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Abstract

We consider the Cauchy problem for two prototypes of flux-saturated diffusion equations.
In arbitrary space dimension, we give an optimal condition on the growth of the initial datum
which discriminates between occurrence or nonoccurrence of a waiting time phenomenon.
We also prove optimal upper bounds on the waiting time. Our argument is based on the intro-
duction of suitable families of subsolutions and on a comparison result for a general class of
flux-saturated diffusion equations.
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1 Introduction

1.1 Flux-saturated diffusion equations

Flux-saturated diffusion equations are a class of second order parabolic equations of the form

ut = div a(u,∇u), (1.1)

which are characterized by a hyperbolic scaling for large values of the modulus of the gradient, in
the sense that

1

ψ0(v)
lim

t→+∞
a(z, tv) · v =: ϕ(z) for all z ≥ 0, (1.2)

where ψ0 : RN 7→ [0,+∞) is a positively 1-homogeneous convex function, with ψ0(0) = 0 and
ψ0 > 0 otherwise, accounting for possible anisotropy effects. We are interested in the degenerate
case; i.e. the case in which ϕ is a locally Lipschitz function with ϕ(0) = 0 and ϕ(z) > 0 otherwise.

To our knowledge, flux-saturated equations were first introduced in [27] in the description
of inertial confinement fusion, in which case u represents the temperature. However, they find
application whenever a saturation mechanism at high gradients, imposing a-priori bounds on speed
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or flux, is modeling-wise relevant for the phenomenon to be described (see for instance [32, 33,
24, 8, 10]). In addition, they emerge from a generalization of optimal transportation theory which
accounts for relativistic-type cost functions (see [13]). After pioneering contributions [11, 12, 25],
the mathematical interest in this class is now steadily growing, leading to a well posedness theory
based on a suitable concept of entropy solution: we refer to §2 for the precise definition and to
[21, 22, 14, 15, 16] for recent overviews on modeling and analytical aspects.

Our focus is on two model equations which are known to approximate the porous medium
equation ([23]): the relativistic porous medium equation,

ut = ν div

(
um∇u√

u2 + ν2c−2|∇u|2

)
, m ∈ (1,+∞), (1.3)

which generalizes the so-called relativistic heat equation (m = 1), and the speed-limited porous
medium equation,

ut = ν div

(
u∇uM−1√

1 + ν2c−2|∇uM−1|2

)
, M ∈ (1,+∞) , (1.4)

where ν > 0 is a kinematic viscosity constant and c > 0 represents a characteristic limiting speed.
The former was proposed in [33, Eq. (16)] with m = 3/2 and in [13, Eq. (34)] with m = 1,
whereas the latter was proposed in [33, Eq. (19)] (see also [22]). Up to the scaling t̂ = c2

ν t,
x̂ = c

νx, we will hereafter assume without losing generality that

ν = c = 1.

Equation (1.3) and (1.4) share common general features, such as finite speed of propagation
of the support ([29]) and persistence of jump discontinuities ([21]). However, they have remark-
able differences, generated by the different scaling for large gradients: in one space dimension, a
monotone increasing solution to (1.3), resp. (1.4), formally satisfies

ut ∼ (um)x for ux � 1, resp. ut ∼ ux for (uM−1)x � 1. (1.5)

This reflects into different qualitative behavior of solutions, highlighted also by numerical simu-
lations as in [18, 9, 19]. For instance, (1.5) suggests that (1.3) may yield to the formation of jump
discontinuities if m > 1, whereas (1.4) may not, and that the speed of propagation of the support
is formally given by um−1 for (1.3) and by 1 for (1.4). For this reason, in the former case we
conjecture that the formation of a discontinuity is not only sufficient ([21]), but also necessary for
the support to expand.

1.2 Waiting-time phenomena: the main result

The aforementioned difference manifests itself also in the waiting time phenomenon, a positive
time before which the solutions’ support does not expand around a point x0 ∈ RN . Starting from
the porous medium equation (see [34] for a review), this phenomenon is well known to occur
for various classes of degenerate parabolic equations and systems, also of higher order (see e.g.
[26, 30, 31, 28] and references therein). Concerning (1.3) and (1.4), after numerical and formal
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arguments in [9, 19], rigorous sufficient conditions for a positive waiting time have been recently
given in [29]: a positive constant C, depending only on N and m (resp. M ), exists such that if

ess sup
x∈RN

|x− x0|−
1

m−1u0(x) = L < +∞ if u solves (1.3), or (1.6)

ess sup
x∈RN

|x− x0|−
2

M−1u0(x) = L < +∞ if u solves (1.4), (1.7)

then the entropy solution to the Cauchy problem for (1.3), resp. (1.4), is such that

u(t, x0) = 0 for all t ≤ T` :=
{
CL1−m if u solves (1.3)
CL1−M if u solves (1.4)

(1.8)

(we refer to Section 2 for the definition of entropy solution). This result provides a lower bound
T` on the waiting time. Based on (1.5), in [29] it is also conjectured that these growth exponents
are sharp. The main result of this paper confirms this fact.

Theorem 1.1. Let u0 ∈ L∞(RN ) ∩ L1(RN ) be nonnegative. Let u be the solution to the Cauchy
problem for (1.3) (resp. (1.4)) with initial datum u0 and let

t∗ = sup
{
t ≥ 0 : x0 ∈ RN \ supp(u(τ)) for all τ ∈ [0, t]

}
.

If v0 ∈ SN−1 exists such that

lim
ρ→0+

ess inf
x∈B(x0+ρv0,ρ)

u0(x)|x− x0|−
1

m−1 ≥ L ∈ (0,+∞] if u solves (1.3), (1.9)

or
lim
ρ→0+

ess inf
x∈B(x0+ρv0,ρ)

u0(x)|x− x0|−
2

M−1 ≥ L ∈ (0,+∞] if u solves (1.4), (1.10)

then a positive constant W , depending on m (resp. M ) and N , exists such that

t∗ ≤ Tu :=

{
WL1−m if u solves (1.3)
WL1−M if u solves (1.4).

(1.11)

In particular, t∗ = 0 if L = +∞.

The growth conditions (1.9) and (1.10) imply in particular that supp(u0) satisfies an interior
ball property at x0, i.e., R > 0 exists such that B(x0 + v0R,R) ⊂ supp(u0).

The results in Theorem 1.1 are sharp. Indeed, comparing Theorem 1.1 with (1.6)-(1.7) we see
that the growth exponents in (1.9)-(1.10) are optimal. Note that the growth exponent 2/(M − 1)
coincides with that of the limiting porous medium equation, whereas 1/(m − 1) does not. In
addition, comparing Theorem 1.1 with (1.8), we see that the upper bound Tu on the waiting time
given in (1.11) is also optimal, in terms of scaling with respect to L.

The first main ingredient in our argument is a comparison result between solutions and subso-
lutions (see Theorem 2.6). Based on Kruzhkov doubling method, a general approach for proving
uniqueness of entropy solutions to degenerate flux-saturated equations has been introduced in [2,
3] and later followed, or referred to, in quite a few subsequent papers [5, 6, 7, 4, 20, 8, 22, 17, 29].
However, no comparison result is available when subsolutions are defined the way we need in our
arguments (see Definition 2.5). Therefore, in Section 2 we revisit the notion of (sub-)solution to
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Eq. (1.1), providing a comparison with subsolutions for a general class of equations (see Assump-
tion 2.1).

The second main ingredient in our argument is the introduction of suitable families of subso-
lutions, built such that optimal results may be obtained: their construction is outlined in the next
subsection. With such subsolutions at hand, the strategy for Theorem 1.1 becomes analogous to
the one used for the porous medium equation (see [34] and references therein). It is worked out in
Sections 3 and 4, where the main result is proved: we argue by comparison, showing that subso-
lutions exist whose support is initially contained in B(x0 + v0R,R) and which expands up to x0
within time Tu.

Besides comparison arguments, energy methods have also been developed in the analysis of
waiting time phenomena in [26, 28, 30, 31]. These methods are potentially capable of treating
equations of general form (as opposed to explicit prototypes), leading to weaker, integral-type
conditions on the initial datum. It would be interesting to explore the applicability of these methods
to more general classes of flux-saturated diffusion equations of the form (1.1).

1.3 Classes of subsolutions

We now give a formal overview of the construction of subsolution in the case of (1.3). As we
mentioned, we expect that the support of solutions to (1.3) expands only if the solution has a jump
discontinuity at the support’s boundary. Therefore, it is natural to look for subsolutions which
share the same property. Up to scaling and translation invariance, a prototype form is

u(t, x) =
1

A(t)
f(r(t), |x|)χB(0,r(t))(x), f(r, y) = (1 + (r2 − y2)α), α > 0,

which is smooth in B(0, r(t)) with a moving front at |x| = r(t). On the jump set, the inequality

ut ≤ div

(
um∇u√
u2 + |∇u|2

)
(1.12)

formally translates into

r′(t) lim
|x|→r(t)−

u(t, x) ≤ x

r
· lim
|x|→r(t)−

um∇u√
u2 + |∇u|2

. (1.13)

Provided that α < 1, we have |∇u| → +∞ as x → r(t)−. Therefore (1.13) reduces to r′(t) ≤
A1−m(t), consistently with the Rankine-Hugoniot condition. In order to reach optimal results, we
impose the equality:

r′(t) = A1−m(t). (1.14)

On the other hand, when y � 1, the degenerate parabolic structure dominates and (1.12) translates
into

ut . div
(
um−1∇u

)
,

that is,

−A
′

A2
(1 + r2α) +

2α

A
r2α−1r′

(1.14)
= −A

′

A2
(1 + r2α) + 2αr2α−1A−m

. −2αNA−mr2α−2(1 + r2α)m−1. (1.15)
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In order to enforce homogeneity of (1.15) with respect to A, we choose

Am−2(t)A′(t) = γ (1.16)

for some constant γ > 0. Combining (1.14) and (1.16) we obtain

A(t) = ((m− 1)(1 + γt))
1

m−1 , r(t) = r0 +
1

γ(m− 1)
log(1 + γt) .

As opposed to the porous medium equation, however, proving that such functions are indeed sub-
solutions is not obvious for two reasons: first, the crossover between the parabolic scaling (for
|y| � 1) and the hyperbolic scaling (for |r(t) − y| � 1); second, the nontrivial notion of subso-
lution (see Def. 2.5 below). On the other hand, the appropriate identification of A and r permits to
obtain optimal results in terms of both growth exponent and waiting time bounds. Analogous ar-
guments lead to a family of subsolutions for (1.4), which up to scaling and translation invariances
has the form

u(t, x) = b
1

1−M

(
`− 1

1 + wt

) 1
1−M

(
1− |x|2

(1 + wt)2

) 1
M−1

+

for suitable b > 0, w > 0 and ` > 0 (see Section 3).

1.4 Notation

For a, b, ` ∈ R we let

T + = {T `a,b : 0 < a < b, ` ≤ a}, where T `a,b(r) = max{min{b, r}, a} − `.

For a given T = T `a,b ∈ T +, we let T 0 := T + ` = T 0
a,b. For f ∈ L1

loc(R) we let

Jf (r) :=

ˆ r

0
f(s) ds.

We use standard notations and concepts for BV functions as in [1]; in particular, for u ∈
BV (RN ), ∇uLN , resp. Dsu, denote the the absolutely continuous, resp. singular, parts of Du
with respect to the Lebesgue measure LN , Ju denotes its jump set and we assume that u+(x) >
u−(x) for x ∈ Ju.

2 Entropy (sub-)solutions

In this section we revisit the notion of entropy (sub-)solution to the Cauchy problem for (1.1).
Consider a function a satisfying the following properties:

Assumption 2.1. Let Q = (0,∞)× RN . The function a : Q→ RN is such that:
(i) (Lagrangian) there exists f ∈ C(Q) such that ∇vf = a ∈ C(Q), f(z, ·) is convex, f(z, 0) =
0 for all z ∈ [0,∞), and

C0(z)|v| −D0(z) ≤ f(z,v) ≤M0(z)(1 + |v|) for all (z,v) ∈ Q

for nonnegative continuous functions M0, C0 ∈ C([0,∞)) and D0 ∈ C((0,∞)), with C0(z) > 0
for z > 0;
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(ii) (flux) Dva ∈ C(Q); a(z, 0) = a(0,v) = 0 and h(z,v) := a(z,v) · v = h(z,−v) for all
(z,v) ∈ Q; for any R > 0 there exists MR > 0 such that

|a(z,v)− a(ẑ,v)| ≤MR|z − ẑ| for all z, ẑ ∈ [0, R] and all v ∈ RN ; (2.1)

(iii) (recession functions) the recession functions f0 and h0, defined by

f0(z,v) = lim
t→+∞

1

t
f(z, tv), h0(z,v) = lim

t→+∞

1

t
h(z, tv),

exist in Q; furthermore, a function ϕ ∈ Liploc([0,∞)) with ϕ(0) = 0 and ϕ > 0 in (0,∞) and a
positive 1-homogeneous convex function ψ0 : RN 7→ R with ψ0(0) = 0 and ψ0(v) > 0 for v 6= 0
exist such that

f0(z,v) = h0(z,v) = ϕ(z)ψ0(v) for all (z,v) ∈ Q (2.2)

(cf. (1.2)), and
|a(z,w) · v| ≤ ϕ(z)ψ0(v) for all (z,v) ∈ Q, w ∈ RN . (2.3)

The convexity of f implies that

(a(z,v)− a(z, v̂)) · (v − v̂) ≥ 0 for all v, v̂ ∈ RN

which, combined with (2.1), also yields

(a(z,v)− a(ẑ, v̂)) · (v − v̂) ≥ −MR|z − ẑ||v − v̂| (2.4)

for all z, ẑ ∈ [0, R] and all v, v̂ ∈ RN .

The concept of entropy solution to the Cauchy problem for (1.1) has been introduced in [3] and
later extended in [5, 20, 22]. At the core of this concept is an entropy inequality (cf. (2.5) below)
which follows from formally testing (1.1) by φS(u)T (u) with S, T ∈ T + and φ smooth and non-
negative. In particular, when constructing a solution as limit of solutions to suitable approximating
problems, one needs to argue by lower semi-continuity on terms of the form

S(u)a(u,∇u) · ∇T (u) = S(T 0(u))h(T 0(u),∇T 0(u))

(see the discussion in [3, §2.2 and 3.2]). This leads to the following entropy inequality:
ˆ +∞

0
〈hS(u,DT (u)) + hT (u,DS(u)), φ〉 dt

≤
ˆ +∞

0

ˆ
RN

(JTS(u)φt − T (u)S(u)a(u,∇u) · ∇φ) dx dt , (2.5)

where hS(u,DT (u)) is the Radon measure defined by

〈hS(u,DT (u)), φ〉 :=
ˆ
RN

φS(T 0(u))h(T 0(u),∇T 0(u)) dx

+

ˆ
RN

φψ0

(
DT 0(u)

|DT 0(u)|

)
d|DsJSϕ(T

0(u))| for all φ ∈ Cc(RN ) (2.6)

and ϕ,ψ0 are defined through (2.2). This motivates the following definition:
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Definition 2.2. Let a such that Assumption 2.1 holds and let u0 ∈ L∞(RN ) ∩ L1(RN ) nonnega-
tive. A nonnegative function u ∈ C([0,+∞);L1(RN ))∩L∞((0,∞)×RN ) is an entropy solution
to the Cauchy problem for (1.1) with initial datum u0 if u(0) = u0 and:

(i) T aa,b(u) ∈ L1
loc((0,+∞);BV (RN )) for all 0 < a < b;

(ii) ut = div(a(u,∇u)) in the sense of distributions;

(iii) inequality (2.5) holds for any S, T ∈ T + and any nonnegative φ ∈ C∞c ((0,+∞)× RN ).

It is easily seen that Definition 2.2 implies mass conservation:

Proposition 2.3. Any solution u in the sense of Definition 2.2 is such that
ˆ
RN

u(t, x) dx =

ˆ
RN

u0(x) dx for all t ∈ [0,+∞). (2.7)

Proof. Let ηR ∈ D(RN ) be an increasing sequence of nonnegative functions such that ηR = 1
on B(0, R), ηR = 0 in RN \ B(0, R + 1), and |∇ηR| ≤ C. Let ψε(t) := χ{[t1,t2]} ∗ ρε, where
ρε is a standard mollifier and [t1, t2] ⊂ (0,+∞). We donote by C a generic positive constant
independent of ε and R. Testing (ii) in Definition 2.2 with ψε(t)ηR(x) (with ε sufficiently small)
and integrating by parts we obtain

−
ˆ +∞

0

ˆ
RN

uηRψ
′
ε dx dt =

ˆ +∞

0

ˆ
RN

ψεa(u,∇u) · ∇ηR dx dt.

Since u ∈ C([0,+∞);L1(RN )), letting ε→ 0 we obtain
ˆ
RN

uηR dx

∣∣∣∣t=t2
t=t1

=

ˆ t2

t1

ˆ
RN

a(u,∇u) · ∇ηR dx dt. (2.8)

Since u ∈ L∞((0,∞)× RN ), (2.1) implies that |a(u,∇u)| ≤ Cu. Therefore∣∣∣∣ˆ t2

t1

ˆ
RN

a(u,∇u) · ∇ηR dx dt

∣∣∣∣ ≤ C

ˆ t2

t1

ˆ
B(0,R+1)\B(0,R)

udx dt→ 0 as R→ +∞.

Since u ≥ 0, the two terms on the left-hand side of (2.8) pass to the limit as R → +∞ by
monotone convergence. Therefore

ˆ
RN

u(t2, x) dx =

ˆ
RN

u(t1, x) dx.

Again since u ∈ C([0,+∞);L1(RN )), passing to the limit as t1 → 0+ we obtain (2.7).

Remark 2.4. Existence and uniqueness of entropy solutions to the Cauchy problem for equations
(1.3) and (1.4) are contained in, or follow from, earlier results in [3], resp. [22]. We refer e.g.
to [29] for details. In fact, [3, 22] contain existence and uniqueness results for general classes of
equations (1.1) satisfying Assumption 2.1 together with slight additional hypotheses.

To our purposes, we use the notion of subsolution for equations of the form (1.1) suggested by
Caselles in [20, Section 3.3]. Such notion is analogous to the one of (entropy) solution, except that
(ii) in Definition 2.2 is not required.
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Definition 2.5. Let τ > 0 and let a such that Assumption 2.1 holds. A nonnegative function u ∈
C([0, τ);L1(RN ))∩ L∞([0, τ ]× RN ) is an entropy subsolution to equation (1.1) in (0, τ)× RN
if:

(i) T aa,b(u) ∈ L1
loc((0, τ);BV (RN )) for all 0 < a < b;

(ii) inequality (2.5) holds for any S, T ∈ T + and any nonnegative φ ∈ C∞c ((0, τ)× RN ).

This notion of subsolution yields the following comparison result:

Theorem 2.6. Let τ > 0 and let a such that Assumption 2.1 holds. Let u be an entropy solution
to the Cauchy problem for (1.1) with initial datum u0 ∈ L∞(RN ) ∩ L1(RN ) and u be an entropy
subsolution to equation (1.1) in (0, τ). If u(0) ≤ u0, then u(t) ≤ u(t) for all t ∈ (0, τ).

Remark 2.7. Theorem 2.6 applies in particular to (1.3) and (1.4) with ϕ(s) = sm, resp. ϕ(s) = s,
and ψ0(v) = |v|. We refer to Remark 1.3 in [29] for details.

As we mentioned in the Introduction, no comparison result is available when subsolutions are
defined as in Definition 2.5. Therefore, below we provide a complete and self-contained proof of
Theorem 2.6. The proof follows the approach introduced in [2, 3]: however, it also clarifies and
simplifies some of the arguments, such as the choice of testing functions (see the comment after
(2.12)) and the estimate of I2 (see (2.16)-(2.26)), easing the overall presentation.

Proof of Theorem 2.6. Let b > a > 2ε > 0, l ≥ 0, and T (r) = T aa,b(r). We denote z = a(u,∇u),
z = a(u,∇u),

Rε,l(r) :=

{
Tl−ε,l(r)− (l − ε) if l > 2ε,
Tε,2ε(r)− ε if l < 2ε,

(2.9)

Sε,l(r) :=

{
Tl,l+ε(r)− l if l > ε,
Tε,2ε(r)− ε if l < ε.

(2.10)

We choose two different pairs of variables (t, x) ∈ Qτ , (t, x) ∈ Q
τ
:= Qτ , and consider u, z and

u, z as functions of (t, x), resp. (t, x). Let 0 ≤ φ ∈ D((0, τ)), ρm a sequence of mollifiers in RN ,
and ρ̃n a sequence of mollifiers in R. Define

ηm,n(t, x, t, x) := ρm(x− x)ρ̃n(t− t)φ
(
t+ t

2

)
.

For (t, x) fixed, choosing S = Rε,u in (2.5) we obtain

−
ˆ
Qτ

JT,Rε,u(u)(ηm,n)t +

ˆ
Qτ

ηm,n d
(
hT (u,DxRε,u(u)) + hRε,u(u,DxT (u))

)
+

ˆ
Qτ

z · ∇xηm,n T (u) Rε,u(u) ≤ 0. (2.11)

Similarly, for (t, x) fixed, choosing S = Sε,u in (2.5) we obtain

−
ˆ
Q
τ

JT,Sε,u(u)(ηm,n)t +

ˆ
Q
τ

ηm,n d
(
hT (u,DxSε,u(u)) + hSε,u(u,DxT (u))

)
+

ˆ
Q
τ

z · ∇xηm,n T (u) Sε,u(u) ≤ 0. (2.12)
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It seems that one can not directly choose Rε,u = Tu−ε,u − (u − ε) as test function: indeed,
Tu−ε,u /∈ T + when u < ε (analogous considerations hold for Sε,u = Tu,u+ε − u when u =
0). This motivates the definitions in (2.9) and (2.10). However, as shown in (2.17)-(2.18) below,
such simpler form will be recovered after doubling variables and integrating by parts, due to the
presence of the second truncating function T .

Integrating (2.11) in Q
τ
, (2.12) in Qτ , adding the two inequalities, taking into account that

∇xηm,n +∇xηm,n = 0, and noting that

ˆ
Qτ×Qτ

ηm,n d
(
hRε,u(u,DxT (u)) + hSε,u(u,DxT (u))

)
≥ 0,

we see that
I1 + I2 ≤ 0, (2.13)

where

I1 := −
ˆ
Qτ×Qτ

(
JT,Rε,u(u)(ηm,n)t + JT,Sε,u(u)(ηm,n)t

)
I2 :=

ˆ
Qτ×Qτ

ηm,n d
(
hT (u,DxRε,u(u) + hT (u,DxSε,u(u))

)
−
ˆ
Qτ×Qτ

z · ∇xηm,nT (u)Sε,u(u)−
ˆ
Qτ×Qτ

z · ∇xηm,nT (u)Rε,u(u).

We now divide (2.13) by ε and let ε→ 0. Concerning I1, we note that

1

ε
JT,Rε,l(r) =

ˆ r

0
T (s)

Rε,l(s)

ε
ds→ J lT (r) :=

ˆ r

0
T (s) sign(s− l)+ ds (2.14)

and, analogously, JT,Sε,l(r)→ J lT (r), as ε→ 0. Therefore, by dominated convergence,

I1
ε

ε→0→ −
ˆ
Qτ×Qτ

(
(ηm,n)tJ

u
T (u) + (ηm,n)tJ

u
T (u)

)
. (2.15)

Concerning I2, after one integration by parts we obtain

I2 =

ˆ
Qτ×Qτ

ηm,n dhT (u,DxRε,u(u)) +

ˆ
Qτ×Qτ

ηm,nT (u) z · dDxSε,u(u)

+

ˆ
Qτ×Qτ

ηm,n dhT (u,DxSε,u(u)) +

ˆ
Qτ×Qτ

ηm,nT (u) z · dDxRε,u(u). (2.16)

Due to the presence of T , the second and the fourth integrands in I2 are nonzero only on {u > a},
resp. {u > a}. Moreover, for r > a, we have

Rε,l(r) =


Tl−ε,l(r)− (l − ε) if l > a
Tl−ε,l(r)− (l − ε) = ε if 2ε < l < a
Tε,2ε(r)− ε = ε if l < 2ε

 = Tl−ε,l(r)− (l − ε) for r > a.
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Analogously, Sε,l(r) = Tl,l+ε(r)− l for r > a. Therefore, in I2 we may equivalently consider

Rε,u(u) = Tu−ε,u(u)− (u− ε) = T0,ε(u− u+ ε), (2.17)

Sε,u(u) = Tu,u+ε(u)− u = T0,ε(u− u). (2.18)

The latter equalities in (2.17)-(2.18) show in particular that Rε,u(u) + Sε,u(u) ≡ ε. Therefore,

DxRε,u(u) = −DxSε,u(u) and DxSε,u(u) = −DxRε,u(u).

Furthermore, letting
uε := Tu−ε,u(u), uε := Tu,u+ε(u), (2.19)

it follows from the former equalities in (2.17)-(2.18) that

DxRε,u(u) = Dxuε and DxSε,u(u) = Dxuε.

Altogether, I2 may be rewritten as

I2 =

ˆ
Qτ×Qτ

ηm,n dhT (u,Dxuε)−
ˆ
Qτ×Qτ

ηm,nT (u) z · dDxuε

+

ˆ
Qτ×Qτ

ηm,n dhT (u,Dxuε)−
ˆ
Qτ×Qτ

ηm,nT (u) z · dDxuε.

Let us writeI2 = I2(ac) + I2(s), where I2(ac) and I2(s) contain the absolutely continuous, resp.
singular, part of the measures involved in I2. Let us first consider I2(ac). Letting

χε := χ{u<u<u+ε} = χ{u−ε<u<u}, (2.20)

in view of (2.19) and (2.17)-(2.18) we have ∇xuε = χε∇xu and ∇xuε = χε∇xu. Therefore,
recalling (2.6), I2(ac) may be rewritten as

I2(ac) =

ˆ
Qτ×Qτ

ηm,nχε(T (u)z− T (u)z) · (∇xu−∇xu)

=

ˆ
Qτ×Qτ

ηm,nχε(T (u)− T (u))z · (∇xu−∇xu)

+

ˆ
Qτ×Qτ

ηm,nχεT (u)(z− z) · (∇xu−∇xu)

=: I2,1(ac) + I2,2(ac).

In view of (2.1) and since u ∈ L∞(Q), we have that ‖z‖∞ ≤M . In addition, (2.20) implies that

χε ∩ {u > a} ⊆ {u > a− ε} and χε ∩ {u > a} ⊆ {u > a}. (2.21)

Therefore, since T is 1-Lipschitz,

1

ε
|I2,1(ac)| ≤ M

ε
‖ηm,n‖∞

ˆ
Qτ×Qτ

χεχ{u>a−ε}χ{u>a}|u− u||∇xu−∇xu|

(2.20)
≤ M‖ηm,n‖∞

ˆ
Qτ×Qτ

χεχ{u>a−ε}χ{u>a}(|∇xu|+ |∇xu|). (2.22)
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Similarly,

1

ε
I2,2(ac)

(2.4)
≥ −M

ε

ˆ
Qτ×Qτ

ηm,nχεT (u)|u− u| |∇xu−∇xu|

(2.21)
≥ −M‖ηm,n‖∞

ˆ
Qτ×Qτ

χεχ{u>a}χ{u>a−ε}
(
|∇xu|+ |∇xu|

)
. (2.23)

We claim that

lim
ε→0

ˆ
Qτ×Qτ

χ{u>a} d|Dxuε| = lim
ε→0

ˆ
Qτ×Qτ

χ{u>a−ε} d|Dxuε| = 0. (2.24)

Let us show the first one (the second is identical). By the coarea formula, we have for any l > a
ˆ
RN
|DxTl−ε,l(u)| =

ˆ l

l−ε
P (Tl−ε,l(u) > λ) dλ =

ˆ l

l−ε
P (Ta/2,`(u) > λ) dλ→ 0

as ε → 0, since λ 7→ P (Ta/2,`(u) > λ) is integrable in R. Then (2.24) follows from dominated
convergence, since

(t, x, t) 7→ χ{u>a}

ˆ
RN

d|Dxuε| ≤ χ{u>a}
ˆ
RN

d|DxTa/2,`(u)| ∈ L1((0,∞)2 × RN ).

Since χε|∇xu| = |∇xuε| and χε|∇xu| = |∇xuε|, combining (2.22), (2.23), and (2.24) we con-
clude that

lim inf
ε→0

I2(ac)

ε
≥ 0. (2.25)

Recalling again (2.6), we rewrite I2(s) as

I2(s) =

ˆ
Qτ×Qτ

ηm,n

(
ψ0

(
Duε
|Duε|

)
d|Ds

xJTϕ(uε)| − T (u)z · dDs
xuε

)
+

ˆ
Qτ×Qτ

ηm,n

(
ψ0

(
Duε
|Duε|

)
d|Ds

xJTϕ(uε)| − T (u)z · dDs
xuε

)
:= I2,1(s) + I2,2(s)

and we only consider I2,1(s) (I2,2(s) is treated identically). Using the homogeneity of ψ0 and
Jensen’s inequality, we have

−z ·
ˆ
Qτ

ηm,n dD
s
xuε

(2.3)
≥ −ϕ(u)ψ0

(ˆ
Qτ

ηm,n dD
s
xuε

)

≥ −ϕ(u)
ˆ
Qτ

ψ0

(
Ds
xuε

|Ds
xuε|

)
ηm,n d|Ds

xuε| .

Therefore, using the fact that χ{u>a} ≤ 1 we get

I2,1(s) ≥
ˆ
Qτ×Qτ

ηm,nψ0

(
Duε
|Duε|

)
χ{u>a} ( d|Ds

xJTϕ(uε)| − T (u)ϕ(u) d|Ds
xuε|)

≥ K
ˆ
Qτ×Qτ

ηm,nχ{u>a} ( d|Ds
xJTϕ(uε)| − T (u)ϕ(u) d|Ds

xuε|) ,
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where K is the minimum value of ψ0 on SN−1. We split its Cantor and jump parts. Since

|Dc
xJTϕ(uε)| = |J ′Tϕ(uε)||Dc

xuε| = T (uε)ϕ(uε)|Dc
xuε|,

we have

I2,1(c) ≥ K
ˆ
Qτ×Qτ

ηm,nχ{u>a} (T (uε)ϕ(uε)− T (u)ϕ(u)) d|Dc
xuε|.

Since T and ϕ are (locally) Lipschitz continuous and u, u are bounded, a positive constant L exists
such that

1

ε
I2,1(c) ≥ −LK

ε

ˆ
Qτ×Qτ

ηm,nχ{u>a}|uε − u|d|Dc
xuε|

≥ −LK‖ηm,n‖∞
ˆ
Qτ×Qτ

χ{u>a}d|Dc
xuε|

(2.24)→ 0 as ε→ 0.

Applying the same argument to I2,2(c), we conclude that

lim inf
ε→0

I2(c)

ε
≥ 0. (2.26)

Concerning the jump part, recalling that u− ε ≤ uε ≤ u, we have

1

ε
I2,1(j) ≥

K

ε

ˆ
(0,τ)×Q

τ

ˆ
Juε(t)

ηm,nχ{u>a}×

×

((ˆ u+ε

u−ε

T (s)ϕ(s) ds

)
− T (u)ϕ(u)|u+ε − u−ε |

)
dHN−1(x)

=
K

ε

ˆ
(0,τ)×Q

τ

ˆ
Juε(t)

ηm,nχ{u>a}

(ˆ u+ε

u−ε

(T (s)ϕ(s)− T (u)ϕ(u)) ds

)
dHN−1(x)

≥ −LK
ε

ˆ
(0,τ)×Q

τ

ˆ
Juε(t)

ηm,nχ{u>a}

(ˆ u+ε

u−ε

(u− s) ds

)
dHN−1(x)

≥ −LK‖ηm,n‖∞
ˆ
(0,τ)×Q

τ

ˆ
Juε(t)

χ{u>a}
(
u+ε − u−ε

)
dHN−1(x)

= −LK‖ηm,n‖∞
ˆ
Qτ×Qτ

χ{u>a} d|Dj
xuε|

(2.24)→ 0 as ε→ 0.

By applying the same argument on I2,2(j), we conclude that

lim inf
ε→0

I2(j)

ε
≥ 0. (2.27)

Collecting (2.15), (2.25), (2.26), and (2.27) into (2.13) and using (2.15), we conclude that

−
ˆ
Qτ×Qτ

(
(ηm,n)tJ

u
T (u) + (ηm,n)tJ

u
T (u)

)
≤ 0.
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Since the latter expression does not contain any spatial gradient, we can divide it by b − a and
easily pass it to the limit as m→∞, a→ 0, and b→ 0, in this order. Noting that

lim
b→0

lim
a→0

1

b− a
T (s) = sign(s),

lim
b→0

lim
a→0

1

b− a
J lT (r)

(2.14)
=

ˆ r

0
sign(s− l)+ ds = (r − l)+,

we obtain
−
ˆ
(0,τ)×Qτ

((u− u)+(χn)t + (u− u)+(χn)t) ≤ 0, (2.28)

where

u = u(t, x), u = u(t, x), χn = ρ̃n(t− t)φ
(
t+ t

2

)
, (χn)t + (χn)t = ρ̃nφ

′. (2.29)

We write

−
ˆ
(0,τ)×Qτ

(u− u)+ρ̃nφ′
(2.29)
= −

ˆ
(0,τ)×Qτ

(u− u)+((χn)t + (χn)t)

(2.28)
= −

ˆ
(0,τ)×Qτ

((u− u)+ − (u− u)+) (χn)t

=

ˆ
(0,τ)×Qτ

(u− u)(χn)t
(2.29)
=

ˆ
Qτ

u(χn)t = 0,

where in the last equality we used Proposition 2.3. Letting n→∞, we obtain

−
ˆ
Qτ

(u(t, x)− u(t, x))+ φ′(t) dtdx ≤ 0.

Since this is true for all 0 ≤ φ ∈ D((0, τ)), it impliesˆ
RN

(u(t, x)− u(t, x))+ dx ≤
ˆ
RN

(u(0)− u0)+ dx≤ 0 for all t ≥ 0.

3 The speed-limited porous medium equation

With Theorem 2.6 at hand, we can now focus on the analysis of the waiting time phenomenon.
Here and in the next section we will prove Theorem 1.1. We begin by considering (1.4), which is
slightly simpler since the subsolutions we construct are continuous: they are of the form

u(t, x) = b
1

1−M

(
`− 1

1 + wt

) 1
1−M

(
1− |x|2

(1 + wt)2

) 1
M−1

+

. (3.1)

The form of the x-depending factor is chosen such that the subsolution’s support evolves with
constant speed w; the exponent 1/(M − 1) is chosen in order to ease the calculation of ∇uM−1,
but we expect that this choice is unessential. The form of the first, x-independent factor is then
chosen consistently, and its exponent is dictated by the homogeneity of (1.4) for |∇uM−1| � 1
(see (3.11) below). The following holds:
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Lemma 3.1. For all b > 0, ` > 1, K > 0, and w > 0 such that

2N(M − 1)

b
≤ w ≤ 1√

1 + b2

4 (`− 1 + `
K )2

, (3.2)

the function u defined in (3.1) is a subsolution to (1.4) in
(
0, 1

wK

)
× RN .

Proof. (1) Rewriting entropy inequalities. Since u ∈ W 1,1((0, 1/(wK)) × RN ), (2.5) reduces to
a single inequality:

S(T 0(u))h(T 0(u),∇T 0(u)) + T (S0(u))h(S0(u),∇S0(u))

≤ −(JTS(u))t + div(T (u)S(u)a(u,∇u)) (3.3)

for all S, T ∈ T +. Notice that, since ∇S(u) = ∇S0(u) and u = S0(u) on supp(∇S0(u)), we
have

T (u)a(u,∇u) · ∇S(u) = T (u)a(u,∇u) · ∇S0(u)

= T (S0(u))a(S0(u),∇S0(u)) · ∇S0(u)

= T (S0(u))h(S0(u),∇S0(u)). (3.4)

Analogously,
S(u)a(u,∇u) · ∇T (u) = S(T 0(u))h(T 0(u),∇T 0(u)). (3.5)

In view of (3.4) and (3.5), (3.3) translates into

u∇uM−1 · ∇u√
1 + |∇uM−1|2

(S(u)T ′(u) + T (u)S′(u))

≤ −T (u)S(u)ut + div

(
T (u)S(u)

u∇uM−1√
1 + |∇uM−1|2

)
,

i.e.

T (u)S(u)

(
ut − div

(
u∇uM−1√

1 + |∇uM−1|2

))
≤ 0.

Since T (u)S(u) ≥ 0, (3.3) is equivalent to

ut ≤ div

(
u∇uM−1√

1 + |∇uM−1|2

)
. (3.6)

(2) Constructing subsolutions. We look for subsolutions of the form

u(t, x) =
1

A(t)
f

(
x

B(t)

)
, f(y) = (1− |y|2)

1
M−1 , B(t) = 1 + wt.

We notice that

ut = −
A′

A2
f − B′

AB
∇yf · y (3.7)
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and that, since∇yfM−1 = −2y,

div

(
u∇uM−1√

1 + |∇uM−1|2

)
=

1

AMB2
divy

(
f∇yfM−1

D

)
= − 2

AMB2
divy

(
fy

D

)
,

where

D :=
√
1 + |∇uM−1|2 =

√
1 +

4|y|2
A2M−2B2

.

Therefore

div

(
u∇uM−1√

1 + |∇uM−1|2

)
= − 2

AMB2

(
Nf

D
+
y · ∇yf
D

+ |y| d

d|y|

(
f

D

))
,

and after straightforward computations we obtain that

div

(
u∇uM−1√

1 + |∇uM−1|2

)
= − 2y · ∇yf

AMB2D
− 2Nf

AMB2D3

(
1 +

N − 1

N

4|y|2

A2M−2B2

)
. (3.8)

Observing that ∇yf(y) · y ≤ 0 , (3.7) and (3.8) show that (3.6) is implied by the following two
inequalities:

A′

A2
≥ 2N

AMB2
·

(
1 + (N−1)

N
4|y|2

A2(M−1)B2

)
(
1 + 4|y|2

A2(M−1)B2

)3/2 , (3.9)

B′

AB
≤ 2

AMB2
(
1 + 4|y|2

A2(M−1)B2

)1/2 . (3.10)

Since the second factor on the right-hand side of (3.9) is decreasing with respect to 4|y|2
A2(M−1)B2 ,

(3.9) is in turn implied by

A′

A2
≥ 2N

AMB2
, i.e. (AM−1)′B2 ≥ 2N(M − 1). (3.11)

Therefore, choosing

A(t) = b
1

M−1

(
`− 1

1 + wt

) 1
M−1

,

we see that (3.11) is satisfied if

(AM−1)′B2 = bw ≥ 2N(M − 1) . (3.12)

On the other hand, (3.10) is implied by

w = B′ ≤ min
t,y

1√
A2(M−1)B2

4 + |y|2
=

1√
1 + b2

4

(
`− 1 + `

K

)2 , (3.13)

where in the last step we used

A2(M−1)B2 = b2(`− 1 + `wt)2 ≤ b2
(
`− 1 +

`

K

)2

for all t ∈ (0, 1
wK ).

Combining the conditions in (3.12) and (3.13), we obtain the condition in (3.2) and the proof is
complete.
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By scaling, we obtain the following family of subsolutions.

Corollary 3.2. If b > 0, ` > 1 K > 0, and w > 0 are such that (3.2) holds, then for any s > 0
and any ξ ∈ RN the function

u(t, x) = b
1

1−M

(
`

s
− 1

s+ wt

) 1
1−M

(
1− |ξ − x|

2

(s+ wt)2

) 1
M−1

+

, (3.14)

is a subsolution to (1.4) in (0, s
wK )× RN .

Proof. We use the scaling invariance of (1.4) with respect to the following transformations:

u = Uu, x = UM−1x, and t = UM−1t .

By Lemma 3.1, provided (3.2) holds,

u(t, x) =
1

U
u(UM−1t, UM−1x)

=
b

1
1−M

U

(
`− 1

1 + wUM−1t

) 1
1−M

(
1− U2M−2|x|2

(1 + wUM−1t)2

) 1
M−1

+

= b
1

1−M

(
`

U1−M −
1

U1−M + wt

) 1
1−M

(
1− |x|2

(U1−M + wt)2

) 1
M−1

+

is a subsolution to (1.4) in
(
0, U

1−M

wK

)
× RN . The result follows replacing U1−M by s, (t, x) by

(t, x), and using translation invariance in space.

We are ready to prove Theorem 1.1 in the case of Equation (1.4).

Proof of Theorem 1.1: Equation (1.4). Up to a translation and a rotation, we assume without los-
ing generality that x0 = 0 and that v0 = (−1, 0, . . . , 0). We consider the case L < +∞ in (1.10)
(from which the case L = +∞ follows immediately).

We wish to choose the parameters in Lemma 3.1 so that the function u given in (3.14) is a
subsolution to (1.4) and u(0) ≤ u0. We fix

K = 2N(M − 1). (3.15)

In Corollary (3.2) we let w = K/b, so that condition (3.2) reduces to

K

b
≤ 1√

1 + b2

4 (`− 1 + `
K )2

,

that is,
4

b2
+

(
`− 1 +

`

K

)2

≤ 4

K2
. (3.16)

By (1.10), R > 0 exists such that

u(0, x) ≥ L

2
|x|

2
M−1 in B(Rv0, R) ⊆ supp(u0) .
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Let ξ = r1v0 with
0 < r1 ≤ min{R,L1−M}.

Then u(0) ≤ u0 if

b
1

1−M

(
`− 1

s

) 1
1−M

(
1− |r1v0 − x|

2

s2

) 1
M−1

+

≤ L

2
|x|

2
M−1 in B(Rv0, R) ,

which may be rewritten as

1

sb(`− 1)

(
s2 − |r1v0 − x|2

)
+
≤ LM−1

2M−1
|x|2 in B(Rv0, R) . (3.17)

We are now going to choose ` > 1, s > 0, and b > 0 such that (3.16) and (3.17) hold. Let

b =
α2M−1L1−M

s(`− 1)
> 0, (3.18)

where α > 0, depending only on N and M , will be chosen below. Then(3.17) reduces to

s2 ≤ |r1v0 − x|2 + α|x|2 in B(Rv0, R).

Since the minimum value of the right-hand side is attained at x = r1v0/(α + 1), (3.17) is in turn
implied by

s :=
α

α+ 1
r1. (3.19)

In view of (3.18) and (3.19), (3.16) may be rewritten as

4r21(`− 1)2

(α+ 1)24M−1L2(1−M)
+

(
`− 1 +

`

K

)2

≤ 4

K2
. (3.20)

Since r1 ≤ L1−M , (3.20) is implied by

4(`− 1)2

(α+ 1)24M−1
+

(
`− 1 +

`

K

)2

≤ 4

K2
.

Therefore we can choose `, depending only on N and M , so close to 1 that (3.16) holds. Hence u
given in (3.14) is a subsolution to (1.4) in

(
0, s

wK

)
× RN and u(0) ≤ u0.

We finally estimate t∗. The time Tu at which the support of u reaches x0 = 0 is given by

Tu
(3.14)
=

r1 − s
w

(3.19)
=

r1
(α+ 1)w

=
s

αw
.

We now choose α = 2K (recall (3.15)), so that Tu < s
wK . Therefore u does reach x0 = 0, and

recalling that w = K/b we obtain

Tu =
s

αw
=

sb

αK

(3.18)
=

2M−1L1−M

K(`− 1)
=:WL1−M ,

with W depending only on N and M . Therefore t∗ ≤ T∗, which concludes the proof of Theorem
1.1 in the case of Equation (1.4).
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4 The relativistic porous medium equation

As we observed in the introduction, in case of (1.3) it is natural to look for subsolutions with a
jump discontinuity at the boundary of their support:

u(t, x) =
1

A(t)

(
1 +

√
r(t)2 − |x|2

)
χQ0(t, x), (4.1)

where

A(t) = [(m− 1)(1 + γt)]
1

m−1 , (4.2)

r(t) = r0 +
1

γ(m− 1)
log(1 + γt) , (4.3)

Q0 = {(t, x) : t ∈ (0, T ), x ∈ B(0, r(t))} . (4.4)

The square root in (4.1) is chosen for convenience and we expect that it can be replaced by any
exponent smaller than 1 (see (1.15)). As we discussed in the introduction, the functions A and r
are chosen so that r′ = A1−m –which is dictated by a Rankine-Hugoniot condition at the jump
set ∂Q0, see (4.11) below– and that (Am−1)′ is constant –which is dictated by homogeneity, see
(4.14) below.

In this section we prove:

Proposition 4.1. Let N ≥ 1, m > 1, T > 0 and r1 > 0. Then there exist a value γ0 ≥ 1 such that
the function u defined by (4.1)-(4.4) is a subsolution to (1.3) for any γ ≥ γ0 and any r0 ∈

[
r1
2 , r1

]
.

Proof. (1) Splitting entropy inequalities. Let u as in (4.1). We note that (2.5) may be rewritten in
form of two inequalities between measures, splitting Lebesgue and singular parts:

S(T 0(u))h(T 0(u),∇T 0(u)) + T (S0(u))h(S0(u),∇S0(u))

≤ −(JTS(u))t + (div(T (u)S(u)a(u,∇u)))a (4.5)

and

|Ds
xJSϕ(T

0(u))|+ |Ds
xJTϕ(S

0(u))|
≤ −(Dt(JTS(u)))

s + (div(T (u)S(u)a(u,∇u)))s, (4.6)

where S, T ∈ T + and µa, resp. µs, denote the absolutely continuous, resp. singular, part of the
Radon-Nikodym decomposition of a measure µ with respect to the Lebesgue measure (see [1,
Theorem 1.28]). We discuss the two inequalities separately.

(2) Subsolutions on the jump set. Let us check (4.6). We note that the singular parts are con-
centrated on |x| = r(t): hence

|Ds
xJSϕ(T

0(u))| =

(ˆ T 0(u+)

T 0(u−)
S(σ)σm dσ

)
HN−1x{|x| = r}

=

(ˆ u+

u−
S(σ)T ′(σ)σm dσ

)
HN−1x{|x| = r}
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and, analogously,

|Ds
xJTϕ(S

0(u))| =

(ˆ u+

u−
S′(σ)T (σ)σm dσ

)
HN−1x{|x| = r}.

Therefore

|Ds
xJSϕ(T

0(u))|+ |Ds
xJTϕ(S

0(u))|

=

(ˆ u+

0
(S(σ)T (σ))′σm dσ

)
HN−1x{|x| = r} . (4.7)

For the first term on the right-hand side of (4.6), arguing as in [29, proof of (3.3)] we obtain

−(Dt(JTS(u)))
s = −r′

(ˆ u+

0
S(σ)T (σ) dσ

)
HN−1x{|x| = r}

= −r′
(
u+T (u+)S(u+) −

ˆ u+

0
(S(σ)T (σ))′σ dσ

)
HN−1x{|x| = r}, (4.8)

where we used one integration by parts in the last equality. Finally, for the the second term on the
right-hand side of (4.6), we have

(div(T (u)S(u)a(u,∇u)))s = − lim
|x|→r(t)−

T (u)S(u)a(u,∇u) · x
r
HN−1x{|x| = r}.

The fact that∇u blows up at the boundary implies that

lim
|x|→r(t)−

a(u,∇u) · x
r
= −(u+)−m.

Therefore

(div(T (u)S(u)a(u,∇u)))s = T
(
u+
)
S
(
u+
)
(u+)m HN−1x{|x| = r}. (4.9)

Combining (4.7), (4.8), and (4.9), we see that (4.6) is equivalent to

ˆ u+

0
(S(σ)T (σ))′σ(σm−1 − r′) dσ ≤ u+T (u+)S(u+)((u+)m−1 − r′). (4.10)

Since r and A have been chosen such that

r′ = A1−m = (u+)m−1, (4.11)

the left-hand side of (4.10) is negative (since (ST )′ ≥ 0) and the right-hand side of (4.10) is zero.
Hence (4.6) holds.

(3) Subsolution in the bulk. In Q0, arguing as in Step (1) in the proof of Lemma 3.1, we obtain
that (4.5) is equivalent to

ut ≤ div

(
um∇u√
u2 + |∇u|2

)
in Q0. (4.12)
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We look for subsolutions of the form (4.1). For notational convenience, we let

η(t, x) :=
√
r(t)2 − |x|2,

D(t, x) :=
√
η2(1 + η)2 + |x|2,

E(t, x) := (1 + η)2 + η(1 + η)− 1.

Then, we compute

ut = −
A′

A2
(1 + η) +

rr′

Aη

and, since∇η = −x/η,

A(t)m div

(
um∇u√
u2 + |∇u|2

)
= −div

(
(1 + η)mx

D

)
= −

(
N

(1 + η)m

D
+ |x|

(
d

d|x|
(1 + η)m

D

))
= −

(
N

(1 + η)m

D
+
|x|2(1 + η)mE

D3
− m|x|2(1 + η)m−1

ηD

)
=: F (|x|, r).

Therefore u satisfies (4.12) if and only if

−Am−2A′(1 + η) +Am−1
r

η
r′

(4.11)
= −Am−2A′(1 + η) +

r

η
≤ F (r, |x|) . (4.13)

Since A has been chosen such that
Am−2A′ = γ, (4.14)

it follows from (4.13) that (4.12) is satisfied if and only if

γ ≥
r
η − F (r, |x|)

1 + η
:= G(r, |x|) . (4.15)

Observe that γ 7→ 1
γ log(1 + γt) is nonincreasing. Therefore, for γ ≥ 1 and t ≤ T we have

r1
2
≤ r(t) = r0 +

1

γ(m− 1)
log(1 + γt) ≤ r0 +

1

(m− 1)
log(1 + t)

≤ r1 +
1

(m− 1)
log(1 + T )

Hence, by (4.15), (4.12) is satisfied if

γ ≥ γ0 := sup
(r,|x|)∈H

G(r, |x|) ,

where

H =

{
(r, y) ∈ R2

+ : r ∈
[
r1
2
, r1 +

1

(m− 1)
log(1 + T )

]
, y ∈ [0, r)

}
.
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Since η =
√
ρ2 − y2 → 0 as (ρ, y)→ (r, r), we have

G(ρ, y)η =
ρ−my2(1 + η)m−1D−1

1 + η
+ o(1)→ r(1−m) < 0 as (ρ, y)→ (r, r).

In addition, G(r, y) is continuous in H: therefore γ0 is finite. Since γ0 only depends on N , m, T ,
and r1, the proof is complete.

Using the invariance of (1.3) with respect to

û = Uu, and t̂ = Um−1t

and the translation invariance of (1.3) with respect to x, we immediately obtain:

Corollary 4.2. Let N ≥ 1, m > 1, T > 0, and r1 > 0. Then γ0≥ 1 exists such that

u(t, x) = Uu(Um−1t, x− ξ) (4.16)

is a subsolution to (1.3) in (0, U1−mT )×RN for any γ ≥ γ0, any r0 ∈ [r1/2, r1], any U > 0, and
any ξ ∈ RN , where u is defined by (4.1)-(4.4).

We are ready to prove Theorem 1.1 for equation (1.3).

Proof of Theorem 1.1: Equation (1.3). As for (1.4), we may assume that x0 = 0, v0 = (−1, 0, . . . , 0),
and L < +∞ in (1.9).

Let ξ = r1v0 and T = 4m+1L1−m. We will choose the parameters r1 > 0, r0 ∈ [r1/2, r1],
and U > 0 in Corollary 4.2 such that the function u(t, x) in (4.16) is a subsolution to (1.3) up to
time U1−mT . By (1.9), R > 0 exists such that

u(0, x) ≥ L

2
|x|

1
m−1 in B(Rv0, R).

Hence, provided that r1 ≤ R, it suffices to verify that

u(0, x)m−1 =
Um−1

m− 1

(
1 +

√
r20 − |x− r1v0|2

)m−1
≤ Lm−1

2m−1
|x| in B(r1v0, r0). (4.17)

Since |x| ≥ r1 − r0 in B(r1v0, r0), (4.17) is implied by

Um−1

m− 1
(1 + r0)

m−1 ≤ Lm−1

2m−1
(r1 − r0). (4.18)

We fix

r1 ≤ min

{
R,

1

m− 1
, 1

}
, γ = max(γ0, 2), and r0 = r1

γ − 1

γ

(note that r12 ≤ r0 < r1 since γ ≥ 2). Then (4.18) reduces to

Um−1

m− 1

(
1 + r1

γ − 1

γ

)m−1
≤ Lm−1

2m−1
r1
γ
,
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which, since r1 ≤ 1, is implied by

2m−1Um−1

m− 1
≤ Lm−1

2m−1
r1
γ
,

which in turn holds true choosing

Um−1 = (m− 1)
Lm−1

4m−1
r1
γ
. (4.19)

The time Tu at which the support of u reaches x0 = 0 is implicitly defined by

r1 = r1
γ − 1

γ
+

1

γ(m− 1)
log(1 + γUm−1Tu),

or, equivalently,

r1 =
1

(m− 1)
log(1 + γUm−1Tu),

that is, recalling that (m− 1)r1 ≤ 1,

Tu =
e(m−1)r1 − 1

γUm−1
(4.19)
= 4m−1L1−m e

(m−1)r1 − 1

(m− 1)r1
≤ 4mL1−m:=WL1−m < T.

Therefore t∗ ≤WL1−m, which concludes the proof of Theorem 1.1.
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