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Introduction

The study of the asymptotic behaviour of oscillating structures has been carried on
successfully under the hypothesis of periodicity (see for example Bensoussan, J.L. Lions
& Papanicolaou [7], Marcellini [35], Müller [38], etc.). However, the periodical setting
is, under certain aspects, at times unsatisfactory; e.g.,

– the family of periodic functions is not stable under simple algebraic operations
(sum, product) or superposition, unless we restrict to functions with the same period;

– in some cases we have to consider the restriction of periodic functions to linear
subspaces (which in general is not periodic);

– we would like our homogenization results to be stable under “small” perturbations
(for example compact support perturbations) of the functionals considered.
The almost periodic framework provides a suitable answer to these requirements.

In this paper we shall present a homogenization theorem (Theorem 2.4) for func-
tionals of the calculus of variations of the form∫

Ω

f
(
x,
x

ε
, u(x),

u(x)
ε

,Du(x)
)
dx,

with very mild conditions of almost periodicity on the oscillating variables, and standard
growth hypotheses on the integrand f . Particular case of problems of this type have
already been treated by Buttazzo & Dal Maso [15 ], Acerbi & Buttazzo [1] and E [23],
under periodicity assumptions (see also Boccardo & Murat [9]).

We use the techniques of De Giorgi’s Γ-convergence, which has proven particularly
suited for the treatment of asymptotic problems. Almost-periodic problems have already
been studied by Braides [10], [11], Ambrosio & Braides [4], De Arcangelis and Serra
Cassano [21], De Arcangelis [20], and, in the framework of the G-convergence, by Kozlov
[28], [29], Oleinik & Zhikov [39] (for the linear case), and recently by Braides, Chiadò
Piat & Defranceschi [13], and Braides [12] (for quasilinear equations).

Section 1 contains the main definitions of almost periodicity and Γ-convergence. In
Section 2 we recall some important results concerning (weakly lower semicontinuous)
integral functionals on Sobolev spaces, and state the main results of the paper. Section
3 is devoted to the proof of the homogenization theorem under stronger hypotheses
of uniform almost periodicity, which already cover the case of oscillating Riemmanian
metrics. The simplification allows us to underline in the proof the main feature of
uniform almost periodic functions here utilized: the keeping of their properties while
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passing to lower dimensional linear subspaces. Let us remark that even in the periodic
case (and no non-oscillating variables), we find ourselves with a non periodic problem
when considering the superposition of f and a linear function: f(x, ξx, ξ). This would
lead to some technical problems, if we wanted to use only periodic techniques (see E
[23], Section 4 and 5, Acerbi & Buttazzo [1] Section 3). In Section 4 we briefly recall a
closure theorem for the homogenization (Theorem 4.2) proven in [11], and adapt it to
the present situation. This permits the extension to the general almost periodic case.
Finally, in Section 5 we deduce from Theorem 2.4 a homogenization result for viscosity
solution of Hamilton-Jacobi equations.

We have given detailed proofs of the new results, when the almost periodicity plays
an important role, while, for the proofs involving routine procedures of Γ-convergence,
we refer to well-known results (see for example Buttazzo & Dal Maso [16], Dal Maso
& Modica [19], Fusco [25]), and in particular to representation theorems for variational
functionals (see Buttazzo [14], Alberti [3]).
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1. Notation and definitions

Notation

By Mm×n we will denote the space of m × n real matrices, if ξ ∈ Mm×n and
x ∈ Rn, ξx ∈ Rm will be defined by the usual product between matrices and vectors; if
x, y ∈ Rn, (x, y) ∈ R will denote their scalar product. H1,p(Ω) = H1,p(Ω; Rm) will be
the usual Sobolev space (of Rm-valued functions). An will be the family of all bounded
open subsets of Rn; if Ω ∈ An, A(Ω) and B(Ω) will be the families of open and Borel
subsets of Ω, respectively.

Almost-periodic functions

Definition 1.1. (see for example Levitan & Zhikov [30] Def. 3 Ch. 1, Besicovitch
[8] Def. 2 Ch. 1 Parag. 12) Let (X, || ||) be a complex Banach space. We say that a
measurable function v : Rm → X is uniformly almost periodic (u.a.p. for short), and
we write v ∈ UAP (Rm, X), if it is the uniform limit of a sequence of trigonometric
polynomials on X; i.e.,

lim
h→∞

||Ph(·)− v(·)||∞ = 0

for some

Ph(y) =
rh∑
j=1

xhj e
i(λhj ,y),

with xhj ∈ X, λhj ∈ Rm, and rh ∈ N. The definition easily extends to real Banach
spaces. If X = R, this definition is the usual definition of uniformly almost periodic
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functions (in the sense of Bohr, see [8]), and we will write UAPm for UAP (Rm,R). A
special class of u.a.p. functions are quasiperiodic functions, i.e., diagonal functions of
continuous periodic functions of a larger number of variables: v(x) = V (x, . . . , x) (see
[30] Chapter 3).

Remark 1.2. If u : RN → R is a L1
loc function, we define the mean value of u (over

Rn) as

−
∫
udx = lim sup

T→∞

1
(2T )n

∫
[−T,T ]n

u(x)dx.

It is easy to see that the mean value of u.a.p. functions is finite.

Let us first recall a characterization of uniformly almost periodic functions, which
will be an essential tool in the proof of the homogenization result (see for example, [8]
Ch. 1 Parag. 12 Theorem 10 and Theorem 3).

Theorem 1.3. Let g : RN → R; then the following statements are equivalent:

i) g is uniformly almost periodic;

ii) g is a continuous function, and for every η > 0 the set

Tη = { τ ∈ RN : |g(x+ τ)− g(x)| < η for every x ∈ RN }

is relatively dense in RN (*);

iii) g is a continuous function and for every y ∈ RN and η > 0 the set

T yη = {τ ∈ R : |g(x+ τy)− g(x)| < η for every x ∈ RN}

is relatively dense in R.

Following [8] and [30], we can define a more general class of almost periodic func-
tions, which includes u.a.p. functions, periodic measurable functions, and their pertur-
bations with L1(Rn) functions (more in general with L1

loc functions with mean value
zero on Rn).

Definition 1.4. Let (X, || ||) be a complex Banach space. We say that a measurable
function v : Rn → X is (Besicovitch) almost periodic, and we write v ∈ AP (Rn, X), if
it is the limit in mean value of a sequence of trigonometric polynomials on X; i.e.,

(1.1) lim
h→∞

−
∫
||Ph(y)− v(y)||dy = 0

for some

(1.2) Ph(y) =
rh∑
j=1

xhj e
i(λhj ,y),

(*) We say that a set T ⊂ RN is relatively dense in RN if there exists an inclusion

length L > 0 such that T + [0, L]N = RN ; i.e., for every z ∈ RN there exists τ ∈
z + [0, L]N .
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with xhj ∈ X, λhj ∈ Rn, and rh ∈ R. The definition easily extends to real Banach
spaces. In particular we can take X = UAPm (which is a Banach space if equipped
with the uniform norm). If X = R, this definition is the usual definition of Besicovitch
almost periodic functions (see [8]).

Γ-convergence

Definition 1.5. (De Giorgi & Franzoni [22]) Let (X, τ) be a metric space (throughout
the paper we shall consider always Lp spaces), and let (Fi)i∈I be a family of real functions
defined on X, I ⊂]0,+∞[ with 0 ∈ I. Then for x0 ∈ X, we define

Γ(τ)- lim inf
i→0

Fi(x0) = inf{lim inf
i→0

Fi(xi) : xi
τ→x0},

and
Γ(τ)- lim sup

i→0
Fi(x0) = inf{lim sup

i→0
Fi(xi) : xi

τ→x0};

if these two quantities coincide their common value will be called the Γ-limit of the
sequence (Fi) in x0, and will be denoted by

Γ(τ)- lim
i→0

Fi(x0).

It is easy to check that the following statements are equivalent:

i) l = Γ(τ)- lim
ε→0

Fε(x0);

ii) for every sequence of positive numbers (εh) converging to 0 there exists a
subsequence (εh′) for which we have

l = Γ(τ)- lim
h′→0

Fεh′ (x0);

iii) for every sequence of positive numbers (εh) converging to 0 we have

a) for every sequence (xh) converging to x0 we have

l ≤ lim inf
h→∞

Fεh(xh);

b) there exists a sequence (xh) converging to x0 such that

l ≥ lim sup
h→∞

Fεh(xh).

Remark 1.6. The Γ-upper and lower limits defined above are τ -lower semicontinuous
functions.

The value of the Γ-limit Γ(τ)- lim
i→0

Fi(x) does not change if we substitute Fi with

its lower τ -semicontinuous envelope; i.e., the greatest lower τ -semicontinuous function
less than or equal to Fi.

The importance of the Γ-convergence in the calculus of variations is clearly de-
scribed by the following theorem.
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Theorem 1.7. (De Giorgi & Franzoni [22]) Let us suppose that the Γ-limit

Γ(τ)- lim
i→0

Fi(x) = F0(x)

exists for every x ∈ X, and that G is a τ -continuous function defined on X. Then if
the functions Fi +G are equicoercive on X, we have

lim
i→0

inf
X

(Fi +G) = min
X

(F0 +G).

2. Preliminaries and statement of the main results

In the following we will consider functionals of the type

(2.1) F (u,Ω) =
∫
Ω

f(x, u,Du)dx,

where Ω ∈ An and u ∈ H1,p(Ω), and the integrand f : Rn × Rm ×Mm×n → R is a
Carathéodory function and satisfies the growth condition

(2.2) |ξ|p ≤ f(x, u, ξ) ≤ C(1 + |ξ|p)

for all (x, u, ξ) ∈ Rn ×Rm ×Mm×n.

We will be concerned with Γ-limits of functionals of the form (2.1) in the strong
topology of Lp(Ω). Let us remark that, thanks to (2.2) this is equivalent to taking the
Γ-limits in the weak topology of H1,p(Ω), and that in this topology these functionals are
equicoercive. Moreover, we can specialize Theorem 1.7, taking into account boundary
data as follows (see for example Fusco [25] Lemma 2.1).

Remark 2.1. If (Fε(·,Ω)) is a sequence of functionals of the form (2.1) that Γ-converge
to a functional F (·,Ω) as ε→ 0, then we have

min{F (u,Ω) : u− ϕ ∈ H1,p
0 (Ω)} = lim

ε→0
inf{Fε(u,Ω) : u− ϕ ∈ H1,p

0 (Ω)}

for any ϕ ∈ H1,p(Ω).

Lower semicontinuous integral functionals on H1,p(Ω) of the form (2.1) are com-
pletely described by the following definition and the subsequent semicontinuity theorem.

Definition 2.2. (Morrey [37], Ball & Murat [6]) We will say that a continuous function
f : Mm×n → R is quasiconvex if for every ξ ∈Mm×n, Ω ∈ An, u ∈ C1

0(Ω), we have

(2.3) |Ω|f(ξ) ≤
∫
Ω

f(ξ +Du)dx.

If f satisfies growth conditions as in (2.2), then (2.3) is satisfied for all u ∈ H1,p
0 (Ω).

An equivalent definition of quasiconvexity is given by Ball, Currie & Olver [5] using
u.a.p. functions: f is quasiconvex if

f

(
−
∫
Dudx

)
≤ −
∫
f(Du)dx

for any u ∈ C1(Rn; Rm) such that Du ∈ UAPmn.
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Theorem 2.3. (see Morrey [37], Acerbi & Fusco [2], Dacorogna [18]) Let us consider
a Carathéodory function f : Rn ×Rm ×Mm×n → R satisfying (2.2). A necessary and
sufficient condition for the functional F (·,Ω) in (2.1) to be sequentially lower semicon-
tinuous in the weak topology of H1,p(Ω) is the function f to be quasiconvex in the last
variable. More precisely, the relaxed functional of F , i.e., the greatest sequentially lower
semicontinuous (integral) functional less than or equal to F , in the weak topology of
H1,p(Ω), is

(2.4) F (u,Ω) =
∫
Ω

Qf(x, u,Du)dx,

where the Carathéodory function Qf is the quasiconvex envelope of f , given by

(2.5) Qf(x, u, ξ) = inf
{ 1
|A|

∫
A

f(x, u,Dw(y) + ξ)dy : w ∈ H1,p
0 (A)

}
.

This formula is independent of A ∈ An. Let us remark that thanks to the lower semi-
continuity and coerciveness of F , we have

(2.6) inf{F (u,Ω) : u− ϕ ∈ H1,p
0 (Ω)} = min{F (u,Ω) : u− ϕ ∈ H1,p

0 (Ω)}

for all ϕ ∈ H1,p(Ω).

We can state now the main result of the paper.

Theorem 2.4. Let f : Rn ×Rm ×Mm×n → R satisfy:
(i) for every (x, u, ξ) ∈ Rn ×Rm ×Mm×n

|ξ|p ≤ f(x, u, ξ) ≤ C(1 + |ξ|p);

(ii) for every ξ ∈ Mm×n the function x 7→ f(x, ·, ξ) belongs to AP (Rn, UAPm) (as in
Definition 1.4);

(iii) for every (x, u) ∈ Rn ×Rm the function f(x, u, ·) is quasiconvex.

Then there exists a quasiconvex function f : Mm×n → R such that for every
bounded open subset Ω of Rn and every u ∈ H1,p(Ω) the limit

(2.7) Γ(Lp(Ω))- lim
ε→0

∫
Ω

f
(x
ε
,
u(x)
ε

,Du(x)
)
dx =

∫
Ω

f(Du(x))dx

exists, and the function f satisfies

(2.8) f(ξ) = lim
t→∞

inf
{ 1
tn

∫
]0,t[n

f(x, u(x) + ξx,Du(x) + ξ)dx : u ∈ H1,p
0 (]0, t[n)

}
.
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Remark 2.5. 1) Theorem 2.4 can be easily extended, with standard techniques, to
the limit of functionals of the type∫

Ω

f(x,
x

ε
, u,

u

ε
,Du)dx,

under suitable continuity conditions on the non oscillating variables. We refer to But-
tazzo & Dal Maso [16], Fusco [25], or to E [23] Corollary 6.1 for a proof.

2) The function f may turn out to be less regular than f , as seen by Buttazzo & Dal
Maso [15] Section 4 (see also E [23]), where it is considered the case f(u, ξ) = |ξ|α+g(u).
Acerbi & Buttazzo in [1] Chapter 4, show that even if f(u, ξ) is a quadratic form in
ξ, f is in general not quadratic (while Boccardo & Murat [9] prove that the G-limit of
operators of the type −div

(
b(uε )Du

)
is still of the form −b̃4u).

Remark 2.6. The condition (ii) is easily verified in some important cases:
a) if x 7→ f(x, ·, ξ) is periodic with values in UAPm;

b) if (x, u) 7→ f(x, u, ξ) is a function of UAPn+m;

c) if f(x, u, ξ) = a(x)g(u, ξ) or f(x, u, ξ) = b(u)h(x, ξ), with the functions a and h(·, ξ)
in AP (Rn,R), and b and g(·, ξ) in UAPm, for every ξ.

The following corollary to Theorem 2.4 allows us to drop the quasiconvexity as-
sumption in two important cases.

Proposition 2.7. Let f satisfy condition (i) of Theorem 2.4 and one of the following
assumptions:

(iia) f(·, ·, ξ) is periodic, with periods independent of ξ;

(iib) f(·, ·, ξ) is quasiperiodic; i.e., f(x, u, ξ) = F(x, . . . , x, u, . . . , u, ξ), where F il a
continuous periodic function of a larger number of variables, with periods independent
of ξ.

Then the thesis of Theorem 2.4 still holds.

Proof. It suffices to remark that the operation of quasiconvexification (2.5) man-
tains both periodicity and quasiperiodicity, and apply Theorem 2.4 to the quasiconvex
envelope Qf of f . The formula for f does not change by Remark 1.6 and Theorem 2.3.

Remark 2.8. Formula (2.8) is a straightforward consequence of (2.7). In fact, by
Remark 2.1 we obtain, taking Ω =]0, 1[n and ϕ(x) = ξx,

min
{ ∫
]0,1[n

f(ξ +Du)dx : u ∈ H1,p
0 (]0, 1[n)

}

= lim
ε→0

inf
{ ∫
]0,1[n

f
(x
ε
,
ξx+ u

ε
, ξ +Du

)
dx : u ∈ H1,p

0 (]0, 1[n)
}
.
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By the quasiconvexity of f , the left-hand side is equal to f(ξ), while, making a change
of variables in the right-hand side, we obtain

f(ξ) = lim
ε→0

inf

{
εn

∫
]0, 1ε [n

f(x, ξx+ u, ξ +Du)dx : u ∈ H1,p
0 (]0,

1
ε

[n)

}
,

and hence (2.8).

We cannot expect to obtain in general for the function f a homogenization formula
involving a single minimization problem even when f = f(x, ξ) is purely periodic in the
first variables, as shown by a counterexample of S.Müller [38]. This is possible however
in some special case; e.g., in the scalar case m = 1 and f = f(x, ξ) (see for example
Marcellini [35]), or when m = 1 and f = f(u, |ξ|) (see Buttazzo & Dal Maso [15]).

We end this section with two technical results that will be needed in Section 4.

Remark 2.9. If F (·,Ω) is defined as in (2.1), we can define, for λ > 0, the λ-Moreau-
Yosida transform of F , as

TλF (u,Ω) = inf{F (u+ v,Ω) + λ||v||pLp(Ω) : v ∈ H1,p
0 (Ω)}.

Then if (Fi)i∈I is a family of functionals of the type (2.1) (I as in Definition 1.5), we
have (see [22])

Γ(Lp(Ω))- lim inf
i→0

Fi(u,Ω) = lim
λ→∞

lim inf
i→0

TλFi(u,Ω),

Γ(Lp(Ω))- lim sup
i→0

Fi(u,Ω) = lim
λ→∞

lim sup
i→0

TλFi(u,Ω).

We will need also the following Meyers type theorem for minima of integral func-
tionals (Giaquinta & Giusti [26]).

Theorem 2.10. Let f : Rn×Rm×Mm×n → R be a Carathéodory function satisfying
(2.2), quasiconvex in the last variable, Ω ∈ An and u ∈ C1(Ω). Then there exists η > 0
depending only on Ω, u, p and the constant C in (2.2), such that for every λ > 0 every
minimum point uλ of the problem

min
{∫

Ω

(f(x, u+ v,Du+Dv) + λ|v|p)dx : v ∈ H1,p
0 (Ω)

}

is in H1,p+η(Ω). Moreover, there exists a constant C(λ) depending only on λ, Ω, u, p
and the constant C in (2.2) such that

||uλ||H1,p+η(Ω) ≤ C(λ).
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3. Proof of the homogenization theorem

In this section we prove the homogenization theorem with a hypothesis of uniform
almost periodicity on the function f , which already covers some interesting cases; for
example

f(u,Du) =
n∑

i,j=1

m∑
αβ

aαβij (u)
∂uα

∂xi

∂uβ

∂xj
,

with aαβij u.a.p. and satisfying (2.2). The next section will deal with the extension to a
more general class of integrands.

In view of the characterization of uniformly almost periodic functions in Theorem
1.3 and the growth hypothesis (2.2), we will make the following assumption on the
function f : for every ζ ∈Mm×n and η > 0 the sets

(3.1)

T ζη = {τ ∈ Rn : |f(x+ τ, u+ ζτ, ξ)− f(x, u, ξ)| < η(1 + |ξ|p)
for every (x, u, ξ) ∈ Rn ×Rm ×Mm×n}

T 0
η = {τ ∈ Rm : |f(x, u+ τ, ξ)− f(x, u, ξ)| < η(1 + |ξ|p)

for every (x, u, ξ) ∈ Rn ×Rm ×Mm×n}

are relatively dense in Rn and Rm respectively.
We can now proceed in the proof of the homogenization theorem for function f sat-

isfying (2.2) and (3.1) (no hypothesis of quasiconvexity is needed in this case). Following
a procedure which is typical of Γ-convergence, we first prove a compactness result.

Proposition 3.1. For every sequence (εh) of positive real numbers converging to 0,
there exists a subsequence (εh′), and a quasiconvex function ϕ : Mm×n → R such that
for every Ω ∈ An and every u ∈ H1,p(Ω), there exists the Γ-limit

(3.2) Γ(Lp(Ω))- lim
h′→∞

∫
Ω

f
( x

εh′
,
u(x)
εh′

, Du(x)
)
dx =

∫
Ω

ϕ(Du(x))dx.

Proof. By a standard compactness argument (see Buttazzo & Dal Maso [16], Fusco
[25] Lemma 2.1, or E [23] Theorem 3.1), we obtain the existence of a subsequence (εh′)
such that the limit

F (u,Ω) = Γ(Lp(Ω))- lim
h′→∞

∫
Ω

f
( x

εh′
,
u(x)
εh′

, Du(x)
)
dx

exists for every Ω ∈ An and every u ∈ H1,p(Ω), and satisfies:
(i) for every Ω ∈ An and every u ∈ H1,p(Ω)∫

Ω

|Du|pdx ≤ F (u,Ω) ≤ C
∫
Ω

(1 + |Du|p)dx.

(ii) F is local; i.e., F (u,Ω) = F (v,Ω), whenever Ω ∈ An and u = v a.e. on Ω;
(iii) for every fixed u ∈ H1,p

loc(Rn) the set function F (u, ·) is the restriction of a Borel
measure to An.



10 Andrea Braides

Moreover:
(iv) for every Ω ∈ An, u ∈ H1,p

loc(Rn), a ∈ Rm,

F (u+ a,Ω) = F (u,Ω).

In fact, let uh′ ⇀ u be a sequence in H1,p(Ω) such that

F (u,Ω) = lim
h′→∞

∫
Ω

f(
x

εh′
,
uh′(x)
εh′

, Du(x))dx.

Fixed η > 0, let ah′ ∈ Rm such that ah′ → a and τh′ = ah′/εh′ ∈ T 0
η ; i.e.,

|f(x, u+ τh′ , ξ)− f(x, u, ξ)| ≤ η(1 + |ξ|p)

for every x ∈ Rn, u ∈ Rm, ξ ∈Mm×n. Then we have

F (u+ a,Ω) ≤ lim inf
h′→∞

∫
Ω

f(
x

εh′
,
uh′(x) + ah′

εh′
, Du(x))dx

= lim inf
h′→∞

∫
Ω

f(
x

εh′
,
uh′(x)
εh′

+ τh′ , Du(x))dx

= lim
h′→∞

∫
Ω

f(
x

εh′
,
uh′(x)
εh′

, Du(x))dx+ η lim inf
h′→∞

(|Ω|+ ||Duh′ ||pLp(Ω))

≤ F (u,Ω) + η(|Ω|+ sup
h′
||Duh′ ||pLp(Ω)).

By the arbitrariness of η, we have F (u + a,Ω) ≤ F (u,Ω). In the same way we prove
the opposite inequality.

By (i)–(iv) and the lower semicontinuity of the Γ-limit, we can apply well-known
integral representation theorems (for example Theorem 4.3.2 of Buttazzo [14]), to obtain
the existence of a quasiconvex function ϕ : Rn ×Mm×n → R such that

F (u,Ω) =
∫
Ω

ϕ(x,Du(x))dx,

for every Ω ∈ An and u ∈ H1,p(Ω). In order to complete the proof we have to show that
the function ϕ can be chosen independent of the variable x. It suffices to prove that for
every open ball B in Rn, ξ ∈ Mm×n, and a ∈ Rn, we have F (ξx,B) = F (ξx,B + a).
This can be proven similarly to (iv) above (see also Braides [10] Proposition 5.1).

Arguing as in Remark 2.8, we obtain for the function ϕ in (3.2) the formula

ϕ(ξ) = lim
h′→∞

inf{εnh′

∫
]0,1/εh′ [n

f(x, u(x) + ξx,Du(x) + ξ)dx : u ∈ H1,p
0 (]0, 1/εh′ [n)}.

The proof of Theorem 2.4, for f satisfying (3.1) and (2.2), will be then completed
by ii) of Definition 1.5 and by the following proposition, which shows that the function
ϕ is independent of the subsequence (εh′).
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Proposition 3.2. For every ξ ∈Mm×n there exists the limit

(3.3) f(ξ) = lim
t→∞

inf
{ 1
tn

∫
]0,t[n

f(x, u(x) + ξx,Du(x) + ξ)dx : u ∈ H1,p
0 (]0, t[n)

}
.

Proof. The matrix ζ ∈ Mm×n will remain fixed throughout the proof. Let us
define, for every t > 0, the quantity

gt = gt(ζ) = inf
{ 1
tn

∫
]0,t[n

f(x, u(x) + ζx,Du(x) + ζ)dx : u ∈ H1,p
0 (]0, t[n)

}
.

Fixed t > 0, let ut ∈ H1,p
0 (]0, t[n) be such that

1
tn

∫
]0,t[n

f(x, ut(x) + ζx,Dut(x) + ζ)dx ≤ gt +
1
t
.

We want to estimate gs, for s > t, in terms of gt. To such purpose, we will construct
us ∈ H1,p

0 (]0, s[n), by a patchwork procedure, exploiting the uniform almost periodicity
of the function f .

Fixed η > 0, let T ζη be as in (3.1), and let Lη be the inclusion length related to T ζη .
If s ≥ t+ Lη, let Is be the set of all z = (z1, . . . , zn) ∈ Zn such that

0 ≤ zj ≤
s

t+ Lη
− 1 j = 1, . . . , n,

and, for every z ∈ Is, let

τz ∈
(
(t+ Lη)z + [0, Lη]n

)
∩ T ζη ;

when s < t+ Lη we set Is = 0 and we choose τz = 0.
If s > t, let us define

us(x) =

ut(x− τz) if x ∈ τz+]0, t[n,

0 otherwise,

and

Qs =]0, s[n\
⋃
z∈Is

(τz+]0, t[n).

If s ≥ t+ Lη, then we have |Qs| = sn −
(

[ s
t+Lη

]− 1
)n
tn < sn

(
1−

(
t

t+Lη

)n)(*).

(*) If a ∈ R, then [a] ∈Z is the integral part of a.
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We can now estimate gs (s ≥ t+ Lη):

gs ≤
1
sn

∫
]0,s[n

f(x, us(x) + ζx,Dus(x) + ζ)dx

=
1
sn

∑
z∈Is

∫
τz+]0,t[n

f(x, ut(x− τz) + ζx,Dut(x− τz) + ζ)dx+
∫
Qs

f(x, ζx, ζ)dx


=

1
sn

∑
z∈Is

∫
]0,t[n

f(x, ut(x) + ζx+ ζτz, Dut(x) + ζ)dx+
∫
Qs

f(x, ζx, ζ)dx


=

1
sn

(∑
z∈Is

∫
]0,t[n

(
f(x, ut(x) + ζx+ ζτz, Dut(x) + ζ)− f(x, ut(x) + ζx,Dut(x) + ζ)

)
dx

+
(

[
s

t+ Lη
]− 1

)n ∫
]0,t[n

f(x, ut(x) + ζx,Dut(x) + ζ)dx+
∫
Qs

f(x, ζx, ζ)dx

)

≤ 1
sn

(∑
z∈Is

η

∫
]0,t[n

(
1 + |Dut|p

)
dx+

(
[

s

t+ Lη
]− 1

)n
tn(gt +

1
t
) + C|Qs|(1 + |ζ|p)

)

≤η
( t

t+ Lη

)n(1 + gt +
1
t
) +

( t

t+ Lη

)n(gt +
1
t
) + C

(
1−

( t

t+ Lη

)n)(1 + |ζ|p).

We have thus

gs ≤ gt
( t

t+ Lη

)n(1 + η) +
( t

t+ Lη

)n(η(1 +
1
t
) +

1
t
) + C

(
1−

( t

t+ Lη

)n)(1 + |ζ|p).

Taking the limit, first as s→∞ and then as t→∞, we obtain

lim sup
s→∞

gs ≤ (1 + η) lim inf
t→∞

gt + η.

By the arbitrariness of η we have the desired result.

4. Generalization to almost periodic functionals

The proof of Theorem 2.4 follows an approximation argument, already used by Braides
[11], in view of the following closure lemma for the homogenization.

Lemma 4.1. Let f and gh (h ∈ N) satisfy (2.2), and for every R ≥ 0

(4.1) lim
h→∞

−
∫

sup
|ξ|≤R

||f(x, ·, ξ)− gh(x, ·, ξ)||∞dx = 0.

If for every bounded open subset Ω of Rn and every u ∈ H1,p(Ω) the limit

(4.2) Gh(u,Ω) = Γ(Lp(Ω))- lim
ε→0

∫
Ω

gh

(x
ε
,
u(x)
ε

,Du(x)
)
dx
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exists, then there exists also the limit

(4.3) F (u,Ω) = Γ(Lp(Ω))- lim
ε→0

∫
Ω

f
(x
ε
,
u(x)
ε

,Du(x)
)
dx,

and we have

(4.4) F (u,Ω) = Γ(Lp(Ω))- lim
h→∞

Gh(u,Ω)

for every bounded open subset Ω of Rn, and every u ∈ C1(Ω).

Remark. Taking g = gh, this lemma gives a “stability” result for the homogenization,
under “small” perturbation, in the sense that, under the growth hypothesis (2.2), if
f(x, u, ξ) is homogenizable, then so is also the function f(x, u, ξ) + g(x, u, ξ) whenever
we have −

∫
||g(x, ·, ξ)||∞dx = 0 for all ξ ∈ Mm×n (for example when g is of compact

support in x, or x 7→ ||g(x, ·, ξ)||∞ belongs to L1(Rn).

Proof of Lemma 4.1. We just give a sketch of the proof, since it follows closely
the proof of Lemma 3.4 in [11].

Step 1: we observe that, fixed λ > 0 and u ∈ C1(Ω), by Theorem 2.10 we have
uniform Meyers estimates for the minimizers of the problems

TλG
h
ε (u,Ω) = min{

∫
Ω

gh(
x

ε
,
u+ w

ε
,Du+Dw)dx+ λ

∫
Ω

|w|pdx : w ∈ H1,p
0 (Ω)},

TλFε(u,Ω) = min{
∫
Ω

f(
x

ε
,
u+ w

ε
,Du+Dw)dx+ λ

∫
Ω

|w|pdx : w ∈ H1,p
0 (Ω)},

thanks to the estimate (2.2). The functionals TλGhε and TλFε are the Moreau-Yosida
transforms of the functionals

∫
Ω

gh(xε ,
u
ε , Du)dx and

∫
Ω

f(xε ,
u
ε , Du)dx as in 2.9.

Step 2: using Step 1 and the condition (4.1), we can pass to the limit, obtaining

lim
λ→∞

lim inf
h→∞

lim sup
ε→0

TλG
h
ε (u,Ω) = lim

λ→∞
lim sup
ε→0

TλFε(u,Ω)

and
lim
λ→∞

lim sup
h→∞

lim inf
ε→0

TλG
h
ε (u,Ω) = lim

λ→∞
lim inf
ε→0

TλFε(u,Ω).

The proof repeats word by word the argument of [11], replacing the condition

lim
h→∞

−
∫

sup
|ξ|≤R

|f(x, ξ)− gh(x, ξ)|dx = 0

with (4.1).
Step 3: by Theorem 1.7, we can pass to the limit on the right-hand sides as ε→ 0

obtaining
lim
λ→∞

lim inf
h→∞

TλG
h(u,Ω) = lim

λ→∞
lim sup
ε→0

TλFε(u,Ω)

and
lim
λ→∞

lim sup
h→∞

TλG
h(u,Ω) = lim

λ→∞
lim inf
ε→0

TλFε(u,Ω).

By Remark 2.9 this implies (4.4) passing to the limit.
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Proposition 4.2. Let f and (gh) satisfy (4.1) and (4.2). Then there exists a (quasi-
convex) function f : Mm×n → R such that for every bounded open subset Ω of Rn and
every u ∈ H1,p(Ω) the limit

(4.5) Γ(Lp(Ω))- lim
ε→0

∫
Ω

f(
x

ε
,
u(x)
ε

,Du(x))dx =
∫
Ω

f(Du(x))dx

exists, and the function f satisfies

(4.6) f(ξ) = lim
t→∞

inf
{ 1
tn

∫
]0,t[n

f(x, u(x) + ξx,Du(x) + ξ)dx : u ∈ H1,p
0 (]0, t[n)

}
.

Proof. As in the proof of Proposition 3.1, for every sequence (εh) converging to 0,
there exists a subsequence (εh′) such that the limit

F (u,Ω) = Γ(Lp(Ω))- lim
h′→∞

∫
Ω

f(
x

εh′
,
u(x)
εh′

, Du(x))dx

exists for every Ω ∈ An and every u ∈ H1,p(Ω), and, fixed Ω ∈ An, we have:
(i) for every B ∈ B(Ω) and every u ∈ H1,p(Ω)∫

B

|Du|pdx ≤ F (u,B) ≤ C
∫
B

(1 + |Du|p)dx;

(ii) F is local on A(Ω);
(iii) for every fixed u ∈ H1,p(Ω) the set function F (u, ·) is the restriction of a Borel

measure to An;
(iv) for every A ∈ A(Ω), F (·, A) is weakly lower semicontinuous in H1,p(Ω).
Then F is also local on B(Ω) (see Buttazzo & Dal Maso [17]); a well-known result

(see Liu [34] or Federer [24] Theorem 3.1.16) implies then that F is determined by its
behaviour on C1(Ω). Hence, by (4.3), we have that the Γ-limit is independent of the
subsequence (εh′). From (4.4) we deduce also that

F (u,Ω) = F (u+ a,Ω) for every a ∈ Rm,

for all u ∈ H1,p(Ω), and

F (ξx,Ω) = F (ξx,Ω + b) for every b ∈ Rn,

for all ξ ∈Mm×n.
Hence we can apply the representation result 4.3.2 of Buttazzo [14], and obtain

(4.5). The formula (4.6) follows from Remark 2.8.
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The proof of Theorem 2.4 will be then completed if we exhibit a sequence (gh)
satisfying (4.1) and the hypotheses (3.1) of Section 3, in order to obtain (4.2).

We follow the construction of [11]. Let us first remark that by Definition 1.4 and
the definition of UAPm, we have that for every ξ ∈ Mm×n there exists a sequence of
trigonometric polynomials P ξh on Rn ×Rm such that

−
∫
||P ξh(x, ·)− f(x, ·, ξ)||∞dx→ 0,

as h→∞.
Let (ξh) be a dense sequence in Mm×n. For every h ∈ N let us choose trigonometric

polynomials Ph1 , . . . , P
h
h such that

(4.7) −
∫
||Phj (x, ·)− f(x, ·, ξj)||∞dx ≤

1
h2
.

Define then

(4.8)

fh(x, u, ξ) =


f(x, u, ξ) ξ = ξj j = 1, . . . , h

C(1 + |ξ|p) otherwise,

ϕh(x, u, ξ) =


C(1 + |ξj |p) ∧ (Phj (x, u) ∨ |ξj |p) ξ = ξj j = 1, . . . , h

C(1 + |ξ|p) otherwise,

and Qfh, Qϕh using formula (2.5) We obtain then easily the following proposition.

Proposition 4.3. The functions Qfh and Qϕh are quasiconvex and satisfy (3.1).
Moreover

(4.9) Qfh(x, u, ξj) = f(x, u, ξj)

for j = 1, . . . , h.

Proof. The proof follows directly from (2.5) as in Proposition 4.3, Remark 4.6 and
Remark 4.7 of [11].

Proposition 4.4. The functions gh = Qϕh satisfy the hypotheses of Proposition 4.2.

Proof. By Proposition 4.3, we have only to prove that (4.1) holds. Let us first
show that

(4.10) lim
h→∞

−
∫

sup
|ξ|≤R

||f(x, ·, ξ)−Qfh(x, ·, ξ)||∞dx = 0.

Now, since quasiconvex functions satisfying (2.2) are locally uniformly equi-Lipschitz in
the last variable (see for example Fusco [25] Lemma 1.2, or Marcellini [36]), for every
R > 0 there exists L > 0, depending only on the constant C in (2.2) and p, such that

(4.11)
|f(x, u, ξ)− f(x, u, ξ′)| ≤ L|ξ − ξ′|

|Qfh(x, u, ξ)−Qfh(x, u, ξ′)| ≤ L|ξ − ξ′|



16 Andrea Braides

for all (x, u) ∈ Rn × Rm and ξ, ξ′ ∈ Mm×n with |ξ|, |ξ′| ≤ R, and for every h ∈ N.
Using (4.11), and (4.9) we get

|f(x, u, ξ)−Qfh(x, u, ξ)| = |f(x, u, ξ)− f(x, u, ξj) +Qfh(x, u, ξj)−Qfh(x, u, ξ)|
≤ 2L|ξ − ξj |,

where j ∈ 1, . . . , h and |ξj | ≤ R. Hence

sup
|ξ|≤R

||f(·, ·, ξ)−Qfh(·, ·, ξ)||∞ ≤ 2L sup
|ξ|≤R

(
inf{|ξ − ξj | : j ∈ 1, . . . , h, |ξj | ≤ R}

)
.

By the density of (ξh) the right-hand side tends to 0 as h→∞, and we obtain (4.10).
Let us now prove that

(4.12) lim
h→∞

−
∫

sup
|ξ|≤R

||Qϕh(x, ·, ξ)−Qfh(x, ·, ξ)||∞dx = 0.

Using (2.5) it is easy to see that we have

|Qϕh(x, u, ξ)−Qfh(x, u, ξ)| ≤
h∑
j=1

|ϕh(x, u, ξj)− fh(x, u, ξj)|

=
h∑
j=1

|Phj (x, u)− fh(x, u, ξj)|.

Hence we obtain
−
∫

sup
|ξ|≤R

||Qϕh(x, ·, ξ)−Qfh(x, ·, ξ)||∞dx

≤
h∑
j=1

−
∫
||Phj (x, ·)− fh(x, ·, ξj)||∞dx,

and (4.12), by (4.7).
Eventually, (4.1) follows from (4.10) and (4.12).

5. Homogenization of Hamilton-Jacobi equations

As pointed out by P.L.Lions [32], P.L.Lions, Papanicolaou & Varadhan [33], and E [23],
we can derive from Theorem 2.4 a homogenization result for Hamilton-Jacobi equations,
via Γ-convergence of functionals related to the Legendre transforms of the Hamiltonian.
More precisely, let us suppose that H : R × Rn × Rn → R is a continuous function
satisfying:

i) H(t, x, ·) is convex for every (t, x);

ii) there exists 1 < p < +∞, and C > 0 such that

|ξ|p ≤ H(t, x, ξ) ≤ C(1 + |ξ|p)

for every (t, x, ξ);



ALMOST PERIODIC METHODS IN THE THEORY OF HOMOGENIZATION 17

iii) the function t 7→ H(t, ·, ξ) belongs to AP (R, UAPn).
We shall study the limiting behaviour of the viscosity solutions of the Cauchy problem

(5.1)


∂uε
∂t +H( tε ,

x
ε , Duε) = 0 in Rn × [0,+∞[

uε(x, 0) = ϕ(x) in Rn,

where ϕ is a given bounded and uniformly continuous function in Rn.
Let us define the Legendre transform of H:

L(t, u, ξ) = sup
ξ′∈Rn

{(ξ, ξ′)−H(t, u, ξ′)},

for every (t, u, ξ). Then we have the following proposition.

Proposition 5.1. For every ξ ∈ Rn there exists the limit

(5.2) L(ξ) = lim
T→∞

1
T

inf


T∫

0

L(τ, u(τ) + ξτ, u′(τ) + ξ)dτ : u ∈ H1,q
0 (0, T )

 .

Proof. By the growth hypothesis ii), if we set

C1 = (p− 1)
p−q

C
p
q

C2 =
p− 1
pq

,

we have that for every (t, u, ξ)

C1|ξ|q − C ≤ L(t, u, ξ) ≤ C2|ξ|q.

The existence of the limit in (5.2) follows then by (2.8) in Theorem 2.4, where f =
L(t, u, ξ) + C.

We can intoduce now the effective Hamiltonian H as

H(ξ) = sup
ξ′∈Rn

{(ξ, ξ′)− L(ξ′)},

and state the convergence result as follows.

Theorem 5.2. Let ϕ be a given bounded and uniformly continuous function in Rn, and
let uε be the unique viscosity solution of (5.1). Then as ε→ 0, uε converges uniformly
on compact sets to the unique viscosity solution of the Cauchy problem

(5.3)


∂u
∂t +H(Du) = 0 in Rn × [0,+∞[

u(x, 0) = ϕ(x) in Rn.
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Proof. Following P.L.Lions [31] Theorem 11.1, and Lax [27], we can define for
x, y ∈ Rn and 0 ≤ s < t

Sε(x, t; y, s) = inf


t∫
s

L(
τ

ε
,
u(τ)
ε

, u′(τ))dτ : u(s) = y, u(t) = x, u ∈ H1,∞(s, t)



= inf


t∫
s

L(
τ

ε
,
u(τ)
ε

, u′(τ))dτ : u(τ)−
(y − x
s− t

(τ − s) + y
)
∈ H1,q

0 (s, t)

 .

Then the unique viscosity solution to problem (5.1) is given by the Lax formula:

uε(x, t) = inf{ϕ(y) + Sε(x, t; y, s) : y ∈ Rn, 0 ≤ s < t}.

By Theorem 2.4, we have that for every x, y ∈ Rn and 0 ≤ s < t

Sε(x, t; y, s)→min


t∫
s

L(u′(τ))dτ : u(τ)−
(y − x
s− t

(τ − s) + y
)
∈ H1,q

0 (s, t)


=(t− s)L

(y − x
s− t

)
,

the last equality following by the convexity of L and Jensen’s inequality. By the growth
hypothesis on L we obtain that the functions Sε(x, t; ·, ·) are equicontinuous in {y ∈
Rn, 0 ≤ s ≤ t− η}, and then

uε(x, t)→ u(x, t)

pointwise, where

u(x, t) = inf{ϕ(y) + (t− s)L
(y − x
s− t

)
: y ∈ Rn, 0 ≤ s < t}.

Since the functions uε are equicontinuous on compact sets, the convergence is uniform
on bounded sets. Again by the Lax formula in [31] Theorem 11.1, and by the definition
of H, u is the unique viscosity solution of (5.3).

An Example. Let H = H(x, ξ) be uniformly almost periodic in the first variable.
As shown in [33] and [23], we can give an alternative definition of H: for every ξ ∈ Rn,
H is the unique constant such that the stationary problem

(5.4) H(x, ξ +Du(x)) = H(ξ)

has a uniformly almost periodic solution. We can apply this remark to obtain an explicit
formula for H, when n = 1,

H(x, ξ) = |ξ|2 − V (x),

V is u.a.p. and
inf V = 0.
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When H(ξ) > 0, from equation (5.4) we have

|u′(x) + ξ|2 = V (x) +H(ξ) > 0 ,

hence, by the requirement that u′ is continuous,

u′(x) = −ξ +
√
V (x) +H(ξ) or u′(x) = −ξ −

√
V (x) +H(ξ).

The function u is then u.a.p. if and only if the mean value of u′ is zero, i.e.,

|ξ| = −
∫ √

V (x) +H(ξ) dx.

Since H is positive and convex, we obtain the formula

H(ξ) =


0 if |ξ| ≤ −

∫√
V (x) dx

α if |ξ| = −
∫√

V (x) + α dx.

The flat piece in the graph of H corresponds to the lack of differentiability of L in 0, as
already observed by Buttazzo & Dal Maso [15] Section 4a.
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