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Abstract. We consider the functional

Ep,λ(R) :=
∫
R

distp(x, ∂R) dx+ λ

∫
∂R

κ2
∂R dH1

x∂R,

where p ≥ 1, λ > 0 are given parameters, R varies among compact, convex sets of R2 with Haus-
dorff dimension equal to 2, ∂R denotes the boundary of R, dist(x, ∂R) is the Hausdorff distance
between {x} and ∂R, and κ∂R denotes the (signed) curvature of ∂R. The term

∫
R

distp(x, ∂R) dx
quantifies the “average distance” of points (of R) to the boundary, and

∫
∂R
κ2
∂R dH1

x∂R is the in-
tegrated squared curvature. We make no a priori assumptions on the regularity of the boundary
∂R, hence even existence of minimizers is unclear. The aim of this paper is to prove existence
and C1,1 regularity of minimizers of Ep,λ.
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Classification. 49Q20, 49K10, 49Q10,

1. Introduction

The curvature of boundaries plays an important role in many biological models. For instance,
the elasticity of cell membranes is strongly correlated to its bending, and thus to its curvature.
One way to quantity the bending energy per unit area of closed lipid bilayers was proposed by
Helfrich in [9], and is now commonly referred to as “Helfrich energy”. A related notion, from
differential geometry, is the “Willmore energy”, which measures how much a surface differs from
the sphere. In 2D, the Willmore energy simplifies to the integrated squared curvature.

Easy access to the boundary is also relevant: many processes such as heat dissipation, waste
disposal and nutrient adsorption, are more efficient when the whole body has “easy access” to its
boundary. One way to quantify the “easiness” for points of a set R to access its boundary ∂R is
an energy term of the form ∫

R
distp(x, ∂R) dx. (1)

The functional (1) is formally similar to the average-distance functional

Σ 7−→
∫

Ω
distp(x,Σ) dx,

where Ω is a given domain, and the unknown Σ varies among compact, connected sets of Ω
with Hausdorff dimension equal to 1. The average distance functional is used in many modeling
applications, such as urban planning and optimal pricing. For a (non-exhaustive) list of references
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on the average distance problem we refer to the works by Buttazzo et al. [1, 2, 3, 4, 5, 6, 7, 8].
Also related are the papers by Paolini and Stepanov [13], Santambrogio and Tilli [14], Tilli [16],
Lemenant and Mainini [11], Slepčev [15], and the review paper by Lemenant [10]. . However,
a crucial difference is that the domain is given in the average-distance functional, while it is a
variable in the functional (1). This makes the proof of existence significantly more involved.

In this paper we consider the two-dimensional setting, with the main functional being

Ep,λ(R) :=
∫
R

distp(x, ∂R) dx+ λ

∫
∂R
κ2
∂R dH1

x∂R, (2)

where p ≥ 1, λ > 0 are given parameters, the argument R varies among compact, convex,
Hausdorff two-dimensional sets of R2, ∂R denotes the boundary of R, and

dist(x, ∂R) := inf
y∈∂R

|x− y|.

The choice to work with convex sets is due to technical reasons. The term∫
∂R
κ2
∂R dH1

x∂R (3)

is the integrated squared curvature. Since we made no a priori assumptions on the regularity of
the boundary ∂R, the integrand κ∂R may be a curvature measure (instead of a function). For
future reference we will define it as follows:

∫
∂R
κ2
∂R dH1

x∂R :=


∫
∂R

∣∣∣∣ dκ∂R
dH1
x∂R

∣∣∣∣2 dH1
x∂R if κ∂R � H1

x∂R,

+∞ if κ∂R 6� H1
x∂R.

(4)

Here the notation dκ∂R
dH1

x∂R
denotes the Radon-Nikodym derivative.

The choice to define it as +∞ when κ∂R 6� H1
x∂R is due to the following argument: if κ∂R 6�

H1
x∂R, then by definition there exists a set Q ⊆ ∂R such that H1(Q) = 0 but |κ∂R(Q)| =∫
Q |κ∂R| dH1

x∂R > 0. LetQn be a monotonically decreasing (with respect to set inclusion) sequence
of sets converging to Q, that is

Q1 ⊇ Q2 ⊇ · · · ⊇ Qn ⊇ · · · ⊇
+∞⋂
k=1

Qk = Q.

Then it follows
H1(Qn)↘ 0, |κ∂R(Qn)| ↘ |κ∂R(Q)|,

and, by the monotone convergence theorem,∫
Q
|κ∂R|2 dH1

x∂R = lim
n→+∞

∫
Qn
|κ∂R|2 dH1

x∂R ≥ lim
n→+∞

|κ∂R(Qn)|2

H1(Qn) = +∞.

Clearly, the functional Ep,λ is invariant under rigid movements. Further details about the space
of convex sets, and its topology, will be discussed in Section 2. The main result is:
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Theorem 1.1. Given p ≥ 1, λ > 0, any minimizer R of Ep,λ is C1,1-regular with Lipschitz
constant at most

Y = Y (p, λ) := 2(2λ−1p(Dp,λ + 1)p−1πD2
p,λ +Kp,λ),

where

Dp,λ :=
(
24 · 2p+2(p+ 1)(p+ 2)(1 + πλ)2λ−1) 1

p+1 , (5)

Kp,λ :=
(

π/
√

2
λ−1 + 2π + 2

)
(λ−1 + 2π) +

(
π2

(λ−1 + 2π)2 + 2
√

2(π + 1)
λ−1 + 2π

)√
πD2

p,λ(λ−1 + 2π), (6)

are geometric constants independent of R. That is, the boundary ∂R admits a C1,1-regular,
arc-length parameterization γ : [0,H1(∂R)] −→ R2 such that

|γ′(t1)− γ′(t0)| ≤ Y |t1 − t0|

for any t0, t1.

There are essentially two main difficulties in our analysis:
(1) the space of compact, convex sets of R2 with Hausdorff dimension equal to 2 (i.e., the

space X defined in (7) below) is not closed with respect to the symmetric difference
distance (i.e., the distance d defined in (8) below). Thus even existence of minimizers is
unclear.

(2) Since we made no assumption on the regularity of admissible minimizers R, we need first
to prove that all potential minimizers have an uniform bound on the integrated squared
curvature. Moreover, since the proof of Theorem 1.1 is done by comparing the minimizer
with suitable competitors, care is required in constructing such competitors to achieve
non-trivial estimates.

Issue (1) is overcome via estimates (both from above and below) on the diameter (Lemmas 2.1
and 2.3) and area (Lemma 2.2) of minimizing sequences. Issue (2) is overcome by carefully
constructing competitors (for the actual construction, we refer to the proof of Theorem 1.1 in
Section 3) while preserving the regularity.

2. Preliminary results

Since we are mainly considering compact, convex, Hausdorff 2-dimensional sets of R2, we set

X := {R : R is a convex, compact, Hausdorff 2-dimensional set of R2}, (7)

and endow X with the distance

d(R1, R2) := H2(R14R2), 4 := symmetric difference (8)

One of the key difficulties in our analysis is that X is not complete with respect to d, which makes
unclear if Ep,λ admits minimizers in X. Set

X̄ := completion of X with respect to d.
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We will overcome the non-completeness of X via estimates on diameter (see Lemma 2.1), perime-
ter (see Lemma 2.3), and area (see Lemma 2.2) of elements of minimizing sequences.

To simplify notations, for future reference, given points x, y ∈ R2, we denote by

Jx, yK := {(1− s)x+ sy : s ∈ [0, 1]}

the line segment between x and y. Moreover, given r > 0, we will denote by B(x, r) the ball with
center x and radius r.

Lemma 2.1. Given p ≥ 1, λ > 0, for any R ∈ X it holds

diam(R) ≥ 4πλ
Ep,λ(R) . (9)

Then, for any minimizing sequence Rn ⊆ X (that is, Ep,λ(Rn)→ infX Ep,λ) it holds

diam(Rn) ≥ 2πλ
1 + πλ

=: δλ (10)

for all sufficiently large n. Finally, any minimizer (if they exist at all) satisfies estimate (10) too.

Proof. Consider an arbitrary R ∈ X. Choose x, y ∈ ∂R such that |x− y| = diam(R). Note that
R ⊆ B(x, diam(R)), hence due to the convexity of R, it follows

H1(∂R) ≤ π diam(R).

As ∂R is a closed convex curve with winding number equal to 1, it follows∫
∂R
|κ∂B|dH1

x∂R = 2π,

and by Hölder’s inequality it holds

Ep,λ(R) ≥ λ
∫
∂R
κ2
∂R dH1

x∂R ≥
4π2λ

H1(∂R) ≥
4πλ

diam(R) ,

hence (9).

To prove (10), we show first that infX Ep,λ < +∞. Consider the unit ball B := B
(
(0, 0), 1

)
,

and note that

inf
X
Ep,λ ≤ Ep,λ(B) =

∫
B

distp(x, ∂R) dx+ λ

∫
∂B
κ2
∂B dH1

x∂B ≤ 1 + 2πλ. (11)

Let Rn ⊆ X be an arbitrary minimizing sequence. Clearly, since Ep,λ(Rn) → infX Ep,λ, for all
sufficiently large n it holds

Ep,λ(Rn) ≤ inf
X
Ep,λ + 1

(11)
≤ 2 + 2πλ,

and (9) gives diam(Rn) ≥ 2πλ
1 + πλ

, hence (10). The last part follows from the continuity of the
diameter with respect to the convergence in (X, d). �



WILLMORE ENERGY PENALIZATION 5

Lemma 2.2. Given p ≥ 1, λ > 0, and R ∈ X, it holds

H2(R) ≥ 2πλ2

2Ep,λ(R)2 . (12)

Moreover, given a minimizing sequence Rn ⊆ X, it holds

H2(Rn) ≥ πλ2

2(1 + πλ)2 =: aλ (13)

for all sufficiently large n. Finally, any minimizer (if they exist at all) satisfies estimate (13) too.

To simplify notations, for future reference, given a point z ∈ R2, the notations zx (resp. zy)
will denote the x (resp. y) coordinate of z.

Proof. Consider an arbitrary R ∈ X. Choose arbitrary points x̄, ȳ ∈ ∂R such that |x̄ − ȳ| =
diam(R). Endow R2 with a Cartesian coordinate system, with origin at the midpoint (x̄+ ȳ)/2,
such that x̄ = (−diam(R)/2, 0), ȳ = (diam(R)/2, 0). Let γ : [0,H1(∂R)] −→ ∂R be an arc-length
parameterization, and without loss of generality, we impose γ(0) = x̄. We claim

• γ′(0)x = 0.
Assume the opposite, i.e., γ′(0)x 6= 0. For |ε| � 1, since γ is C1-regular, it holds γ(ε) =
x̄+ εγ′(0) + vε, for some vector vε with |vε| = o(ε) as ε→ 0. Since ȳ− x̄ is parallel to the
x-axis, it follows

d
dt |ȳ − γ(t)|

∣∣∣∣
t=0

= lim
ε→0

|ȳ − (x̄+ εγ′(0))| − |ȳ − x̄|+ o(ε)
ε

= γ′(0)x 6= 0,

hence t = 0 is not a maximum for t 7→ |ȳ − γ(t)|. This contradicts

|ȳ − x̄| = diam(R) = max
x∈∂R

|ȳ − x|,

and the claim is proven.

Without loss of generality, we can further impose γ′(0) = (0, 1). Consider the region R∩{y ≥ 0}.
Set

t0 := inf{t : γ′(t)y = 1/2},

where γ(t)y denotes the y-coordinate of γ(t). By Hölder’s inequality it follows

1
4t0

=
‖γ′y‖2TV (0,t0)

t0
≤
∫
∂R
κ2
∂R dH1

x∂R ≤
Ep,λ(R)

λ
=⇒ t0 ≥

λ

4Ep,λ(R) . (14)
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x̄ ȳ

γ(t0)

γ(t1)

∂R

x-axis

Figure 1. Schematic representation of the construction.

Since 1/2 ≤ γ′y(t) ≤ 1 for any t ∈ [0, t0], it holds γ(t0)y ≥ t0/2. Due to the convexity of
R∩{y ≥ 0}, both line segments Jγ(t0), x̄K and Jγ(t0), ȳK are contained in R, hence 4x̄γ(t0)ȳ ⊆ R.
By construction, the triangle 4x̄γ(t0)ȳ has base Jx̄, ȳK and height Jγ(t0), (γ(t0)x, 0)K, hence

H2(4x̄γ(t0)ȳ) = 1
2 |x̄− ȳ| · |γ(t0)y| ≥

diam(R)t0
4 . (15)

Repeating the same construction for R ∩ {y ≤ 0} gives the existence of t1 ≥ λ
4Ep,λ(R) such that

the triangle 4x̄γ(t1)ȳ satisfies

H2(4x̄γ(t1)ȳ) = 1
2 |x̄− ȳ| · |γ(t1)y| ≥

diam(R)t1
4 . (16)

Combining (15) and (16) gives

H2(R) ≥ diam(R)t0
4 + diam(R)t1

4
(9),(14)
≥ 2πλ2

Ep,λ(R)2 ,

hence (12).
To prove (13), note that the above arguments give

H2(Rn)
(12)
≥ 2πλ2

Ep,λ(Rn)2

(11)
≥ πλ2

2(1 + πλ)2 ,

for any sufficiently large n, and proof of (13) is complete. The last part follows from the continuity
of the H2-measure with respect to the convergence in (X, d). �

Lemma 2.3. Given p ≥ 1, λ > 0, for any R ∈ X it holds

diam(R) ≤ p+1
√

24 · 2p(p+ 1)(p+ 2)Ep,λ(R)2/λ. (17)
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Moreover, for any minimizing sequence Rn ⊆ X (that is, Ep,λ(Rn)→ infX Ep,λ) it holds

diam(Rn) ≤ p+1
√

24 · 2p+2(p+ 1)(p+ 2)(1 + πλ)2/λ = Dp,λ (18)

for all sufficiently large n, with Dp,λ defined in (5). Finally, any minimizer (if they exist at all)
satisfies estimate (18) too.

Proof. Similarly to the proof of Lemma 2.2, consider an arbitrary R ∈ X, and choose arbitrary
points x̄, ȳ ∈ ∂R such that |x̄ − ȳ| = diam(R). Endow R2 with a Cartesian coordinate system,
with origin at the midpoint (x̄+ ȳ)/2, such that x̄ = (−diam(R)/2, 0), ȳ = (diam(R)/2, 0).

In the proof of Lemma 2.2 we have shown the existence of a point q ∈ ∂R (e.g., the point
γ(t0)) such that

4x̄qȳ ⊆ R, |qy| ≥
λ

8Ep,λ(R) . (19)

x̄ ȳ

q

q⊥c

qc

∂R

Figure 2. Schematic representation of the construction. Here represented only
the region R ∩ {y ≥ 0}.

Let qc be the incenter of 4x̄qȳ, and note that for any z ∈ 4x̄qcȳ it holds

dist(z, ∂(4x̄qȳ)) = dist(z, Jx̄, ȳK).

Denote by q⊥c ∈ Jx̄, ȳK the projection of qc on Jx̄, ȳK, and set

D1 := |x̄− q⊥c |, D2 := |ȳ − q⊥c |, r := |qc − q⊥c |.
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Clearly, D1 +D2 = diam(R), and direct computation gives∫
R

distp(z, ∂R) dz ≥
∫
4x̄qcȳ

distp(z, ∂R) dz ≥
∫
4x̄q⊥c ȳ

distp(z, Jx̄, ȳK) dz

=
∫
4x̄q⊥c ȳ

zpy dz =
∫ D1

0

∫ r
D1

x

0
yp dy dx+

∫ D2

0

∫ r
D2

x

0
yp dy dx

= r(Dp+1
1 +Dp+1

2 )
(p+ 1)(p+ 2) ≥

r(diam(R))p+1

2p(p+ 1)(p+ 2) . (20)

To estimate r, note that the sides Jx̄, qcK and Jȳ, qcK satisfy

|x̄− ȳ| = diam(R) ≥ max{|x̄− qc|, |ȳ − qc|}.

Since
H2(4x̄qcȳ) = 1

2 diam(R)|qy| =
1
2(diam(R) + |x̄− qc|+ |ȳ − qc|)r,

we infer
r ≥ |qy|3

(19)
≥ λ

24Ep,λ(R) .

Plugging into (20) gives
λ

24Ep,λ(R) ·
(diam(R))p+1

2p(p+ 1)(p+ 2) ≤
∫
R

distp(z, ∂R) dz ≤ Ep,λ(R),

hence (17).
To prove (18), note that for any minimizing sequence it holds

Ep,λ(Rn)
(11)
≤ 2(1 + πλ) =⇒ diam(Rn)

(17)
≤ p+1

√
24 · 2p+2(p+ 1)(p+ 2)(1 + πλ)2/λ

for all sufficiently large n. The last part follows from the continuity of the diameter with respect
to the convergence in (X, d), concluding the proof. �

Now we can prove the existence of minimizers in X (instead of just X̄).

Lemma 2.4. For any p ≥ 1, λ > 0, the functional Ep,λ admits a minimizer in X.

The following classic result (see for instance [15], to which we refer for the proof) will be useful.

Lemma 2.5. Given a compact set Ω ⊆ R2, and a sequence of curves {γk} : [0, 1] −→ Ω satisfying

sup
k
‖γ′k‖BV < +∞, sup

k
H1(γk([0, 1])) < +∞,

where ‖ · ‖BV denotes the BV norm, then there exists a curve γ : [0, 1] −→ Ω, such that (upon
subsequence) it holds:

(1) γk → γ in Cα for any α ∈ [0, 1),
(2) γ′k → γ′ in Lp for any p ∈ [1,∞),
(3) γ′′k

∗
⇀ γ′′ in the space of signed Borel measures.
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Proof. (of Lemma 2.4) Consider a minimizing sequence Rn ⊆ X. This assumption, instead of
Rn ⊆ X̄, is not restrictive since X is dense in X̄. Since Ep,λ is invariant under rigid movements,
we can assume that Rn 3 (0, 0) for any n. In view of (11), without loss of generality, we can also
impose

sup
n
Ep,λ(Rn) ≤ 2(1 + πλ).

Then by Lemma 2.3 we get supn diam(Rn) ≤ Dp,λ, hence

Rn ⊆ B((0, 0), Dp,λ) for any n.

Thus Rn is a sequence of uniformly bounded, compact sets, and there exists (upon subsequence,
which we do not relabel) a limit set R ∈ X̄ such that Rn → R in the metric d (defined in (8)).

We claim ∫
R

distp(z, ∂R) dz = lim
n→+∞

∫
Rn

distp(z, ∂Rn) dz, (21)∫
∂R
κ2
∂R dH1

x∂R ≤ lim inf
n→+∞

∫
∂Rn

κ2
∂Rn dH1

x∂Rn . (22)

Step 1. Proof of (21). This follows from the arguments from [12, Lemma 2.1]. We report the
proof for completeness. We split the sums∫

Rn
distp(z, ∂Rn) dz =

∫
Rn\R

distp(z, ∂Rn) dz +
∫
Rn∩R

distp(z, ∂Rn) dz,∫
R

distp(z, ∂R) dz =
∫
R\Rn

distp(z, ∂R) dz +
∫
Rn∩R

distp(z, ∂R) dz,

and note that ∣∣∣∣ ∫
Rn

distp(z, ∂Rn) dz −
∫
R

distp(z, ∂R) dz
∣∣∣∣

≤
∫
Rn\R

distp(z, ∂Rn) dz +
∫
R\Rn

distp(z, ∂R) dz (23)

+
∫
Rn∩R

| distp(z, ∂Rn)− distp(z, ∂R)|dz. (24)

Moreover, ∫
Rn\R

distp(z, ∂Rn) dz ≤ H2(Rn\R) diam(Rn) ≤ H2(Rn\R)Dp,λ → 0,∫
R\Rn

distp(z, ∂R) dz ≤ H2(R\Rn) diam(R) ≤ H2(R\Rn)Dp,λ → 0,

hence
lim

n→+∞

∫
Rn\R

distp(z, ∂Rn) dz = lim
n→+∞

∫
R\Rn

distp(z, ∂R) dz = 0.
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To prove

lim
n→+∞

∫
Rn∩R

|distp(z, ∂Rn)− distp(z, ∂R)|dz = 0,

denote by dH the Hausdorff distance, and by the Mean Value theorem, it holds∫
Rn∩R

| distp(z, ∂Rn)− distp(z, ∂R)| dz

≤
∫
Rn∩R

|dist(z, ∂Rn)− dist(z, ∂R)| · p sup
z∈Rn∩R

(
max{dist(z, ∂Rn),dist(z, ∂R)}

)p−1
dz

≤ H2(Rn ∩R)dH(∂Rn, ∂R) · pDp−1
p,λ ≤ πD

2
p,λdH(∂Rn, ∂R) · pDp−1

p,λ → 0.

Thus both terms (23) and (24) converge to zero, and (21) is proven.

Step 2. Proof of (22). Let

γn : [0,H1(∂Rn)] −→ ∂Rn, γn : [0,H1(∂R)] −→ ∂R

be arc-length parameterizations. Note that the hypotheses of Lemma 2.5 are satisfied, since all
the γn are valued in B((0, 0), Dp,λ), and, due to their convexity,

sup
n
‖γ′n‖TV = 2π, sup

k
H1(∂Rn) ≤ 2πDp,λ < +∞,

with ‖·‖TV denoting the total variation semi-norm. Thus γ′′n
∗
⇀ γ′′ in the space of Borel measures.

Note that Rn ⊆ B((0, 0), Dp,λ), and by convexity, it follows that the perimeters are also uniformly
bounded, i.e.,

L∗ := sup
n
H1(∂Rn) < +∞.

Thus we can define the curves

γ∗n : [0, L∗] −→ ∂Rn, γn : [0, L∗] −→ ∂R

γ∗n(t) :=
{

γn(t) if t ≤ H1(∂Rn),
γn(H1(∂Rn)) if H1(∂Rn) ≤ t ≤ L∗,

γ∗(t) :=
{

γ(t) if t ≤ H1(∂R),
γ(H1(∂R)) if H1(∂R) ≤ t ≤ L∗.

Note that ∫
∂Rn

κ2
∂Rn dH1

x∂Rn =
∫ L∗

0
|(γ∗n)′′|2 dt,

and

sup
n

∫
∂Rn

κ2
∂Rn dH1

x∂Rn ≤ sup
n

Ep,λ(Rn)
λ

< +∞.
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Thus the densities (γ∗n)′′ are uniformly bounded in L2(0, L∗;R), and converging to (γ∗)′′ in the
weak-* topology. Thus, by the lower-semicontinuity of norms, we infer

lim inf
n→+∞

∫ L∗

0
|(γ∗n)′′|2 dt ≥

∫ L∗

0
|(γ∗)′′|2 dt =

∫
∂R
κ2
∂R dH1

x∂R,

hence (22). Combining with (21) gives

Ep,λ(R) ≤ lim inf
n→+∞

Ep,λ(Rn) = inf
X̄
Ep,λ,

hence R is effectively a minimizer of Ep,λ.

Step 3. Proof of R ∈ X. Observe that Lemma 2.2 gives H2(Rn) ≥ aλ > 0 for any n, and
the continuity of the H2-measure under convergence with respect to d gives H2(R) ≥ aλ > 0.
Moreover, Lemma 2.3 gives supn diam(Rn) ≤ Dp,λ, and since we assumed that Rn 3 (0, 0) for
any n, it follows also R 3 (0, 0). Therefore, R is bounded. Since Rn is compact and convex for
any n, R is also compact and convex. Combining all the above observations gives R ∈ X. �

3. Proof of Theorem 1.1

Now we are ready to prove the main theorem. In both the proof of Theorem 1.1 and Lemmas
3.2 and 3.3 we will use the “O(·)” notation: expressions of the form “some quantity X ∈ R is
less than or equal to O(εα) (resp. “some quantity X ∈ R is greater than or equal to O(εα)) (for
some α ≥ 0 and ε → 0) will mean that there exists a constant C ∈ R (independent of ε) such
that X ≤ Cεα (resp. X ≥ Cεα) for any sufficiently small ε.

Proof. (of Theorem 1.1) Let R be a minimizer of Ep,λ, and let γ be an arc-length parameteri-
zation of ∂R. Assume there exist M, ε, t0 < t1 such that

|γ′(t0)− γ′(t1)| = Mε, t1 − t0 = ε.

The goal is to find an upper bound for M .

Without loss of generality, upon rigid movements, we can assume t0 = 0, t1 = ε and γ′(0) =
(0, 1). Endow R2 with a Cartesian coordinate system with

γ(0) ∈ {x ≥ 0, y = 0} γ(ε) ∈ {y ≥ 0, x = 0}, γ′(0) = (0, 1). (25)

The exact orientation of x-axis is not relevant. We first give an estimate on γ(ε)y. Using Hölder’s
inequality, and recalling the fact that

κ∂R � H1
x∂R,

dκ∂R
dH1
x∂R
∈ L2(0,H1(∂R);R),
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for any t ∈ [0, ε], it holds

Ep,λ(R)
λ

≥
∫
γ([0,t])

κ2
∂R dH1

x∂R =
∫ t

0
|γ′′|2 ds ≥ |γ

′(t)− γ′(0)|2

ε
≥ |γ

′(t)y − 1|2

ε

=⇒ |γ′(t)y − 1| ≤
√
εEp,λ(R)/λ,

hence

ε(1−
√
εEp,λ(R)/λ) ≤ ε

(
1− sup

0≤t≤ε
|γ′(t)y|

)
≤ |γ(ε)y − γ(0)y| = |γ(ε)y| ≤ ε

(
1 + sup

0≤t≤ε
|γ′(t)y|

)
≤ ε(1 +

√
εEp,λ(R)/λ).

In particular, since we imposed γ(ε)y ≥ 0, we have γ(ε)y = ε+O(ε3/2).

Construct the competitor Rε in the following way:
(1) denote by t± the two times such that γ′(t±) = (±1, 0), and by t⊥ the time such that

γ′(t⊥) = (0,−1). Since we imposed γ′(0) = (0, 1), without loss of generality we can
assume that the tangent direction turns counterclockwise, i.e.,

ε < t− < t⊥ < t+ < H1(∂R).

Note that
√

2
t⊥ − t−

= |γ
′(t⊥)− γ′(t−)|
t⊥ − t−

≤
∫
γ([t−,t⊥])

κ2
∂R dH1

x∂R ≤
Ep,λ(R)

λ

(11)
≤ λ−1 + 2π

=⇒ t⊥ − t− ≥ (λ−1 + 2π)/
√

2.

Similarly, we get

min{H1(∂R)− t+, t+ − t⊥, t−} ≥ (λ−1 + 2π)/
√

2.

(2) Define the vector field v : [t−, t+] −→ R2 as

v(t) :=


(
cos

(
π
2 (1 + t−t−

t⊥−t− )
)
, sin

(
π
2 (1 + t−t−

t⊥−t− )
))
, if t ∈ [t−, t⊥],(

cos
(
π
2 (1 + t+−t

t+−t⊥ )
)
,−
(
t+−t
t+−t⊥

)2
sin
(
π
2 (1 + t+−t

t+−t⊥ )
))

, if t ∈ [t⊥, t+].
(26)

Note first that v is continuous (smooth outside t⊥), and direct computation gives

v′(t) =


π/2

t⊥−t−

(
− sin

(
π
2 (1 + t−t−

t⊥−t− )
)
, cos

(
π
2 (1 + t−t−

t⊥−t− )
))
, if t ∈ [t−, t⊥),(

π/2
t+−t⊥ sin

(
π
2 (1 + t+−t

t+−t⊥ )
)
, π/2
t+−t⊥

(
t+−t
t+−t⊥

)2
cos

(
π
2 (1 + t+−t

t+−t⊥ )
)

+2 t+−t
t+−t⊥ sin

(
π
2 (1 + t+−t

t+−t⊥ )
))

if t ∈ (t⊥, t+].
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In particular,

lim
t→t−⊥

v′(t) = π/2
t⊥ − t−

(0,−1), lim
t→t+⊥

v′(t) = π/2
t+ − t⊥

(0,−1),

i.e., the left and right limit differ just by a multiplicative constant. This observation is
crucial, since it implies that the tangent derivative of the arc-length reparameterization of
v does not jump at t = t⊥ (recall also that γ′ does not jump at t = t⊥, hence the tangent
derivative of the arc-length reparameterization of γ+ cv does not jump at t = t⊥, for any
c > 0). We claim:

‖v′‖L∞ ≤ max
{ π/2
t⊥ − t−

,
π/2

t+ − t⊥
+ 2

}
≤ π/

√
2

λ−1 + 2π + 2 =: µλ < +∞, (27)

‖v′′‖L∞ ≤
π2

(λ−1 + 2π)2 + 2
√

2(π + 1)
λ−1 + 2π =: νλ < +∞. (28)

The proofs of both claims, being quite technical, are presented in Lemma 3.1 below.
(3) Let γε be the curve such that

γε(t) :=


(2γ(t)x, 2γ(t)y) if t ∈ [0, ε],
γ(t) + (0, γ(ε)y) if t ∈ [ε, t−],
γ(t) + γ(ε)yv(t) if t ∈ [t−, t+],(

γ(t)x
(
1 + γ(0)x

γ(0)x−γ(t+)x

)
− γ(t+)xγ(0)x

γ(0)x−γ(t+)x , γ(t)y
))

if t ∈ [t+,H1(∂R)].

(29)

Let ∂Rε be the image of γε, and Rε be the bounded region of the plane delimited by ∂Rε.
This will be our competitor. Observe first that, as γ′(t+) = (1, 0),

lim
t→t−+

γ′ε(t) =
(

1 + γ(ε)y
π/2

t+ − t⊥
, 0
)
, lim

t→t++
γ′ε(t) =

(
1 + γ(0)x

γ(0)x − γ(t+)x
, 0
)
,

i.e., the left and right limit differ just by a multiplicative constant. This observation is
again crucial, since it implies that the tangent derivative of the arc-length reparameteri-
zation of γ + γ(ε)yv does not jump at t = t+.

Intuitively, for t ∈ [ε, t−] the competitor γε is constructed from γ by:
(1) a homothety of center (0, 0) and ratio 2 for t ∈ [0, ε],
(2) a translation of the vector (0, γ(ε)y) for t ∈ [ε, t−],
(3) adding the smooth vector field γ(ε)yv(t) for t ∈ [t−, t+],
(4) a scaling of factor 1 + γ(0)x

γ(0)x−γ(t+)x in the x direction (with fixed line being x = γ(t+)x)
for t ∈ [t+,H1(∂R)].

It is straightforward to check compactness and convexity for Rε. Moreover, denoting by γ̃ε the
arc-length reparameterization of γε, the curvature of γ̃ε is still a function (instead of a more
generic measure), as the is γε always constructed from γ via translation, scaling, or sum with
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0 x-axis

y-axis

∂R

∂Rε

γ(0)

γ(ε)

γε(0)

γε(ε)

x-axis

{x = γ(t+)x}

∂R

∂Rε

γ(H1(∂R))
=γ(0)

γε(H1(∂R))
=γε(0)

γ(t+)
=γε(t+)

Figure 3. Representation of the construction of the competitor γε, for t ∈ [0, ε]
(left) and t ∈ [t+,H1(∂R)] (right).

smooth vector fields, and the tangent derivative γ̃′ε never jumps at “junction points” (i.e., for
t = ε, t−, t⊥, t+,H1(∂R)).

Next, to estimate Ep,λ(Rε)− Ep,λ(R), we claim∫
Rε

distp(z, ∂Rε) dz −
∫
R

distp(z, ∂R) dz ≤ ε · 2p(Dp,λ + 1)p−1πD2
p,λ + εp+1πDp,λ, (30)∫

∂Rε
κ2
∂Rε dH1

x∂Rε −
∫
∂R
κ2
∂R dH1

x∂R ≤ ε
(
Kp,λ −

M

2
)

+O(ε3/2), (31)

with
Kp,λ = µλ(λ−1 + 2π) + νλ

√
πD2

p,λ(λ−1 + 2π)
defined in (6).

Step 1. Proof of (31). Using the notation from (29), we make the following claims:∫
γ([ε,t−])

κ2
∂R dH1

x∂R =
∫
γε([ε,t−])

κ2
∂Rε dH1

x∂Rε , (32)∫
γε([t+,H1(∂R)])

κ2
∂Rε dH1

x∂Rε −
∫
γ([t+,H1(∂R)])

κ2
∂R dH1

x∂R ≤ O(ε3/2), (33)∫
γε([t−,t+])

κ2
∂Rε dH1

x∂Rε −
∫
γ([t−,t+])

κ2
∂R dH1

x∂R ≤ Kp,λε+O(ε3/2), (34)∫
γ([0,ε])

κ2
∂R dH1

x∂R −
∫
γε([0,ε])

κ2
∂Rε dH1

x∂Rε ≥
Mε

2 . (35)

The proof of all four assertions are quite technical, and for reader’s convenience, will be done in
Lemmas 3.2 and 3.3 below. Combining (32), (33), (34), and (35) gives∫

Rε
κ2
∂Rε dH1

xRε ≤
∫
R
κ2
∂R dH1

xR + ε
(
Kp,λ −

M

2
)

+O(ε3/2),
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hence (31).

Step 2. Proof of (30). Recall that, the construction of the competitor Rε in (29) gives also

(1) for t ∈ [ε,H1(∂R)] the competitor γε is obtained by translating γ by a vector of length at
most ε,

(2) for t ∈ [0, ε], the competitor γε is is obtained by scaling γ by a factor of 2.

Hence for all t it holds |γε(t)− γ(t)| ≤ 2ε, and

dH(∂Rε, ∂R) ≤ 2ε.

Thus, by the Mean Value Theorem, for each point z ∈ Rε ∩R it holds

distp(z, ∂Rε)− distp(z, ∂R) ≤ (dist(z, ∂Rε)− dist(z, ∂R))·

· p( sup
z∈Rε∩R

max{dist(z, ∂Rε),dist(z, ∂R)})p−1

≤ ε · 2p(diam(R) + 2ε)p−1
(18)
≤ ε · 2p(Dp,λ + 1)p−1,

with Dp,λ defined in (5). Thus, since clearly

H2(Rε ∩R) ≤ H2(R) ≤ π(diam(R)/2)2,

it follows ∫
Rε∩R

distp(x, ∂Rε) dx−
∫
R

distp(x, ∂R) dx ≤ ε · 2p(Dp,λ + 1)p−1H2(Rε ∩R)

≤ ε · p(Dp,λ + 1)p−1πD2
p,λ/2 (36)

Then note that, since by construction we have dH(∂Rε, ∂R) ≤ 2ε, it follows∫
Rε\R

distp(x, ∂Rε) dx ≤ 2εpH2(Rε\R) ≤ εp+1H1(∂R). (37)

Combining (36) and (37) gives∫
Rε

distp(x, ∂Rε) dx ≤
∫
R

distp(x, ∂R) dx+ ε · 2p(Dp,λ + 1)p−1H2(Rε ∩R) + 2εp+1H1(∂R)

≤
∫
R

distp(x, ∂R) dx+ ε · 2p(Dp,λ + 1)p−1πD2
p,λ + 2εp+1πDp,λ, (38)

since Lemma 2.3 gives H2(Rε ∩R) ≤ H2(R) ≤ πD2
p,λ and H1(∂R) ≤ πDp,λ. Thus (30) is proven.
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Combining (30) and (31) we finally infer

Ep,λ(Rε)− Ep,λ(R)

=
∫
Rε

distp(z, ∂Rε) dz −
∫
R

distp(z, ∂R) dz + λ

(∫
∂Rε

κ2
∂Rε dH1

x∂Rε −
∫
∂R
κ2
∂R dH1

x∂R

)
≤ ε · 2p(Dp,λ + 1)p−1πD2

p,λ + 2εp+1πDp,λ + λ

(
ε
(
Kp,λ −

M

2
)

+O(ε3/2)
)
.

Note also that the term 2εp+1πDp,λ can be absorbed into O(ε3/2), due to condition p ≥ 1, hence

Ep,λ(Rε)− Ep,λ(R) ≤ λ
(
ε
(
2λ−1p(Dp,λ + 1)p−1πD2

p,λ +Kp,λ −
M

2
)

+O(ε3/2)
)
.

The minimality assumption on R, and the arbitrariness of ε > 0 then imply

2λ−1p(Dp,λ + 1)p−1πD2
p,λ +Kp,λ −

M

2 ≥ 0

=⇒M ≤ 2(2λ−1p(Dp,λ + 1)p−1πD2
p,λ +Kp,λ),

and the proof is complete. �

Lemma 3.1. Under the hypotheses of Theorem 1.1, assertions (27) and (28) hold.

Proof. We use the same notations from the proof of Theorem 1.1. Since

v′(t) =


π/2

t⊥−t−

(
− sin

(
π
2 (1 + t−t−

t⊥−t− )
)
, cos

(
π
2 (1 + t−t−

t⊥−t− )
))
, if t ∈ [t−, t⊥),(

π/2
t+−t⊥ sin

(
π
2 (1 + t+−t

t+−t⊥ )
)
, π/2
t+−t⊥

(
t+−t
t+−t⊥

)2
cos

(
π
2 (1 + t+−t

t+−t⊥ )
)

+2 t+−t
t+−t⊥ sin

(
π
2 (1 + t+−t

t+−t⊥ )
))

if t ∈ (t⊥, t+],

it follows
|v′(t)| ≤ π/2

t⊥ − t−
for any t ∈ [t−, t⊥),

and

|v′(t)| =
[( π/2
t+ − t⊥

)2
sin2

(π
2 (1 + t+ − t

t+ − t⊥
)
)

+
( π/2
t+ − t⊥

)2( t+ − t
t+ − t⊥

)4
cos2

(π
2 (1 + t+ − t

t+ − t⊥
)
)

+ 4
( t+ − t
t+ − t⊥

)2
sin2

(π
2 (1 + t+ − t

t+ − t⊥
)
)

+ 4 π/2
t+ − t⊥

( t+ − t
t+ − t⊥

)3
cos

(π
2 (1 + t+ − t

t+ − t⊥
)
)

sin
(π

2 (1 + t+ − t
t+ − t⊥

)
)]1/2

≤
[( π/2
t+ − t⊥

)2
+ 4 + π

t+ − t⊥

]1/2
≤ π/2
t+ − t⊥

+ 2

for any t ∈ (t⊥, t+]. Thus (27) is proven.
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To prove (28), note that for t ∈ [t−, t⊥) it holds

v′′(t) = −
∣∣∣∣ π/2
t⊥ − t−

∣∣∣∣2 (cos
(π

2 (1 + t− t−
t⊥ − t−

)
)
, sin

(π
2 (1 + t− t−

t⊥ − t−
)
))

,

hence |v′′(t)| ≤
∣∣∣∣ π/2
t⊥ − t−

∣∣∣∣2. Similarly, for t ∈ (t⊥, t+], it holds

v′′(t) =
(
−
∣∣∣∣ π/2
t+ − t⊥

∣∣∣∣2 cos
(π

2 (1 + t+ − t
t+ − t⊥

)
)
,

π/2
t+ − t⊥

[−2(t+ − t)
t+ − t⊥

cos
(π

2 (1 + t+ − t
t+ − t⊥

)
)

+
( t+ − t
t+ − t⊥

)2 π/2
t+ − t⊥

sin
(π

2 (1 + t+ − t
t+ − t⊥

)
)]

− 2 t+ − t
t+ − t⊥

π/2
t+ − t⊥

cos
(π

2 (1 + t+ − t
t+ − t⊥

)
)
− 2
t+ − t⊥

sin
(π

2 (1 + t+ − t
t+ − t⊥

)
))
,

hence, using the convexity of the norm, and t+ − t⊥ ≥ (λ−1 + 2π)/
√

2 (proven in the proof of
Theorem 1.1)

|v′′(t)| ≤ 2
∣∣∣∣ π/2
t+ − t⊥

∣∣∣∣2 + 2π + 2
t+ − t⊥

≤ π2

(λ−1 + 2π)2 + 2
√

2(π + 1)
λ−1 + 2π ,

hence (28) is proven. �

Lemma 3.2. Under the hypotheses of Theorem 1.1, assertions (32), (33) and (35) hold.

Proof. We use the same notations from the proof of Theorem 1.1.

Proof of (32). By construction, for any t ∈ [ε, t−], γε(t) differ from γ(t) by a translation, thus
the curvature of these two segments are always equal, hence (32).

Proof of (33). For t ∈ [t+,H1(∂R)] we have

γε(t) =
(
γ(t)x

(
1 + γ(0)x

γ(0)x − γ(t+)x

)
− γ(t+)xγ(0)x
γ(0)x − γ(t+)x

, γ(t)y
)
,

γ′ε(t) =
(
γ(t)′x

(
1 + γ(0)x

γ(0)x − γ(t+)x

)
, γ(t)′y

)
,

γ′′ε (t) =
(
γ(t)′′x

(
1 + γ(0)x

γ(0)x − γ(t+)x

)
, γ(t)′′y

)
.

We claim

γ(0)x ≤
∫ ε

0
|γ′(t)x| dt ≤ ε3/2

√
Ep,λ(R)/λ, γ(0)x − γ(t+)x ≥

λ

2Ep,λ(R) . (39)
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In view of (25), and noting that for any t ∈ [0, ε] it holds
Ep,λ(R)

λ
≥
∫
γ([0,t])

κ2
∂R dH1

x∂R =
∫ t

0
|γ′′|2 ds ≥ |γ

′(t)− γ′(0)|2

ε
≥ |γ

′(t)x|2

ε

=⇒ |γ′(t)x| ≤
√
εEp,λ(R)/λ,

it follows
|γ(0)x − γ(ε)x| = |γ(0)x| ≤

∫ ε

0
|γ′(t)x|dt ≤ ε3/2

√
Ep,λ(R)/λ.

Now recall that by construction γ′(t+) = (1, 0), γ′(H1(∂R)) = γ′(0) = (0, 1), |γ′| ≡ 1 for a.e. t,
and let τ ∈ (t+,H1(∂R)) be time for which γ′(τ) = (1/2,

√
3/2). Thus

Ep,λ(R)
λ

≥
∫
γ([t+,τ ])

κ2
∂R dH1

x∂R =
∫ τ

t+
|γ′′|2 ds ≥ |γ

′(τ)− γ′(t+)|2

τ − t+
= 1
τ − t+

=⇒ τ − t+ ≥ λ/Ep,λ(R),

and since γ′x ≥ 0 on [t+,H1(∂R)], and γx(t)′ ≥ 1/2 for all t ∈ [t+, τ ], it follows γ(0)x − γ(t+)x ≥
λ

2Ep,λ(R) , hence (39) is proven. Consequently,∣∣∣∣ γ(0)x
γ(0)x − γ(t+)x

∣∣∣∣ ≤ 2(εEp,λ(R)/λ)3/2 = O(ε3/2).

Observe that for t ∈ [t+,H1(∂R)] we have

|γ′ε|−2 =
(
|γ′x|2

(
1 + γ(0)x

γ(0)x − γ(t+)x

)2
+ |γ′y|2

)−1

=
(

1 + |γ′x|2
2γ(0)x

γ(0)x − γ(t+)x
+ |γ′x|2

∣∣∣∣ γ(0)x
γ(0)x − γ(t+)x

∣∣∣∣2
)−1

= 1 +O(ε3/2),

and ∫ H1(∂R)

t+

|γ′′ε |2

|γ′ε|2
dt =

∫ H1(∂R)

t+

(
|γ′′|2 + |γ′′x |2

2γ(0)x
γ(0)x − γ(t+)x

)
(1 +O(ε3/2)) dt

=
∫ H1(∂R)

t+
|γ′′|2 dt+O(ε3/2),

hence (33).

Proof of (35). In the time interval [0, ε], the competitor is obtained by scaling by a factor of
2, and direct computations give that the integrated squared curvature scales by a factor of 1/2.
Thus ∫ ε

0

∣∣∣∣ d
dt

(
γ′

|γ′|

)∣∣∣∣2 dH1
x∂R −

∫ 2ε

0

∣∣∣∣ d
dt

(
γ′ε
|γ′ε|

)∣∣∣∣2 dH1
x∂Rε

≥ 1
2

∫ ε

0

∣∣∣∣ d
dt

(
γ′

|γ′|

)∣∣∣∣2 dH1
x∂R ≥

M

2 ε, (40)
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hence (35). �

Lemma 3.3. Under the hypotheses of Theorem 1.1, assertion (34) holds.

Proof. We use the same notations from the proof of Theorem 1.1. In the time interval [t−, t+],
γε is given by

γε(t) = γ(t) + γ(ε)yv(t), t ∈ [t−, t+].
Note first that since R is a minimizer of Ep,λ, it must hold∫

γ([t−,t+])
κ2
∂R dH1

x∂R < +∞,

and recalling our definition of integrated squared curvature in (4), it follows that the Radon-
Nikodym derivative dκ∂R

dH1
x∂R

is square integrable. In terms of the parameterization γε, this gives

d
dt

(
γ′ε
|γ′ε|

)
= γ′′ε
|γ′ε|
− γ′ε

〈γ′′ε , γ′ε〉
|γ′ε|3

∈ L2(0,H1(∂R);R).

Recall that
ε− ε3/2

√
Ep,λ(R)/λ ≤ γ(ε)y ≤ ε+ ε3/2

√
Ep,λ(R)/λ.

As γ is parameterized by arc-length (i.e., |γ′| = 1 for a.e. t), and v was defined in (26) (in
particular, |v′| was uniformly bounded from above), it follows

|γ′ε| =
√

1 + 2ε〈γ′, v′〉+O(ε3/2).

Then, for any α ∈ R and sufficiently small ε, we have

|γ′ε|α = 1 + αε〈γ′, v′〉+O(ε3/2). (41)

Thus
d
dt

(
γ′ε
|γ′ε|

)
= γ′′ε
|γ′ε|
− γ′ε

〈γ′′ε , γ′ε〉
|γ′ε|3

= γ′′ + εv′′

|γ′ε|
− γ′ε
|γ′ε|3

(
〈γ′′, γ′〉+ ε2〈v′′, v′〉+ ε〈γ′′, v′〉+ ε〈γ′, v′′〉

)
.

Now observe:
(1) since γ is parameterized by arc-length,

〈γ′′, γ′〉 = 1
2

d
dt |γ

′|2 = 0. (42)

(2) As both |v′| and |v′′| are uniformly bounded from above, the term ε2〈v′′, v′〉 is of order
O(ε2).

(3) The norm of εγ′ε〈γ′, v′′〉/|γ′ε|3 is estimated by

ε

∣∣∣∣γ′ε〈γ′, v′′〉|γ′ε|3

∣∣∣∣ ≤ ε |γ′| · |v′′||γ′ε|2
≤ ε‖v′′‖L∞ +O(ε3/2). (43)

(4) The norm of εγ′ε〈γ′′, v′〉/|γ′ε|3 is estimated by

ε

∣∣∣∣γ′ε〈γ′′, v′〉|γ′ε|3

∣∣∣∣ ≤ ε |γ′′| · |v′||γ′ε|2
. (44)
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Thus combining (42), (43) and (44) gives∫ t+

t−

∣∣∣∣γ′ε 〈γ′′ε , γ′ε〉|γ′ε|3

∣∣∣∣2 dt =
∫ t+

t−

∣∣∣∣ γ′ε|γ′ε|3 (〈γ′′, γ′〉+ ε2〈v′′, v′〉+ ε〈γ′′, v′〉+ ε〈γ′, v′′〉
)∣∣∣∣2 dt

≤
∫ t+

t−
|γ′ε|−4∣∣ε〈γ′′, v′〉+ ε〈γ′, v′′〉

∣∣2 dt+O(ε4)

≤ 2
∫ t+

t−
|γ′ε|−4(|ε〈γ′′, v′〉|2 + |ε〈γ′, v′′〉|2) dt+O(ε4)

= 2ε2
∫ t+

t−
|γ′ε|−4|〈γ′′, v′〉|2 dt+O(ε3/2) ≤ 2ε2‖v′‖2L∞

∫ t+

t−
|γ′ε|−4|γ′′|2 dt+O(ε3/2).

In view of (41), we get∫ t+

t−
|γ′ε|−4|γ′′|2 dt ≤ 2

∫ t+

t−
|γ′′|2 dt ≤ 2

∫
∂R
κ2
∂R dH1

xR < +∞,

hence

2ε2‖v′‖2L∞
∫ t+

t−
|γ′ε|−4|γ′′|2 dt ≤ O(ε2).

Thus ∫ t+

t−

∣∣∣∣γ′ε 〈γ′′ε , γ′ε〉|γ′ε|3

∣∣∣∣2 dt ≤ O(ε3/2),

and ∫
γ([t−,t+])

κ2
∂R dH1

x∂R =
∫ t+

t−

∣∣∣∣ d
dt

(
γ′ε
|γ′ε|

)∣∣∣∣2 dt =
∫ t+

t−

∣∣∣∣ γ′′ε|γ′ε| − γ′ε 〈γ
′′
ε , γ
′
ε〉

|γ′ε|3

∣∣∣∣2 dt

=
∫ t+

t−

∣∣∣∣ γ′′ε|γ′ε|
∣∣∣∣2 dt+O(ε3/2).

Again, in view of (41), it follows∫ t+

t−

∣∣∣∣ γ′′ε|γ′ε|
∣∣∣∣2 dt =

∫ t+

t−

∣∣∣∣γ′′ + εv′′

|γ′ε|

∣∣∣∣2 dt =
∫ t+

t−
(〈γ′′ + εv′′, γ′′ + εv′′〉)(1− 2ε〈γ′, v′〉+O(ε3/2)) dt

=
∫ t+

t−
(|γ′′|2 + 2ε〈γ′′, v′′〉+ ε2|v′′|)(1− 2ε〈γ′, v′〉+O(ε3/2)) dt

≤ (1 + 2ε‖v′‖L∞)
∫ t+

t−
|γ′′|2 dt+ 2ε‖v′′‖L∞

∫ t+

t−
|γ′′|dt+O(ε3/2)

≤ (1 + 2ε‖v′‖L∞)
∫ t+

t−
|γ′′|2 dt+ 2ε‖v′′‖L∞

(
H1(∂R)

∫ t+

t−
|γ′′|2 dt

)1/2
+O(ε3/2)

≤
∫ t+

t−
|γ′′|2 dt+ 2ε‖v′‖L∞Ep,λ(R)/λ+ 2ε‖v′′‖L∞

√
H1(∂R)Ep,λ(R)/λ+O(ε3/2). (45)
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Note that

2‖v′‖L∞Ep,λ(R)/λ+ 2‖v′′‖L∞
√
H1(∂R)Ep,λ(R)/λ

≤ µλ(λ−1 + 2π) + νλ
√
πD2

p,λ(λ−1 + 2π) = Kp,λ

in view of (6), (18), (27) and (28). Hence (34) follows from (45). �
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