71(xo, [9(z0)], vg(x0)). (5.18) |iub

For § > 0 small enough, and n € N, define

D} (w,8) = Q,,(xo,é)m{xzm_?)'”<21n}7

QF (20,6) = Qu(x0,0)N {x : W > 0}7

Q@) = Qulandyn{o: =51 <ol

and let
A z € QF (x9,6) \ D¥(xg,0),
Up,5(x) = qu (@) x € DI (xo,0), (5.21)
0 x € Q) (x0,0) \ DI}(zo,9),

where u has been extended by @ -periodicity to all of RV . Notice that, by periodicity of u,

Jm luns =30 2@ (eo.0)ma) = 0,

where () . (v ) (T — 20).
By Theorem b4 let vs € SBV(Q,(0,6); R¥¥N) be such that

Vous =T(z) — VG(2), (5.22)

for LY a.e. v € Q,(x0,0), and

| Dvs|[(Q(z0,6)) < O(N)/ IT(z) — VG(x)| da.

Qu(z0,0)
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t
By Lemma bc.3a, let v, 5 € SBV(Q(w0,0); R*N) be a sequence of piecewise constant functions
such that

1

Un,s n:)oo —Us, (523)

and
Jim | Dun sl (Qu (20, 6)) = [[Dvsl[(Q(z0, 8))-
Applying again Theorem %4, let p,.s € SBV2(Q,(70,6); R?) be such that
Vons(x) = G(x) + vs(x) + vp6(x), (5.24)

for LN ae. x € Q,(v,6), and

1Dpns1(Qu(x0,6)) < C(N) /Q L G@ @) + (@) (5.25)

convl
Notice that V?p,, s(z) = I'(z). By (%.23), for each ¢ we can choose n(d) such that
/ [vs () + Vp(5),6(2)| do < oN.
Quv(20,0)

Tusin5 0
Then, writing for simplicity p; instead of p,,(;),5, by (%1'42351? and (%.KIOSX) we have that

i 1D251(Qu(20,8)

§—0t oN-1

=0. (5.26)

t
By Lemma E.Sa, let p,s € SBV(Q.(z0,9);R?) be a sequence of piecewise constant functions
such that, for all 6 > 0,

1

Pn.s n%} —ps and nEIJIrloo ||Dﬁn,5||(Qu(170,5)) = ||Dp5||(Ql,(LIJ0,§)). (5.27)

—+oo

Now, for =z € Q,(x0,0), define the sequence
wmts(x) = “n,5($> + ps () + ﬁnﬁ(x)'
We point out that

Jim wns = Foum e @y oyra = M flwns = gllri@, o.6)re) = 0,

that

nBToo van,é - GHLl(Qu(xo,ﬁ);]RdXN) =0,

and that V2w, s = I', hence the sequence w,, 5 is admissible for I; (g, G, T, Q,(z¢,9)). Therefore
we have, by (H8) and (H5),

dll(ganl—‘) . ]1(9,0,1—‘,@,/(550,6))
P S A — 1
av-1)s, 0 = N1
S 1 N_1
< im, lim inf or— /Sw 51Qu(20,8) H1( [n @) Y (2) GHT)

< lim sup lim sup U (2, [un,s(x)], V(un,é)(x)) d’HN_l(a:)

i
50+ n—rtoo 0 S, sNQu(20,8)

+ lim sup lim sup Uy (2, [p5(2) + Pn.s(€)], Vps 45, 5 (x)) dHY ()

iy
§—0t n—+oo 4 Sp5+/3n’5ﬂQu(10;5)

< lim sup lim sup 51\/71—1/ 7, (x’ {u(n(x ; xo))} , Vu(n(x g xo))) dHN ) (2)
{ )

§—0+ n—+oo a::in(zgzo) €S }ND7(x0,6

+ lim sup lim sup Cllps(z) + pns(@)]| dHN ().

Y
550+ n—+oo 0 Sps+an sNQ@0,0)

convl
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1 3
By (%?Zt(%va) ‘and (%%727) the integral in the last line vanishes in the limit, while by changing
variables setting y := "("”%

) we obtain by (H6), for § small enough,
) ) 1 n(x — ) n(x — xg) ) N_1
lim sup lim su 7/ v (x, u| ———= )|, vy | ————= ) | dH T
5_>0+p n—>+o£) oN-1 {I:MGSM}QD;}@O;) [ ( 4 ):| ( ) ) ( )

1 §
S limsup lim sup —— / ¥y (l‘o +—y, [u(y)), vu(y)> dH " (y)
Sun{yenQ.:ly-v|<5} n

§—0+ m—+oo N

§—0+ n—+4oo N

4 / eC|[u(y))| d'HN%y)]
Sun{yenQ,:ly-v|<i}

— [ w @l @) )+ [l )
S.NQ, 5,00,

. . 1 _
ghmsuphmsupN_l[/S oy, T )L @) K )
w{yeEnQ,:|ly-v|<5

< 7(wo, A, v) 4+ O(e),

o
where we have used the periodicity of © and (%c.Qo(l)c). “The conclusion follows by the arbitrariness
of ¢.

We now assume that ¢ = A\ 5 where E is an arbitrary set of finite perimeter. Let z( € S,
be such that

1

61_i)r(r)1+ SN1 /Q ) |G(z)|dz =0, (5.28) |propx0bis
v(Zo,

JdoL3. 1
where we are denoting by v := v,(z). By Theorem B? , (TS » be a sequence of polyhedral
sets such that ET Perq(E,) = Perq(E), LN(E,) = LN(E) and X5 — X in L'(Q), as

n — +oo. Let g, = AXy , then BT gn = g in LY(Q;RY). Hence, given U € O(Q) by
1 Wl n—r00
Propositions ﬁ and E.ISO, we have

ILi(g,G,T,U) < liminfI1(g,,G,T,U)

n—-+oo

< liminf
n——+oo

/W1($,G($))dfc+/ (@, [gn(@)], vy, (x)) dHY " (2)
U UnS,,

< C'/U|G(x)\dx—|—limsup/UmS 1 (z, [gn(x)],l/gn(x))d’HN_l(a:). (5.29)

n—-+oo
an

1
Recall that by Remark %ere exists a non-increasing sequence of continuous functions
s Q x RY — [0, +00) such that

y1(x, A, 0) = inf 4" (x,0) = lim ™ (x,0) < C|6],V(z,0) € Q x RV,

Beshetnyak 1sciny
Thus, by Theorem .es,f follows from (5.29) that

L(g,G,T,U) < C/ |G(x)|dx—|—limsup/ Y (v, (2)) dHY 7Y ()
U UNS,,,

n—-+o0o

< C/U|G(x)|dm+/m A vy (2)) dHY " ().

g

Letting m — 400 and using the monotone convergence theorem we conclude that

Ii(g9,G,T,U) gC’/U\G(:c)\dJC—F/UOS 71(17,1/g(x))d7{N71(x).
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Obi 1
Using (%.rZngi and Proposition ﬁ.rgo wgmmﬁ?lally obtain

dl (gv Ga F) _ . 1
m(l’o) = 61_1361 51\,7,1]1(97 G,T,Q.(x0,9))
. 1 N-1
< -
< mor [ wmsE)a
< m(@o, [9(z0)], ve(20)) + O(e),
and the result follows by letting ¢ — 0T O

5.2. Integral representation of I,.

Theorem 5.7. Under hypotheses (H1)-(H8) we have

I,(G,T) = / Wy(z, G(x), VG(x),T'(2)) dz + / Yo(x, G(z), [G(x)], va () dHN ~1(z).
Q S5aNQ
Proof. The proof of the above integral representation for I, is similar to that of I; so we will
only outline the proof.
In order to obtain a lower bound for the bulk term we start by fixing a point xy, which is
chosen to be a point of approximate differentiability of G and of approximate continuity of T.
Starting from a sequence v,, for which

Jim [ /Q Wz, G(x), Von(z)) dz + /S Us (a2, [on (2)], v, (2)) dHY 1 (2)| < 400 (5.30)

N

we construct a new sequence u, ; so that
dI>(G,T)
“acy ()

> lim [/Q W(zo, G(20), Vun,i(2)) dz +/ U (20, [tn i (2)]; v, (€)) dHN 7! ()

+0(e),
k. S“'n,an

where we use hypotheses (H2) and (H6) to fix zy and G(z(). We further modify w,, ;, in order to
obtain a sequence z, ; which is admissible for Wa(xo, G(x¢), VG(20),T'(z0)). This is achieved
by setting z, x(z) equal to VG(zo) - = near the boundary of @ and equal to u, (z) + Cp 1 - =
in a smaller cube of the form Q(0,r, ), where C,, ;. is chosen so that

/szn,k(ﬂf) dx =T (xg).

Hypotheses (H2) and (H5) and a careful selection of the side-length of the smaller cube r, j
guarantee that the energy does not increase when u,, ; is replaced by z, 1, so the result follows
by letting € — 07T

Regarding the lower bound for the interfacial term we fix a point xq, which is chosen to be
a point of approximate continuity of G, and such that

HN=L(Se N Qy (70, 6))

51—1>%1+ N1 =1
and

lim 7/ ['(z)|dx =0,

50+ ON—1 Q. (20,8) ‘ (

where v := vg(x¢). Starting from the sequence v,, in (%%130), the properties of zg, together
with hypotheses (H2) and (H6), yield a new sequence w,, ;, satisfying
dl>(G,T)
dHN_l I_SG (1'0)

> lim
k.n

/ W (a0, (o), Vit i (2)) di + / s (0, [ (@)], v, o () AHN 1) |+ O(e).
Q. Suny  NQu
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in this step hypothesis (H4) comes into play. As above, w, j is further modified in order to
obtain a sequence z, ; which is admissible for v2(x, G(z0), [G(x0)], ¥a(x0)). This is achieved
by setting z, 1(z) equal to v(c(a)],,) Near the boundary of @, and equal to w,, 1(z) + Cp i -
in a smaller cube of the form Q(0,r, ), where C,, ; is chosen so that

Viznk(z)dr = 0.
Qv
Due to hypotheses (H2) and (H5), the replacement of w, ; by z,; does not translate into an
increase in energy, so the result follows by letting ¢ — 0*.

For the upper bound for the bulk term we fix a point z, of approximate continuity of both
G and T and, for ¢ > 0, we let v € SBV(Q;R¥¥) be such that v(z) = VG(2¢) - z on 9Q,

/ Vou(z)dz =T(zy) and
Q

/ W (zo, G(xo), Vo(z)) de + / Us(z0, [v(2)], v (z)) dHY " (2)
Q 5,1Q

< WQ(.’E(MG(xo),VG(iro),P(xo))+€. (5.31)

Al t
Extending v by periodicity to all of R" and using Theorem b4 and Lemma bc.3a we construct a
sequence wy, s so that

AL, (G, T
BT ()

< lim sup lim sup LN l/ W(z,G(x), Vwy, s(x)) dz
Q(o,0)

6—0t n—+oo d

+/ \P2(1'7 [wna‘s(x)]7l/wm5(x))dHNfl(l-)
Q(x0,0)NSyw

</W(xo,G(m0),Vv(:v))dx+/ Uy (o, [v(2)], vy(2)) dHN 71 (z) + O(e),
Q S,NQ

Whe\ye we use hypotheses (H2) and (H6) to fix 29 and G(zy), and periodicity arguments. Hence,
by (bS 1) and given the arbitrariness of ¢, we conclude the desired inequality.
As in the case of I, the upper bound for the interfacial term of I is proved in two steps,

first for G = AX y, where E is a polyglelc!ir%]3 set, and t&(;n en alizec} to an arbitrary set of 5
finite perimet r F, tb aq{sing Theorem b.a2, OF’rdpositions .SC, EIO}I}', ;&?Im3m? as well as Remark %?Iména
and Theorem % I.
To prove the first step, fix a point 2y such that
. 1
Jm g [ R@I 6@+ 9G] =

where v := vg(z). Given € > 0, we let v € SBV(Q,;R™") be such that v(z) = v(5,) on
0Q,, Vu(z)dz =0 and

Qu
W (o, G(xo), Vu(zx)) dx + / Uy (zo, [v(z)], vo(z)) dHN 71 (z)
QV S‘UOQV

< 72(z0, G(mo), A, v) + €. (5.32)

Extending v by periodicity to all of R”, and using the usual combination of Theorem %.14 and

Lemma 2.3, we construct a sequence w, s so that

dl>(G,T)
dHN_l \_SG (‘TO)

1
< lim sup lim sup SN-T [/ W(z,G(z), Vwy 5(z)) dz
Qv (%0,9)

§—0+ n—+4oo
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+/Q Vo (2, [wn,5(2)], Vw, s () dH )

o (@0,8)" S, 5

< [ W(xo,G(20), Vo(z)) do + / Uy (20, [v(@)], vo(2)) dHN ! (2) 4+ OCe),
Qv SuNQy

where we use hypotheses (H2) and (H6) to fix =y and G(z¢), (H4) to pass from VVVbEcS) Wee  and

periodicity arguments. Thus, letting ¢ — 07, the desired inequality follows by (15*.32). O

6. EXAMPLE AND APPLICATIONS

6.1. An example. We provide an example in which the initial energy depends only on jumps
in gradients through a specific initial interfacial energy ¥, and in which an explici fgrmula
for the bulk relaxed energy density emerges. Consider the initial energy E in (3.1) with
W =0,¥; =0 and, for « € R" a fixed unit vector,

\IJQ(JU, J, I/) = |l/ : Ja| s (6.1) |example ir

forallz € Q, J € méVanN,andyeSN‘l. s 1
From Theorem 3.2, and in view of Remark &3.1(4.), we have that W; = 0, and we have the
following cell formula for the bulk part W; + Wy = W5 of the relaxed energy in this setting:

for almost every © € Q, A ¢ RV*N [ M ¢ RVXNxN

_ : ) N-1/, .
Walr A LA = )l )

(6.2) cell formt

uloo(y) = Ly, /Q Vu(y) dy M}.

Consequently, W, does not depend upon =z and A, and we omit these variables. It is helpful in
what follows to use the fact that each element M € RV*V*N can be identified with a bilinear
mapping from RY into RY

RY xRN 5 (y,2) —> M(y,2) € RY (6.3) |bilinear -

where we have used the same symbol for the matrix and its associated bilinear mapping.
Specifically, we may put

N
My, z); = Z Mijryjze forally, z € RV,
Jok=1

We denote the set of bilinear mappings on RY with values in RY by Lin?(R"), and we note
that for each M € Lin?(R"Y) the mapping M(-,a) is a linear mapping on R with values in
RY,ie., M(-,a) € Lin(RY).
. f . .. . cell formu for W2
Our main result here is the following explicit formula for W, in (6.2): for a )
Lin?(RN)
Wo(L, M) = |tr(L(-,a) — M (-, a))] (6.4) |explicit f
where {r denotes the E&%ﬁ% Operation aor%oéi%RN ). In terms of the associated elements of
RNXNXN the formula (6.4) reads

N
WQ(L, M) = Z (L“J — Miij)aj . (6.5) component
ij=1

lexample initial_ energ

With reference to Theorem E.aZl,n when W = 0,¥; = 0, and ¥, is given by (6.1), we conclude
that, for all (¢,G,T") € SD?(2;R?), the bulk part of the relaxed energy I(g,G,T) is given by
the integral

Wa(VG(z),T(x))dLN (x) =
Q Q

tr((VG(z) — D(@))(-, )| dCN (2). (6.6) [formula
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This formula shows explicitly how the volume density of gradient disarrangements VG —
T’ determines the bulk relaxed energy associated with the purely interfacial initial energy

density
B(u) = / ow - [Vula] dHY . 6.7 [expiicit .
SVqu

It is worth noting that the initial energy density F(u) measures the non't?f%g%ﬁ’lté% Jart ﬂ<f
the jumps in the directional derivative (Vu)a, so that the integrand in (6.6) provides for
the second-order structured deformation (g, G,T') an optimal volume density that accounts for
non-tanggntig!{ chlyg in gr}r}gltaiitjf%(%tiﬁ?al derivative (Vu)a of approximating deformations u.

To verify (6.4), we use Theorem 2 of hgTand follow the strategy in the proof of Lemma 2
in that article. As in their proof, a simple argument based on the triangle inequality and the
Divergence Theorem for functions of bounded variation shows that |tr(L(-,a) — M(-,a))| is a
lower bound for W5(L, M). To show the opposite inequality, we first consider the case in which
the linear mapping L(-,a) — M(-,a) is in the set S C Lin(R") of linear mappings with N
distinct eigenval g§5each having non-zero real part and each with trace non-zero. According
to Theorem 1 in , S is dense in Lin(RY). Let R C Q be in the set A of all sets of finite
perimeter having non-zero volume and compactly contained in . We define up : Q — RV*Y
by

relaxed energ

)Lz ife € Q\R R
uR(ZL‘) = {|R|1 (M _ (1 _ \R|)L)x ifreR (6.8) definitior

and note that ug € SBV(Q, RN>N) its jump set S, is included in 0* R (the essential bound-
ary of R, see m, and

[ug](z) = |R|"" (L — M)z for HV '-a.e. z € OR.
These properties of ur and the arbitrariness of R imply that for all R € A

WL M) <RI [ (o) (2 = M)a)al ait™!a)

so that Wy(L, M) does not exceed the infimum of the right-hand sing\zlvfi)th respect to R € A.
Because L(-,a) — M(-,a) is in the set S we may apply Theorem 2 ofh 297 to conclude
Wa(L, M) < [tr(L(-, a) — M(:,a))|

. . . . lexplicit formula for W2
which implies the.z eq}é%lltycgkg.@o\g& n L q),— M -, a])VE S. N

In order to verify (6.4) for arbitrary L, M € Lin*(RY), we first note that for each 2 € RY we
may write z = (z-a)a+ z; where z; -a=0. Now put A = L — M and notice that, by the
linearity of A(y,-), there holds

A(y> Z) = A(y7 (Z : a’)a’ + zJ_)
= (2-a)A(y,a) + Ay, z1).

Since A(-,a) € Lin(RY) and S is dense in Lin(R"), we may choose a sequence n — A, € S
such that lim,, ., 4, = A(-,a). We set

and observe that A, € Lin?(RY) and for all y,z € RY

lim Ay (y,2) = (2-a)A(y,a) + Ay, z1) = Ay, 2)
n—oo
= (L—M)(y,2).
Putting M,, = L— A,,, we conclude that lim,, .. M,, = L —lim,_,, A, = M as well as
(L= M,)(y,a) = An(y,a)

= (a-a)Any+ Ay,ar) = Any,

so that (L — M,)(-,a) € S. (In the last step we have used the fact that a; = 0.) Therefore,
Wa(L, My) = |trdy|, and letting n — oo and using the continuity of W2(L,-) established in
Proposition EIE and of the trace operator we conclude that
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Wo(L, M) = lim Wa(L,M,) = lim |trA,| = ‘tr lim A,
n— o0 n—o0 n—oo
= |tr(L — M)(-,a)|

lexplicit formula for W2

and thereby complete the verification of (6.4).

6.2. Applications. For the case 2 C R? the relaxed energies, for first-order structured de-
formations (g,G) € SBV?(2,R?) x SBV(Q,R3*3) studied in [7] provide a means of capturing
the effect of both submacroscopically smooth changes and of submacroscopically non-smooth
geometrical changes (disarrangements) on the bulk energy stored in a e-dimensional body.
In particular, the bulk relaxed energy density (A, B) — W;(A— B) of [7] provides the portion

Lins(9,G) = /Q Wi (Vg(z) — G(a))dL? (x)

of the bulk part of the relaxed energy that arises from disarrangements. This interpretation
of I4s(g,G) is justified by considering a sequence {u,} in SBV?(Q,R3) with u, — ¢ and
Vu,, — G bothin L' and by writing

VgLl +lgl®vyH® = Dg=D lim u, = lim Du,

n—oo

= lim (Vu, £+ [un] @ v, H)

n—oQ

= GL*+ lim ([un] ® v, H?), (6.9)

showing that M £3 := (Vg— G) £3 is the absolutely continuous part of the limit of the singular
measures [u,] ® v,, H? that capture the submacroscopic disarrangements associated with
(9,G). Moreover, the energy density (A, L) — W5(A, L) of throvides the remaining portion

1(9.G) = [ Wa(Gla). VG(@)dL*(a)

of the bulk part of the relaxed energy, namely, the portion that arises without disarrange-
ments.

The availability in F’%%(or, alternatively, directly 0 the results of Hﬂ) of such refined
bulk energies provides connections to the research that attempts to broaden classical,
finite elasticity into the setting of first-order structured deformations through the field theory
"elasticity with disarrangements". (That theory requires the specification at the outset of a
bulk energy in the form [, ¥(G(z), Vg(z))dL?(x), so that, for applications of energy relaxation
to elasticity with disarrangements, the dependence of the bulk density W, on the third-order
tensor field VG in the formula for I (g, G) can be dropped;§ O]*;gaggilc}t% Oq‘j)th disarrangements

has been applied to the study of granular materials , 19, , with G representing
the smooth deformation of grains and with g representing the macroscopic deformation of the
aggregate of grains, and this broadened version of finite elasticity has provided a setting in
which no-tension materials with non-linear response in compression arise in a natural way.

While the scope of elasticity with disarrangements is broad enough to capture some en-
ergetic effects of disarrangements, its setting in the context of first-order structured defor-
mations precludes its capturing directly the effects of “gradient disarrangements”, i.e., of
jumps in the gradients of deformations that approximate geometrical changes at the smaller
length scale. The theory of second-order structured deformations (¢g,G,I") € SBV?(Q,R?) x
SBV (2, R3*3) x L}(Q, R3*3%3) guarantees the existence of a sequence n — u,, € SBV?(Q,R3)
such that u,, = ¢ and Vu,, — G in L! while V?u,, tends to I' weakly in the sense of measures.
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. . . |distributional derivative
Following the idea of the calculation (6.9) we have

V29 L+ Vgl ®@vy,H* = DVyg
= D(Vg-G)+ DG =DM + D lim Vu,
n—oo
= DM + lim DVu,

n—oo
= VMﬁg + [M] ® l/[I\/[] 7‘[2
+ lim (VZu, £+ [Vun] ® vou, #)
= (VM +TD)L° + [M] © v H®
+ lim ([Vun] @ vou, H?), (6.10)

which shows that V29— VM —T = V29— V(Vg—G)—T = VG —T is the absolutely continuous
part of the distributional limit as n — oo of the singular measures [Vu,,] ® vy., H?.

We conclude that each second-order structured deformation (g, G,I") provides the field VG—
I € LY(Q,R3*3%3) that serves as a volume density of gradient disarrangements. Moreover,
since the initial pair (¢,G) in the triple (¢9,G,T") is a first-order structured structured de-
formation, the field Vg — G € SBV(Q,R3*3) remains available as a volume density of dis-
arrangements. Consequently, the results in the present paper on relaxation in the context
of second-order structured deformations capture the influence both of disarrangements and
of gradient-disarrangements on relaxed energies and provide the starting point for broaden-
ing elasticity with disarrangements to the richer multiscale geometry of second-order struc-
tured deformations. Initial steps toward such a broadening have been taken [27] in the con-
text of second-order s%g&%t%ﬁ@ (}gg%rmations. A physical context of significance — phase-
transitions in metals [, 2, — provides a setting in which deformations can be approx-
imately piecewise homogeneous at small length scales. In this setting it is appropriate to
assume that there are approximating piecewise smooth deformations w, with the property
I' = lim,, ,o V?u, = 0. Second-order structured deformations of the form (g,G,0) are called
submacroscopically affine, and, for them, the gradient-disarrangement density VG —I" reduces
to VG, i.e., the "strain-gradient" quantity VG measures the volume density of jumps in gradi-
ents of approximating piecewise affine deformations. The results of the present paper provide
in particular an energetics of bodies undergoing submacroscopically affine structured defor-
mations and, looking ahead, will provide the constitutive input for the field theory “elasticity
with gradient disarrangements” applied to bodies undergoing deformations that are approxi-
mately piecewise homogeneous at small length scales.
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