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Abstract. In this paper, we are interested in the analysis of a well-known free boundary/shape
optimization problem motivated by some issues arising in population dynamics. The question is to
determine optimal spatial arrangements of favorable and unfavorable regions for a species to survive.
The mathematical formulation of the model leads to an indefinite weight linear eigenvalue problem
in a fixed box Ω and we consider the general case of Robin boundary conditions on ∂Ω. It is well
known that it suffices to consider bang-bang weights taking two values of different signs, that can
be parametrized by the characteristic function of the subset E of Ω on which resources are located.
Therefore, the optimal spatial arrangement is obtained by minimizing the positive principal eigenvalue
with respect to E, under a volume constraint. By using symmetrization techniques, as well as necessary
optimality conditions, we prove new qualitative results on the solutions. Namely, we completely solve
the problem in dimension 1, we prove the counter-intuitive result that the ball is almost never a solution
in dimension 2 or higher, despite what suggest the numerical simulations. We also introduce a new
rearrangement in the ball allowing to get a better candidate than the ball for optimality when Neumann
boundary conditions are imposed. We also provide numerical illustrations of our results and of the
optimal configurations.
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1. Introduction: Elliptic Problem with indefinite weight

1.1. The optimal design problem. In this paper, we are interested in the analysis of a well-known
free boundary/shape optimization problem motivated by a model of population dynamics. The ques-
tion is to determine the optimal spatial arrangement of favorable and unfavorable regions for a species
to survive. We prove new qualitative results on the optimizer, using rearrangement techniques on the
one hand, first order optimality conditions on the other hand.

More precisely, the following linear eigenvalue problem with indefinite weight is formulated in [18]:

(1)
{

∆ϕ+ λmϕ = 0 in Ω,
∂nϕ+ βϕ = 0 on ∂Ω,

where Ω is a bounded domain (open and connected set) in RN with a Lipschitz boundary ∂Ω, n is the
outward unit normal vector on ∂Ω, β ∈ R and the weight m is a bounded measurable function which
changes sign in Ω (meaning that Ω+

m := {x ∈ Ω : m(x) > 0} has a measure strictly between 0 and |Ω|)
and satisfies

(2) − 1 ≤ m(x) ≤ κ for almost every x in Ω,

where κ > 0 is a given constant.
It is said that λ is a principal eigenvalue of (1) if the corresponding eigenfunction ϕ ∈ H1(Ω) is

positive. The existence of principal eigenvalues of (1) with respect to the parameter β was discussed
in [1, 6]. More precisely,

• in the Dirichlet case (“β = +∞”), there are exactly two principal eigenvalues λ− < 0 < λ+,
respectively associated with the eigenfunctions ϕ− and ϕ+ satisfying∫

Ω
m(x)ϕ−(x)2dx < 0,

∫
Ω
m(x)ϕ+(x)2dx > 0,
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• the case 0 < β < +∞ is similar to the Dirichlet case,
• in the critical case β = 0, which corresponds to Neumann boundary conditions, there are
two principal eigenvalues, 0 and λ, respectively associated with the eigenfunctions 1 and ϕ;
moreover λ > 0 if and only if

∫
Ωm(x)dx < 0, in which case we have∫

Ω
m(x)ϕ(x)2dx > 0,

• for β < 0, it was shown in [1] that, depending on β, (1) has two, one or zero principal eigen-
values. In the case of two principal eigenvalues, distinguishing them is achieved by considering
the sign of

∫
Ωm(x)ϕ(x)2 dx.

In the rest of the paper , we focus on the case β ≥ 0 which is relevant for applications in the context
of species survival. Therefore, assuming that |Ω+

m| > 0, and besides that
∫

Ωm < 0 if β = 0, there
exists a unique positive principal eigenvalue for Problem (1), denoted λ(m). Moreover, λ(m) rewrites
also as

(3) λ(m) = inf
ϕ∈S(m)

<m[ϕ],

where

(4) <m[ϕ] =

∫
Ω |∇ϕ|2 + β

∫
∂Ω ϕ

2∫
Ωmϕ

2
and S(m) =

{
ϕ ∈ H1(Ω) :

∫
Ω
mϕ2 > 0

}
,

whenever β < +∞. This has been proved for Neumann boundary conditions (β = 0) in [31] and the
reader can check that the extension to β > 0 is straightforward. Moreover, λ(m) is simple, the infimum
is reached, the associated eigenfunctions do not change sign in Ω, and any eigenfunction belonging to
S(m) and that do not change sign is associated with λ(m).

In the Dirichlet case, where the boundary condition ∂nϕ + βϕ = 0 on ∂Ω is replaced by ϕ = 0 on
∂Ω, this formulation becomes

(5) λ(m) = inf

{∫
Ω |∇ϕ|2∫
Ωmϕ

2
, ϕ ∈ H1

0 (Ω),

∫
Ω
mϕ2 > 0

}
.

Indeed, according to Proposition 2 below, the Dirichlet eigenvalue can be obtained from the Robin
eigenvalues by letting β → +∞.

Throughout this paper, we will analyze the following optimization problem, modeling the optimal
arrangement for a species to survive.

Optimal arrangement of ressources for species survival. Let Ω be a bounded
domain of RN . Given κ > 0 and m0 ∈ (−κ, 1) if β > 0 or m0 ∈ (0, 1) if β = 0, we
consider the optimization problem

(6) inf
m∈Mm0,κ

λ(m) where Mm0,κ =

{
m ∈ L∞(Ω) : −1 ≤ m ≤ κ, |Ω+

m| > 0,

∫
Ω
m ≤ −m0|Ω|

}
.

In Section 2.1, the biological motivations for considering such a problem, as formulated by Cantrell
and Cosner in [8, 9], are recalled.

It is well known (see for example [23, 31] and Section 2.4) that Problem (6) has a solution m∗, and
moreover there exists a measurable subset E∗ ⊂ Ω such that, up to a set of zero Lebesgue measure,
there holds

m∗ = mE∗ where mE∗ = κ1E∗ − 1Ω\E∗ a.e. in Ω.

In addition, one has
∫

Ωm
∗ =

∫
ΩmE∗ = −m0|Ω|, which is a direct consequence of a comparison princi-

ple1. In other words, the minimizer saturates at the same time the pointwise and integral constraints

1Indeed, by comparing the Rayleigh quotients for m1 and m2, one gets

m1 > m2 =⇒ λ(m1) < λ(m2).

One can refer for instance to [31, Lemma 2.3].
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on m. As a consequence, the optimal design problem above can actually be rewritten as a shape
optimization problem:

Shape optimization formulation of Problem (3). Using the same notations as
above, let c = 1−m0

κ+1 ∈ (0, 1). We investigate the optimal design problem

(7) inf
E∈Ec,κ

λ(E) with λ(E) = λ(κ1E − 1Ω\E),

where Ec,κ denotes the set of Lebesgue measurable sets E such that 0 < |E| ≤ c|Ω|.
Therefore and to sum up, given β ≥ 0 and κ ∈ (0,∞), it is equivalent to choose either the parameter

m0 ∈ (−κ, 1) (with, in addition, m0 > 0 when β = 0) or the parameter c ∈ (0, 1) (with c < 1
κ+1 if

β = 0) and the solution is then naturally a function of three parameters (either (β, κ,m0) or (β, κ, c)),
once Ω is given.

1.2. New results. In this paper, we obtain three new qualitative results on the shape optimization
problem we described in the previous section.

In our first result, we provide a complete description of the optimal sets in the one-dimensional
case.

Theorem 1. Assume N = 1 and without loss of generality, let us consider Ω = (0, 1). Let β ∈ [0,+∞],
κ > 0, and c ∈ (0, 1) whenever β > 0 or c ∈ (0, 1

κ+1) whenever β = 0. Define

(8) β∗ :=


2

c
√
κ

arctan
(

1√
κ

)
if κ > 1

π
2c if κ = 1

1
c
√
κ

(
arctan

(
2
√
κ

κ−1

)
+ π

)
if κ < 1

Then
• if β > β∗, the unique2 solution of (7) is the interval of length c and centered at 1/2,
• if β < β∗, the solutions of (7) are exactly (0, c) and (1− c, 1),
• if β = β∗, the solutions of (7) are exactly all intervals of length c,

This result is clear for β = +∞ (i.e. for the Dirichlet case) using symmetrization, and is proven in [31]
for β = 0. In the more general situation β ∈ (0,∞), the minimizer among intervals has been computed
in [7] when κ = 1 and in [23] for κ > 0. Therefore the previous result rests upon the fact that the optimal
set is an interval. We prove this in Section 3. Our method is based on a symmetrization argument,
and is therefore closer to the case β = +∞ than the method of [31]. We cannot use Steiner/Schwarz
symmetrization since it may not decrease the gradient term

∫
Ω |∇ϕ|2 (except if β = +∞ in which case

ϕ ∈ H1
0 (Ω)). Therefore we use a sort of two sided decreasing rearrangement, whose center is chosen

appropriately so that symmetrized functions are still admissible, and which decreases every term in
the Rayleigh quotient. Notice that even in the case β = 0, this gives a new proof of the result of [31],
which is more straightforward.

Our second result deals with the case N ≥ 2, and disproves the commonly stated conjecture that
the ball is a minimizer for certain domains Ω and certain values of the parameters β, κ and c. This
conjecture was also suggested by numerical computations and results (see [35]).

We prove that the conjecture is false, except maybe for very particular choices of the parameters
such as the box Ω. In particular, if Ω is not a ball, a minimizer for (7) cannot be a ball, whatever
the value of the parameters β, κ and c are. This means in particular that the optimal set does not
minimize the surface area of its boundary.

More precisely, we have the following general result.

2Here the uniqueness must be understood up to some subset of zero Lebesgue measure. In other words if E∗ is optimal
then the union of E∗ with any subset of zero measure is also a solution.
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Theorem 2. Let N ≥ 2, Ω a domain of RN such that its boundary ∂Ω is connected and of class C1,
(β, κ, c) ∈ [0,+∞] × (0,+∞) × (0, 1) with c < 1

1+κ if β = 0, and E an open subset of Ω of measure
|E| = c|Ω|. Assume that either E or Ω\E is rotationally symmetric (i.e. a union of concentric rings,
whose center is denoted O) and has a finite number of connected components.

• If the set E is a critical point3 of the optimal design problem (7) then Ω is a ball of center O.
• There exists β0 ≥ 0 such that if β ≥ β0, and if E solves Problem (7), then E and Ω are
concentric balls.

To our best knowledge, this result is completely new, even if β = 0 or β = +∞. Theorem 2 lets
open the issue of knowing whether the optimal configuration E is rotationally symmetric.

Note that when ∂Ω is disconnected, it is likely that the result is not valid anymore. For instance, if
Ω is an annulus, one would expect the existence of a rotationally symmetric critical set E.

The assumption on the finite number of connected components for E ensures that ∂E∩Ω is analytic,
which is crucial in our proof. It could thus be replaced by an analyticity assumption on ∂E ∩ Ω.

Note that our result is also interesting if Ω is a ball. It asserts that the only rotational symmetric
domain which is a candidate for optimality is the centered ball whenever the parameter β is large
enough. It implies in particular that an annulus cannot be a minimizer, even if β = 0.

The proof of Theorem 2 uses the first order optimality condition, namely that ϕ is constant on ∂E,
to infer that ϕ is necessarily radial (i.e. ϕ is a function of |x|) on the whole domain Ω. To that end,
we built particular test functions that can be interpreted as angular derivatives of the function ϕ.

Then, we rewrite the problem as an optimization problem bringing into play only functions of the
polar variable r. This allows to conclude that Ω must be a ball, proving that the associated eigenvalue
on the largest inscribed ball and the smallest circumscribed ball are the same.

The second part of the result is proven by using a symmetrization argument, which, as for Theorem
1, works for large values of the parameter β and despite the lack of the usual hypotheses for this kind
of argument.

We also underline here that the converse of Theorem 2 is not true. More precisely, the radial
symmetry of Ω does not imply that a similar symmetry will hold for the minimizing set E∗. Indeed,
an analytical example which shows that a radially symmetric set E cannot be a minimizer has been
provided in [24, Theorem 2.5] when Ω is a thin and large annulus, for Neumann boundary conditions.
Even for Dirichlet boundary conditions, symmetry breaking can occur. In [11], this phenomenon is
observed and explicit examples are provided for a closely related problem.

Finally, let us highlight that we prove in the second step of Theorem 2 the following interesting
byproduct: among the set of rotationally symmetric open subsets E of Ω of prescribed measure, the
centered ball is the only minimizer for β large enough.

Proposition 1. Let N ≥ 2, Ω be the N -dimensional unit ball of RN centered at the origin, (β, κ, c) ∈
[0,+∞] × (0,+∞) × (0, 1) with c < 1

1+κ if β = 0. Let E be a rotationally symmetric and concentric
open subset of Ω of measure |E| = c|Ω|. Then, any eigenfunction ϕ associated with λ(E) is radial.
Moreover, there exists β0 > 0 such that there holds λ(E) ≥ λ(ES) for every β ≥ β0, where ES denotes
the centered ball of volume c|Ω|, and λ(E) = λ(ES) if and only if E = ES.

Our third result is motivated by Theorem 2 which asserts in particular that a ball is a candidate
for optimality only if Ω itself is a concentric ball. It remains to decide, in the case where Ω is a ball,
whether the centered ball is optimal or not. In the case β = +∞ it is actually the case (classically, by
using the so-called Schwarz symmetrization), but we expect that it is not the case for every values of
β. We prove that the centered disk is not optimal in the case β = 0 (Neumann boundary condition)
and for N ≥ 2.

3This means that E satisfies the necessary first order optimality conditions of Problem (7), in other words that E is
an upper level set of the eigenfunction ϕ associated with the principal eigenvalue λ(E), more precisely that there exists
α such that E = {ϕ > α}, see also Section 2.4.
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Theorem 3. Let κ > 0, N = 2, 3, 4, and c ∈ (0, 1
1+κ). Assume β = 0 and Ω = B(0, 1) ⊂ RN is the

disk of radius 1 centered at the origin. Then the centered ball of volume c|Ω| is not a minimizer for
Problem (7).

This result is a particular case of the more general result stated in Theorem 5: we use a non-local
deformation that decreases strongly the value of λ, more precisely if E is a centered ball (or more
generally a radially symmetric set), we build a set Ê that “sticks” on the boundary of ∂Ω and satisfies

(9) λ(Ê) < cNλ(E).

with

cN =
5N − 4

4N
.

We compute c2 = 6/8, c3 = 11/12, c4 = 1 which yields Theorem 3. For N > 4, we have cN > 1 so we
cannot conclude from the estimate (9). For β > 0, the situation is unclear: first, it seems our strategy
cannot be adapted, even if β is small, though it is reasonable to expect that the centered ball is not a
solution in that case. For β large, we do not know whether the situation is similar to the 1-dimensional
case (that is there exists β∗, possibly depending on κ and c, such that for β > β∗ the solution is a
centered ball, in other words the same as if β = +∞) or if it can be proven that the centered ball is a
solution only if β = +∞.

The article is organized as follows: in Section 2, we provide some explanations about the biological
model motivating our study, as well as a short survey on several existing results related to the problem
we investigate and similar ones. Section 3 is devoted to the proof of Theorem 1, solving completely
Problem (7) in the case where Ω = (0, 1) with Robin boundary conditions. The whole section 4 is
devoted to proving Theorem 2. Finally, in Section 5, we provide qualitative properties of the minimizers
of Problem (7) in the particular cases where Neumann boundary conditions are considered, Ω is a N -
orthotope or a two dimensional euclidean disk. In this last case, we prove in Theorem 5 a quantitative
estimate showing symmetry-breaking for the minimizers. This allows in particular to derive Theorem
3. All these results are illustrated by numerical simulations.

2. Preliminaries and State of the art

In this section, we gather several known facts about Problem (6), from the biological motivation
of the model to deep and technical results about minimizers, mainly for two reasons. First of all, we
will use several known results in our proofs, therefore we want to recall them for the convenience of
the reader. Second, we want to highlight the novelty of our results, even when we will be led to state
results for certain choices of parameters (such as Ω, β, the dimension, and so on).

2.1. Biological model. The main biological motivation for studying extremal properties of the prin-
cipal eigenvalue λ = λ(m) with respect to the weight m comes from the diffusive logistic equation

(10)


ut = ∆u+ ωu[m(x)− u] in Ω×R+,

∂nu+ βu = 0 on ∂Ω×R+,

u(0, x) ≥ 0, u(0, x) 6≡ 0 in Ω,

introduced in [36], where u(t, x) represents the density of a species at location x and time t, and ω is a
positive parameter. Concerning the boundary conditions on Ω, the case β = 0 corresponds to Neumann
or no-flux boundary condition, meaning that the boundary acts as a barrier, i.e. any individual reaching
the boundary returns to the interior. The case β = +∞ corresponds to Dirichlet conditions and may be
interpreted as a deadly boundary, i.e. the exterior environment is completely hostile and any individual
reaching the boundary dies. For intermediate values 0 < β < +∞, we are in the situation where the
domain Ω is surrounded by a partially inhospitable region, where inhospitableness grows with β. The
weight m represents the intrinsic growth rate of species: it is positive in the favorable part of habitat
(Ω+

m = {m > 0}) and negative in the unfavorable one (Ω−m = {m < 0}). The integral of m over Ω
measures the total resources in a spatially heterogeneous environment.
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The logistic equation (10) plays an important role in studying the effects of dispersal and spatial
heterogeneity in population dynamics; see, e.g. [8, 9, 10] and the references therein. It is known that
if ω ≤ λ(m), then u(t, x) → 0 uniformly in Ω as t → ∞ for all non-negative and non-trivial initial
data, i.e., the species go to extinction; if, however, ω > λ(m), then u(t, x)→ u∗(x) uniformly in Ω as
t→∞, where u∗ is the unique positive steady solution of (10), i.e., the species survives.

Since the species can be maintained if and only if ω > λ(m), we see that the smaller λ(m) is,
the more likely the species can survive. With this in mind, the following question was raised and
addressed by Cantrell and Cosner in [8, 9]: among all functions m ∈ Mm0,κ, which m will yield the
smallest principal eigenvalue λ(m), whenever it exists? From the biological point of view, finding such
a minimizing function m is equivalent to determining the optimal spatial arrangement of the favorable
and unfavorable patches of the environment for species to survive. This issue is important for public
policy decisions on conservation of species with limited resources.

2.2. Other formulation. In this section, we address a closely related optimal design problem. Let
(µ−, µ+) ∈ R2 such that µ− < 0 < µ+. For µ ∈ L∞(Ω; [µ−, µ+]), the classical reaction-diffusion model
in homogeneous environments of Fisher, Kolmogorov et al. [17, 2] generalizes as:

(11)


vt = ∆v + v[µ(x)− ν(x)v] in Ω×R+,

∂nv + βv = 0 on ∂Ω×R+,

v(0, x) ≥ 0, v(0, x) 6≡ 0 in Ω,

where v(t, x) represents the population density at time t and position x. The function µ stands for the
intrinsic grow rate of the species whereas the function ν is the susceptibility to crowding and is chosen
in L∞(Ω) and such that essinfν > 0.

According to [5, 35] and similarly to the previous model, a necessary and sufficient condition of
species survival writes γ(µ) < 0, where γ(µ) denotes the principal eigenvalue associated with the
elliptic problem

(12)
{
−∆ψ = (µ(x) + γ)ψ in Ω
∂nψ + βψ = 0 on ∂Ω.

It is notable that this condition does not depend on the function ν(·).
The principal eigenvalue γ(m) of (12) is unique, nonnegative and given by

(13) γ(µ) = inf
ψ∈H1(Ω)
ψ 6=0

∫
Ω |∇ψ|2 −

∫
Ω µψ

2 + β
∫
∂Ω ψ

2∫
Ω ψ

2
.

Moreover, γ(µ) is simple, and the infimum is attained only by associated eigenfunctions that do not
change sign in Ω.

As previously, a similar analysis of the biological model leads to the study of the following optimal
design problem.

Optimal rearrangement of species problem, equivalent formulation. Given
(µ−, µ+) ∈ R2 such that µ− < 0 < µ+ and µ0 ∈ (µ−, µ+), we are interested in

(14) inf

{
γ(µ); µ ∈ L∞(Ω; [µ−, µ+]) such that |Ω+

µ | > 0, and
∫

Ω
µ ≤ −µ0|Ω|

}
.

Following the same approach as for Problem (6), it is standard to prove that Problem (14) has a
solution µ∗ which is a bang-bang function: µ+1E∗ + µ−1Ω\E∗ , and the volume constraint is active.

Note that Problems (6) and (14) have been considered independently in the literature on optimal
arrangement of ressources for species survival. In [11] these two similar problems have been investigated
and it is shown that they are equivalent in a sense recalled below. The main difference with our case
is, roughly speaking, that the weight µ(x) + γ is positive in [11]. However as far as the equivalence of
(6) and (14) is concerned, the proof is the same and we recall the result here, for mainly two reasons:
firstly because it allows us to use certain results from both literatures, and secondly, because while our
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statements and proofs deal with formulation (6), our new results are actually also valid for solutions
of (14).

Theorem 4. ([11, Theorem 13], Equivalence between the two formulations) Let Ω a bounded domain
and β ∈ R+.

• Let κ > 0 and m0 ∈ (−κ, 1), with in addition m0 > 0 if β = 0. Assume that E∗ is a
solution of Problem (7) and let λ∗ = λ(κ1E∗ − 1Ω\E∗) be the minimal eigenvalue. Then,
µE∗ = µ+1E∗ + µ−1Ω\E∗ is a solution of Problem (14) with parameters µ− = −λ∗, µ+ = κλ∗,
µ0 = λ∗m0, and moreover γ∗ = γ(µE∗) = −µ− − λ∗.
• Conversely, let µ− < µ+, µ0 ∈ (−µ+,−µ−), let µ = µE∗ be a bang-bang solution of Problem
(14), and let γ∗ = γ(µ+1E∗+µ−1Ω\E∗) be the minimal eigenvalue. Then, mE∗ = κ1E∗−1Ω\E∗

is a solution of Problem (6) with parameters κ = −γ∗+µ+

γ∗+µ−
, m0 = µ0−γ∗|Ω|

λ∗ , and moreover
λ∗ = λ(mE∗) = −µ− − γ∗.

2.3. Basics. As a first remark, there exists a wide literature concerning a problem close to (6), where
one aims at minimizing the first eigenvalue of the operator − 1

m∆ where ∆ denotes the Dirichlet-
Laplacian operator, with respect to functions m satisfying the pointwise constraint a ≤ m(·) ≤ b
a.e. in Ω with 0 < a < b as well as a global integral constraint. Such problems are motivated by
optimal design issues with respect to structural eigenvalues. We refer for instance to [30, 27, 28, 29, 15]
where Dirichlet boundary conditions are considered, and to [20, Chapter 9] for a survey on these
problems. Motivated by a biological problem, we focus in this article on varying sign weights m(·) but
all our techniques can be applied if one assumes that the pointwise lower bound on m is positive. For
this reason, the present work can be considered as a generalization of the aforementioned results to
Neumann and Robin boundary conditions.

Most of the following results were established in [31] and [24] in one dimension for Neumann condi-
tions (i.e. β = 0) for Problem (6), in [35] for periodic boundary conditions for Problem (14), and can
be straightforwardly extended to Robin conditions. Therefore we do not reproduce here the proof but
rather refer to [31, Theorem 1.1] or [35, Appendix A] for details. We also mention [16], for an extension
of these results to principal eigenvalues associated to the one dimensional p-Laplacian operator.

Finally, concerning the constraint
∫

Ωm ≤ −m0|Ω|, or equivalently |E| ≤ 1−m0
κ+1 |Ω| (see Section 1.1),

we claim that it is active and therefore, it is similar to deal with the same optimal design problem
where the inequality constraint is replaced by the equality one∫

Ω
m ≤ −m0|Ω| or |E| = 1−m0

κ+ 1
|Ω|.

Indeed, it is a consequence of the comparison principle (see [31, Lemma 2.3])

m1 > m2 (resp. E1 ⊂ E2) =⇒ λ(m1) < λ(m2) (resp. λ(E1) > λ(E2)).

This comparison principle is obtained in an elementary way, by comparing the Rayleigh quotient for
m1 and m2 (resp. E1 and E2).

2.4. First order optimality conditions. The minimizing set E∗ is a level surface of the principal
eigenfunction ϕ. Indeed, this is proved in [11] for Dirichlet boundary conditions but the arguments
can be straightforwardly extended to Robin boundary conditions. Let us briefly recall the main steps.
We denote by ϕ the eigenfunction associated to the minimal principal eigenvalue λ∗. First, note that
the optimal design problem maxm∈Mm0,κ

∫
Ωmϕ

2, has a solution given by m = κ1Eα − 1Ω\Eα , where
{ϕ > α} ⊂ Eα ⊂ {ϕ ≥ α}. This is the so-called “baththub principle”, see e.g. [33, Theorem 1]. Using a
direct comparison argument and arguing by contradiction, one shows that λ∗ ≥ λ

(
κ1Eα − 1Ω\Eα

)
and

therefore, Eα is a minimizing set for Problem (6). Next, it is standard, as ϕ ∈ H2(Ω) that ∆ϕ = 0 a.e.
on {ϕ = α}, which implies λ∗

(
κ1Eα − 1Ω\Eα

)
= 0 a.e. on {ϕ = α}, which is impossible if {ϕ = α} is

not negligible. Hence, one infers that E∗ = {ϕ > α} up to a set of measure zero.
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2.5. Regularity theory. Proving the regularity of the free boundary Γ := ∂E∗\∂Ω is a very difficult
question in general. It follows from classical elliptic regularity that the principal eigenfunction ϕ is
C1,a(Ω) for every a ∈ [0, 1). Hence, as E∗ = {ϕ > α} up to a set of Lebesgue measure zero (see Section
2.4), the boundary Γ is C1,a-smooth at any point where ∇ϕ 6= 0 and therefore, using a bootstrap
argument, one infers the local analytic regularity of Γ in this case, see [12]. The regularity problem is
thus reduced to the one of the degeneracy of the eigenfunction ϕ on its level line Γ.

When Dirichlet conditions are imposed on the boundary ∂Ω (in other words, when “β = +∞”),
then it has been proved in [14], when N = 2, that u ∈ C1,1(Ω), that ∂E does not hit the boundary
and consists of finitely many disjoint, simple and closed real-analytic curves. We believe that the
arguments involved in [14] could be extended to our framework. Indeed, for Neumann boundary
conditions, we expect ∂E to hit the boundary, but most of the arguments of [14] are local and do not
see the Dirichlet boundary conditions. However, this is not the main topic of the present paper and
we will thus leave this question open, since we do not need these results to obtain Theorems 1, 2 and
3. In higher dimensions, it is only known that Γ is smooth up to a closed set of Hausdorff dimension
N −1 [13]. However, the situation is much more complicated since one could expect, as for some other
free boundary problems, the emergence of stable singularities.

2.6. Dirichlet boundary conditions. When Dirichlet boundary conditions are imposed on ∂Ω, it is
possible to derive qualitative properties on E∗ from that of Ω. Symmetrization techniques apply ([11])
and allow to show that, if Ω is symmetric and convex with respect to some hyperplane, then so is E∗.
Notice nevertheless that symmetry breaking phenomenon might arise if the convexity property with
respect to the hyperplane is not satisfied, for example for annuli or dumbbells [11].

For particular sets of parameters, it has been proved that Ω\E is connected if Ω is simply connected
and E is convex if Ω is convex [11].

We also mention [19] where the authors investigate the related optimization problem of locating
an obstacle of given shape, namely a ball, inside a domain Ω so that the lowest eigenvalue of the
Dirichlet-Laplacian operator is minimized. Numerous symmetry results have been derived from the
moving plane method.

It is interesting to note that the Dirichlet case can be recovered by letting the parameter β tend to
+∞.

Proposition 2. Let κ > 0, m ∈ L∞(Ω, [−1, κ]) such that
∫

Ωm < 0. Let us denote temporarily
by λ(β,m) the principal eigenvalue for Robin boundary conditions defined by (3) and by λD(m) the
principal Dirichlet eigenvalue defined by (5). The mapping R+ 3 β 7→ λ(β,m) is concave, monotone
non-decreasing (increasing whenever Ω satisfies the interior sphere condition) and converges to λD(m)
as β → +∞.

Proof. As an infimum of real affine functions, λ(·,m) is concave. Moreover, taking 0 < β1 < β2

and comparing the principal eigenvalues thanks to the Rayleigh definition (3) shows that λ(·,m) is
monotone non-decreasing. To prove that λ(·,m) is increasing whenever Ω satisfies the interior sphere
condition, let us argue by contradiction and consider (λ, ϕ1) and (λ, ϕ2) two eigenpairs solving (3)
with respectively β = β1 and β2 and such that λ(β1,m) = λ(β2,m). For i = 1, 2, the variational
formulation writes: for every ψ ∈ H1(Ω),∫

Ω
∇ϕi · ∇ψ + βi

∫
∂Ω
ϕiψ = λ

∫
Ω
mϕiψ.

Choosing ψ = ϕj with j 6= i in the two formulations above shows that
∫
∂Ω ϕ1ϕ2 = 0. Since Ω satisfies

the interior sphere condition, ϕi cannot vanish on a subset of positive measure of ∂Ω otherwise there
would be a contradiction due to Hopf’s lemma, also considering that the functions ϕi have a constant
sign in Ω.

Finally, choosing test functions in S(m)∩H1
0 (Ω) in (3) proves that λ(·,m) ≤ λD(m). As a monotone

increasing bounded function, λ(β,m) has a finite limit as β → +∞. Hence, the family of eigenpairs
{(λ(β,m), ϕβ)}β>0, where ϕβ denotes a solution of (3), maximizes λ(·,m) as β → +∞. Assuming
moreover that

∫
Ω ϕ

2
β = 1 (by homogeneity of the Rayleigh quotient), one has

∫
Ω |∇ϕβ|2 + β

∫
∂Ω ϕ

2
β =
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λ(β,m)
∫

Ωmϕ
2
β and therefore

∫
Ωmϕ

2
β ≤

∫
Ω∩{m>0}mϕ

2
β ≤ κ showing that the H1-norm of ϕβ is

uniformly bounded with respect to β. Thus, there exists ϕ∞ ∈ H1(Ω) with
∫

Ωmϕ∞
2 = 1 such

that, up to a subsequence, (ϕβ)β>0 converges to ϕ∞ weakly in H1 and strongly in L2, by using the
Rellich-Kondrachov Theorem. Writing then

1

β

∫
Ω
|∇ϕβ|2 +

∫
∂Ω
ϕ2
β =

λ(β,m)

β

∫
Ω
mϕ2

β,

and letting β tend to +∞ shows that
∫
∂Ω ϕ∞

2 = 0, or in other words that ϕ∞ ∈ H1
0 (Ω). Moreover,

by weak convergence of (ϕβ)β>0 in H1(Ω), there holds

λD(m) ≥ lim inf
β→+∞

λ(β,m) ≥
∫

Ω |∇ϕ∞|2∫
Ωmϕ

2
∞
≥ λD(m).

Since
∫

Ωmϕ
2
∞ ≥

∫
Ω |∇ϕ∞|2, one has necessarily

∫
Ωmϕ

2
∞ 6= 0 and therefore the quotient above is well

defined. The expected conclusion follows. �

According to Proposition 2, we will consider that the Dirichlet case (5) corresponds to the choice of
parameter β = +∞.

2.7. Periodic boundary conditions. When Ω = ΠN
i=1(−Li, Li) is embedded with periodic boundary

conditions, then the optimal set E∗ is Steiner symmetric, that is, convex and symmetric with respect
to all the hyperplanes {xi = 0} [5]. It follows that the restriction of the set E∗ to Ω̃ = ΠN

i=1(0, Li) is a
minimizer for problem (14) for the set Ω̃ embedded with Neumann boundary conditions [35]. Hence,
there is a bijection between the minimization problem for the periodic principal eigenvalue in the square
Ω = ΠN

i=1(−Li, Li) and for the Neumann principal eigenvalue in the restricted square Ω̃ = ΠN
i=1(0, Li),

and thus, one derives easily corollaries of our results to the periodic framework.
Moreover, it has been proved that the strip is a local minimizer for certain parameters sets [25], and

that the ball is not always a global minimizer [35].
We will apply our results to the framework where Ω is a rectangle in dimension 2 in Section 5.1,

and prove in particular that ∂E∗∩Ω cannot have a part of its boundary with constant curvature when
β = 0.

2.8. Numerics. As the minimizing set E∗ is a level set of the principal eigenfunction ϕ, thresholding
methods based on the so-called bathtub principle provide very fast algorithms in order to compute
E∗. Indeed, starting with an arbitrary set Ek of measure c|Ω| and computing the eigenfunction ϕk
associated with the principal eigenvalue, one then defines recursively Ek+1 := {ϕk > α} where α is a
positive number chosen in such a way that |Ek+1| = c|Ω| ([11, 23]), and so on. Note that α is unique
since one shows in particular that the level sets {ϕk = C} have zero Lebesgue measure for every
C > 0. This algorithm converges to a critical point E in a small number of iterations for reasonable
parameters.

This method has been used to compute optimal sets for Dirichlet boundary conditions [11], Neu-
mann boundary conditions in squares and ellipses [25], Robin boundary conditions in squares [23]. In
general these solutions look like stripes, balls, or complementary of balls, depending on the parameters.
However, as already underlined above, very few analytical results confirmed these simulations. In par-
ticular, it was not clear whether balls could be minimizing sets or not and we provide a negative answer
to this problem in the present paper. We also refer to Section 5 where we provide numerical investiga-
tions and illustrations of our results in the particular cases where Ω is either the two-dimensional unit
square or the unit disc.

3. The one-dimensional case (Proof of Theorem 1)

In [31], the authors solve the one-dimensional version of Problem (6) in the particular case where
β = 0. The proof methodology was to first exhibit the solutions when the sets are intervals, and then
to show that the optimizers must be intervals. Subsequently, in [24], a much simpler proof of the same
result was obtained using increasing or decreasing rearrangements. Here we generalize this result to
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the case of Robin boundary conditions, in other words for every β ≥ 0. Throughout this section we
will assume without loss of generality that Ω = (0, 1).

The optimization of λ(mE) in the class of intervals has been solved, we cite the following result from
[7, 23].

Proposition 3. Take c ∈ (0, 1), κ > 0 and β ∈ R+. Let λβ(a) := λ(m) with m = κ1[a,a+c] − 1(0,a) −
1(a+c,1), in order to highlight the dependence of the eigenvalue on a ∈ [0, 1−c]. The function a 7→ λβ(a)
is symmetric with respect to a = (1− c)/2, and moreover, with β∗ defined in (8), we have:

• if β > β∗, then a 7→ λβ(a) is strictly decreasing on [0, (1− c)/2]; in particular its minimum is
reached for a = (1− c)/2.
• if β < β∗, then a 7→ λβ(a) is strictly increasing on [0, (1− c)/2]; in particular its minimum is
reached for a = 0 and a = 1− c.
• if β = β∗, then a 7→ λβ(a) is constant and any 0 ≤ a ≤ 1−c is a global minimum for a 7→ λβ(a).

Therefore to complete this result and prove Theorem 1, we need to show that the solution of the
optimal design problem (6) has the expression

m = κ1[a,a+c] − 1(0,a) − 1(a+c,1)

for given parameters a and c. The next result is devoted to proving this claim.

Proposition 4. If Ω = (0, 1), then any optimal set E∗ for Problem (7) is an interval.

Proof of Proposition 4. Assume in a first step that β > 0. As recalled in the sections 1 and 2.4, we
know there exists E∗ solution of (7). We denote by m∗ = κ1E∗ − 1Ω\E∗ the associated weight and ϕ
the corresponding eigenfunction, solution of (1). The Rayleigh quotient <m∗ defined by (4) rewrites
in this case

<m∗ [ϕ] :=

∫ 1
0 ϕ
′2 + βϕ2(0) + βϕ2(1)∫ 1

0 m
∗ϕ2

,

one has λ(m∗) = <m∗ [ϕ]. Since ϕ′′ = λm∗ϕ ∈ L∞(0, 1) we have ϕ′ ∈ W 1,∞(0, 1) and ϕ′ ∈ C0([0, 1]).
We also have ϕ′(0) = −∂nϕ(0) = βϕ(0) > 0 and ϕ′(1) = ∂nϕ(1) = −βϕ(1) < 0, so ϕ reaches his
maximum inside (0, 1). Let

α := min{ξ ∈ (0, 1) | ϕ(ξ) = ‖ϕ‖∞} ∈ (0, 1).

Introduce the function ϕR defined on (0, 1) by

ϕR(x) =

{
ϕ↗(x) on (0, α),
ϕ↘(x) on (α, 1),

where ϕ↗ denotes the monotone increasing rearrangement of ϕ on (0, α) and ϕ↘ denotes the monotone
decreasing rearrangement of ϕ on (α, 1) (see for instance [34]). Thanks to the choice of α, it is clear
that this symmetrization does not introduce discontinuities, and more precisely that ϕR ∈ H1(0, 1).
Similarly, we also introduce the rearranged weight mR, defined by

mR(x) =

{
m↗(x) on (0, α),
m↘(x) on (α, 1),

with the same notations as previously. In other words, m↗ (resp. m↘) is bang-bang, equal to −1 or κ
almost everywhere, such that |{m↗ = κ} ∩ (0, α)| = |{m∗ = κ} ∩ (0, α)| and |{m↗ = −1} ∩ (0, α)| =
|{m∗ = −1} ∩ (0, α)| (resp. |{m↘ = κ} ∩ (α, 1)| = |{m∗ = −1} ∩ (α, 1)| and |{m↘ = −1} ∩ (α, 1)| =
|{m∗ = −1} ∩ (α, 1)|).

We aim at proving now that mR is admissible for the optimal design problem (6), that ϕR is an
admissible test function of the Rayleigh quotient <mR , and that the Rayleigh quotient decreases for
the symmetrization, in other words that <mR [ϕR] ≤ <m∗ [ϕ].

First it is clear that mR ∈Mm0,κ. Indeed, every integral on (0, 1) can be written as the sum of the
integral on (0, α) and (α, 1), and we use the equimeasurability property of monotone symmetrizations
on each of these intervals. Then, writing

∫ 1
0 mϕ

2 =
∫ 1

0 (m+ 1)ϕ2 −
∫ 1

0 ϕ
2 and using Hardy-Littlewood
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inequality (again on (0, α) and (α, 1)), we also have
∫ 1

0 m
R(ϕR)2 ≥

∫ 1
0 mϕ

2 > 0, and the expected
conclusion follows.

Also, we easily see that

(ϕR)2(0) = min
[0,α]

ϕ2 ≤ ϕ2(0) and (ϕR)2(1) = min
[α,1]

ϕ2 ≤ ϕ2(1).

Using now Polyà’s inequality twice:
∫ α

0 (ϕR
′
)2 ≤

∫ α
0 ϕ′2 and

∫ 1
α (ϕR

′
)2 ≤

∫ 1
α ϕ
′2, we obtain that

<mR [ϕR] ≤ <m∗ [ϕ]

= λ(m∗) = inf
m∈Mm0,κ

inf

{
<m(ψ), ψ ∈ H1(0, 1) such that

∫ 1

0
mψ2 > 0

}
≤ <mR [ϕR].

Investigating the equality case of Polyà’s inequality, it follows that ϕ first increases up to its maximal
value and then decreases on (α, 1) (see for example [3] and references therein). As a consequence, since
E∗ is a upper level-set of ϕ, it is necessarily an interval, which concludes the proof.

Finally, the case β = 0 is simpler. A direct adaptation of this proof shows that the claim remains
valid in that case.

�

4. Non-optimality of the ball for Problem (6) (Proofs of Theorem 2 and
Proposition 1)

In this section, we investigate the optimality of a ball, or more generally of rotationally symmetric
sets (i.e. a union of concentric rings). This question naturally arises, in particular according to
numerical results in [23] for dimension N = 2, where for some values of the parameters, the solutions
seem to take the shape of a ball; also in the case of periodic boundary condition, H. Berestycki stated
that the solution might be a ball, for some values of the volume constraint [4]. We prove that for every
β ∈ [0,+∞] and c ∈ (0, 1), the ball is not optimal, except possibly if Ω itself is a ball having the same
center as E.

Let us first assume that mE is a critical point of the optimal design problem (6). We recall that “mE

is a critical point of the optimal design problem (6)” means that mE satisfies the necessary first order
optimality conditions (see Section 2.4), in other words that the associated principal eigenfunction ϕ is
constant on ∂E\Ω.

Part 1: the function ϕ is radially symmetric. Assume that E is rotationally symmetric, and is
a critical point. In what follows, we will denote by λ the principal eigenvalue λ(mE) and by ϕ the
associated eigenfunction that solves (1). We follow the following steps: we first prove that ϕ is radial
in E, then is also radial in Ω\E, and we conclude that Ω must be a centered ball. Generalizing the
methods used in [21, 22], take i, j ∈ J1, NK with i 6= j, and define

(15) vij := xi∂xjϕ− xj∂xiϕ in Ω.

This function lies in W 1,p
loc (Ω) for all p ∈ (1,+∞) and a straightforward computation yields that vij

verifies in the sense of distributions the partial differential equations

−∆vij = λκvij in E

and ∆vij = λvij in Ω\E.
Let us now prove that vij vanishes in Ω.

Since mE is a critical point of Problem (6) and since ϕ solves (1) in a variational sense, there exists
a real number α > 0 such that E = {ϕ > α} up to a set of measure 0, and therefore using continuity
of ϕ, we obtain

ϕ = α on ∂E\∂Ω.
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As a consequence and according to (15), since the set E is rotationally symmetric, the function vij
vanishes on ∂E\∂Ω. We now assume β < ∞ and leave the case β = +∞ at the end of this part.
Moreover, since E is rotationally symmetric, a straightforward computation shows that,

|x|∂nvij =
N∑
k=1

xk∂xkvij = (xi∂xj − xj∂xi)
(

N∑
k=1

xk∂xk

)
ϕ

= −β|x|(xi∂xjϕ− xj∂xiϕ) = −β|x|vij on ∂E ∩ ∂Ω.(16)

for all x ∈ ∂E ∩ ∂Ω. Therefore, the function vij solves in a variational sense the partial differential
equation

(17)

 −∆vij = λκvij in E,
∂nvij + βvij = 0 on ∂E ∩ ∂Ω,

vij = 0 on ∂E\∂Ω.

−∆vij = λκvij

E
∆vij = λvij

Ω \ E

∂nvij + βvij = 0 on ∂E ∩ ∂Ω

vij = 0 on ∂E ∩ Ω

b

Figure 1. The PDE solved by vij .

On the other hand, according to the minimax Courant-Fischer principle, there holds

(18) λ = min
ψ∈H1(Ω)∫
ΩmEψ

2>0

<mE [ϕ]

where the Rayleigh quotient <mE is defined by (4) and this minimum is reached only by the multiples
of ϕ. Assume by contradiction that vij does not vanish identically in E, then we can take as a test
function

ṽij :=

{
vij in E,
0 in Ω\E.

in the Rayleigh quotient <mE . The function ṽij belongs to H1(Ω) since vij = 0 on ∂E\∂Ω, satisfies∫
Ω
mE ṽij

2 = κ

∫
E
vij

2 > 0

and is not a multiple of ϕ since ṽij = 0 in Ω\E. As a consequence, one has

λ <

∫
Ω |∇ṽij |2 + β

∫
∂Ω ṽij

2∫
ΩmE ṽij

2 =

∫
E |∇vij |2 + β

∫
∂E∩∂Ω v

2
ij∫

EmEv2
ij

= λ,

the last equality following from an integration by parts in (17). This contradiction yields that vij ≡ 0
in E.

Hence xi∂xjϕ ≡ xj∂xiϕ for all i 6= j, which implies that ϕ is radially symmetric inside E. In other
words, there exists a function U such that ϕ(x) = U(|x|), for all x ∈ E.
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Notice moreover that ∂nϕ = ±U ′(|x|) on ∂E, where n stands for the outward normal to E. Therefore,
the function

∑N
k=1 xk∂xkϕ which, up to some multiplicative constants, is equal to ∂nϕ on each connected

component of ∂E, is constant on each connected component of ∂E.
Let us now prove that the function ϕ is in fact radially symmetric on the whole domain Ω. For

that purpose, let us show that for every i, j ∈ J1, NK with i 6= j, the function vij also vanishes in
Ω\E. Similar computations as in (16) lead to ∂nvij ≡ 0 on ∂E. Hence, vij satisfies the following
overdetermined partial differential equation

(19)


∆vij = λvij in Ω\E,
vij = 0 on ∂(Ω\E)\∂Ω = ∂E ∩ Ω,

∂nvij = 0 on ∂(Ω\E)\∂Ω = ∂E ∩ Ω.

Moreover, ∂E ∩ Ω is analytic. Indeed, as E is rotationally symmetric and has a finite number of
connected components, it is a finite union of rings. It thus satisfies an interior sphere condition and
the Hopf Lemma thus gives ∇ϕ 6= 0 on ∂E ∩ Ω. The implicit function theorem thus yields that this
boundary is C1,1 since E is a level set of ϕ, which is W 2,p for all p > 1, and the conclusion follows
from a bootstrap argument (see [12]).

The Cauchy-Kowalevski theorem yields that vij = 0 in a neighborhood of ∂E∩Ω in Ω\E. Moreover,
using the hypoellipticity of the Laplacian operator (see e.g. [32]), we claim that vij is analytic (in Ω\E),
implying that vij ≡ 0 in Ω\E and then in the whole domain Ω. Since it is true for all i 6= j, this means
that ϕ is radially symmetric over the full domain Ω and we can define U(r) = ϕ(x) where r = |x| for
some x ∈ Ω and r ∈ [0, b) where b = max{|x|, x ∈ Ω}.

In the case β = +∞, the set ∂Ω ∩ ∂E is empty as ϕ vanishes on ∂Ω and equals α on ∂E, so the
proof is similar by just dropping any consideration involving the set ∂Ω ∩ ∂E.

Part 2: Ω is necessarily a centered ball. In the case β = +∞, this part is easy as Ω is a level
set of ϕ. We therefore focus on the case β < ∞. Assume by contradiction that Ω is not a centered
ball. Let Ba and Bb the largest and, respectively, the smallest open balls centered at O such that
Ba ⊂ Ω ⊂ Bb (see Figure 2), with 0 < a < b. Notice that the assumption that ∂Ω be connected
guarantees that Ω contains the origin. The existence of Ba and Bb is then a consequence of the
boundedness of Ω combined with the main assumption of Theorem 2, namely that E is rotationally
symmetric and centered at O.

×

∂Ω

∂Ba

∂Bb

×

×

xa

xb

E

Figure 2. The set Ω, the two balls Ba and Bb.
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There exist xa, xb ∈ ∂Ω such that |xa| = a and |xb| = b. The definitions of Ba and Bb yield that the
exterior normals of Ω at xa and xb are respectively xa/|xa| and xb/|xb|. Hence,

∂nϕ(xa) + βϕ(xa) = U ′(a) + βU(a) = 0,

and ∂nϕ(xb) + βϕ(xb) = U ′(b) + βU(b) = 0.

In the sequel, by analogy with polar variables, we will denote r = |x|. For every c ∈ (a, b), let us
denote by Bc the centered ball of radius c, and let us associate an element xc ∈ ∂Bc ∩ ∂Ω such that
|xc| = c. Introduce N (x) = x/|x| and note that if x ∈ ∂Bc, N (x) is the outer normal vector to Bc.
Moreover, since ϕ is radially symmetric, there holds ∇ϕ(x) = U ′(|x|)N (x) for every x ∈ Bb.

In what follows, we will treat separately the cases “β = 0” and “β > 0” for the sake of clarity.
Let us first consider the case of Neumann boundary conditions, in other words the case “β = 0”. Note

that N (xa) ·n(xa) = 1 so by continuity there exists an interval [a, a+δ] such that N (xc) ·n(xc) > 0 for
every c ∈ [a, a+ δ]. Writing 0 = ∂nϕ(xc) = U ′(c)N (xc) · n(xc) leads to U ′(c) = 0 for all c ∈ [a, a+ δ]
since N (xc) · n(xc) > 0. Thus U(r) is a positive constant and U ′′(r) = 0 on (a, a+ δ). This leads to a
contradiction with the equation

(20) U ′′(r) +
N − 1

r
U ′(r) = λU(r)

satisfied by U according to (1), and the fact that U(r) > 0 for every r ∈ (a, b). As a consequence, with
Neumann boundary conditions, we must have a = b which shows that Ω is a disk.

Let us now investigate the general case of Robin boundary conditions, in other words the case
“β > 0”. We first prove that N (xc) · n(xc) > 0, where n(xc) is the outer normal vector to Ω at xc.
Assume by contradiction that N (xc) ·n(xc) ≤ 0 for some xc. Since Ω and Ba are tangent at xa we have
N (xa) · n(xa) = 1 and since Ω is of class C1, we have n(·) ∈ C0(∂Ω). Therefore, by continuity, there
exist d ∈ (a, b) and xd ∈ ∂Bd ∩ ∂Ω with N (xd) · n(xd) = 0. Writing the Robin boundary condition at
xd, one gets

−βϕ(xd) = ∂nϕ(xd) = U ′(rd)N (xd) · n(xd) = 0,

which is impossible since ϕ(xd) > 0 and β > 0. It follows that N (x) · n(x) > 0 for all x ∈ ∂Ω.
Let us now introduce the function V defined by

V : [a, b] 3 r 7→ −U
′(r)

U(r)
.

Note that V is well-defined since U(r) is positive for every r ∈ (a, b). Rewriting the Robin boundary
condition in terms of the function U yields

−βU(r) = −βϕ(x) = ∂nϕ(x) = U ′(r)N (x) · n(x),

for every r ∈ (a, b) and x such that |x| = r. Therefore, there holds

V (r) := −U
′(r)

U(r)
=

β

N (x) · n(x)
≥ β.(21)

V (a) = V (b) = β.(22)

We will reach a contradiction by exhibiting r∗ ∈ (a, b) such that V (r∗) < β. To prove this, we will
investigate the sign of the derivatives of V at r = a or r = b. According to (21) and (22), the function
V is non decreasing at r = a (resp. V is non increasing at r = b), otherwise one could find r∗ in the
neighborhoods of r = a (resp. r = b) with V (r∗) < β.

The derivative of V writes

V ′(r) = −U
′′(r)

U(r)
+
U ′(r)2

U(r)2
= −λ+

(N − 1)U ′(r)

rU(r)
+
U ′(r)2

U(r)2
= −λ− N − 1

r
V (r) + V (r)2.
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by using that the function U solves (20). Moreover, the boundary conditions (22) yields

V ′(a) = −λ− N − 1

a
V (a) + V (a)2 = −λ− (N − 1)β

a
+ β2,

V ′(b) = −λ− N − 1

b
V (b) + V (b)2 = −λ− (N − 1)β

b
+ β2.

Since the two zeros of the polynomial Pa(X) = −λ− (N − 1)X/a+X2 are

X±a =
N − 1

2a
±
√

(N − 1)2

(2a)2
+ λ,

it follows that V ′(a) < 0 whenever β ∈ (0, X+
a ), which would be a contradiction in view of the above

discussion.
In a similar way, the two zeros of the polynomial Pb(X) = −λ− (N − 1)X/b+X2 are

X±b =
N − 1

2b
±
√

(N − 1)2

(2b)2
+ λ.

Hence, it follows that V ′(b) > 0 whenever β ∈ (X+
b ,+∞), which would also be a contradiction.

Moreover, since b > a, one has X+
b < X+

a , so that whatever the value of β > 0, we can arrive at
one of the two contradictions above or even both. Eventually, we have reached a contradiction which
implies a = b and the domain Ω is necessarily a ball.

Part 3: if E is rotationally symmetric, and also a minimizer of λ, then E is necessarily a
centered ball. Let us assume now that Ω is equal to BR, E is rotationally symmetric, and it is not
only a critical point but also a minimizer. Within this part, we will denote by mβ a minimizer for the
shape optimization problem

(23) min{λ(β,m) | m ∈Mm0,κ and m is radially symmetric},
by λ(β,mβ) the optimal eigenvalue and by ϕβ the associated principal eigenfunction. We will also
assume that

∫
Ω ϕ

2
β dx = 1 by homogeneity of the Rayleigh quotient. According to the two previous

steps, we know that the function ϕβ is radially symmetric since Ω is a centered ball.
It is notable that in the case where a solution m of Problem (6) is radially symmetric, it also solves

Problem (23). As a consequence, our claim is equivalent to showing that for β large enough, the
solution of Problem (23) writes

mβ = (κ+ 1)χE − 1,

where E denotes a centered ball with radius r0 such that
∫

Ωmβ = −m0|Ω|.
In the sequel, we will use that the family (ϕβ)β>0 converges up to a subsequence to the function

ϕ∞ weakly in H1(Ω) and strongly in L2(Ω), as β → +∞, where ϕ∞ is the eigenfunction associated
to λ(∞,m∞) (principal eigenfunction associated to the solution of Problem (6) in the Dirichlet case).
This fact is easy to see by slightly adapting the proof of Proposition 2. Moreover, by using a standard
rearrangement argument involving the Schwarz symmetrization, the function ϕ∞ is radial decreasing
and

m∞ = (κ+ 1)χ{|x|<r0} − 1,

where r0 is uniquely determined by the condition
∫

Ωm∞ = −m0|Ω|.
In the sequel, the precise knowledge of m∞ and ϕ∞ is at the heart of its proof. More precisely, we

will use the two following facts that stem obviously from the fact that ϕ∞ is invariant by the Schwarz
symmetrization:

(1) Set r = |x|. There exists a monotone decreasing differentiable function U∞ such that

ϕ∞(x) = U∞(r) for a.e. x ∈ Ω.

(2) Fix ε ∈ (0, R). There exists c∞ > 0 such that U ′∞(r) ≤ −c∞ for a.e. r ∈ [ε,R].

To prove the expected result, we need the following lemma.
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Lemma 1. There exists β0 ≥ 0 such that

β ≥ β0 =⇒ min
x∈Ω

ϕβ(x) = ϕβ |∂Ω.

Proof. Within this proof, we will write similarly with a slight abuse of notation a sequence and any
subsequence, for the sake of simplicity.

Set ϕ̃β = ϕβ − ϕβn |∂Ω. Since ϕβ solves Equation (1), one has

‖∆ϕ̃β‖L2(Ω) = ‖∆ϕβ‖L2(Ω) = λ(β,mβ)‖mβϕβ‖L2(Ω)

≤ λ(β,mβ)‖mβ‖L∞(Ω)‖ϕβ‖L2(Ω) ≤ max{1, κ}λ(∞,m∞)

by using the Cauchy-Schwarz inequality and the fact that ϕβ is L2-normalized. Indeed, recall that,
according to Proposition 2, the family (λ(β,mβ))β≥0 is non-decreasing and converges to λ(∞,m∞), in
other words the optimal value for Problem (6) where Dirichlet boundary conditions are imposed on the
partial differential equation (1). Since the boundary of Ω is smooth, the norms ‖·‖H2(Ω) and ‖∆ ·‖L2(Ω)

are equivalent in H2(Ω) ∩ H1
0 (Ω). It follows that the family (‖ϕ̃β‖H2(Ω))β≥0 is bounded. Moreover,

since the Rayleigh quotient (<mβ [ϕβ])β>0 is bounded, the sequence of real numbers (ϕβn |∂Ω)β>0 is also
bounded. We thus easily infer that the sequence (‖ϕβ‖H2(Ω))β≥0 is bounded.

It follows from classical bootstrap arguments that (ϕβn)n∈N converges to ϕ∞ in W 2,p(Ω) for all
p ∈ (1,∞) and in C1,α(Ω) for all α ∈ (0, 1) along a subsequence as n→ +∞.

Now, let us write ϕβ(x) = Uβ(r), with r = |x| ∈ (0, R]. Recall that there exists c∞ > 0 such that
U ′∞(r) ≤ −c∞ for every r ∈ [ε,R]. The convergence in C1,α(Ω) yields:

sup
r∈[ε,R]

U ′βn(r) ≤ −c∞
2
< 0, when n is large enough.

Similarly, fix ε ∈ (0, R) and let η > 0 be such that

min
x∈B(0,ε)

ϕ∞ > 2η.

One has for large n:

(24) min
x∈B(0,ε)

ϕβn ≥ min
x∈B(0,ε)

ϕ∞ − η > η.

Finally, since U ′βn(R) = −βnUβn(R) for every n ∈ N, one has

|Uβn(R)| =
λ(βn,mβn)

βn

∣∣∣∣∫ R

0
sN−1m̂βnUβn(s) ds

∣∣∣∣
≤ RN/2 max{1, κ}λ(∞,m∞)

N1/2βn

(∫ R

0
Uβn(s)2 sN−1 ds

)1/2

=
RN/2 max{1, κ}λ(∞,m∞)

N1/2βn
.

It follows that Uβn(R) = O (1/βn). As a consequence, one has

(25) ϕβn |{|x|=R} < min
x∈B(0,ε)

ϕ∞ − η

when n is large enough, and using the fact that Uβn is decreasing on [ε,R], we get

(26) ϕβn |{|x|=R} = min
x∈BR

ϕβn .

The desired result follows.
�

Let us now prove that E is a centered ball. From now on, the parameter β is assumed fixed and
such that β ≥ β0, where β0 is the real number defined in Lemma 1.
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We set ϕ = ϕβ , m = mβ and λ = λ(β,mβ). According to Lemma 1, there holds

min
x∈Ω

ϕ(x) = ϕ|∂Ω.

We consider ϕS (resp. mS
E) the Schwarz rearrangement of ϕ (resp. mE), and ES the centered ball of

volume |E|. We prove that every term is the Rayleigh quotient will decrease with this rearrangement,
and that ϕS is admissible for the variational formulation of λ(mES ). Note that as ϕ is radial, the
Schwarz rearrangement can be seen as the monotone decreasing rearrangement of U defined as U(r) =
ϕ(x) where r = |x| and x ∈ BR. First, according to the Polyà-Szego inequality, there holds∫

BR

|∇ϕ|2dx ≥
∫
BR

|∇ϕS |2dx,

This inequality is valid for functions in H1
0 (BR) but not, in general, for functions in H1(Ω). Neverthe-

less, being radial, ϕ is constant on ∂BR, and according to Lemma 1 the function ϕ−ϕ|∂BR belongs to
H1

0 (BR). The inequality above remains then valid in that case by considering ϕ− ϕ|∂BR instead of ϕ.
The boundary term satisfies ∫

∂BR

ϕ2 dx ≥
∫
∂BR

(ϕS)2 dx

since ϕ is radial and ϕS|∂BR = minBR ϕ. Using also the Hardy-Littlewood inequality (which does not
require a boundary hypothesis, though it requires a sign condition, which can be overcome as in the
proof of Theorem 1 by writing mϕ2 = (m+ 1)ϕ2 − ϕ2, we finally obtain

λ ≥
∫
BR
|∇ϕS |2dx+ β

∫
∂BR

(ϕS)2∫
BR

mS
E(ϕS)2

≥ λ(mES ),

the last inequality following from the Courant-Fisher principle, the fact that ϕS is admissible in the
formulation of λ(mES ) since

∫
BR

mS
E(ϕS)2 ≥

∫
BR

mEϕ
2 > 0 and the fact that mS

E = mES . But since
E is a minimizing set, λ(mES ) ≥ λ(mE) = λ. Hence all the previous inequalities are equalities, which
is possible if and only if U and mE are decreasing. It implies in particular that E is a ball.

Part 4: case where Ω \ E is rotationally symmetric. Let us assume now that Ec = Ω\E is
rotationally symmetric. Then similar results occur. We do not give all details since the proof is then
very similar to the one written previously. We only underline the slight differences in every step.

• Part 1: introducing the function vij defined by (15), one shows using the same computations
and the fact that ϕ is constant on ∂Ec∩Ω that for every i 6= j, vij solves the partial differential
equation

(27)

 ∆vij = λvij in Ec,
∂nvij + βvij = 0 on ∂Ec ∩ ∂Ω,

vij = 0 on ∂Ec\∂Ω.

Multiplying the main equation by vij and integrating by parts leads to

λ

∫
Ec
v2
ij = −

∫
Ec
|∇vij |2 − β

∫
∂Ec∩∂Ω

v2
ij .

It follows that vij vanishes in Ec and that ϕ is radial in Ec. The end of Part 1 remains then
unchanged and we obtain that ϕ is radial in the whole domain Ω.
• Part 2: It can be adapted directly by changing the term λ into −κλ everywhere. It can be
noticed that we did not use the sign of the left-hand side in the ordinary differential equation
satisfied by U , namely (20). We only used the fact that U does not vanish.
• Part 3: Once we know that Ω is a ball, we know that both Ec and E are rotationally symmetric,
so the same arguments as in Part 3 above apply.

�

Proof of Proposition 1. We will apply the chain of arguments of Part 3. For that purpose, it suffices
to prove that, if m is a radially symmetric function, then so is the principal eigenfunction ϕ. Let us
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argue by contradiction, by considering a radial function m, the associated principal eigenvalue λ(m),
and assuming that ϕ, a principal eigenfunction, is not radial. Following the method introduced in Part
1, we claim that this statement is equivalent to the existence of two integers i, j ∈ J1, NK with i 6= j
such that the function vij defined by (15) does not vanish identically in Ω and solves in a variational
sense the system {

−∆vij = λmvij in Ω,
∂nvij + βvij = 0 on ∂Ω,

meaning that vij is also a principal eigenfunction associated to the principal eigenvalue λ(m). In
particular, vij has a constant sign. Since vij stands for the derivative of ϕ with respect to θ, the
angular variable associated to the polar coordinates in the plane (Oxixj), we get a contradiction with
the periodicity of ϕ with respect to θ. The first part of the proposition hence follows. Note that the
second one is easily obtained by applying Theorem 2. �

Remark 1. According to Section 2.7, there is a correspondance between the optimal shape E for
Neumann boundary conditions in a hypercube and the optimal shape in a periodic cell. One can refer
for instance to [5, 35]. As a consequence, the proof of Theorem 2 can be immediately extended to the
case where Ω is a periodic-cell (in R2, Ω is a square on which we impose periodic boundary conditions).

5. Applications

In the two next sections, we provide hereafter several numerical simulations based on the algorithm
described in Section 2.8. Recall that for reasonable parameters, the convergence of this algorithm to a
local minimizer has been showed in [11, 23].

Our implementation relies on the Matlab Partial Differential Equation Toolbox using piecewise linear
and globally continuous finite elements. We worked on a a standard desktop machine and the resulting
code works out the solution very quickly (see the convergence curves).

In the case where β = 0 and κ = 1/2 (the sets of parameters that we have chosen in the sequel),
there exists a principal eigenvalue for Problem (1) if, and only if c ∈ (0, 2/3).

5.1. The case of a N-orthotope with Neumann boundary conditions. We assume in this
section that β = 0 and Ω = ΠN

k=1(0, Lk), and we aim at describing more precisely E∗ solution of (7)
in this framework.

We have already recalled in Sections 2.7 and 2.8 that a common conjecture in dimension 2 in this
framework is that the minimizing set has constant curvature, that is, it would be a quarter of ball, a
stripe, or the complementary of a quarter of ball depending on the parameters (see [25, 35]). We will
prove that this conjecture is false when β = 0.

Proposition 5. Assume that N ≥ 2, Ω = ΠN
k=1(0, Lk), β = 0, κ ∈ (0,+∞) and c ∈ (0, 1

κ+1). If E∗ is
a minimizing set for (7), then

(1) (Steiner symmetry) mE∗ is monotonic with respect to xk ∈ (0, Lk) for all k.
(2) If ∂E∗ ∩ Ω is analytic, then ∂E∗ ∩ Ω does not contain any piece of sphere.

Note that the hypothesis that ∂E∗ ∩Ω is analytic is always satisfied if N = 2 and β = +∞, as it is
shown in [14]. When β > 0, we know from Theorem 2 that E∗ cannot be a ball. But we do not know
how to conclude when E∗ hits the boundary of Ω in that case since there is no link with the periodic
framework as for Neumann boundary conditions.

Proof. (1) Let Ẽ∗ be the reflection of E∗ with respect to {xk = 0} for k = 1, ..., N . According to [35,
Appendix C], this set minimizes the periodic principal eigenvalue in the cell C = ΠN

k=1(−Lk, Lk):

λ∗ = min

{ ∫
C |∇ψ|2∫
C mẼ∗

ψ2
, ψ ∈ H1

per(C) and
∫

Ω
mψ2 > 0

}
.
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Let ϕ be the associated periodic principal eigenfunction, which is also the minimizer of the above
Rayleigh quotient. Then, classical rearrangement inequalities yield

λ∗ =

∫
C |∇ϕ|2∫
C mẼ∗

ϕ2
≥

∫
C |∇ϕS |2∫

C m(Ẽ∗)S
(ϕS)2

≥ λ∗,

where ϕS and (Ẽ∗)S denote the successive Steiner symmetrization of ϕ, Ẽ∗ with respect to x1 = 0,
x2 = 0,..., xN = 0. As the equality holds, this yields that ϕ = ϕS(· + X) for some X ∈ RN . Let
k ∈ J1, NK. Since ϕ is symmetric with respect to {xk = 0} by construction, this necessarily implies
that ϕ is either nonincreasing or nondecreasing with respect to xk. The conclusion follows by using
that E∗ = {ϕ > α} up to a set of zero measure.

(2) If ∂E∗ ∩ Ω contains a piece of sphere, then so does ∂Ẽ∗ and, thanks to analyticity, ∂Ẽ∗ is
itself a sphere. Then Ẽ∗ or C\ clos(Ẽ∗) is a ball, and according to Theorem 2 applied in the periodic
framework, the set C = ΠN

k=1(−Lk, Lk) would be a sphere, whence a contradiction. �

The numerical results for the square in the Neumann case are gathered on Figure 3 and two conver-
gence curves illustrating the efficiency of the method are drawn on Figure 4.

(a) c = 0.2 - optimal domain (b) c = 0.3 - optimal domain (c) c = 0.4 - optimal domain

(d) c = 0.5 - optimal domain (e) c = 0.6 - optimal domain

Figure 3. Ω = (0, 1)2. Optimal domains in the Neumann case (β = 0) with κ = 0.5
and c ∈ {0.2, 0.3, 0.4, 0.5, 0.6}

5.2. The case of a ball. We assume in this section that Ω = B(0, 1), and we aim at describing more
precisely E∗ solution of (7) in this framework.

Proposition 6. Assume that N = 2, Ω = B(0, 1), β = 0, κ ∈ (0,+∞) and c ∈ (0, 1
κ+1). If E∗ is a

minimizing set for (7), then
(1) (Circular Symmetry) There exists θ0 ∈ [0, 2π) such that E∗ is symmetric with respect to the

half straight line {θ = θ0} in the radial coordinates (r, θ). Moreover, for all r ∈ (0, 1), {θ ∈
[0, 2π), (r, θ) ∈ E∗} is an interval.
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Convergence curve, c =0.2

(a) c = 0.2 - convergence curve
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Convergence curve, c =0.6

(b) c = 0.6 - convergence curve

Figure 4. Ω = (0, 1)2. Two examples of convergence curves in the Neumann case
(β = 0) with κ = 0.5, c = 0.2 (left) and c = 0.6 (right)

(2) If β = 0, then E∗ is not a ball.

The only related numerical simulations we know in this framework have been performed in [25],
when Ω is an ellipse. Only one set of parameters has been tested in this earlier work and in that case
E∗ looks like a portion of disk hitting the boundary.

Proof. (1) This follows from similar arguments as in the proof of Proposition 5. We refer to [26] for
details on circular symmetrization. We just notice here that the term β

∫
∂Ω ϕ

2 is preserved with respect
to circular symmetrization.

(2) If E∗ was a ball, then it would be a centered one according to Theorem 2. Then the result
follows from Theorem 5 below. �

Finally, we complete the theoretical analysis of the situation where Ω is the N -dimensional Euclidean
unit ball and β = 0 by showing that a radially symmetric set (and in particular the centered ball)
cannot solve Problem (6) for N = 2, 3, 4. The next result is the most involved of this section. Our
argument rests upon a particular rearrangement technique that breaks the radial symmetry in the disk
and decreases the Rayleigh quotient <m defined by (4).

Figure 5. Construction of the set Ê from E

For the following theorem we introduce the variable x′ = (x2, ..., xN ), the plane P ′ := {x1 = 0} and
the ball

Ω′ :=

{
x′ ∈ RN−1 :

N∑
i=2

x2
i ≤ 1

}
of dimension N − 1.
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Theorem 5. Assume N ≥ 2, Ω = B(0, 1), β = 0, κ ∈ (0,∞) and c ∈ (0, 1
κ+1). Let E be a radially

symmetric set, centered at 0. Then there exists a set Ê such that

(28) λ(Ê) <

(
5N − 4

4N

)
λ(E),

and moreover:
• ∂Ω ∩ ∂Ê 6= ∅,
• Ê and Ω \ Ê are both convex in the direction x1, i.e. Ê ∩ Dy and (Ω \ Ê) ∩ Dy are intervals,
where Dy is the line passing through (0, x′), x′ ∈ Ω′ and parallel to the x1-axis,
• the set Ê is symmetric with respect to every hyperplane Pi = {xi = 0} for i ≥ 2 but is not
symmetric with respect to P ′.

Notice that the constant (5N − 4)/4N is positive for all N ≥ 2.

Proof. Defining f : x′ ∈ Ω′ 7→ f(x′) =
√

1−∑N
i=2 x

2
i we have

(29) Ω = B(0, 1) = {(x1, x
′) : x′ ∈ Ω′ and − f(x′) < x1 < f(x′)}.

As E is symmetric with respect to P ′, we consider the following transformations of m, ϕ and E:

m̂(x1, x
′) := m

(
x1 + f(x′)

2
, x′
)
, ϕ̂(x1, x

′) := ϕ

(
x1 + f(x′)

2
, x′
)
, Ê = {m̂ = κ}.

This transformation corresponds to considering the restrictions of m and ϕ to the right half of Ω, and
then “stretching” these restrictions to all of Ω (see Figure 5).

We show, using that E is radially symmetric, that this transformation decreases the eigenvalue. We
start by proving that the transformation preserves the constraints of the problem. We have∫

Ω
m̂ϕ̂2 =

∫
Ω′

∫ f(x′)

−f(x′)
m̂(x1, x

′)ϕ̂(x1, x
′)2dx1dx

′

=

∫
Ω′

∫ f(x′)

−f(x′)
m

(
x1 + f(x′)

2
, x′
)
ϕ

(
x1 + f(x′)

2
, x′
)2

dx1dx
′

=

∫
Ω′

∫ f(x′)

0
m
(
x̂, x′

)
ϕ
(
x̂, x′

)2
2dx̂dx′

=

∫
Ω′

∫ f(x′)

−f(x′)
m
(
x̂, x′

)
ϕ
(
x̂, x′

)2
dx̂dx′ =

∫
Ω
mϕ2.

where we have used the change of variable x̂1 = (x1 + f(x′))/2 and the symmetry of m and ϕ with
respect to the hyperplane P ′, which follows from proposition 1. As a consequence, one has

∫
Ω m̂ϕ̂

2 > 0.
With a similar calculation we can prove that |Ê| = |E|.

Now we prove that the L2-norm of the gradient decreases. We have∫
Ω
|∇ϕ̂|2 =

∫
Ω′

∫ f(x′)

−f(x′)

1

4

∣∣∣∣∂x1ϕ

(
x1 + f(x′)

2
, x′
)∣∣∣∣2

+

∣∣∣∣∂x1ϕ

(
x1 + f(x′)

2
, y

) ∇x′f(x′)

2
+∇x′ϕ

(
x1 + f(x′)

2
, x′
)∣∣∣∣2 dx1dx

′

= 2

∫
Ω′

∫ f(x′)

0

1

4

∣∣∂x1ϕ
(
x̂1, x

′)∣∣2 +

∣∣∣∣∂x1ϕ (x̂1, y)
∇x′f(x′)

2
+∇x′ϕ

(
x̂1, x

′)∣∣∣∣2 dx̂1dx
′

=

∫
Ω′

∫ f(x′)

−f(x′)

1

4

∣∣∂x1ϕ
(
x̂1, x

′)∣∣2 +

∣∣∣∣∂x1ϕ (x̂1, y)
∇x′f(x′)

2
+∇x′ϕ

(
x̂1, x

′)∣∣∣∣2 dx̂1dx
′.

As Ω = B(0, 1) and E is radially symmetric, the level sets of ϕ are also radially symmetric according
to Proposition 1. Let us first compare the signs of ∂x1ϕ (x1, x

′) and ∂xiϕ (x1, x
′) for x1 ≥ 0 and xi ≥ 0

for some i ≥ 2.
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First of all note that ϕ, in hyperspherical coordinates, is C1 with respect to the variable r, this can
be seen by writing the equation for ϕ in these coordinates. On one hand if there exists ĥx1 > 0 such
that ϕ(x1 + h, x′) ≥ ϕ(x1, x

′) for all h ∈ [0, ĥx1 ] then

∂x1ϕ
(
x1, x

′) = lim
h→0

ϕ(x1 + h, x′)− ϕ(x1, x
′)

h
≥ 0

and due to the radial symmetry of the level sets of ϕ and xi ≥ 0, there exists also ĥxi > 0 such that
ϕ(x1, .., xi−1, xi + h, xi+1, .., xN ) ≥ ϕ(x1, x

′) for all h ∈ [0, ĥxi ], and consequently ∂xiϕ (x1, x
′) ≥ 0.

On the other hand if there exists ĥx1 such that ϕ(x1 + h, x′) ≤ ϕ(x1, x
′) for all h ∈ [0, ĥx1 ], then we

similarly get ∂x1ϕ (x1, x
′) ≤ 0 and ∂xiϕ (x1, x

′) ≤ 0.
If neither of these two situations do happen, then there exists a sequence hk → 0, hk > 0 such that

ϕ(x1 + h2k, x
′) ≥ ϕ(x1, x

′) and ϕ(x1 + h2k+1, x
′) ≤ ϕ(x1, x

′).

Passing to the limit in the differential quotient for the two subsequences h2k and h2k+1 we get
∂x1ϕ (x1, x

′) ≥ 0 and ∂x1ϕ (x1, x
′) ≤ 0 and consequently ∂x1ϕ (x1, x

′) = 0.
Therefore, as ∂xif(x′) ≤ 0 for xi ≥ 0, the two terms ∂xif(x′)∂x1ϕ(x1, x

′) and ∂xiϕ (x1, x
′) always

have opposite signs for 0 ≤ x1 ≤ f(x′) and 0 ≤ xi (this includes the case ∂xif(x′)∂x1ϕ(x1, x
′) = 0 as

a limit case). Due to the symmetries of Ω, ∂xif(x′)∂x1ϕ(x1, x
′) and ∂xiϕ (x1, x

′) always have opposite
signs. Therefore we have∣∣∣∣∂xif(x′)

2
∂x1ϕ(x1, x

′) + ∂xiϕ(x1, x
′)

∣∣∣∣2 ≤ ∣∣∣∣∂xif(x′)

2
∂x1ϕ(x1, x

′)

∣∣∣∣2 +
∣∣∂xiϕ(x1, x

′)
∣∣2 .

This yields the estimate∫
Ω
|∇ϕ̂|2 =

∫
Ω′

∫ f(x′)

−f(x′)

1

4

∣∣∂x1ϕ
(
x1, x

′)∣∣2 +

∣∣∣∣∂x1ϕ (x1, y)
∇f(x′)

2
+∇x′ϕ

(
x1, x

′)∣∣∣∣2 dx1dx
′

≤
∫

Ω′

∫ f(x′)

−f(x′)

1

4

∣∣∂x1ϕ
(
x1, x

′)∣∣2 +
∑
i≥2

( ∣∣∣∣∂xif(x′)

2
∂x1ϕ(x1, x

′)

∣∣∣∣2 +
∣∣∂xiϕ(x1, x

′)
∣∣2 )dx1dx

′.

To continue with the main estimate, let us write down the hyperspherical coordinates in dimension N .
Let θk ∈ [0, π] for 1 ≤ k ≤ N − 2 and θN−1 ∈ [0, 2π]. The relation with Cartesian coordinates is given
by

x1 = r cos θ1, xi = r cos θi

i−1∏
k=1

sin θk for 2 ≤ i ≤ N − 1, xN = r
N−1∏
k=1

sin θk

and r = |x|. A simple calculation shows that |∂xif(x′)|2 = f(x′)−2|xi|2 for i ≥ 2. Using hyperspherical
coordinates we get

f(x′)2 = 1−
N∑
k=2

x2
k = 1−

N−2∑
k=2

x2
k − r2

N−2∏
k=1

(sin θk)
2 = ... = 1− r2 sin2 θ1.

Since we have the radial symmetry we define U(r) := ϕ(x1, x
′). We have then ∂x1ϕ(x1, x

′) =
U ′(r) cos θ1. Introduce for i ≥ 2 the integral

Ki : =

∫
Ω′

∫ f(x′)

−f(x′)

∣∣∂xif(x′)∂x1ϕ(x1, x
′)
∣∣2 dx1dx

′

=

∫ 2π

θN−1=0

∫ π

θN−2=0
...

∫ π

θ1=0

∫ 1

r=0

r2 cos2 θi
∏i−1
k=1 sin2 θk

1− r2 sin2 θ1
U ′(r)2 cos2 θ1r

N−1
N−2∏
k=1

(sin θk)
N−k−1drdθ1...dθN−1.

Clearly the function

[0, 1] 3 r 7→ r2

1− r2 sin2 θ1
.
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is increasing, for θ1 ∈ (0, π) fixed. Hence, one has

r2

1− r2 sin2 θ1
<

1

1− sin2 θ1
=

1

cos2 θ1
for r < 1,

and rearranging the other terms in Ki leads to

Ki <

∫ 2π

θN−1=0

∫ π

θN−2=0
...

∫ π

θ1=0

∫ 1

r=0
rN−1U ′(r)2 cos2 θi

(
i−1∏
k=1

(sin θk)
N−k+1

)(
N−2∏
k=i

(sin θk)
N−k−1

)
drdθ1...dθN−1.

To estimate the integral Ki, we can compute the various integrals above separately. We start with
i−1∏
k=1

∫ π

θk=0
(sin θk)

N−k+1dθk =

i−1∏
k=1

2WN−k+1

where WN−k+1 denotes the N − k + 1-th Wallis integral4. Using the well-known relation of Wallis
integrals for q ∈ N∗

(30) qWq = (q − 1)Wq−2

we obtain
i−1∏
k=1

∫ π

θk=0
(sin θk)

N−k+1dθk = 2i−1
i−1∏
k=1

WN−k−1
N − k

N − k + 1
= 2i−1N − i+ 1

N

i−1∏
k=1

WN−k−1.(31)

Pursuing the estimate of Ki, we study the term∫ π

0
cos2 θi(sin θi)

N−i−1dθi =

∫ π

0
(sin θi)

N−i−1dθi −
∫ π

0
(sin θi)

N−i+1dθi = 2WN−i−1 − 2WN−i+1.

Using relation (30) we get

(32)
∫ π

0
cos2 θi(sin θi)

N−i−1dθi =
2

N − i+ 1
WN−i−1.

Gathering (31) and (32) we obtain

Ki ≤ 2π

(∫ 1

r=0
rN−1U ′(r)2dr

)
2N−2

N

N−2∏
k=1

WN−k−1.

On the other hand we have

‖∂x1ϕ‖2L2(Ω) =

∫ 2π

θN−1=0

∫ π

θN−2=0
...

∫ π

θ1=0

∫ 1

r=0
U ′(r)2 cos2 θ1r

N−1
N−2∏
k=1

(sin θk)
N−k−1drdθ1...dθN−1

= 2π

(∫ 1

r=0
U ′(r)2rN−1dr

)N−2∏
k=2

2WN−k−1

∫ π

0
cos2 θ1(sin θ1)N−2dθ1

= 2π

(∫ 1

r=0
U ′(r)2rN−1dr

)
(2WN−2 − 2WN )

N−2∏
k=2

2WN−k−1.

Using (30) we get 2WN−2 − 2WN = 2N−1WN−2 which yields

‖∂x1ϕ‖2L2(Ω) = 2π

(∫ 1

r=0
U ′(r)2rN−1dr

)
2N−2

N

N−2∏
k=1

WN−k−1.

4The Wallis integrals are the terms of the sequence (Wn)n∈N defined by

Wn =

∫ π
2

0

sinn x dx.
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Thus gathering the results above we have obtained the estimate

Ki < ‖∂x1ϕ‖2L2(Ω).

Now using this estimate yields∫
Ω
|∇ϕ̂|2 < 1

4
‖∂x1ϕ‖2L2(Ω) +

∑
i≥2

(1

4
‖∂x1ϕ‖2L2(Ω) + ‖∂xiϕ‖2L2(Ω)

)
.

Now we observe that ‖∂xi1ϕ‖L2(Ω) = ‖∂xi2ϕ‖L2(Ω) for all indices i1 and i2 due to the radial symmetry
of ϕ.

Thus we get∫
Ω
|∇ϕ̂|2 < 1

4
‖∂x1ϕ‖2L2(Ω) + (N − 1)(1 +

1

4
)‖∂x1ϕ‖2L2(Ω) =

5N − 4

4
‖∂x1ϕ‖2L2(Ω)

<
5N − 4

4N
‖∇ϕ‖2L2(Ω)

and the expected conclusion follows.
Finally, if E is also a centered ball, then denoting ER the part of E which is on the right of the plane

P ′, ER is a half-ball and is convex. The transformation ER 7→ Ê obviously preserves the convexity in
the x1-direction since intervals are mapped onto intervals for fixed x′ ∈ Ω′. Thus it is clear that Ê and
Ω \ Ê are both convex in the x1-direction. �

Remark 2. In the proof of Theorem 5, there is some room to improve the estimate for Ki, and in
turn the estimate for the eigenvalue, using the estimate

r2

1− r2 sin2 θ1
<

r2

1− sin2 θ1
for r < 1, θ1 ∈ (0, π).

However, to obtain a practical estimate, one needs more informations about the spatial distribution of
U ′(r)2.

The numerical results for the disk in the Neumann case are gathered on Figure 6 and two convergence
curves illustrating the efficiency of the method are drawn on Figure 7.

According to these simulations, the optimal set E∗ looks like a portion of disk intersecting Ω, but
we did not manage to confirm nor to invalidate this observation theoretically.

To end this section, let us provide some numerical hints suggesting that the optimal set E∗ are not
portions of disks. Assume from now on that Ω is a disk of radius R (and R = 1/

√
π on Figure 6 so

that |Ω| = 1). We expect from the Neumann boundary conditions that the boundary ∂E ∩ Ω will hit
∂Ω with angle π/2. It follows from Pythagora’s theorem that the distance between the center of Ω

and the center of E is
√
R2 + r2

c . Therefore, an easy but tedious computation shows that

|E| = c|Ω| = R2 arcsin

(
rc√

R2 + r2
c

)
+ r2

c arcsin

(
R√

R2 + r2
c

)
− rcR.

The mapping rc 7→ R2 arcsin

(
rc√
R2+r2

c

)
+r2

c arcsin

(
R√
R2+r2

c

)
−rcR is increasing on R+ and it follows

that rc is determined in a unique way from c.
The numerical results presented on the table below suggest that Ec, the piece of disk of radius rc,

is not optimal for most of the possible values of c. This conjecture is tested for R = 1/
√
π, κ = 0.5

and several values of the parameter c. However, for c = 0.15, the algorithm we used did not manage
to exhibit a set which is better than the piece of disk Ec. In all cases, it would be interesting to lead
in a separate study a refined numerical investigation in order to validate or invalidate the conjecture
that a piece of disk does not solve Problem (6) when Ω stands for the unit disk and for β ≥ 0.
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(a) c = 0.2 - optimal domain (b) c = 0.3 - optimal domain (c) c = 0.4 - optimal domain

(d) c = 0.5 - optimal domain (e) c = 0.6 - optimal domain

Figure 6. Ω = B(0, 1/
√
π). Optimal domains in the Neumann case (β = 0) with

κ = 0.5 and c ∈ {0.2, 0.3, 0.4, 0.5, 0.6}
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Convergence curve, c =0.2

(a) c = 0.2 - convergence curve
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14
Convergence curve, c =0.6

(b) c = 0.6 - convergence curve

Figure 7. Ω = B(0, 1/
√
π). Two examples of convergence curves in the Neumann case

(β = 0) with κ = 0.5 and c = 0.2 (left) or c = 0.6 (right)

c = 0.1 c = 0.15 c = 0.2 c = 0.25 c = 0.3 c = 0.35 c = 0.4

rc 0.3408 0.4714 0.6234 0.8166 1.0869 1.5149 2.3408
λ(Ec) 80.2483 49.5896 34.6791 25.6912 19.7057 15.3542 12.0286
λ(E∗) 80.2435 49.5912 34.6341 25.6727 19.6945 15.3520 12.0260

5.3. Some additional numerical investigations for β > 0. In this section, we gather the optimal
domains we have obtained for several values of the parameter β. As previously, we consider the cases
where Ω is the unit square or the disk with radius 1/

√
π. As previously, the algorithm described in

Section 2.8 is used to determine the optimal domain E∗.
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(a) c = 0.2 - β = 1 (b) c = 0.2 - β = 5 (c) c = 0.2 - β = 50

(d) c = 0.2 - β = 1000
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Convergence curve, c =0.2

(e) c = 0.2 - β = 1
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150
Convergence curve, c =0.2

(f) c = 0.2 - β = 1000

Figure 8. Ω = (0, 1)2. Optimal domains for κ = 0.5, c = 0.2 and β ∈ {1, 5, 50, 1000}
and two examples of convergence curves for κ = 0.5, c = 0.2 and β ∈ {1, 1000}

On Figure 8 (resp. on Figure 9), the optimal domain E∗ are plotted for c = 0.2, β ∈ {1, 5, 50, 1000}
and Ω = (0, 1)2 (resp. Ω = B(0, 1/

√
π)), as well as several convergence curves.
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