
Preface

Our aim in organizing this CIME Course was to present to young students and re-

searchers the impressive recent achievements in differential geometry and topology

obtained by means of techniques based on Ricci flow. We then invited some of the

leading researchers in the field of geometric analysis and low-dimensional geome-

try/topology to introduce some of the central ideas in their work. Here is the list of

speakers together with the titles of their lectures:

• Gérard Besson (Grenoble) – The differentiable sphere theorem (after S. Brendle

and R. Schoen).

• Michel Boileau (Toulouse) – Thick/thin decomposition of three-manifolds and

the geometrization conjecture.

• Carlo Sinestrari (Roma “Tor Vergata”) – Singularities of three-dimensional Ricci

flows.

• Gang Tian (Princeton) – Kähler–Ricci flow and geometric applications.

The summer school had around 50 international attendees (mostly PhD students

and PostDocs). Even though they were sometimes technically heavy, the lectures

were followed by all the students with interest. The participants were very satisfied

by the high quality of the course. The not-so-intense scheduling of the lectures gave

the students many opportunities to interact with the speakers, who were always very

friendly and available for discussion. It should be mentioned that the wonderful

location and the careful CIME organization were also greatly appreciated.

We think that the fast-growing field of geometric flows and more generally of

geometric analysis, which has always received great attention in the international

community, but which is still relatively “young” in Italy, will benefit from its diffu-

sion by this CIME Course.

We briefly describe the contents of the lectures collected in this volume.

Gérard Besson presented the impact of the Ricci flow technique on the theory of

positively curved manifolds, the central result being the differentiable 1/4-pinched

sphere theorem, proved by Brendle and Schoen. It says that a complete, simply
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connected Riemannian manifold whose sectional curvature varies in (1/4,1] is dif-

feomorphic to the standard sphere.

The problem was first proposed by H. Hopf, then in 1951 H.E. Rauch showed that

a complete Riemannian manifold whose sectional curvature is positive and varies

between two numbers whose ratio is close to 1 has a universal cover homeomorphic

to a sphere. In the 1960s M. Berger and W. Klingenberg obtained the optimal result:

a simply connected Riemannian manifold which is strictly 1/4-pinched is homeo-

morphic to the sphere. The analogous diffeomorphic conclusion remained open until

S. Brendle and R. Schoen proved the following.

Theorem(S. Brendle–R. Schoen, 2008) Let M be a pointwise strictly 1/4-pinched

Riemannian manifold of positive sectional curvature. Then M carries a metric of

constant sectional curvature. Hence, it is diffeomorphic to the quotient of a sphere

by a finite subgroup of O(n).

The proof relies on the use of the Ricci flow introduced by R. Hamilton and

culminating in the work of G. Perelman. The idea is to construct a deformation

of the Riemannian metric, evolving it by means of Ricci flow toward a constant

curvature metric. We recall that this was the method that R. Hamilton used in his

seminal paper, proving the following theorem.

Theorem(R. Hamilton, 1982) Let M be a closed 3-dimensional Riemannian man-

ifold which carries a metric of positive Ricci curvature, then it also carries a metric

of positive constant curvature.

The lectures also focus on the extension to higher dimensions of the following

result, due to C. Böhm and B. Wilking. Recall that a curvature operator is 2-positive

if the sum of its two smallest eigenvalues is positive.

Theorem(C. Böhm–B. Wilking, 2008) Let M be a closed Riemannian manifold

whose curvature operator is 2-positive, then M carries a constant curvature metric.

In the lectures the connection between this method and the algebraic properties of

the Riemann curvature operator is stressed, the main focus being the identification

of those properties of the curvature operator which are preserved under the Ricci

flow.

In his lectures, Michel Boileau gave an introduction to the geometrization of 3-

manifolds. Sections 1 and 2 cover Thurston’s classification of the eight 3-dimensional

geometries and the characterization of geometric (and Seifert) closed 3-manifolds

in terms of basic topological properties. This follows by combining Thurston’s hy-

perbolization theorems (in particular the characterization of hyperbolic 3-manifolds

that are fibered over S1), Perelman’s general geometrization theorem, and Agol’s

recent (2013) proof of a deep conjecture of Thurston that closed hyperbolic 3-

manifolds are “virtually fibered”.

Section 3 discusses: (1) A central result of classical 3-dimensional geometric

topology, that is, the canonical decomposition of a 3-manifold by splitting it along
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spheres and tori; (2) Thurston’s geometrization conjecture. This roughly says that

every piece of a canonical decomposition is geometric together with a prediction on

the geometry carried by the piece in terms of basic topological properties. It includes

as a particular case the celebrated Poincaré conjecture; (3) Thurston’s fundamental

hyperbolization theorem for Haken manifolds.

Perelman’s proof of the general geometrization theorem deals with all of these

topics and also allows us to recover, as a by-product, the canonical decomposition

itself. This is done by completing the program based on Ricci flow with surgeries,

first proposed by R. Hamilton. This is the subject of Boileau’s notes from Section 4.

Since the appearance of Perelman’s three celebrated preprints, several simplifi-

cations and variants of the original proofs have been developed by various authors.

At the end of the day, we can say that the Poincaré conjecture (that is, the case

when the Ricci flow with surgery becomes extinct in finite time) is in a sense the

“simplest” case. The general case (when the Ricci flow with surgery exists at all

times, which includes the complete hyperbolization theorem) requires non-trivial

extra arguments, in particular to obtain a key non-collapsing Theorem. In Perelman’s

original work these come from the theory of Alexandrov spaces. Bessières, Besson,

Boileau, Maillot, and Porti developed instead an alternative approach where the ba-

sic tools are Thurston’s hyperbolization theorem for Haken manifolds and some

well established properties of Gromov’s simplicial volume, allowing one to bypass

the need for the (somewhat more exotic) theory of Alexandrov spaces. Boileau’s

notes are largely based on the monograph

L. Bessières, G. Besson, M. Boileau, S. Maillot and J. Porti, Geometrisation of 3-

manifolds, EMS Tracts in Mathematics 13, 2010.

In this tract, the authors developed a slightly different notion of surgery by defin-

ing the so-called Ricci flow with bubbling-off. Actually, one might roughly say that

the Ricci flow with bubbling-off reduces the general hyperbolization theorem to

Thurston’s hyperbolization theorem for Haken manifolds.

Carlo Sinestrari provided an extensive introduction to Ricci flow by first giv-

ing a survey of the basic results and examples, then concentrating on the analysis

of the singularities of the flow in the three-dimensional case, which is needed in

Hamilton and Perelman’s surgery construction. After reviewing the properties of

the Ricci flow and the fundamental estimates of the theory, such as Hamilton’s Har-

nack differential inequality, the Hamilton–Ivey pinching estimate and Perelman’s

no collapsing result, he presented Perelman’s analysis of kappa-solutions and the

canonical neighborhood property which gives a full description of the singular be-

havior of the solutions in dimension 3. All these results are central to the proof of

the Poincaré and geometrization conjectures.

The exposition is quite accessible to non-experts. Indeed, the presentation is of-

ten informal and the proofs are omitted except in some simple and significant cases,

focusing more on the description of the results and their applications and conse-

quences. A final detailed bibliographical section gives to the interested reader all

the references needed for an advanced study of these topics.
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Gang Tian’s expository notes, based on his lectures, discuss some aspects of the

Analytic Minimal Model Program through Kähler–Ricci flow, developed in collab-

oration with other authors, particularly, J. Song and Z. Zhang. Very stimulating open

problems and conjectures are also presented.

Section 2 contains a detailed account of the sharp version of the Hamilton–

DeTurck local existence theorem, which holds in the Kähler case: the maximal time

Tmax ∈ (0,+∞] such that the flow exists on the interval [0,Tmax) is precisely de-

termined in terms of a cohomological property of the initial Kähler metric. As a

corollary, one deduces that Tmax =+∞ for every initial metric on a compact Kähler

manifold with a numerically positive canonical bundle.

In Section 3 the limit singularities that can arise when t → Tmax < +∞ are an-

alyzed. After having established a general convergence theorem (Theorem 4.3.1),

one faces questions concerning regularity and the geometric properties of the limit.

A combination of partial results (particularly in the case of projective varieties and

when one can apply deep results of algebraic geometry) and well motivated conjec-

tures outlines a pregnant scenario.

Sections 4 and 5 discuss the construction of a Kähler–Ricci flow with surgery

(assuming the truth of a conjecture stated in Section 3) and its asymptotic behavior.

Numerous conjectures arise throughout this discussion such as: the characteriza-

tion (up to birational isomorphism) of “Fano-like” manifolds as those whose flow

becomes extinct at a finite time; the characterization of uniruled manifolds (up to

birational isomorphism) as those whose flow collapses in finite time; and the exis-

tence of a flow with surgery globally defined in time and with only finitely many

surgery times.

In Section 6 algebraic surfaces are considered, showing how most of the program

is carried out in this case.

We are pleased to express our thanks to the speakers for their excellent lectures

and to the participants for contributing with their enthusiasm to the success of the

Summer School.

The speakers, the participants and the CIME organizers collectively created a

stimulating, rich, pleasant and friendly atmosphere at Cetraro. For this reason we

would finally like to thank the Scientific Committee of CIME and, in particular,

Pietro Zecca and Elvira Mascolo.

Riccardo Benedetti and Carlo Mantegazza
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