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Abstract. In the framework of rate independent processes, we present a variational

model of quasi-static crack growth in hydraulic fracture. We first introduce the energy
functional and study the equilibrium conditions of an unbounded linearly elastic body

subject to a remote strain ε ∈ R and with a sufficiently regular crack Γ filled by a

volume V of incompressible fluid. In particular, we are able to find the pressure p of
the fluid inside the crack as a function of Γ, V , and ε . Then, we study the problem

of quasi-static evolution for our model, imposing that the fluid volume V and the fluid

pressure p are related by Darcy’s law. We show the existence of such an evolution, and
we prove that it satisfies a weak notion of the so-called Griffith’s criterion.
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1. Introduction

Hydraulic fracture studies the process of crack growth in rocks driven by the injection of
high pressure fluids. The main use of hydraulic fracturing is the extraction of natural gas or
oil. In these cases, a fluid at high pressure is pumped into a pre-existing fracture through a
wellbore, causing the enlargement of the crack.

In biology, a similar phenomenon has been identified in epithelial tissues. Here, an elastic
body with initial cracks (a cell monolayer) is bonded and hydraulically connected to a
poroelastic material, typically a hydrogel. The evolution of the fractures is due to the
motion of the solvent inside the poroelastic body: when the system is under tension or
compression, the fluid experiences a change of pressure and is driven towards the existing
cracks at cell-cell junctions.

In [16] the authors develop a 2-dimensional model which captures the main features of
the phenomenon mentioned above. The system is assumed to be unbounded and composed
by a linearly elastic body R2

+ := {x = (x1, x2) ∈ R2 : x2 > 0} with an initial crack Γ0

starting from the origin and lying on the x2 -axis. The elastic material is supposed to be
homogeneous, isotropic, and impermeable. The fracture can only move along a straight line
and is hydraulically connected to an infinite hydrogel substrate, which contains a solvent
modeled as an incompressible fluid.

Since the above model is the starting point of our investigation, let us briefly describe
the evolution problem considered in [16]. As usual in the study of hydraulic fracturing, the
inertial forces are ignored. Given T > 0, the whole system is supposed to be subject to
a remote time-dependent strain field with modulus ε(t) ∈ R , t ∈ [0, T ] , which generates a
pressure gradient ∇p(t) in the hydrogel. According to Darcy’s law, the exchange of fluid
volume V (t) between the fracture and the poroelastic material should be described by the

equation V̇ (t) = −∇p(t), where the dot denotes the time derivative. Motivated by the

SISSA 29/2016/MATE.

1



2 STEFANO ALMI

small scale of the problem, the authors approximate the pressure gradient with the finite
difference (p∞(t) − p(t))/` , where p∞(t) is the fluid pressure generated by ε(t) far from
the crack inlet, p(t) is the pressure of the fluid inside the crack, and ` > 0 is a length
scale which, for simplicity, we will assume to be equal to 1. Using the asymptotic expansion
formulas of linear elastic fracture mechanics in a half plane (see, e.g., [20]), the authors study
the qualitative properties of the evolution of the crack. In particular, their analysis is based
on the Griffith’s criterion (see [12]): whenever the so-called stress intensity factor reaches
a critical value (the toughness of the material), the fracture can grow. We notice that, in
general, the above approach needs some regularity hypotheses on the crack evolution, such
as a prescribed and sufficiently smooth crack path.

Starting from the key ideas of [16], the aim of this paper is to approach the problem of
quasi-static hydraulic crack growth in the general setting of rate independent processes [17],
adapting the variational model of brittle fracture [9] to our purposes. In particular, we
look for an energetic formulation of the evolution problem based on global stability, energy
balance, and, in this case, Darcy’s law.

In order to be more precise on the notion of evolution we want to discuss, let us start
with a brief presentation of the mathematical setting we are going to consider. The ge-
ometry of the problem is similar to the one presented in [16]: an unbounded elastic body
filling R2

+ is adhered and hydraulically connected to an infinite hydrogel substrate. The
most relevant difference, which is also one of the fundamental features of the variational
model of fracture [9], is that we do not have to assume to know a priori the crack path.
Indeed, the behavior of the crack set will be governed by the energy minimization procedure
(global stability) described below. Therefore, in comparison with [16], we are able to enlarge
the class of admissible fractures, keeping some regularity properties: every crack has to be
the graph of a C1,1 -function starting from the origin and with first and second derivatives
uniformly bounded by a constant η (see Definition 3.1 for further details and comments).
Hence, the family Cη of admissible cracks depends on a positive parameter η which is fixed
once and for all.

For every t ∈ [0, T ] , we assume to know the “far” pressure p∞(t) of the hydrogel and the
remote strain field acting on the system ε(t)I , where ε(t) ∈ R and I is the identity matrix of
order 2. From a mathematical viewpoint, it is not necessary, as it has been done in [16], to
make explicit the dependence of p∞ on ε , so that with our approach we can also describe a
more general situation in which an incompressible fluid is injected into a pre-existing crack
with an initial pressure p∞ . For technical reasons, we suppose p∞, ε ∈ C([0, T ]) , the space
of continuous functions from [0, T ] to R .

As in [16], we suppose that the elastic part of the system is homogeneous, isotropic, and
impermeable outside of the crack, and behaves accordingly to the rules of linear elasticity,
so that it is fully characterized by a constant elasticity tensor C .

The presence of the far strain field ε(t)I is intended in the following way: at infinity, the
elastic body has to accommodate for a displacement of the form ε(t) id , where id stands for
the identity map in R2 . Equivalently, the strain of the body, represented by the symmetric
part of the gradient Eu of the displacement u : R2

+ → R2 , has to be close to ε(t)I far from
the origin. In our setting, we will require Eu− ε(t)I to be an L2 -function. This implies that
the usual stored elastic energy

(1.1)
1

2

∫
R2

+\Γ

CEu ·Eudx

associated to a displacement u and a crack Γ ∈ Cη can not be finite, unless ε = 0 (the
dot in (1.1) denotes the scalar product between matrices). Since we look for a meaningful
energetic formulation of the problem of quasi-static evolution in hydraulic fracture, we have,
of course, to deal with a finite energy. Therefore, the stored elastic energy (1.1) is replaced
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by the renormalized stored elastic energy

(1.2) Eel(u,Γ, ε(t)) :=
1

2

∫
R2

+\Γ
C(Eu− ε(t)I) · (Eu− ε(t)I) dx .

We refer to Section 3 for a rigorous derivation of (1.2).
According to the pioneering work by Griffith [12] and to the mathematical model devel-

oped in [9], the fracture process is governed by the competition between the renormalized
stored elastic energy (1.2) and the energy dissipated by the crack production, which is as-
sumed to be of the form

(1.3) κH1(Γ) for every Γ ∈ Cη ,

where H1 denotes the 1-dimensional Hausdorff measure in R2 and κ is a positive constant
related to the toughness of the material. Therefore, the total energy E of the system is the
sum of (1.2) and (1.3), i.e.,

(1.4) E(u,Γ, ε(t)) := Eel(u,Γ, ε(t)) + κH1(Γ) .

Moreover, since we work in a quasi-static setting, which means that at every instant
t ∈ [0, T ] we assume that the system is at the equilibrium, the evolution is given in terms of
a reduced energy Em(t,Γ, V ), which is obtained from (1.4) by minimizing with respect to u
in a certain class of admissible displacements. We refer to Sections 4 and 5 for the precise
definition of Em .

In this mathematical framework, a quasi-static evolution is described by two functions
defined on the interval [0, T ] : the fracture t 7→ Γ(t) and the volume t 7→ V (t) of the fluid
inside the crack, to which corresponds a function t 7→ p(t) standing for the fluid pressure into
the fracture. The notion of evolution is based on the following properties (see Definition 5.1):

• global stability condition: for every t ∈ [0, T ] the crack set Γ(t) minimizes the re-
duced energy Em(t,Γ, V (t)) among all admissible fractures Γ ∈ Cη containing Γ(t);

• energy-dissipation balance: the rate of change of the reduced energy along the evo-
lution (Γ, V ) has to be equal to the power expended by the strain ε(t) and by the
fluid pressure p(t) acting on the fracture lips;

• Darcy’s law: the functions V (·), p∞(·) and p(·) are related by the equation

(1.5) V̇ (t) = p∞(t)− p(t) for t ∈ [0, T ] ,

where we have set the length scale ` := 1.

We stress the fact that our definition of quasi-static evolution is variational in nature, since
it is based on energy minimization (global stability condition), which can be interpreted,
together with the energy-dissipation balance, as a weak notion of the Griffith’s criterion. The
advantage of this variational approach is that it allows to study the crack growth problem
in a “derivative free setting”, weakening the a priori regularity requirements needed in [16].

We notice that a problem of quasi-static evolution in hydraulic fracture has already been
considered in [2] in a 3-dimensional setting. However, the starting point of the problem
studied in [2] is completely different, since the authors assumed that the crack path is
known a priori and that the volume V (·) of fluid injected into the crack is a datum. On the
contrary, in this paper the fracture set is free to choose its path and the volume function
t 7→ V (t) is a result of the evolution process.

The plan of the paper is the following: in Section 2 we define the function spaces used
throughout the paper. In Section 3 we make more precise the mathematical framework of the
model: we introduce the class Cη of admissible cracks (Definition 3.1) and the energy which
will drive the quasi-static evolution problem (Proposition 3.3). In Section 4, we analyze
the auxiliary static problem of a linearly elastic body filling R2

+ , subject to a uniform
strain field εI , ε ∈ R , and with a fracture Γ ∈ Cη filled by a volume V ∈ [0,+∞) of
incompressible fluid. According to the variational principles of linear elasticity, the static
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problem is solved by minimizing the total energy of the system among a certain class of
admissible displacements. We determine the equilibrium system satisfied by a solution u of
the static problem (see Remark 4.4) and make more precise the relation between the strain
fields Eu and εI , showing that they are L∞ -close at infinity (see Remark 4.5). Moreover,
in Proposition 4.3 and Remarks 4.8 and 4.10 we determine the value of the pressure p =
p(Γ, V, ε) of the fluid inside the crack.

Eventually, in Section 5 we focus on the evolution problem. The main result of this section
is the existence of a quasi-static evolution of the hydraulic crack growth problem satisfying
the global stability condition, the energy-dissipation balance, and the Darcy’s law (1.5) (see
Definition 5.1 and Theorem 5.2). The proof of this result relies on a time discretization pro-
cedure introduced in [9] and frequently used in the study of rate independent processes [17].

Finally, in Section 6 we discuss some properties of a quasi-static evolution under an
additional assumption of regularity of the crack set Γ(t). More precisely, in Theorem 6.8 we
show that if Γ(t) is a C2,1 -curve for every t ∈ [0, T ] , then a Griffith’s criterion is satisfied
also in our context: the energy release rate, i.e., the derivative of the renormalized stored
elastic energy with respect to the crack length, has to be always less than or equal to the
constant κ defined in (1.3), and the equality is satisfied whenever the crack tip moves with
positive velocity.

2. Preliminaries and notation

For every set E , the symbol 1E stands for the characteristic function of E , i.e., the
function defined by 1E(x) = 1 for x ∈ E and 1E(x) = 0 for x /∈ E . For every δ > 0, we
set

(2.1) Iδ(E) := {x ∈ R2 : d(x,E) < δ} ,

where d(·, E) is the usual distance function from the set E .
For every r > 0 and every x ∈ R2 , we denote by Br(x) the open ball of radius r and

center x , and we set B+
r (x) := Br(x) ∩ R2

+ , where R2
+ := {(x1, x2) ∈ R2 : x2 > 0} . When

x = (0, 0), we use the shorter notation Br and B+
r . We also define Σ := ∂R2

+ = {(x1, x2) ∈
R2 : x2 = 0} , and we denote by νΣ the unit vector (0, 1) normal to Σ.

We say that an open subset Ω of R2 has Lipschitz boundary if for every x ∈ ∂Ω there
exist an open neighborhood U of x , δ > 0, and a Lipschitz function hx : R→ R such that,
up to a change of coordinate system,

Ω ∩ U = {y ∈ U : |y1 − x1| < δ, y2 < hx(y1)} .

We say that ∂Ω has Lipschitz constant L > 0 if hx has Lipschitz constant smaller than L
for every x ∈ ∂Ω.

Throughout the paper H1 stands for the 1-dimensional Hausdorff measure in R2 and K
denotes the set of all compact subsets of R2 .

Given K1,K2 ∈ K , the Hausdorff distance dH(K1,K2) between K1 and K2 is defined
by

dH(K1,K2) := max
{

max
x∈K1

d(x,K2), max
x∈K2

d(x,K1)
}
.

We say that Kh → K in the Hausdorff metric if dH(Kh,K) → 0. We refer to [19] for the
main properties of the Hausdorff metric.

We say that a function K : [0, T ]→ K is increasing if K(s) ⊆ K(t) for every 0 ≤ s ≤ t ≤
T . We recall two results concerning increasing set functions which can be found for instance
in [6, Section 6].

Theorem 2.1. Let H ∈ K and let K : [0, T ] → K be an increasing set function such that
K(t) ⊆ H for every t ∈ [0, T ] . Let K− : (0, T ] → K and K+ : [0, T ) → K be the functions



QUASI-STATIC HYDRAULIC CRACK GROWTH DRIVEN BY DARCY LAW 5

defined by

K−(t) :=
⋃
s<tK(s) for 0 < t ≤ T ,

K+(t) :=
⋂
s<tK(s) fot 0 ≤ t < T .

Then
K−(t) ⊆ K(t) ⊆ K+(t) for 0 < t < T .

Let Θ be the set of points t ∈ (0, T ) such that K+(t) = K−(t) . Then [0, T ] \Θ is at most
countable and K(th)→ K(t) in the Hausdorff metric for every t ∈ Θ and every sequence th
in [0, T ] converging to t .

Theorem 2.2. Let Kh be a sequence of increasing set functions from [0, T ] to K . Assume
that there exists H ∈ K such that Kh(t) ⊆ H for every t ∈ [0, T ] and every h ∈ N . Then
there exist a subsequence, still denoted by Kh , and an increasing set function K : [0, T ]→ K
such that Kh(t)→ K(t) in the Hausdorff metric for every t ∈ [0, T ] .

We denote by M2 the space of square matrices of order 2 with real coefficients, and
by M2

sym , M2
skw the subspaces of M2 of symmetric and skew-symmetric matrices, respec-

tively. For every F ∈ M2 and every i, j = 1, 2, Fij stands for the (i, j)-element of F. We
denote by cof F the cofactor matrix of F. Finally, the scalar product between matrices is
defined by

F ·G := tr(FGT ) for every F,G ∈M2 ,

where the symbol tr stands for the trace of a matrix and GT is the transpose matrix of G.
Let us introduce the main function spaces used in this paper. For every E ⊆ R2 and every

1 ≤ p < +∞ , the space Lp(E;R2) is defined as the set of functions u : E → R2 measurable
and p-integrable. For every function u ∈ Lp(E;R2), ui indicates the i -th component of u .
As before, Lp(E;M2) is the set of functions u : E → M2 measurable and p-integrable. In
both cases, we denote by ‖ · ‖p,E the Lp -norm on E .

For every open set Ω ⊆ R2 and every 1 ≤ p < +∞ , W 1,p(Ω;R2) is the set of functions
u ∈ Lp(Ω;R2) whose gradient ∇u belongs to Lp(Ω;M2). The space W 1,p(Ω;R2) is a
Banach space equipped with the norm ‖u‖W 1,p(Ω) := ‖u‖p,Ω + ‖∇u‖p,Ω . In the case p = 2,

the space W 1,2(Ω;R2) will be denoted by H1(Ω;R2). In particular, H1(Ω;R2) is a Hilbert
space, and we denote its norm by ‖ · ‖H1(Ω) .

We say that u ∈ Lploc(Ω;R2) (resp. u ∈ W 1,p
loc (Ω;R2)) if u ∈ Lp(Ω′;R2) (resp. u ∈

W 1,p(Ω′;R2)) for every Ω′ ⊂⊂ Ω.
Following [21] and [3], we define the space

(2.2) LD2(Ω;R2) := {u ∈ L2
loc(Ω;R2) : Eu ∈ L2(Ω;M2

sym)} ,

where Eu stands for the symmetric gradient of u , namely, Eu = 1
2 (∇u+∇uT ). For every

i, j = 1, 2, Eiju stands for the (i, j)-component of Eu .
We now recall the relationship between the space LD2(Ω;R2) and the space H1(Ω;R2).

Proposition 2.3. Let Ω be a bounded open subset of R2 with Lipschitz boundary. Then
LD2(Ω;R2) = H1(Ω;R2) . In particular, there exists a constant C = C(Ω) such that for
every u ∈ LD2(Ω;R2)

(2.3)

∫
Ω

|∇u|2 dx ≤ C
(∫

Ω

|u|2 dx+

∫
Ω

|Eu|2 dx
)
.

Moreover, if E ⊂⊂ Ω is open, E 6= Ø , then there exists C ′ := C ′(Ω, E) such that

(2.4)

∫
Ω

|∇u|2 dx ≤ C ′
∫

Ω

|Eu|2 dx

for every u ∈ LD2(Ω;R2) with ∫
E

(∇u−∇uT ) dx = 0 .
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Proof. See [7, Section 4] and [5, Appendix]. �

Since in the space LD2(Ω;R2) we can control only the symmetric part of the gradient,
we have that ‖Eu‖2,Ω is not a norm. Indeed, if we define

R := {v : R2 → R2 : v(x) = Ax+ b with b ∈ R2, A ∈M2
skw} ,

the set of rigid motion in R2 , we have that R ⊂ LD2(Ω;R2) and ‖Eu‖2,Ω = 0 for every
u ∈ R .

In Sections 3 and 6 we shall use the following subspace of LD2(Ω;R2) on which ‖Eu‖2,Ω
is a norm. Let Ω be an open subset of R2

+ such that H1(∂Ω ∩ Σ) > 0. For every open
set E ⊂⊂ Ω we define

(2.5) LD2
E(Ω;R2) :=

{
u ∈ LD2(Ω;R2) :

∫
E

u1 dx = 0 and u2 = 0 on Σ
}
.

It is easy to see that LD2
E(Ω;R2) ∩R = {0} .

In the following proposition, we prove that ‖Eu‖2,Ω is a norm on LD2
E(Ω;R2).

Proposition 2.4. Let Ω be an open bounded subset of R2
+ with Lipschitz boundary, and

let E ⊂⊂ Ω , E 6= Ø , be open. Assume that H1(∂Ω∩Σ) > 0 . Then there exists C = C(Ω, E)
such that

(2.6) ‖u‖H1(Ω) ≤ C‖Eu‖2,Ω for every u ∈ LD2
E(Ω;R2) .

Proof. By Proposition 2.3 we have that LD2
E(Ω;R2) ⊆ H1(Ω;R2). To prove (2.6), in view

of (2.3) it is enough to show that

‖u‖2,Ω ≤ C‖Eu‖2,Ω
for some positive constant C .

Let us assume by contradiction that there exists a sequence un in LD2
E(Ω;R2) such

that ‖un‖2,Ω > n‖Eun‖2,Ω . It is not restrictive to assume that ‖un‖2,Ω = 1 for ev-
ery n . From (2.3) we deduce that un is bounded in H1(Ω;R2). Therefore there exists
u ∈ LD2

E(Ω;R2) such that, up to a subsequence, un converges to u weakly in H1(Ω;R2)
and strongly in L2(Ω;R2). In particular ‖u‖2,Ω = 1.

From the strong convergence of Eun to 0 in L2(Ω;M2
sym), we deduce that u ∈ R , and

hence u = 0, which is a contradiction. �

Remark 2.5. Let Ω and E be as in Proposition 2.4. For every λ > 0 let us set Ωλ := λΩ
and Eλ := λE . Then, for every u ∈ LD2

Eλ
(Ωλ;R2) we have

‖u‖2,Ωλ ≤ Cλ‖Eu‖2,Ωλ ,

where C = C(Ω;E) is the constant found in (2.6).

As a straightforward consequence of Proposition 2.4 we have the following corollary.

Corollary 2.6. Let Ω be an open subset of R2
+ with H1(∂Ω∩Σ) > 0 . Let E ⊂⊂ Ω , E 6= Ø ,

be open. Then the space LD2
E(Ω;R2) is a Hilbert space equipped with the norm ‖Eu‖2,Ω .

Finally, we state a stability property of the Korn’s inequality shown in Proposition 2.4.

Proposition 2.7. Let Ωn , Ω∞ be bounded open subsets of R2 with Lipschitz boundaries.
Assume that H1(∂Ωn ∩Σ) > 0 , H1(∂Ω∞ ∩Σ) > 0 , Ωn → Ω∞ in the Hausdorff metric and
that ∂Ωn , ∂Ω∞ have Lipschitz constant L > 0 . Let, in addition, E 6= Ø be an open subset
of
⋂

Ωn . Then, there exists C = C(E) such that, for n sufficiently large, (2.6) holds for
every u ∈ LD2

E(Ωn;R2) .

Proof. The proof can be carried out following the steps of [7, Theorem 4.2] using the results
of Proposition 2.3. �
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For simplicity of notation, from now on we will use the shorter symbols Lp(Ω), W 1,p(Ω),
H1(Ω), LD2(Ω), and LD2

E(Ω), instead of Lp(Ω;R2), Lp(Ω;M2), W 1,p(Ω;R2), H1(Ω;R2),
LD2(Ω;R2), and LD2

E(Ω;R2). Moreover, in view of Corollary 2.6, we will always con-
sider LD2

E(Ω;R2) endowed with the norm ‖Eu‖2,Ω .

3. Mathematical model

We describe the mathematical framework we will consider in our model inspired by [16],
to which we refer for more details on the physical interpretation.

To fix the simplest possible geometry, we consider a system made of an elastic body filling
the whole R2

+ which is adhered to a poroelastic body occupying R2 \ R2
+ .

As we have said in the Introduction, we assume that the incompressible fluid inside the
poroelastic material is subject to a pressure p∞ far from the crack inlet. For technical
reasons, we will assume p∞ ∈ C([0, T ]) .

Let us concentrate on the main features of the elastic part of the system. We assume that
it presents a regular enough initial crack Γ0 . More precisely, we suppose that there exists a
C1,1 -function γ0 : [0, aΓ0

] → R , aΓ0
> 0, defined on the x2 -axis and such that γ0(0) = 0,

γ′0(0) 6= 0, and

Γ0 = graph(γ0) = {(γ0(x2), x2) : x2 ∈ [0, aΓ0 ]} .
In particular, Γ0 ⊆ R2

+ , 0 < H1(Γ0) < +∞ , Γ0 ∩ Σ = {(0, 0)} , and |νΓ0
· νΣ| 6= 1 at the

origin, where νΓ0
denotes the unit normal to Γ0 and the dot stands for the usual scalar

product in R2 . We refer to Remark 5.3 for further comments on Γ0 .
In our model, especially in the evolution problem studied in Section 5, we do not suppose

to know a priori the crack path, which will be a result of an energy minimization procedure
(see Definition 5.1), but we keep a technical regularity assumption on the fracture set, which
is specified in the following definition of the class of admissible cracks.

Definition 3.1. Let η > 0. We define Cη to be the set of all closed curves Γ of class C1,1

in R2
+ such that the following properties hold:

(a) Γ ⊇ Γ0 and Γ \ Γ0 ⊂⊂ R2
+ ;

(b) there exist aΓ > 0 and γ ∈ C1,1([0, aΓ]) such that ‖γ′‖∞,[0,aΓ], ‖γ′′‖∞,[0,aΓ] ≤ η and
Γ = graph(γ) = {(γ(x2), x2) : x2 ∈ [0, aΓ]} .

By definition of Γ0 , we can always find a sufficiently large η so that ‖γ′0‖∞,[0,aΓ0
] ≤ η

and ‖γ′′0 ‖∞,[0,aΓ0
] ≤ η . Clearly, the requirements of Definition 3.1 ensure that for every

Γ ∈ Cη there are no self-intersections. Moreover, for every Γ ∈ Cη it is convenient to fix an
orientation and a unit normal vector νΓ to Γ.

We show a compactness property of the class Cη with respect to the Hausdorff convergence
of sets.

Proposition 3.2. Let Γk be a sequence in Cη such that H1(Γk) is uniformly bounded with
respect to k . Then there exists Γ∞ ∈ Cη such that, up to a subsequence, Γk → Γ∞ in the
Hausdorff metric. Moreover, H1(Γk)→ H1(Γ∞) .

Proof. Let Γk ∈ Cη be as in the statement of the proposition and let aΓk > 0 and
γk ∈ C1,1([0, aΓk ]) be as in Definition 3.1. Since H1(Γk) is bounded, we have that the
sequence aΓk is bounded in R and

(3.1) sup
k
‖γk‖W 2,∞([0,aΓk

]) < +∞ .

Therefore, we may assume that, up to a subsequence, aΓk → a . Moreover, we may rescale γk
on the interval [0, a] by

γ̃k(x2) := γk

(x2aΓk

a

)
for x2 ∈ [0, a] ,
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so that

Γk =
{(
γ̃k(x2),

x2aΓk

a

)
: x2 ∈ [0, a]

}
.

By (3.1) we have that, up to a subsequence, γ̃k weakly*-converges in W 2,∞([0, a]) to
some γ . Let us set Γ := graph(γ). It is clear from the convergence of aΓk to a and of γ̃k
to γ that Γ ∈ Cη and that Γk converges to Γ in the Hausdorff metric. Moreover, since γ̃′k
converges to γ′ uniformly in the interval [0, a] , we get that

lim
k
H1(Γk) = lim

k

∫ a

0

√(aΓk

a

)2

+ γ̃
′2
k (y) dy =

∫ a

0

√
1 + γ′2(y) dy = H1(Γ) ,

and this concludes the proof of the proposition. �

We assume that outside the crack the elastic body is isotropic, homogeneous, and imper-
meable. Therefore, the behavior of the elastic body is fully characterized by the elasticity
tensor C : M2

sym →M2
sym defined by

(3.2) CF := λtr(F)I + 2µF for every F ∈M2
sym ,

λ and µ being the Lamé coefficients of the body. As usual, we assume that CF = 0 for every
F ∈M2

skw and that C is positive definite, that is, there exist two constants 0 < α ≤ β < +∞
such that

(3.3) α|F|2 ≤ CF ·F ≤ β|F|2 for every F ∈M2
sym .

Our aim is now to define the set of admissible displacements and the energy of the elastic
body R2

+ subject to a remote strain field εI , ε ∈ R , and with a crack Γ ∈ Cη filled by a
volume V ∈ [0,+∞) of incompressible fluid.

Let us start with a simpler case in which we do not consider the volume of fluid inside
the crack. As we have already mentioned in the Introduction, the action of the strain εI
is intended in the following way: the displacement u : R2

+ → R2 of the elastic body has
to induce a strain field Eu which is close to εI at infinity. The previous requirement
is translated into the condition u − ε id ∈ LD2(R2

+ \Γ), where LD2(R2
+ \Γ) is defined

in (2.2). For what follows, we notice that, for every open bounded subset of R2
+ with

Lipschitz boundary and every Γ ∈ Cη with Γ \Γ0 ⊂⊂ Ω, Propositions 2.3-2.7 are still valid
in LD2(Ω \Γ).

In view of the previous comments, for every ε ∈ R and every Γ ∈ Cη we introduce the
set of admissible displacements (without volume constraint)

(3.4) AD(Γ, ε) := {u : R2
+ → R2 : u−ε id ∈ LD2(R2

+ \Γ), u2 = 0 on Σ , [u] · νΓ ≥ 0 on Γ},

where [u] stands for the jump of u through Γ, that is, [u] := u+ − u− , with u+ and u−

denoting the traces of u on the two sides Γ+ and Γ− of Γ, defined according to the
orientation of νΓ .

Let us give some comments on AD(Γ, ε). The choice of the space LD2(R2
+ \Γ) has some

important consequences. First of all, it says that every admissible displacement is Sobolev
regular (see Proposition 2.3) outside of the curve Γ, hence the crack is actually contained
in Γ. Furthermore, the fact that Eu − εI ∈ L2(R2

+ \Γ) means, in a suitable weak sense,
that Eu has to coincide with the uniform strain εI at infinity. We refer to Remark 4.5 for
further comments on the relation between Eu and εI . In what follows, we will assume,
when needed, that Eu− εI is a function in L2(R2

+). For instance, this is true if we extend
it by zero on Γ.

The boundary condition u2 = 0 on Σ reflects the fact that, according to the model
studied in [16], the elastic body is adhered to the poroelastic substrate. Finally, the in-
equality in formula (3.4), which is assumed to hold H1 -a.e. in Γ, takes into account the
non-interpenetration condition: the fracture lips can not cross each other.
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Let us now define the elastic energy of the body for a displacement u ∈ AD(Γ, ε). Due
to the summability hypothesis made on Eu− εI , we get that Eu /∈ L2(R2

+) whenever ε 6= 0.
Hence, from (3.3) we deduce that the usual stored elastic energy

1

2

∫
R2

+\Γ
CEu ·Eudx

is not finite. Therefore, in order formulate our problem in the setting of rate independent
processes [17], for every displacement u ∈ AD(Γ, ε) we have to define the renormalized
energy

(3.5) Fel(u,Γ, ε) :=
1

2

∫
R2

+\Γ
C(Eu− εI) · (Eu− εI) dx−

∫
Γ

σ(ε)νΓ · [u] dH1

where σ(ε) := εCI is the far stress field associated to ε . For simplicity, we set also

(3.6) σ(ε) := (3λ+ 2µ)ε ,

so that, by (3.2), σ(ε) = σ(ε)I and (3.5) becomes

(3.7) Fel(u,Γ, ε) =
1

2

∫
R2

+\Γ
C(Eu− εI) · (Eu− εI) dx− σ(ε)

∫
Γ

[u] · νΓ dH1 .

Besides Fel , it is useful to introduce also the renormalized stored elastic energy

(3.8) Eel(u,Γ, ε) :=
1

2

∫
R2

+\Γ
C(Eu− εI) · (Eu− εI) dx .

The definition of the renormalized energy given in (3.5) is also motivated by the fact
that Fel(u,Γ, ε) can be obtained as limit of the stored elastic energy on bounded domains

which tend to R2
+ , as we show below. Let us consider R > 0 such that Γ ⊆ B

+

R and let us
set

EelR (u,Γ) :=
1

2

∫
B+
R\Γ
CEu ·Eudx

for every displacement u ∈ ADR(Γ, ε), where

ADR(Γ, ε) := {u ∈ H1(B+
R \ Γ) :u = ε id on ∂B+

R \ Σ, u2 = 0 on ∂B+
R ∩ Σ,

[u] · νΓ ≥ 0 on Γ} .

We notice that the Dirichlet condition u = ε id on ∂B+
R \ Σ corresponds, in the bounded

case, to the condition u− ε id ∈ LD2(R2
+ \Γ) in (3.4). Indeed, if we extend u ∈ ADR(Γ, ε)

by ε id in R2
+ \B+

R , it is straightforward to see that we obtain an element of AD(Γ, ε). In
what follows, we will denote by ū this extension.

An integration by parts shows that for every u ∈ ADR(Γ, ε) the following equality holds:

(3.9) EelR (u,Γ)− EelR (ε id ,Γ) = EelR (u− ε id ,Γ)−
∫

Γ

σ(ε)νΓ · [u] dH1 =: FelR (u,Γ) .

The aim of the following proposition is to pass to the limit in (3.9) as R→ +∞ , recovering
the renormalized energy defined in (3.5) and (3.7).

Proposition 3.3. Let Γ ∈ Cη and ε ∈ R . Then the following facts hold:

(a) for every sequence uR in ADR(Γ, ε) such that

(3.10) sup
R>0
FelR (uR,Γ) < +∞

there exists u ∈ AD(Γ, ε) such that, up to a subsequence, EūR−εI ⇀ Eu−εI weakly
in L2(R2

+) and

Fel(u,Γ, ε) ≤ lim inf
R→+∞

FelR (uR − ε id ,Γ) ;
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(b) for every u ∈ AD(Γ, ε) there exists a sequence vR in ADR(Γ, ε) such that Ev̄R −
εI→ Eu− εI in L2(R2

+) and

Fel(u,Γ, ε) = lim
R→+∞

FelR (vR,Γ) .

Proof. Let us prove (a). Let Γ, ε , and uR be as in the statement of the proposition. It is
easy to see from (3.7) and (3.9) that FelR (uR,Γ) = Fel(ūR,Γ, ε) for every R > 0 such that
Γ \Γ0 ⊂⊂ B+

R .
Let E ⊂⊂ R2

+ \Γ, E 6= Ø, be an open bounded set. For every R > 0 such that

E ⊂⊂ B+
R , there exists a horizontal translation tR such that ūR− ε id − tR ∈ LD2

E(R2
+ \Γ).

In view of Proposition 2.4, for r > 0 sufficiently large there exists a positive constant Cr
satisfying

(3.11) ‖ūR − ε id − tR‖H1(B+
r \Γ) ≤ Cr‖EūR − εI‖2,R2

+
for every R > 0 with E ⊂⊂ B+

R .

By (3.3) and (3.10) we have that EūR−εI is bounded in L2(R2
+). Hence, by Proposition 2.4

and by inequality (3.11), there exist v ∈ H1
loc(R2

+ \ Γ) and ψ ∈ L2(R2
+) such that, up to a

subsequence, EūR−εI ⇀ ψ weakly in L2(R2
+) and ūR−ε id−tR ⇀ v weakly in H1(B+

r \Γ)
for every r > 0. Therefore, Ev = ψ and v ∈ LD2(R2

+ \Γ). By continuity of the traces with
respect to the weak convergence in H1 , we have that v2 = 0 on Σ and

(3.12) [uR] · νΓ = [ūR − ε id − tR] · νΓ → [v] · νΓ in L2(Γ) as R→ +∞ .

Let us set u := v + ε id . From the previous convergences we deduce that u ∈ AD(Γ, ε)
and that, up to a subsequence, EūR− εI ⇀ Eu− εI weakly in L2(R2

+). Moreover, by (3.12)
we get

Fel(u,Γ, ε) ≤ lim inf
R→+∞

Fel(ūR,Γ, ε) = lim inf
R→+∞

FelR (uR,Γ) ,

which concludes the proof of (a).

Let us now prove (b). Let u ∈ AD(Γ, ε) and let E ⊂⊂ B+
1/2 \B

+

1/4 , E 6= Ø, be an open

set. Let ϕ ∈ C∞c (B1/2) be a cut-off function such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on B1/4 . Let

us set ER := RE and ϕR(x) := ϕ(x/R) for every x ∈ R2 and every R > 0. It is clear that

(3.13) ‖∇ϕR‖∞,R2 =
‖∇ϕ‖∞,R2

R
.

Let us restrict our attention to R > 0 such that Γ \Γ0 ⊂⊂ B+
R/4 . Arguing as in point (a),

for such R we find a horizontal translation tR such that u− ε id − tR ∈ LD2
ER

(R2
+ \Γ). In

particular, by Proposition 2.4 and Remark 2.5, there exists a positive constant C = C(E)
such that

(3.14) ‖u− ε id − tR‖2,B+
R \B

+
R/4
≤ CR‖Eu− εI‖

2,B+
R\B

+
R/4

.

We define vR := ϕR(u − tR) + (1 − ϕR)ε id . By construction, we have vR = u − tR

in B+
R/4 and vR = εI in R2

+ \ B+
R/2 . Therefore, for every R > 0 such that Γ ⊆ B

+

R/4 we

have vR ∈ ADR(Γ, ε) and vR coincides with v̄R . Moreover,

(3.15) ‖Ev̄R − Eu‖22,R2
+
≤ ‖Eu− εI‖2

2,R2
+\B

+
R/4

+

∫
B+
R\B

+
R/4

|∇ϕR � (u− ε id − tR)|2 dx ,

where the symbol � denotes the symmetric tensor product. Combining (3.13)-(3.15) we
obtain

(3.16) ‖Ev̄R − Eu‖22,R2
+
≤ ‖Eu− εI‖2

2,R2
+\B

+
R/4

+ C‖Eu− εI‖2
2,R2

+\B
+
R/4

,
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for some constant C > 0 independent of R . Passing to the limit as R→ +∞ in (3.16) we
deduce that Ev̄R − εI→ Eu− εI in L2(R2

+). Finally, it is clear that

Fel(u,Γ, ε) = lim
R→+∞

FelR (vR,Γ) = lim
R→+∞

Fel(v̄R,Γ, ε) ,

and the proof is thus concluded. �

We are now in a position to define the total energy of the system: for every Γ ∈ Cη ,
every ε ∈ R , and every displacement u ∈ AD(Γ, ε), we set

(3.17) F(u,Γ, ε) := Fel(u,Γ, ε) + κH1(Γ) ,

where κ is a positive constant related to the fracture toughness. The energy F(u,Γ, ε) is
the sum of the renormalized elastic energy (3.5) and of a surface energy. The latter, which
is proportional to the length of the crack Γ, in the framework of Griffith’s theory [12] is
interpreted as the energy dissipated by the fracture process.

We conclude this section considering the additional volume constraint in the definitions
of admissible displacements (3.4) and of the total energy F in (3.17). Let us assume that
the elastic body R2

+ , subject to a far strain field εI , ε ∈ R , has a crack Γ ∈ Cη filled by a
volume V ∈ [0,+∞) of incompressible fluid. Since we are dealing with linearized elasticity,
for the volume of the cavity determined by the crack lips we use the approximate formula∫

Γ

[u] · νΓ dH1 ,

so that the class of admissible displacements becomes

(3.18) A(Γ, V, ε) :=
{
u ∈ AD(Γ, ε) :

∫
Γ

[u] · νΓ dH1 = V
}
.

It is clear that a result similar to Proposition 3.3 can be stated adding the volume constraint
of (3.18). Therefore, also in this case the use of the energy (3.5) is fully justified. Moreover,
thanks to the volume condition we have that

Fel(u,Γ, ε) = Eel(u,Γ, ε)− σ(ε)V for every u ∈ A(Γ, V, ε) .

Since σ(ε) and V are given constants, as total energy of the system we consider

(3.19) E(u,Γ, ε) := Eel(u,Γ, ε) + κH1(Γ) ,

for every displacement u ∈ A(Γ, V, ε). In particular, the energy (3.19) is the sum of the
renormalized stored elastic energy (3.8) and of the energy dissipated by the crack production.

4. Static problem

In this section, we analyze the equilibrium condition for the elastic body R2
+ subject to a

far strain field εI , ε ∈ R , when a crack Γ ∈ Cη is filled by a prescribed volume V ∈ [0,+∞)
of incompressible fluid.

According to the variational principles of linear elasticity, the equilibrium of the elastic
body with a prescribed crack Γ ∈ Cη is achieved if the displacement u is a solution of the
minimum problem

(4.1) min
u∈A(Γ,V,ε)

E(u,Γ, ε) ,

where the set A(Γ, V, ε) of admissible displacements is defined in (3.18) and the energy E
is given by (3.19). The existence of solutions of (4.1) follows from the direct method of
the calculus of variations and Proposition 4.1 below, and is discussed in Corollary 4.2.
Proposition 4.1 is stated in a more general form than the one needed here since we shall use
it also in the study of the evolution problem in Section 5.
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Proposition 4.1. Let Γ,Γk,Γ∞ ∈ Cη be such that Γ ⊆ Γk and Γk → Γ∞ in the Hausdorff
metric. Let Vk, V∞ ∈ [0,+∞) with Vk → V∞ , and let εk, ε∞ ∈ R with εk → ε∞ . Assume
that uk ∈ A(Γk, Vk, εk) is such that

(4.2) sup
k
‖Euk − εkI‖2,R2

+
< +∞ .

Then, there exists u∞ ∈ A(Γ∞, V∞, ε∞) such that, up to a subsequence, Euk−εkI converges
to Eu∞ − ε∞I weakly in L2(R2

+) .

Proof. By the Hausdorff convergence of Γk to Γ∞ , it is easy to see that Γ ⊆ Γ∞ .
Since the sequence Euk − εkI is bounded in L2(R2

+), we may assume that there exists
ϕ ∈ L2(R2

+) such that, up to a subsequence, Euk − εkI ⇀ ϕ weakly in L2(R2
+).

Let r > 0 be such that Γ∞ \Γ ⊂⊂ B+
r . Thanks to the regularity of the sets Γk , Γ∞ ,

and to the convergence of Γk to Γ∞ in the Hausdorff metric, arguing as in the proof of
Proposition 3.3 and applying Proposition 2.7 we have that there exist a positive constant Cr
and a sequence tk of horizontal translations such that, for k large enough, the following
inequality holds:

(4.3) ‖uk − εk id − tk‖H1(B+
r \Γk) ≤ Cr‖Euk − εkI‖2,R2

+
.

In view of (4.2) and (4.3), we may further assume that there exists a function v ∈ H1
loc(R2

+ \Γ∞)
such that for r, δ > 0

(4.4) uk − εk id − tk ⇀ v weakly in H1(B+
r \ Iδ(Γ∞ \Γ)),

where Iδ(Γ∞ \Γ) is defined in (2.1). Clearly, Ev = ϕ and v ∈ LD2(R2
+ \Γ∞).

Let us show that v satisfies the non-interpenetration and the volume constraints appear-
ing in (3.18). Let us fix Ωk , Ω∞ bounded open subsets of R2

+ with Lipschitz boundaries

such that Γk \Γ ⊂⊂ Ωk , Γ∞ \Γ ⊂⊂ Ω∞ , and Ωk → Ω∞ in the Hausdorff metric. By the
convergence of Γk to Γ∞ , we may split Ωk (resp. Ω∞ ) in two open subsets Ω±k (resp. Ω±∞ )
with Lipschitz boundaries such that the following properties hold:

Γk ⊆ ∂Ω±k \ ∂Ωk and Γ∞ ⊆ ∂Ω±∞ \ ∂Ω∞ ,(4.5)

Ω
±
k → Ω

±
∞ in the Hausdorff metric ,(4.6)

νΓk points towards Ω+
k and νΓ∞ points towards Ω+

∞ .(4.7)

By (4.3), (4.6), and by a simple reflection argument, we get that

(4.8) (uk − εk id − tk) 1Ω±k
→ v 1Ω±∞

strongly in L2(R2
+).

By Proposition 2.3, uk − εk id − tk ∈ H1(Ωk \Γk) and v ∈ H1(Ω∞ \Γ∞). Thus, by the
properties of the traces of Sobolev functions (see, e.g., [21]) and by (4.5) and (4.7), for every
k ∈ N and every ψ ∈ C1(R2) with supp(ψ) ∩ ∂Ωk \Σ = Ø we have

2∑
i=1

∫
Ωk

(uk − εk id − tk)i(∇ψ)i dx+

2∑
i=1

∫
Ωk

ψ(Eiiuk − εk) dx

= −
∫

Γk

ψ[uk] · νΓk dH1 −
∫

Σ∩∂Ωk

ψtk · νΣ dH1 = −
∫

Γk

ψ[uk] · νΓk dH1 ,

(4.9)

where, in the last equality, we have used the fact that tk is a horizontal translation and
νΣ = (0, 1) is the normal vector to Σ.

Let us consider ψ ∈ C1(R2) such that supp(ψ) ∩ ∂Ω∞ \Σ = Ø. Since Ωk → Ω∞ in the
Hausdorff metric, for k large enough we have supp(ψ) ∩ ∂Ωk \Σ = Ø, so that (4.9) holds.
Taking into account (4.8) and the weak convergence of Euk− εkI to Ev in L2(R2

+), passing
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to the limit in (4.9) as k → +∞ we obtain

− lim
k

(∫
Γk

ψ[uk] · νΓk dH1 +

∫
Σ∩∂Ωk

ψtk · νΣ dH1

)
= − lim

k

∫
Γk

ψ[uk] · νΓk dH1

= lim
k

( 2∑
i=1

∫
Ωk

(uk − εkid − tk)i(∇ψ)idx+

2∑
i=1

∫
Ωk

ψ(Eiiuk − εk)dx

)

=

2∑
i=1

∫
Ω∞

vi(∇ψi)dx+

2∑
i=1

∫
Ω∞

ψEiivdx = −
∫

Γ∞

ψ[v] · νΓ∞ dH1 −
∫

Σ∩∂Ω∞

ψv · νΣ dH1 ,

(4.10)

where, in the last equality, we have used again the properties of the traces of Sobolev
functions.

By (4.4) we have that

0 = lim
k

∫
Σ∩∂Ωk

ψtk · νΣ dH1 =

∫
Σ∩∂Ω∞

ψv · νΣ dH1 ,

which implies, in view of (4.10), that

(4.11) lim
k

∫
Γk

ψ[uk] · νΓk dH1 =

∫
Γ∞

ψ[v] · νΓ∞ dH1 .

for every ψ ∈ C1(R2) such that supp(ψ) ∩ ∂Ω∞ \Σ = Ø. By the hypotheses and the
arbitrariness of ψ , from (4.11) we easily get that

[v] · νΓ∞ ≥ 0 on Γ∞ and

∫
Γ∞

[v] · νΓ∞ dH1 = V∞ .

In view of (4.4), we also have that v2 = 0 on Σ, hence v ∈ A(Γ∞, V∞, 0). Thus, it is
clear that u∞ := v + ε∞ id ∈ A(Γ∞, V∞, ε∞). Since Eu∞ = Ev + ε∞I , we finally get that
Euk − εkI ⇀ Eu∞ − ε∞I weakly in L2(R2

+), and the proof is thus concluded.
�

We are now ready to discuss existence and uniqueness of solution of (4.1).

Corollary 4.2. The minimum problem (4.1) admits a unique solution, up to a translation
parallel to the x1 -axis.

Proof. We apply the direct method of the calculus of variations. Let uk be a minimizing
sequence. It is clear that the sequence Euk − εI is bounded in L2(R2

+). Hence, by Propo-
sition 4.1, there exists u ∈ A(Γ, V, ε) such that, up to a subsequence, Euk − εI ⇀ Eu − εI
weakly in L2(R2

+). Therefore,

E(u,Γ, ε) ≤ lim inf
k
E(uk,Γ, ε) ,

and this concludes the proof of existence.
The uniqueness of solution up to a horizontal translation follows by the strict convexity

of the energy, by the convexity of the constraints on the crack Γ, and by the boundary
condition u2 = 0 on Σ.

�

In the following propositions and remarks we study some properties of a solution u of
the minimum problem (4.1).

Proposition 4.3. Let u ∈ A(Γ, V, ε) be a solution of (4.1) with Γ ∈ Cη , V ∈ [0,+∞) ,
and ε ∈ R . Then, for every v ∈ LD2(R2

+ \Γ) such that [v] · νΓ = 0 on Γ and v2 = 0 on Σ
it holds

(4.12)

∫
R2

+ \Γ

C(Eu− εI) ·Ev dx = 0 .
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Moreover, there exists q(Γ, V, ε) ≥ 0 such that for every ϕ ∈ C1
c (R2)

(4.13)

∫
R2

+ \Γ

C(Eu− εI) ·E(ϕ(u− ε id)) dx = q(Γ, V, ε)

∫
Γ

ϕ[u] · νΓ dH1 .

Before proving Proposition 4.3, we briefly discuss some consequences of formula (4.12).

Remark 4.4 (Equilibrium system). Let u be a solution of (4.1) and let us set

(4.14) σ(u) := CEu ,

the stress field associated to u . Formula (4.12) means that u is a weak solution of

(4.15) div(σ(u)− σ(ε)) = 0 in R2
+ \Γ ,

which reduces to

(4.16) divσ(u) = 0 in R2
+ \Γ ,

since σ(ε) is a constant matrix. Equation (4.16) says that u satisfies the usual balance of
forces.

Moreover, integrating by parts in (4.12), we deduce that u fulfills also the condition
σ(u)12 = 0 on Σ, that is, the shear stress applied on the boundary of the elastic body is
zero.

Remark 4.5 (Strain field). Since a solution u to (4.1) is also a weak solution of the sys-
tem (4.15), applying Proposition 2.3 and the standard regularity theory for systems with
constant coefficients (see, for instance, [10, Chapter 2]), we have that for every R > 0 there
exists a constant C = C(R) satisfying the following condition: for every x0 ∈ R2

+ \Γ such
that BR(x0) ⊂⊂ R2

+ \Γ

‖Eu− εI‖∞,BR/2(x0) ≤ C‖Eu− εI‖2,BR(x0) .

This implies that

lim
|x|→+∞

‖Eu− εI‖∞,BR/2(x) = 0 ,

which means that at infinity Eu tends to coincide with the strain εI . Therefore, the choice
of the function space LD2(R2

+ \Γ) is fully justified.

Remark 4.6. From (4.12) we deduce that for every v, w ∈ LD2(R2
+ \Γ) such that [v] · νΓ =

[w] · νΓ on Γ and v2 = w2 on Σ the following equality holds:

(4.17)

∫
R2

+ \Γ

C(Eu− εI) ·Ev dx =

∫
R2

+ \Γ

C(Eu− εI) ·Ew dx .

This property will be extensively used in the sequel.

Proof of Proposition 4.3. When V = 0 we have, up to a horizontal translation, u = ε id ,
thus we can take q(Γ, 0, ε) = 0.

Assume now V > 0. Let v ∈ LD2(R2
+ \Γ) be such that [v] · νΓ = 0 on Γ and v2 = 0

on Σ. Then, for every δ ∈ R the function u+ δv belongs to A(Γ, V, ε). Therefore,

E(u,Γ, ε) ≤ E(u+ δv,Γ, ε) ,

which implies

Eel(u,Γ, ε) ≤ Eel(u+ δv,Γ, ε) = Eel(u,Γ, ε) + δ

∫
R2

+\Γ
C(Eu− εI) ·Ev dx+

δ2

2

∫
R2

+\Γ
CEv ·Ev dx ,

where Eel is defined in (3.8). By the arbitrariness of δ , from the previous inequality we
get (4.12).
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Let us now prove (4.13). We define two linear operators L and M on C1
c (R2):

L(ϕ) :=

∫
R2

+\Γ
C(Eu− εI) ·E(ϕu) dx ,

M(ϕ) :=

∫
Γ

ϕ[u] · νΓ dH1 .

For every ϕ ∈ C1
c (R2) with M(ϕ) = 0, we consider the function (1 + δϕ)u . For |δ| small

enough, we have (1 + δϕ)u ∈ A(Γ, V, ε). Arguing as in the previous step, we get that

(4.18)

∫
R2

+\Γ
C(Eu− εI) ·E(ϕu) dx = 0 .

Let us denote by N (L) and N (M) the kernels of the linear operators L and M , respectively.
Equality (4.18), which is satisfied for every ϕ ∈ N (M), implies that N (M) ⊆ N (L).
Therefore, there exists q = q(Γ, V, ε) ∈ R such that L = qM .

It is clear that for every ϕ ∈ C1
c (R2) we have

(4.19) [ϕ(u− ε id)] · νΓ = [ϕu] · νΓ on Γ.

Recalling (4.12) and Remark 4.6, equality (4.19) implies that

(4.20)

∫
R2

+\Γ
C(Eu− εI) · (Eϕ(u− ε id)) dx =

∫
R2

+\Γ
C(Eu− εI) ·E(ϕu) dx = q

∫
Γ

ϕ[u] · νΓ dH1 ,

which is (4.13). Taking in (4.20) a function ϕ ∈ C1
c (R2) such that ϕ = 1 on Γ and using

again Remark 4.6, we get that

(4.21)

∫
R2

+\Γ
C(Eu− εI) · (Eu− εI) dx = qV ,

which implies that q > 0. This concludes the proof of the proposition. �

Remark 4.7. In the case V > 0, from (4.21) we get immediately an explicit formula
for q(Γ, V, ε) in terms of the elastic energy and of the volume V :

(4.22) q(Γ, V, ε) =
1

V

∫
R2

+\Γ
C(Eu− εI) · (Eu− εI) dx .

Remark 4.8 (Fluid pressure). Let us consider the constant

(4.23) p(Γ, V, ε) := q(Γ, V, ε)− σ(ε) ,

where q(Γ, V, ε) and σ(ε) are defined in Proposition 4.3 and in formula (3.6), respectively.
We want now to explain why p(Γ, V, ε) can be interpreted as a fluid pressure. It is clear
that, if u is a solution of (4.1) without the non-interpenetration condition, then q(Γ, V, ε)
is a Lagrange multiplier due to the volume constraint, and hence we have

(4.24)

∫
R2

+\Γ
C(Eu− εI) ·Ev dx = q(Γ, V, ε)

∫
Γ

[v] · νΓ dH1

for every v ∈ LD2(R2
+ \Γ) such that v2 = 0 on Σ. Thus, with the notation introduced

in (4.14), u satisfies the condition

(4.25) σ(u)νΓ = σ(ε)νΓ − q(Γ, V, ε)νΓ = (σ(ε)− q(Γ, V, ε))νΓ = −p(Γ, V, ε)νΓ on Γ .

Formula (4.25) means that the total force that the elastic body exerts on the crack Γ has
modulus −p(Γ, V, ε) and is directed along νΓ . On the contrary, the fluid inside the crack ex-
erts a force p(Γ, V, ε)νΓ on the fracture lips. Therefore, we are allowed to interpret p(Γ, V, ε)
as the fluid pressure. According to (4.25), the pressure p(Γ, V, ε) is acting on Γ along its
normal νΓ in the reference configuration rather than in the deformed one. This does not
affect our interpretation, since we are dealing with a linearized model.
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To justify the same interpretation of p(Γ, V, ε) when the non-interpenetration condition
is considered, we have to show that (4.24) holds for a sufficiently large class of functions
in LD2(R2

+ \Γ). To do this, we adapt the argument used in [2, Proposition 3.6].

Proposition 4.9. Let u be the solution of (4.1) with Γ ∈ Cη , V ∈ [0,+∞) , and ε ∈ R .
Then (4.24) holds for every v ∈ LD2(R2

+ \Γ) such that supp(v) ⊂⊂ R2
+ and |[v] · νΓ| ≤

C[u] · νΓ for some C ≥ 0 .

Proof. When V = 0 we have u = ε id and the statement is true with q(Γ, 0, ε) = 0.
Let us assume that V > 0. Let v be as in the statement of the proposition, and let us

fix ϕ ∈ C1
c (R2

+) such that ϕ = 1 on supp(v) and

(4.26)

∫
Γ

ϕ2[u] · νΓ dH1 > 0 .

If we set u := ϕu , thanks to Proposition 2.3 we have that u ∈ H1(R2
+ \Γ). In view of (4.17),

we now modify the functions u and v , keeping the same values of [u] · νΓ and [v] · νΓ on Γ.
Let us fix Ω a bounded open subset of R2

+ with smooth boundary such that Γ \Γ0 ⊂⊂ Ω,

supp(u) ⊂⊂ Ω, and supp(v) ⊂⊂ Ω. We may assume that there exists an extension Γ̂

of Γ in Cη such that νΓ̂ = νΓ on Γ, Ω \ Γ̂ is the disjoint union of two open subsets Ω±

with Lipschitz boundaries and with νΓ̂ pointing towards Ω+ . We consider a scalar function
ũ ∈ H1(R2

+ \Γ) such that supp(ũ) ⊂⊂ Ω, ũ ≥ 0 on R2
+ , ũ = 0 on Ω− , and (ũ)+ = [u] · νΓ

on Γ. Similarly, we can find a scalar function ṽ ∈ H1(R2
+ \ Γ) such that supp(ṽ) ⊂⊂ Ω,

ṽ = 0 on Ω− , (ṽ)+ = [v] · νΓ on Γ, and

(4.27) |ṽ| ≤ C|ũ| a.e. on R2
+ .

Besides ũ and ṽ , we also fix a C0,1 -extension ν̃Γ̂ of the unit normal νΓ̂ to Γ̂ . We
further assume that ν̃Γ̂ has compact support in R2 . In what follows, we will consider
the functions ũ , ṽ , ũν̃Γ̂ , and ṽν̃Γ̂ . By construction, they belong to H1(R2

+ \Γ) and have
compact support in R2

+ .
We now need to approximate ũ and ṽ by truncation. Let Tk : R→ R be the truncation

function defined by Tk(s) := s if −k ≤ s ≤ k , Tk(s) := −k if s < −k , and Tk(s) := k if
s > k . We shall also need the function Sk : R→ R defined by Sk(s) := s− Tk(s).

From (4.27) it follows that for every k ∈ N

(4.28) |S1/k(Tk(ṽ))| ≤ CTk(ũ) a.e. on R2
+ .

In particular, S1/k(Tk(ṽ)) = 0 where ũ < 1/(kC).
By the properties of ũ and of ν̃Γ̂ , for every k we have

[Tk(ũ)ν̃Γ̂] · νΓ = [Tk(ũ)]νΓ · νΓ = Tk([u] · νΓ) on Γ .

The previous equality implies that

(4.29) 0 ≤ [Tk(ũ)ν̃Γ̂] · νΓ ≤ [u] · νΓ ≤ [u] · νΓ on Γ .

Taking into account (4.29), with the same technique used to prove Proposition 4.3 we deduce
that there exists qk ∈ R such that for every ϕ ∈ C1

c (R2)

(4.30)

∫
R2

+\Γ
C(Eu− εI) ·E(ϕTk(ũ)ν̃Γ̂) dx = qk

∫
Γ

ϕ[Tk(ũ)ν̃Γ̂] · νΓ dH1 .
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We now show that qk → q(Γ, V, ε). Since Tk(ũ)ν̃Γ̂ → ũν̃Γ̂ in H1(R2
+ \Γ), passing to the

limit in (4.30) as k → +∞ and recalling (4.17), we obtain∫
R2

+\Γ
C(Eu− εI) ·E(ϕu) dx =

∫
R2

+\Γ
C(Eu− εI) ·E(ϕũν̃Γ̂) dx

= lim
k

∫
R2

+\Γ
C(Eu− εI) ·E(ϕTk(ũ)ν̃Γ̂) dx = lim

k
qk

∫
Γ

ϕ[Tk(ũ)ν̃Γ̂] · νΓ dH1

= lim
k
qk

∫
Γ

ϕ[ũν̃Γ̂] · νΓ dH1 = lim
k
qk

∫
Γ

ϕ[u] · νΓ dH1 = lim
k
qk

∫
Γ

ϕϕ[u] · νΓ dH1 .

(4.31)

Taking ϕ = ϕ in (4.31), by (4.13) of Proposition 4.3 we get

(4.32) q(Γ, V, ε)

∫
Γ

ϕ2[u] · νΓ dH1 =

∫
R2

+\Γ
C(Eu− εI) ·E(ϕ2u) dx = lim

k
qk

∫
Γ

ϕ2[u] · νΓ dH1 .

Since (4.26) holds, from (4.32) we deduce that qk → q(Γ, V, ε).
We now define the scalar function

wk(x) :=


S1/k(Tk(ṽ(x)))

Tk(ũ(x))
if ũ(x) 6= 0 ,

0 if ũ(x) = 0 .

Then, by (4.28), wk ∈ H1(R2
+ \Γ)∩L∞(R2

+) and supp(wk) ⊆ supp(ṽ) ⊂⊂ Ω. In particular,

wk = 0 in Ω− . Hence, for every k there exists a sequence (ϕjk)j in C1
c (R2

+) such that

‖ϕjk‖∞,R2
+
≤ ‖wk‖∞,R2

+
and ϕjk → wk strongly in H1(Ω+) as j → +∞ .

We consider the sequence ϕjkTk(ũ)ν̃Γ̂ in H1(R2
+ \Γ). By the dominated convergence

theorem, we have ϕjkTk(ũ)ν̃Γ̂ → S1/k(Tk(ṽ))ν̃Γ̂ strongly in H1(R2
+ \ Γ) as j → +∞ . Since

S1/k(Tk(ṽ))ν̃Γ̂ → ṽν̃Γ̂ strongly in H1(R2
+ \Γ) as k → +∞ , by a diagonal argument we find

a sequence ϕk in C∞c (R2
+) such that ϕkTk(ũ)ν̃Γ̂ → ṽν̃Γ̂ strongly in H1(R2

+ \Γ). Therefore,
we get ∫

R2
+\Γ
C(Eu− εI) ·Ev dx =

∫
R2

+\Γ
C(Eu− εI) ·E(ṽν̃Γ̂) dx

= lim
k

∫
R2

+\Γ
C(Eu− εI) ·E(ϕkTk(ũ)ν̃Γ̂) dx = lim

k
qk

∫
Γ

ϕk[Tk(ũ)ν̃Γ̂] · νΓ dH1

= q(Γ, V, ε)

∫
Γ

[ṽν̃Γ̂] · νΓ dH1 = q(Γ, V, ε)

∫
Γ

[v] · νΓ dH1 ,

and this concludes the proof. �

Remark 4.10. Integrating by parts, thanks to Proposition 4.9 we get that a solution u
of (4.1) satisfies the condition σ(u)νΓ = (σ(ε) − q(Γ, V, ε))νΓ on {[u] · νΓ 6= 0} , which is
the part of the crack Γ occupied by the fluid. Therefore, we can repeat the argument of
Remark 4.8 on the set {[u] · νΓ 6= 0} and we conclude that p(Γ, V, ε) = q(Γ, V, ε)− σ(ε) can
be interpreted as the fluid pressure.

We conclude this section considering another static problem. In view of Proposition 4.3
and of Remarks 4.8 and 4.10, we know that to every triple (Γ, V, ε) ∈ Cη × [0,+∞)×R
corresponds a pressure p(Γ, V, ε) = q(Γ, V, ε)− σ(ε), with q(Γ, V, ε) ∈ [0,+∞).

What we want to do now is to briefly discuss the relationship between Γ, V , ε , and p
studying the equilibrium problem of an elastic body filling R2

+ subject to a uniform strain εI ,
ε ∈ R , and with a force pνΓ acting on the crack Γ ∈ Cη . According to the result presented
in Proposition 3.3, in this case the total energy of the system is of the form

E (u,Γ, p, ε) := F(u,Γ, ε)− p
∫

Γ

[u] · νΓ dH1 = E(u,Γ, ε)− (p+ σ(ε))

∫
Γ

[u] · νΓ dH1 ,(4.33)
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where F is defined in (3.17). The class of admissible displacements is the set AD(Γ, ε)
given by formula (3.4). As in (4.1), the equilibrium condition is expressed by the minimum
problem

(4.34) min
u∈AD(Γ,ε)

E (u,Γ, p, ε) .

The existence of a solution of (4.34) follows by the arguments used to prove Proposition 4.1
and Corollary 4.2. The solution is unique up to a translation along the x1 -axis.

Given u a solution of (4.34), we set

(4.35) V (Γ, p, ε) :=

∫
Γ

[u] · νΓ dH1 ,

the volume between the crack lips. Then, the following proposition holds.

Proposition 4.11. For every Γ ∈ Cη , every V ∈ [0,+∞) , and every ε ∈ R , we have

(4.36) V (Γ, p(Γ, V, ε), ε) = V .

Proof. During this proof, we denote by uV a solution of (4.1) associated to (Γ, V, ε), and by
up a solution of (4.34) corresponding to (Γ, p(Γ, V, ε), ε).

First of all, we notice that, by (4.23), the energy defined in (4.33) reduces to

(4.37) E (u,Γ, p(Γ, V, ε), ε) = E(u,Γ, ε)− q(Γ, V, ε)
∫

Γ

[u] · νΓ dH1

for every u ∈ AD(Γ, ε).
If V = 0, we have, by Remarks 4.8 and 4.10, that p(Γ, V, ε) = −σ(ε). Hence, it is clear

by (3.19) and (4.33) that we can take uV = up = ε id , and (4.36) is satisfied.
Assume now V > 0. Let us first show that V (Γ, p(Γ, V, ε), ε) > 0. By contradic-

tion, if V (Γ, p(Γ, V, ε), ε) = 0, then, up to a horizontal translation, up = ε id . Thus,
by (3.19), (4.22), (4.33), (4.37), and by the minimality of up , we get that

E (up,Γ, p(Γ, V, ε), ε) = κH1(Γ)

≤ E (uV ,Γ, p(Γ, V, ε), ε) =
1

2

∫
R2

+\Γ
C(EuV − εI) · (EuV − εI) dx− q(Γ, V, ε)V + κH1(Γ)

= −1

2

∫
R2

+\Γ
C(EuV − εI) · (EuV − εI) dx+ κH1(Γ) ,

which, in view of (3.3), leads to a contradiction. Hence, V (Γ, p(Γ, V, ε), ε) > 0.
Arguing as in Proposition 4.3 and Remark 4.7, we can prove that

(4.38) q(Γ, V, ε) =
1

V (Γ, p(Γ, V, ε), ε)

∫
R2

+\Γ
C(Eup − εI) · (Eup − εI) dx .

Therefore, by the minimality of up and by formula (4.37) we have

E (up,Γ, p(Γ, V, ε), ε) = E(up,Γ, ε)− q(Γ, V, ε)V (Γ, p(Γ, V, ε), ε)

≤ E (uV ,Γ, p(Γ, V, ε), ε) = E(uV ,Γ, ε)− q(Γ, V, ε)V .
(4.39)

Combining (4.22), (4.38), and (4.39), we get∫
R2

+\Γ
C(EuV − εI) · (EuV − εI) dx ≤

∫
R2

+\Γ
C(Eup − εI) · (Eup − εI) dx ,

which implies, together with (4.39), that

(4.40) V (Γ, p(Γ, V, ε), ε) ≥ V .
Finally, let us set

v :=
V

V (Γ, p(Γ, V, ε), ε)
(up − ε id) + ε id .
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Then v ∈ A(Γ, V, ε) and, by (3.8), (3.19), (4.22), (4.38), (4.40) and by definition of uV ,

E(uV ,Γ, ε) ≤ E(v,Γ, ε) =

(
V

V (Γ, p(Γ, V, ε), ε)

)2

Eel(up,Γ, ε) + κH1(Γ)

=
V 2 q(Γ, V, ε)

2V (Γ, p(Γ, V, ε), ε)
+ κH1(Γ) =

V

V (Γ, p(Γ, V, ε), ε)
Eel(uV ,Γ, ε) + κH1(Γ) ≤ E(uV ,Γ, ε) .

Therefore, the only possibility is V (Γ, p(Γ, V, ε), ε) = V , and this concludes the proof. �

Remark 4.12. With the notation used in Proposition 4.11, we also get that uV and up
coincide up to a horizontal translation.

Remark 4.13. Let us comment on the meaning of the result obtained in Proposition 4.11.
When considering the equilibrium problem for the elastic body R2

+ subject to a far strain
field εI , ε ∈ R , with a crack Γ containing an incompressible fluid, we can, in principle, decide
to work in two different settings: assume to know either the volume V or the pressure p
of the fluid inside Γ. In the first case, we are led to study the minimum problem (4.1),
finding, according to Proposition 4.3 and Remark 4.8, the fluid pressure p(Γ, V, ε). If,
viceversa, we know the pressure p acting on Γ, we can solve the minimum problem (4.34)
and deduce from formula (4.35) the volume V (Γ, p, ε) of the fluid between the crack lips.
The equality (4.36) proved in Proposition 4.11 means that the solutions obtained considering
either (4.1) or (4.33) coincide (same volumes, pressures, and displacements). Hence, we are
considering the same problem from two different viewpoints. As it will be clear in Section 5
(see Remark 5.4), working with fixed fluid volume (4.1) is better for our purposes.

5. Quasi-static evolution problem

We now describe the quasi-static evolution for our model of hydraulic fracture growth.
Given T > 0, for every t ∈ [0, T ] the elastic body is subject to a uniform strain field ε(t)I ,
ε(t) ∈ R , while a pressure p∞(t) ∈ R acts on the fluid far from the crack inlet. For technical
reasons, we assume ε, p∞ ∈ C([0, T ]) , the space of continuous functions from [0, T ] to R .
We denote by V (t) the volume of fluid injected into the crack at time t .

It is convenient to introduce the reduced energy Em(t,Γ, V ) defined for every t ∈ [0, T ] ,
every Γ ∈ Cη , and every V ∈ [0,+∞) by

(5.1) Em(t,Γ, V ) := min
u∈A(Γ,V,ε(t))

E(u,Γ, ε(t)) = min
u∈A(Γ,V,ε(t))

Eel(u,Γ, ε(t)) + κH1(Γ) .

Following [17] and [9], we state the problem in the general framework of rate independent
processes. The evolution is described by a crack set function t 7→ Γ(t) and a volume
function t 7→ V (t). The Griffith’s stability condition is here expressed in a “derivative free”
setting in the following way: for every t ∈ [0, T ]

Em(t,Γ(t), V (t)) ≤ Em(t,Γ, V (t)) for every Γ ∈ Cη with Γ ⊇ Γ(t).

Since the process is irreversible, we require t 7→ Γ(t) to be an increasing set function.
Moreover, we impose an energy-dissipation balance: the rate of change of the reduced en-
ergy (5.1) of the system along a solution equals the power of the pressure forces exerted by
the fluid plus the power expended by the far stress field σ(ε(t)) generated by the strain ε(t)
(see (3.6)).

Finally, we have to give an evolution law for the volume function t 7→ V (t). As we have
seen in Proposition 4.3 and Remark 4.8, the presence of a strain ε(t)I and of a volume V (t)
of fluid inside the crack Γ(t) produces a pressure p(t) := p(Γ(t), V (t), ε(t)) acting on the
fracture lips, which is also interpreted as the fluid pressure inside the crack (see Remarks 4.8
and 4.10). As a consequence, a pressure difference p∞(t) − p(t) is created into the fluid,

which drives the evolution of V (·) according to an approximation of the Darcy’s law: V̇ (t) =
p∞(t)− p(t).

This leads to the following definition.
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Definition 5.1. Let T > 0, and let ε, p∞ ∈ C([0, T ]) . We say that a pair (Γ, V ) : [0, T ]→
Cη × [0,+∞) is an irreversible quasi-static evolution for the hydraulic crack problem if it
satisfies the following conditions:

(a) irreversibility : Γ is increasing, i.e., Γ(s) ⊆ Γ(t) for every 0 ≤ s ≤ t ≤ T ;
(b) global stability : for every t ∈ [0, T ] ,

Em(t,Γ(t), V (t)) ≤ Em(t,Γ, V (t)) for every Γ ∈ Cη with Γ ⊇ Γ(t) ;

(c) Darcy’s law : the function V is absolutely continuous on the interval [0, T ] and

V̇ (t) = (p∞(t)− p(t))1{V >0}(t)

for almost every t ∈ [0, T ] , where p(t) := q(Γ(t), V (t), ε(t))− σ(ε(t)) is the pressure
introduced in Remark 4.8;

(d) energy-dissipation balance: the function t 7→ Em(t,Γ(t), V (t)) is absolutely continu-
ous on the interval [0, T ] and

(5.2)
d

dt
Em(t,Γ(t), V (t)) =

(
p(t) + σ(ε(t))

)
V̇ (t)

for almost every t ∈ [0, T ] .

We are now in a position to state the main theorem of this paper.

Theorem 5.2. Let ε, p∞ ∈ C([0, T ]) and let Γ0 ∈ Cη and V0 ∈ [0,+∞) . Assume that
(stability at time t = 0)

(5.3) Em(0,Γ0, V0) ≤ Em(0,Γ, V0)

for every Γ ∈ Cη with Γ ⊇ Γ0 . Then, there exists an irreversible quasi-static evolution (Γ, V )
of the hydraulic crack problem, with Γ(0) = Γ0 and V (0) = V0 .

Let us comment on the initial condition of Theorem 5.2.

Remark 5.3. If the pair (Γ0, V0) ∈ Cη × [0,+∞) does not satisfy the stability condition (5.3),
we define a new initial condition (Γ∗0, V0), with Γ∗0 solution of (5.3). In particular, Γ∗0
minimizes Em(0,Γ, V0) among all Γ ∈ Cη with Γ ⊇ Γ∗0 . Therefore, we can solve the
evolution problem in Theorem 5.2 starting from (Γ∗0, V0).

A solution of (5.3) can be found by the direct method of the calculus of variations. Indeed,
a minimizing sequence Γk ∈ Cη has bounded H1 -measure, and thus is bounded in Cη . By
Proposition 3.2, we may assume that Γk → Γ in the Hausdorff metric, for a suitable Γ ∈ Cη .
For every k ∈ N , there exists a unique (up to a horizontal translation) uk ∈ A(Γk, V0, ε(0))
solution of (4.1). Since Euk − ε(0)I is bounded in L2(R2

+), by Proposition 4.1 we have
Euk − ε(0)I ⇀ Ev − ε(0)I weakly in L2(R2

+) for some v ∈ A(Γ, V0, ε(0)), and

Em(0,Γ, V0) ≤ E(v,Γ, ε(0)) ≤ lim inf
k
Em(0,Γk, V0) .

Thus Γ is a minimizer.

The following remark explains why it is convenient to state the evolution problem in terms
of the energy functional E defined in (3.19) rather than working with E of formula (4.33).

Remark 5.4. Let us assume for a moment to know a priori the pressure p of the fluid inside
the crack Γ ∈ Cη . Given t ∈ [0, T ] , we may define the reduced energy

(5.4) Em(t,Γ, p) := min
u∈AD(Γ,ε(t))

E (u,Γ, p, ε(t)) ,

where E and AD(Γ, ε(t)) are defined in (4.33) and (3.4), respectively. The non-interpenetra-
tion condition in (3.4) and the presence of the linear term

(p+ σ(ε(t)))

∫
Γ

[u] · νΓ dH1
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in (4.33) imply that the reduced energy Em is not bounded from below with respect to the
crack set variable. Indeed, when we try to repeat the argument of Remark 5.3, it is possible
(when p + σ(ε(t)) > 0) to construct a sequence Γk in Cη such that Em(t,Γk, p) → −∞
and H1(Γk) → +∞ . This means that it would be energetically convenient to have a
catastrophic rupture of the elastic body, which is in contrast with the quasi-static nature of
the phenomenon we are studying.

On the contrary, the energy Em defined in (5.1) is always positive, and this simplifies our
analysis.

To prove Theorem 5.2, and in particular to obtain the global stability condition of Def-
inition 5.1, we need the following two technical lemmas. The first one corresponds, in our
setting, to the Jump Transfer Theorem [8, Theorem 2.1].

Lemma 5.5. Let Γ,Γk,Γ∞, Γ̂∞ ∈ Cη be such that Γ ⊆ Γk , Γk → Γ∞ in the Hausdorff

metric, and Γ∞ ⊆ Γ̂∞ . Let Vk, V∞ > 0 and tk, t∞ ∈ [0, T ] with Vk → V∞ and tk → t∞ ,

and let u ∈ A(Γ̂∞, V, ε(t∞)) . Then there exist a sequence Γ̂k in Cη and a sequence uk ∈
A(Γ̂k, Vk, ε(tk)) such that Γ̂k → Γ̂∞ in the Hausdorff metric, Γk ⊆ Γ̂k , Euk − ε(tk)I →
Eu− ε(t∞)I strongly in L2(R2

+) , and E(uk, Γ̂k, ε(tk))→ E(u, Γ̂∞, ε(t∞)) .

Proof. The proof is carried out following the steps of [18, Lemma 3.7]. The letter C will
denote a positive constant, which can possibly change from line to line.

First, we construct the sets Γ̂k . Let ak, a∞ > 0, â∞ > a∞ , γk ∈ C1,1([0, ak]) , γ∞ ∈
C1,1([0, a∞]) , and γ̂∞ ∈ C1,1([0, â∞]) be as in Definition 3.1. In particular, Γk = graph(γk),

Γ∞ = graph(γ∞), and Γ̂∞ = graph(γ̂∞). It is also convenient to define a W 2,∞ -extension
of γ̂∞ to the interval [0, â∞ + 2δ] , for some δ > 0. For instance, this can be done in the
following way:

γ̂∞(x2) :=

{
γ̂∞(x2) if x2 ∈ [0, â∞],

γ̂∞(â∞) + (x2 − â∞)γ̂′∞(â∞) if x2 ∈ (â∞, â∞ + 2δ].

The idea of the construction of Γ̂k is to glue graph(γk) and graph(γ̂∞) with a suitable
arc of circumference. In view of the Hausdorff convergence of Γk to Γ∞ , we have that

(5.5) ak → a∞ , γk(ak)→ γ∞(a∞) = γ̂∞(a∞) , γ′k(ak)→ γ′∞(a∞) = γ̂′∞(a∞) .

Without loss of generality, we may assume that γ′k(ak) ≥ γ̂′∞(a∞) ≥ 0 (the other cases can

be dealt in similar ways). Let r > (1 + η2)3/2/η and

zk := (γk(ak), ak)− r√
1 + |γ′k(ak)|2

(1,−γ′k(ak)) ∈ R2
+ .

Let us consider the ball Br(zk), which is tangent to Γk in (γk(ak), ak). In a neighborhood
of (γk(ak), ak), the circle ∂Br(zk) can be seen as the graph of the function

ζk(x2) := γk(ak)− r√
1 + |γ′k(ak)|2

+

√
r2 −

(
x2 − ak −

rγ′k(ak)√
1 + |γ′k(ak)|2

)2

.

We deduce that there exists bk ≥ ak such that γ̂′∞(a∞) = ζ ′k(bk) and γ̂′∞(a∞) ≤ ζ ′k(x2) ≤
γ′k(ak) for every x2 ∈ (ak, bk). Moreover, by (5.5), bk → a∞ and, by the choice of r , we
have, at least for k large, |ζ ′′k (x2)| ≤ η for x2 ∈ (ak, bk).

We define

(5.6) γ̂k(x2) :=


γk(x2) if x2∈[0, ak],

ζk(x2) if x2∈(ak, bk],

γ̂∞(x2 + a∞ − bk) + ζk(bk)− γ̂∞(a∞) if x2∈(bk, â∞ + 2δ + bk − a∞].
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For k large enough, we have that γ̂k is well-defined on the interval [0, â∞ + δ] , γ̂k ∈
C1,1([0, â∞ + δ]) and, by construction of ζk ,

(5.7) ‖γ̂′k‖∞,[0,â∞+δ] ≤ η and ‖γ̂′′k‖∞,[0,â∞+δ] ≤ η .

Moreover, (5.6) and (5.7) imply that γ̂k ⇀ γ̂∞ weakly* in W 2,∞([0, â∞ + δ]) . Therefore,

if we set Γ̂k := graph(γ̂k|[0,â∞]), we deduce that Γ̂k ∈ Cη , Γk ⊆ Γ̂k , and Γ̂k → Γ̂∞ in the
Hausdorff metric.

Let us fix ρ > 0 and let dk := ‖γ̂k − γ̂∞‖W 1,∞([0,â∞+δ]) . By the weak* convergence

in W 2,∞ of γ̂k to γ̂∞ , we have that dk → 0. For k large enough (so that Γ̂k ⊆ Iρ(Γ̂∞)),

we want to construct a C1,1 -function Λk,ρ such that Λk,ρ(Γ̂∞) = Γ̂k and Λk,ρ(x) = x

for x ∈ R2 \ Iρ(Γ̂∞). Let us first fix a function ϑρ ∈ C∞c (R2) such that 0 ≤ ϑρ ≤ 1, ϑρ = 1

on Iρ/2(Γ̂∞ \Γ), and supp(ϑρ) ⊂⊂ Iρ(Γ̂∞ \Γ). For every x = (x1, x2) ∈ Iρ(Γ̂∞ \Γ), we
define

(5.8) Λk,ρ(x) := x+

(
ϑρ(x)

(
γ̂k(x2)− γ̂∞(x2)

)
0

)
.

By the properties of ϑρ , we have that Λk,ρ(x) = x for every x /∈ Iρ(Γ̂∞ \Γ), so that it

makes sense to extend Λk,ρ with the identity out of Iρ(Γ̂∞ \Γ). Moreover, we notice that,

Λk,ρ ∈ C1,1(R2;R2) and Λk,ρ(Γ̂∞) = Γ̂k .
From (5.8) and the definition of dk , we deduce that

lim
k
‖Λk,ρ − id‖W 1,∞(R2) = 0 ,(5.9)

lim sup
k

‖Λk,ρ − id‖W 2,∞(R2) ≤ C ,(5.10)

where C > 0 in (5.10) is independent of ρ . In particular, in view of (5.9), we can apply
Hadamard Theorem (see [15, Theorem 6.2.3]), to deduce that Λk,ρ is globally invertible

with Λ−1
k,ρ ∈ C1,1(R2;R2) and ‖Λ−1

k,ρ − id‖W 1,∞(R2) → 0 as k → +∞ .

We are now in a position to define the approximating functions. Let u ∈ A(Γ̂∞, V∞, ε(t∞)).
We set

vk,ρ :=
(
(cof ∇Λk,ρ)

−T (u− ε(t∞) id)
)
◦Λ−1

k,ρ ,(5.11)

uk,ρ :=
Vk
V∞

vk,ρ + ε(tk) id .(5.12)

Thanks to [4, Section 1.7], uk,ρ satisfies the non-interpenetration condition and the volume

constraint on Γ̂k , hence uk,ρ ∈ A(Γ̂k, Vk, ε(tk)). Moreover, (5.9)-(5.12) and Proposition 2.3
imply that

lim sup
k

‖Evk,ρ‖2,Iρ(Γ̂∞) ≤ C‖u− ε(t∞) id‖H1(Iρ(Γ̂∞)\Γ̂∞) ,(5.13)

Euk,ρ − ε(tk)I =
Vk
V∞

(Eu− ε(t∞)I) in R2
+ \ Iρ(Γ̂∞).(5.14)

In view of (5.12) and (5.14), we have that

|E(uk,ρ, Γ̂k, ε(tk))− E(u, Γ̂∞, ε(t∞))|

≤ V 2
k

2V 2
∞

∫
Iρ(Γ̂∞)

CEvk,ρ ·Evk,ρ dx+
1

2

∫
Iρ(Γ̂∞)

C(Eu− ε(t∞)I) · (Eu− ε(t∞)I) dx

+
1

2

(
V 2
k

V 2
∞
− 1

)∫
R2

+\Iρ(Γ̂∞)

C(Eu− ε(t∞)I) · (Eu− ε(t∞)I) dx+ |H1(Γ̂k)−H1(Γ̂∞)| .

(5.15)
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Recalling that H1(Γ̂k)→ H1(Γ̂∞), Vk → V∞ , and that (3.3) and (5.13) hold, we pass to
the lim sup in (5.15) as k → +∞ obtaining

(5.16) lim sup
k

|E(uk,ρ, Γ̂k, ε(tk))− E(u, Γ̂∞, ε(t∞))| ≤ C‖u− ε(t∞) id‖2
H1(Iρ(Γ̂∞))

.

Passing to the limit as ρ→ 0 in (5.16), we deduce that

(5.17) lim
ρ→0

lim sup
k

|E(uk,ρ, Γ̂k, ε(tk))− E(u, Γ̂∞, ε(t∞))| = 0 .

Therefore, in view of (5.13) and (5.17), we can construct a sequence of functions uk ∈
A(Γ̂k, Vk, ε(tk)) such that E(uk, Γ̂k, ε(tk))→ E(u, Γ̂∞, ε(t∞)) and Euk−ε(tk)I→ Eu−ε(t∞)I
strongly in L2(R2

+). This concludes the proof of the lemma. �

The following lemma will be useful in the proof of the global stability condition (b) of
Definition 5.1.

Lemma 5.6. Let Γ,Γk,Γ∞ ∈ Cη be such that Γ ⊆ Γk and Γk → Γ∞ in the Hausdorff
metric. Let Vk, V∞ ≥ 0 and tk, t∞ ∈ [0, T ] with Vk → V∞ and tk → t∞ . Assume that

(5.18) Em(tk,Γk, Vk) ≤ Em(tk, Γ̂, Vk) for every Γ̂ ∈ Cη with Γ̂ ⊇ Γk .

Then

(5.19) Em(t∞,Γ∞, V∞) ≤ Em(t∞, Γ̂, V∞) for every Γ̂ ∈ Cη with Γ̂ ⊇ Γ∞ .

Moreover, let uk, u∞ be solutions of (4.1) corresponding to the triples (Γk, Vk, ε(tk))
and (Γ∞, V∞, ε(t∞)) , and let p(Γk, Vk, εk) , p(Γ∞, V∞, ε∞) be the corresponding pressures
according to Remark 4.8. Then Euk − ε(tk)I → Eu∞ − ε(t∞)I in L2(R2

+) , p(Γk, Vk, εk) →
p(Γ∞, V∞, ε∞) , and Em(tk,Γk, Vk)→ Em(t∞,Γ∞, V∞) .

Proof. Let us fix w0 ∈ A(Γ, 1, 0). Then,

wk := Vkw0 + ε(tk) id ∈ A(Γk, Vk, ε(tk))

and, by definition of uk ,

(5.20) Eel(uk,Γk, ε(tk)) ≤ Eel(wk,Γk, ε(tk)) = V 2
k Eel(w0,Γk, 0) .

In view of (3.3), inequality (5.20) implies that the sequence Euk − ε(tk)I is bounded in
L2(R2

+), hence, applying Proposition 4.1, we deduce that there exists u∞ ∈ A(Γ∞, V∞, ε(t∞))
such that, up to a subsequence,

(5.21) Euk − ε(tk)I ⇀ Eu∞ − ε(t∞)I weakly in L2(R2
+).

Let us prove (5.19). Let Γ̂ ∈ Cη , Γ̂ ⊇ Γ∞ be fixed. Let us denote by uΓ̂ ∈ A(Γ̂, V∞, ε(t∞))

a solution to (4.1) associated to (Γ̂, V∞, ε(t∞)). Applying Lemma 5.5 to Γk,Γ∞, Γ̂ , we can

find a sequence Γ̂k ∈ Cη such that Γ̂k ⊇ Γk and Γ̂k → Γ̂ in the Hausdorff metric, as well as

a sequence of functions vk ∈ A(Γ̂k, Vk, ε(tk)) such that E(vk, Γ̂k, ε(tk))→ E(uΓ̂, Γ̂, ε(t∞)).
By (5.1), (5.18) and (5.21), we have that

Em(t∞,Γ∞, V∞) ≤ E(u∞,Γ∞, ε(t∞)) ≤ lim inf
k
E(uk,Γk, ε(tk))

= lim inf
k
Em(tk,Γk, Vk) ≤ lim sup

k
Em(tk,Γk, Vk) ≤ lim sup

k
Em(tk, Γ̂k, Vk)

≤ lim
k
E(vk, Γ̂k, ε(tk)) = E(uΓ̂, Γ̂, ε(t∞)) = Em(t∞, Γ̂, V∞) ,

(5.22)

from which we deduce (5.19). Moreover, taking Γ̂ = Γ∞ in (5.22), we get that u∞ ∈
A(Γ∞, V∞, ε(t∞)) is a solution of (4.1), Euk − ε(tk)I→ Eu∞ − ε(t∞)I strongly in L2(R2

+),
and Em(tk,Γk, Vk)→ Em(t∞,Γ∞, V∞). In view of these convergences, of Remark 4.7, and of
formula (4.23), we deduce that p(Γk, Vk, εk)→ p(Γ∞, V∞, ε∞), at least in the case V∞ > 0.
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It remains to prove that p(Γk, Vk, εk) → −σ(ε(t∞)) = p(Γ∞, V∞, ε(t∞)) if V∞ = 0.
Without loss of generality, we may assume Vk > 0 for every k ∈ N . In view of (5.20), we
have that ∫

R2
+\Γk
C(Euk − ε(tk)I) · (Euk − ε(tk)I) dx ≤ V 2

k

∫
R2

+\Γk
CEw0 ·Ew0 dx ,

which implies, together with Remark 4.7 and formula (4.23), that

0 ≤ p(Γk, Vk, εk) + σ(ε(tk)) ≤ Vk
∫
R2

+\Γk
CEw0 ·Ew0 dx .

Since Vk → V∞ = 0 and ε(tk)→ ε(t∞), we get p(Γk, Vk, εk)→ −σ(ε(t∞)). �

We are now ready to prove Theorem 5.2

Proof of Theorem 5.2. Let ε , p∞ , Γ0 , and V0 be as in the statement of the theorem and
let νΓ0

be the unit normal vector to Γ0 .
The proof is based on a time discretization process, see [9, 17]. For every k ∈ N , we

introduce the time step τk := T/k and a subdivision of the interval [0, T ] of the form
tki := iτk for i = 0, . . . , k . Let us describe the discrete problems. For every k we define V ki
and Γki recursively with respect to i . For i = 0, we set V k0 := V0 , Γk0 := Γ0 , and
pk0 := p(Γ0, V0, ε(0)) the pressure introduced in Remark 4.8. For i > 0, assume that we
already know V ki−1 , Γki−1 , and pki−1 := p(Γki−1, V

k
i−1, ε(t

k
i−1)). We define

(5.23) V ki := max {V ki−1 +
(
p∞(tki−1)− pki−1

)
τk, 0} .

We notice that (5.23) is the discrete approximation of the Darcy’s law of Definition 5.1.
Then, we set Γki to be a solution of

(5.24) min {Em(tki ,Γ, V
k
i ) : Γ ∈ Cη, Γ ⊇ Γki−1} ,

which can be found arguing as in Remark 5.3. In particular, (5.24) is the discrete form of
the global stability condition in Definition 5.1.

Finally, we denote by uki a solution of (4.1) with Γ = Γki , V = V ki , and ε = ε(tki ), and
we set pki := p(Γki , V

k
i , ε(t

k
i )) to be the corresponding pressure, according to Proposition 4.3

and Remark 4.8. Arguing as in the proof of Lemma 5.6, it is possible to prove that

(5.25)
‖Euki − ε(tki )I‖2,R2

+
≤ CV ki ,

−σ(ε(tki )) ≤ pki ≤ CV ki − σ(ε(tki )) ,

for some constant C > 0 independent of k and i .
We introduce the following piecewise constant interpolation functions: for t ∈ [tki , t

k
i+1)

(5.26)
uk(t) := uki , Γk(t) := Γki , Vk(t) := V ki , εk(t) := ε(tki ) ,

pk(t) := pki , pk∞(t) := p∞(tki ) , σk(t) := σ(ε(tki )) ,

and, for t ∈ (tki , t
k
i+1] , V k(t) := V ki+1 . Furthermore, we will also use the piecewise affine

function

(5.27) V k(t) := V ki−1 +
V ki − V ki−1

τk
(t− tki−1) for t ∈ (tki−1, t

k
i ] .

Since pki ≥ −σ(ε(tki )) for every k and every i , from (5.23) we easily deduce that

(5.28) V ki ≤ V ki−1 + |p∞(tki−1) + σ(ε(tki−1))|τk .

Iterating inequality (5.28), we get

(5.29) V ki ≤ V0 + τk

i∑
j=1

|p∞(tkj−1) + σ(ε(tkj−1))| .
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Taking into account the regularity of t 7→ p∞(t) and of t 7→ σ(ε(t)), inequality (5.29) implies
that

(5.30) sup
k
‖Vk‖∞,[0,T ] < +∞ .

Therefore, from (5.25), (5.30), we obtain that

(5.31) sup
i,k
‖Euki − ε(tki )I‖2,R2

+
<∞ and sup

k
‖pk‖∞,[0,T ] < +∞ .

Moreover, thanks to (5.23) we have that

(5.32) V ki−1 − V ki ≤ |p∞(tki−1)|τk + |pki−1|τk .
Combining (5.28), (5.31), and (5.32), we get that

(5.33) sup
k
‖V k‖W 1,∞(0,T ) < +∞ .

We now prove a discrete energy inequality. By (5.24) we have that

(5.34) Em(tki ,Γ
k
i , V

k
i ) ≤ Em(tki ,Γ

k
i−1, V

k
i ) .

In order to estimate the right-hand side of (5.34), we fix w0 ∈ A(Γ0, 1, 0) and we define the
functions

vki :=


uki − ε(tki ) id

V ki
if V ki 6= 0,

w0 if V ki = 0.

Notice that vki ∈ A(Γki , 1, 0) and, by (5.25),

(5.35) ‖Evki ‖2,R2
+
≤M ,

where M ≥ ‖Ew0‖2,R2
+

.

Since uki−1 + (ε(tki )− ε(tki−1))id + (V ki − V ki−1)vki−1 ∈ A(Γki−1, V
k
i , ε(t

k
i )), by (5.34) we get

Em(tki ,Γ
k
i , V

k
i ) ≤ E(uki−1 + (ε(tki )− ε(tki−1))id + (V ki − V ki−1)vki−1,Γ

k
i−1, ε(t

k
i ))

= E(uki−1,Γ
k
i−1, ε(t

k
i−1)) + (V ki − V ki−1)

∫
R2

+\Γ
k
i−1

C(Euki−1 − ε(tki−1)I) ·Evki−1 dx

+
(V ki − V ki−1)2

2

∫
R2

+\Γ
k
i−1

CEvki−1 ·Evki−1 dx

(5.36)

Recalling (3.3), (5.35), and formula (4.22) which relates pki to σ(ε(tki )) and to the quan-
tity q(Γki , V

k
i , ε(t

k
i )) introduced in Proposition 4.3, we can continue in (5.36) obtaining

Em(tki ,Γ
k
i , V

k
i ) ≤Em(tki−1,Γ

k
i−1, V

k
i−1) + (pki−1 + σ(ε(tki.−1)))

∫ tki

tki−1

V̇ k(s) ds

+ βṼkM
2

∫ tki

tki−1

|V̇k(s)|ds ,

(5.37)

where we have set

Ṽk :=
1

2
sup

j=1,...,k
|V kj − V kj−1| .

Iterating inequality (5.37) we obtain, for t ∈ [tki , t
k
i+1),

Em(tki ,Γk(t), Vk(t)) ≤Em(0,Γ0, V0) +

∫ tki

0

(pk(s) + σk(s))V̇ k(s) ds

+ βṼkM
2

∫ T

0

|V̇ k(s)|ds .
(5.38)
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In particular, (5.38) implies that H1(Γk(t)) is bounded uniformly with respect to t ∈ [0, T ]
and k ∈ N .

By Theorem 2.2 and Proposition 3.2, we have that, up to a subsequence, Γk(t) → Γ(t)
in the Hausdorff metric for every t ∈ [0, T ] , H1(Γk(t)) → H1(Γ(t)), and the set function
Γ: [0, T ] → Cη is bounded and increasing. Moreover, in view of (5.30) and (5.33), there
exists a nonnegative function V ∈ W 1,∞([0, T ]) such that, up to a further subsequence,
V k ⇀ V weakly* in W 1,∞([0, T ]) and V k, Vk, V k → V strongly in L∞([0, T ]) . Let us
also denote by u(t) a solution (unique up to a horizontal translation) to (4.1) associated to
the triple (Γ(t), V (t), ε(t)), and let p(t) := p(Γ(t), V (t), ε(t)) be the corresponding pressure,
according to Proposition 4.3 and Remark 4.8.

Thanks to the previous convergences, from Lemma 5.6 we deduce that for every t ∈
[0, T ] the pair (Γ(t), V (t)) satisfies the global stability condition (b) of Definition 5.1, that
Euk(t)− εk(t)I→ Eu(t)− ε(t)I in L2(R2

+), and that pk(t)→ p(t).
In order to prove the energy-dissipation balance, we first pass to the limit in (5.38)

as k → +∞ . The third term in the right-hand side of (5.38) tends to zero because of (5.33).
In view of (5.31), of the pointwise convergence of pk to p , of the continuity of σ(ε(·)), and

of the weak* convergence in L∞([0, T ]) of V̇ k to V̇ , we get that

(5.39) Em(t,Γ(t), V (t)) ≤ Em(0,Γ0, V0) +

∫ t

0

(
p(s) + σ(ε(s))

)
V̇ (s) ds .

For the opposite inequality, for every t ∈ [0, T ] we consider a subdivision of the inter-
val [0, t] of the form skh := ht

k for k, h ∈ N , k 6= 0, and h ≤ k . For every h = 0, . . . , k we
set

vkh :=


u(skh)− ε(skh) id

V (skh)
if V (skh) 6= 0,

w0 if V (skh) = 0.

Therefore, ‖Evkh‖2,R2
+
≤ M and u(skh+1) + (ε(skh) − ε(skh+1))id + (V (skh) − V (skh+1))vkh+1

belongs to A(Γ(skh+1), V (skh), ε(skh)). Since Γ(·) is increasing and satisfies the global stability
condition, we have

Em(skh,Γ(skh), V (skh)) ≤ Em(skh,Γ(skh+1), V (skh)) .

Hence,

Em(skh,Γ(skh), V (skh))

≤ E(u(skh+1) + (ε(skh)− ε(skh+1))id + (V (skh)− V (skh+1))vkh+1,Γ(skh+1), ε(skh))

= Em(skh+1,Γ(skh+1), V (skh+1)) + (V (skh)− V (skh+1))

∫
R2

+\Γ(skh+1)

C(Eu(skh+1)− ε(skh+1)I) ·Evkh+1 dx

+
(V (skh)− V (skh+1))2

2

∫
R2

+\Γ(skh+1)

CEvkh+1 ·Evkh+1 dx

≤ Em(skh+1,Γ(skh+1), V (skh+1))−
∫ skh+1

skh

(
p(skh+1) + σ(ε(skh+1))

)
V̇ (s)ds+ βV̂kM

2

∫ skh+1

skh

|V̇ (s)|ds ,

where β is the constant defined in (3.3) and

V̂k :=
1

2
sup

h=1,...,k
|V (skh)− V (skh−1)| .
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Iterating the previous inequality for h = 0, . . . , k and setting pk(s) := p(skh+1), σk(s) :=

σ(ε(skh+1)) for s ∈ (skh, s
k
h+1] , we get

(5.40) Em(0,Γ0, V0) ≤ Em(t,Γ(t), V (t))−
∫ t

0

(pk(s) +σk(s))V̇ (s) ds+βV̂kM
2

∫ t

0

|V̇ (s)|ds .

Since Γ: [0, T ] → Cη is an increasing set function, according to Theorem 2.1 there exists a
set Θ ⊆ [0, T ] such that [0, T ]\Θ is at most countable and Γ(·) is continuous at every point
in Θ. By Lemma 5.6, we have that s 7→ Eu(s)− ε(s)I is strongly continuous in L2(R2

+) at

every point of Θ and s 7→ p(s) is continuous at the same points. Thus pk(s) → p(s) for

every s ∈ Θ. By the dominated convergence theorem (pk+σk)V̇ → (p+σ(ε))V̇ in L1([0, t])
and, passing to the limit in (5.40) as k → +∞ , we obtain

Em(0,Γ0, V0) ≤ Em(t,Γ(t), V (t))−
∫ t

0

(
p(s) + σ(ε(s))

)
V̇ (s) ds .

Recalling (5.39), this concludes the proof of the energy-dissipation balance (d) of Defini-
tion 5.1.

It remains to prove the Darcy’s law (c) of Definition 5.1. Let us fix j ∈ N , j 6= 0, and
let us set Ej := {t ∈ [0, T ] : V (t) ≥ 1/j} . By the uniform convergences, for k large enough

we may assume that Vk(t), V k(t), V k(t) > 0 for every t ∈ Ej . Therefore, in view of (5.23)
and of (5.27), for such t we get, using the notation introduced in (5.26),

(5.41) V̇ k(t) = pk∞(t)− pk(t) .

In view of (5.41), for every t ∈ [0, T ] we have

(5.42) V k(t) = V0 +

∫ t

0

V̇ k(s) ds = V0 +

∫
[0,t]\Ej
V̇ k(s) ds+

∫
Ej

(pk∞(s)− pk(s)) ds .

Passing to the limit as k → +∞ in (5.42), by the continuity of p∞ and by L1 -convergence
of pk to p we obtain that

V (t) = V0 +

∫
[0,t]\Ej
V̇ (s) ds+

∫
Ej

(p∞(s)− p(s)) ds ,

from which we deduce, passing to the limit as j → +∞ and recalling that V̇ = 0 a.e.
in {V = 0} , that

V (t) = V0 +

∫ t

0

(p∞(s)− p(s))1{V >0}(s) ds .

This concludes the proof of condition (c) of Definition 5.1. �

6. Derivatives of the energy and Griffith’s principle

In this section we discuss some properties of a quasi-static evolution (Γ, V ) : [0, T ] →
Cη × [0,+∞) given by Definition 5.1. In Theorem 6.4 we show that, under suitable regularity
assumptions on the crack set, the reduced energy (5.1) is differentiable with respect to time,
to the crack length, and to the fluid volume. The main result of this section is Theorem 6.8,
where we prove that the evolution (Γ, V ) satisfies the Griffith’s criterion (see [12]).

Let us start with the computation of the derivatives of the reduced energy (5.1). We will
do it in a quite general setting, assuming that the crack path is known a priori: the crack set
can only evolve along a curve Λ ∈ Cη . For technical reasons, we need Λ to be of class C2,1 .

Remark 6.1. Since we are interested in the (a posteriori) properties of a quasi-static evolu-
tion (Γ, V ), we notice that it is not so strange to assume that the crack can only move along
a prescribed path. Indeed, once the crack set function Γ: [0, T ] → Cη is given, it is clear
that the fracture grows following Γ(T ). Hence, the true assumption is that Γ(T ) (or Λ) is
a C2,1 -curve.
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Let L := H1(Λ) > 0, and let λ : [0, L] → R2 be an arc-length parametrization of Λ of
class C2,1 such that λ(0) = (0, 0). In what follows, we denote by λ1 and λ2 the components
of λ . Moreover, for every s ∈ [0, L] , we define

(6.1) Λs := {λ(σ) : 0 ≤ σ ≤ s} .
In order to do our computations, we will need to slightly move the crack tip along the
prescribed curve Λ. Thus, for s ∈ (0, L) and δ such that s + δ ∈ [0, L] , we construct
a C2,1 -diffeomorphism Fs,δ such that Fs,δ(R2

+) = R2
+ , Fs,δ|Σ = id |Σ , and Fs,δ(Λs) =

Λs+δ . Indeed, by definition of the class Cη and by our regularity assumption, there exists
λg : [0, λ2(L)]→ R of class C2,1 such that Λ = graph(λg) = {(λg(x2), x2) : x2 ∈ [0, λ2(L)]} .

Choose ζ > 0 and a cut-off function ϑ ∈ C∞c (Bζ/2(0)) with ϑ = 1 on Bζ/3(0). We define

Fs,δ : R2 → R2 by

(6.2) Fs,δ(x) := x+

(
λg(x2 + (λ2(s+ δ)− λ2(s))ϑ(λ(s)− x))− λg(x2)

(λ2(s+ δ)− λ2(s))ϑ(λ(s)− x)

)
if x ∈ Bζ/2(λ(s)), while Fs,δ(x) := x if x ∈ R2 \ Bζ/2(λ(s)).

In the following lemma, we give some properties of Fs,δ (see, e.g., [14]).

Lemma 6.2. For every s ∈ (0, L) , there exists δ0 > 0 such that:

(a) Fs,· ∈ C2,1((−δ0, δ0) × R2;R2) and, for every |δ| < δ0 , the map Fs,δ is a C2,1 -
diffeomorphism. Moreover, Fs,δ(R2

+) = R2
+ , Fs,δ(λ(s)) = λ(s + δ) , Fs,δ(Λs) =

Λs+δ , and Fs,δ(x) = x for every x ∈ R2 \Bζ/2(λ(s)) ;

(b) the norms ‖Fs,δ‖C2,1 and ‖F−1
s,δ ‖C2,1 are uniformly bounded with respect to δ and

there exist c1, c2 > 0 such that, for every |δ| < δ0 and every x ∈ R2 , we have
c1 ≤ det∇Fs,δ(x) ≤ c2 ;

(c) ‖id − Fs,δ‖C2 → 0 as δ → 0 ;
(d) some derivatives:

ρs(x) := ∂δ(Fs,δ(x))|δ=0 = λ′2(s)ϑ(λ(s)− x)

(
λ′g(x2)

1

)
,

∂δ(det∇Fs,δ)|δ=0 = divρs ,

∂δ(∇Fs,δ)|δ=0 = −∂δ(∇Fs,δ)−1|δ=0 = ∇ρs ,

∂δ(cof ∇Fs,δ)T |δ=0 = −∂δ(cof ∇Fs,δ)−T |δ=0 = divρs I−∇ρs .

Proof. See [11] for the proof of (a), (b), and (d) in the case of C∞ maps. The same
arguments are applicable with the C2,1 regularity of Fs,δ . Property (c) follows immediately
from the definition (6.2) of Fs,δ . �

As we have seen in Corollary 4.2, a solution to the minimum problem (4.1) which defines
the reduced energy Em exists and is unique up to a horizontal translation. In order to
compute the derivatives of Em with respect to the crack length s and to the volume V , it
is convenient to slightly modify the set of admissible displacements A defined in (3.18) in
such a way that the minimizer of (4.1) is unique. To do this, it is enough, for instance, to
fix the mean value of the first component of the displacement in an open set E ⊂⊂ R2

+ \Λ
with E 6= Ø. Thus, for every s ∈ [0, L] , every V ∈ [0,+∞), and every ε ∈ R we define

(6.3) Ã(Λs, V, ε) :=
{
u ∈ A(Λs, V, ε) :

∫
E

u1 dx = 0
}
.

For simplicity of notation, when ε = 0 we set Ã(Λs, V ) := Ã(Λs, V, 0). We notice that

Ã(Λs, V ) =
{
u ∈ LD2

E(R2
+ \Λs) : [u] · νΛs ≥ 0 on Λs ,

∫
Λs

[u] · νΛs dH1 = V
}
,

where LD2
E(R2

+ \Λs) is defined in (2.5).
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In view of Corollary 4.2, for every s ∈ [0, L] and every V ∈ [0,+∞) there exists a unique

usV ∈ Ã(Λs, V ) solution of (4.1) for the triple (Λs, V, 0). In particular, for every ε ∈ R we
have that

E(usV ,Λs, 0) = E(usV + ε id ,Λs, ε) .

This implies that, for every t ∈ [0, T ] ,

(6.4) Em(t,Λs, V ) = min
u∈A(Λs,V,ε(t))

E(u,Λs, ε(t)) = min
u∈Ã(Λs,V )

E(u,Λs, 0) =: Ẽm(Λs, V ) .

Definition 6.3. For every s ∈ (0, L) and every V ∈ [0,+∞), we set

G(s, V ) :=

∫
R2

+\Λs
CEusV · ∇

(
(divρs I−∇ρs)usV

)
dx

+

∫
R2

+\Λs
CEusV ·

(
∇usV∇ρs

)
dx− 1

2

∫
R2

+\Λs
CEusV ·EusV divρs dx

We will refer to G(s, V ) as the energy release rate.

In the following theorem we give explicit formulas of the derivatives of the reduced en-
ergy (5.1) with respect to t , s , and V .

Theorem 6.4. Let t ∈ [0, T ] , s ∈ (0, L) , and V ∈ [0,+∞) . Then

∂Em
∂t

(t,Λs, V ) =
∂Ẽm
∂t

(Λs, V ) = 0 ,(6.5)

∂Em
∂s

(t,Λs, V ) =
∂Ẽm
∂s

(Λs, V ) = κ− G(s, V ) ,(6.6)

where κ is defined in (3.19).
If, in addition, V > 0 , then

(6.7)
∂Em
∂V

(t,Λs, V ) =
∂Ẽm
∂V

(Λs, V ) = p(Λs, V, ε(t)) + σ(ε(t)) .

To prove Theorem 6.4 we need to introduce, for every s ∈ (0, L) and δ ∈ (−δ0, δ0) (see
Lemma 6.2), the Piola transformation Ps,δ associated to Fs,δ :

(6.8) Ps,δ u := (cof ∇Fs,δ)Tu ◦Fs,δ for every u ∈ Ã(Λs+δ, V ) .

We refer to [4, Section 1.7] for the main properties of Ps,δ . We notice that, at least for |δ|
small, Ps,δ is an isomorphism between Ã(Λs+δ, V ) and Ã(Λs, V ) whose inverse is given by

(6.9) P−1
s,δ u := ((cof ∇Fs,δ)−Tu) ◦F−1

s,δ for every u ∈ Ã(Λs, V ) .

Lemma 6.5. Let s ∈ (0, L) and let uδ ∈ LD2
E(R2

+ \ Λ) . Assume that there exists u0 ∈
LD2

E(R2
+ \Λ) such that uδ → u0 in LD2

E(R2
+ \Λ) as δ → 0 . Then the sequences uδ ◦Fs,δ ,

uδ ◦F−1
s,δ , Ps,δ uδ , and P−1

s,δ uδ converge to u0 strongly in LD2
E(R2

+ \ Λ) as δ → 0 .

Proof. Thanks to Proposition 2.4 and to the properties stated in Lemma 6.2, the lemma
can be easily proved by using the changes of coordinates x = F−1

s,δ (y) and x = Fs,δ(y). �

Before proving Theorem 6.4, we show the continuity of usV with respect to the parame-
ters s and V .

Lemma 6.6. Let sk, s ∈ (0, L) and Vk, V ∈ [0,+∞) be such that sk → s and Vk → V .

Let uskVk ∈ Ã(Λ(sk), Vk) be the sequence of solutions of (4.1) corresponding to sk and Vk .

Then uskVk → usV in LD2
E(R2

+ \Λ) .
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Proof. Arguing as in the proof of Lemma 5.6, we can show that

(6.10) ‖EuskVk‖2,R2
+
≤MVk

for some M ∈ R . Hence, by Propositions 2.4 and 4.1, there exists u ∈ Ã(Λs, V ) such that,
up to a subsequence, EuskVk ⇀ Eu weakly in L2(R2

+). If V = 0 we have that usV = 0 and,

by (6.10), uskVk → 0 in LD2
E(R2

+ \Λ).
Assume now that V > 0. Let us prove that u = usV . By Lemma 6.2 and by the properties

of the Piola transformation (6.8), for k large enough we have

vk :=
Vk
V
P−1
s,sk−s u

s
V ∈ Ã(Λ(sk), Vk) .

Thanks to Lemma 6.5, vk → usV in LD2
E(R2

+ \Λ) as k → +∞ . Thus, by the minimality
of uskVk we obtain

Ẽm(Λs, V ) ≤ E(u,Λs, 0) ≤ lim inf
k→+∞

E(uskVk ,Λ(sk), 0)

≤ lim sup
k→+∞

E(uskVk ,Λ(sk), 0) ≤ lim
k→+∞

E(vk,Λ(sk), 0)

= E(usV ,Λs, 0) = Ẽm(Λs, V ) .

(6.11)

From (6.11) we deduce that u = usV and that uskVk → usV in LD2
E(R2

+ \Λ). �

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. In view of (6.4), it is clear that Em and Ẽm do not depend on t ,
hence (6.5) holds.

In order to prove (6.6) and (6.7), we use the ideas of [1, 13]. Let us start with (6.6). Let
s ∈ (0, L) and V ∈ [0,+∞). Recalling the notation introduced in (6.8) and (6.9), we set

(6.12) us,δV := (cof ∇Fs,δ)−TusV = (P−1
s,δ u

s
V ) ◦Fs,δ .

By (6.9), we have that P−1
s,δ u

s
V ∈ Ã(Λs+δ, V ). Hence, by definition of Ẽm and by the

change of variables x = F−1
s,δ (y), for δ > 0 small enough we have

Ẽm(Λs+δ, V )− Ẽm(Λs, V )

δ
≤
E(P−1

s,δ u
s
V ,Λs+δ, 0)− E(usV ,Λs, 0)

δ

=
1

2δ

(∫
R2

+\Λs
C
(
∇us,δV (∇Fs,δ)−1

)
· ∇us,δV (∇Fs,δ)−1 det∇Fs,δ dx

−
∫
R2

+\Λs
CEusV ·EusV dx

)
+ κ .

Thanks to the properties of Fs,δ stated in Lemma 6.2, applying the dominated convergence
theorem we easily get that

(6.13) lim sup
δ↘0

Ẽm(Λs+δ, V )− Ẽm(Λs, V )

δ
≤ κ− G(s, V ) .

On the other hand, if we set Us,δV := us+δV ◦Fs,δ , for δ > 0 small we have, in view of (6.8),

Ẽm(Λs+δ, V )− Ẽm(Λs, V )

δ
≥
E(us+δV ,Λs+δ, 0)− E(Ps,δu

s+δ
V ,Λs, 0)

δ

=
1

2δ

(∫
R2

+\Λs
C
(
∇Us,δV (∇Fs,δ)−1

)
· ∇Us,δV (∇Fs,δ)−1 det∇Fs,δ dx

−
∫
R2

+\Λs
C∇(Ps,δ u

s+δ
V ) · ∇(Ps,δ u

s+δ
V ) dx

)
+ κ .

(6.14)
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By Lemmas 6.5 and 6.6 we have that Us,δV and Ps,δu
s+δ
V converge to usV in LD2

E(R2
+ \Λ).

Thus, by the dominated convergence theorem, passing to the limit in (6.14) as δ ↘ 0 and
recalling (6.13), we obtain

(6.15) lim
δ↘0

Ẽm(Λs+δ, V )− Ẽm(Λs, V )

δ
= κ− G(s, V ) .

With the same argument we can prove that

(6.16) lim
δ↗0

Ẽm(Λs+δ, V )− Ẽm(Λs, V )

δ
= κ− G(s, V ) ,

which, together with (6.15), implies (6.6).
Equality (6.7) can be proved with the same technique. For every V > 0, let us show that

(6.17) lim
δ↘0

Ẽm(Λs, V + δ)− Ẽm(Λs, V )

δ
≤ p(Λs, V, ε(t)) + σ(ε(t)) .

Since V+δ
V usV ∈ Ã(Λs, V + δ), from (6.4) we deduce that

(6.18)
Ẽm(Λs, V + δ)− Ẽm(Λs, V )

δ
≤ 1

2δ

[(
V + δ

V

)2

− 1

] ∫
R2

+\Λs
CEusV ·EusV dx .

Passing to the lim sup in (6.18) as δ ↘ 0 and taking into account Remarks 4.7 and 4.8, we
get (6.17). The rest of the proof can be carried out in a similar way. �

Before stating a Griffith’s criterion for our model, we make a comment on formula (6.6)
of Theorem 6.4.

Remark 6.7. As we have seen in Proposition 4.3 and Remark 4.8, to every t ∈ [0, T ] ,
s ∈ [0, L] , and V ∈ [0,+∞), is associated a pressure p(Λs, V, ε(t)) ∈ [0,+∞) which acts on
the fracture lips along the normal νΛs . In order to determine the energy release rate, what
is usually done in fracture mechanics (see, e.g., [20]) when a force p is applied to the crack
is to compute the derivative of the reduced energy Em of (5.4) with respect to the crack
length s , keeping p fixed. On the contrary, in (6.6) we have computed the derivative of the
reduced energy Em of (5.1) with respect to s , keeping the fluid (or crack) volume V fixed.

Let us show that, at least formally, the two derivatives coincide. Indeed, by defini-
tion (4.33) of Em , we notice that, for every t ∈ [0, T ] , every s ∈ [0, L] , and every p ∈ R ,

(6.19) Em(t,Λs, p) = Em(t,Λs, V (Λs, p, ε(t)))− (p+ σ(ε))V (Λs, p, ε(t)) .

Since p(Λs, V (Λs, p, ε(t)), ε(t)) = p , computing the derivative of formula (6.19) with respect
to s and using (6.6) and (6.7) we obtain

∂Em
∂s

(t,Λs, p) = κ− G(s, V (Λs, p, ε(t))) =
∂Em
∂s

(t,Λs, V (Λs, p, ε(t))) .

We are now ready to state a Griffith’s criterion for a quasi-static evolution (Γ, V ) : [0, T ]→
Cη × [0,+∞) of the hydraulic crack growth problem given by Definition 5.1. In view of
the regularity assumption of Theorem 6.4, we have to suppose that the curve Γ(T ) is of
class C2,1 . Let LΓ := H1(Γ(T )) and let γ : [0, LΓ]→ R2

+ be an arc-length parametrization
of Γ(T ) of class C2,1 . As in (6.1), we set (Γ(T ))s := γ([0, s]) for every s ∈ [0, LΓ] . With
this notation, we have the following theorem.

Theorem 6.8. Let (Γ, V ) : [0, T ]→ Cη × [0,+∞) be a quasi-static evolution of the hydraulic
crack growth problem with the properties stated above. Let s : [0, T ]→ [0, LΓ] be the function
defined by s(t) := H1(Γ(t)) for every t ∈ [0, T ] , and let Tf := sup {t ∈ [0, T ] : s(t) < LΓ} .
Then the following conditions hold:

(1) ṡ(t) ≥ 0 for a.e. t ∈ [0, T ] ;
(2) G(s(t), V (t))− κ ≤ 0 for every t ∈ [0, Tf ) ;
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(3) (G(s(t), V (t))− κ)ṡ(t) = 0 for a.e. t ∈ [0, Tf ) .

The first condition reflects the irreversibility condition of Definition 5.1. The second
condition says that the energy release rate has to be less than or equal to κ during the
evolution. Finally, the last condition means that the energy release rate has to be equal to κ
when the crack tip moves with a positive velocity. This is the so-called Griffith’s criterion
in our model.

Proof. Since t 7→ s(t) is a monotone nondecreasing function, property (1) is clearly satisfied.
Property (2) follows by the global stability condition of Definition 5.1: indeed, for every

t ∈ [0, Tf ) we have that, for s(t) < σ ≤ LΓ ,

(6.20) Em(t,Γ(t), V (t)) ≤ Em(t, (Γ(T ))σ, V (t)) .

Since (6.6) holds, dividing (6.20) by σ − s(t) and passing to the limit as σ ↘ s(t) we
deduce (2).

In order to prove (3), we make more explicit the energy-dissipation balance (5.2): for
a.e. t ∈ [0, Tf ) we have(

p(t) + σ(ε(t))
)
V̇ (t) =

d

dt
Em(t,Γ(t), V (t)) =

d

dt
Em(t, (Γ(T ))s(t), V (t))

=
(
κ− G(s(t), V (t))

)
ṡ(t) +

(
p(t) + σ(ε(t))

)
V̇ (t) ,

where, in the last equality, we have used the results of Theorem 6.4. �
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