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Abstract. The paper deals with the existence and multiplicity of solutions of the fractional
Schrödinger–Kirchhoff equation involving an external magnetic potential. As a consequence, the
results can be applied to the special case

(a + b[u]2ϑ−2
s,A )(−∆)sAu + V (x)u = f(x, |u|)u in RN ,

where s ∈ (0, 1), N > 2s, a ∈ R+
0 , b ∈ R+

0 , ϑ ∈ [1, N/(N − 2s)), A : RN → RN is a magnetic
potential, V : RN → R+ is an electric potential, (−∆)sA is the fractional magnetic operator. In
the super– and sub–linear cases, the existence of least energy solutions for the above problem is
obtained by the mountain pass theorem, combined with the Nehari method, and by the direct
methods respectively. In the superlinear–sublinear case, the existence of infinitely many solutions
is investigated by the symmetric mountain pass theorem.

1. Introduction and main result

The paper deals with the existence of solutions of the fractional Schrödinger–Kirchhoff problem

(1.1) M([u]2s,A)(−∆)sAu+ V (x)u = f(x, |u|)u in RN ,

where hereafter s ∈ (0, 1), N > 2s,

[u]s,A =

(∫∫
R2N

|u(x)− ei(x−y)·A(x+y
2

)u(y)|2

|x− y|N+2s
dxdy

)1/2

,

M : R+
0 → R+

0 is a Kirchhoff function, V : RN → R+ is a scalar potential, A : RN → RN is
a magnetic potential, and (−∆)sA is the associated fractional magnetic operator which, up to a
normalization constant, is defined as

(−∆)sAϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

ϕ(x)− ei(x−y)·A(x+y
2

)ϕ(y)

|x− y|N+2s
dy, x ∈ RN ,

along functions ϕ ∈ C∞0 (RN ,C). Henceforward Bε(x) denotes the ball of RN centered at x ∈ RN
and radius ε > 0. For details on fractional magnetic operators we refer to [14] and to the
references [21–24] for the physical background.

The operator (−∆)sA is consistent with the definition of fractional Laplacian (−∆)s when
A ≡ 0. For further details on (−∆)s, we refer the interested reader to [16]. Nonlocal operators
can be seen as the infinitesimal generators of Lévy stable diffusion processes [1]. Moreover, they
allow us to develop a generalization of quantum mechanics and also to describe the motion of a
chain or an array of particles that are connected by elastic springs as well as unusual diffusion
processes in turbulent fluid motions and material transports in fractured media (for more details
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see for example [1, 5, 6] and the references therein). Indeed, the literature on nonlocal fractional
operators and on their applications is quite large, see for example the recent monograph [33], the
extensive paper [17] and the references cited there.

The paper was motivated by some works appeared in recent years concerning the magnetic
Schrödinger equation

−(∇− iA)2u+ V (x)u = f(x, |u|)u in RN ,(1.2)

which has been extensively studied (see [2, 11, 15, 28, 42]). The magnetic Schrödinger operator is
defined as

−(∇− iA)2u = −∆u+ 2iA(x) · ∇u+ |A(x)|2u+ iudivA(x).

As stated in [43] (see also [36,37]), up to correcting the operator by the factor (1− s), it follows
that (−∆)sAu converges to −(∇u− iA)2u as s ↑ 1. Thus, up to normalization, the nonlocal case
can be seen as an approximation of the local case (see Section 2 for further details). As A = 0
and M = 1, equation (1.1) becomes the fractional Schrödinger equation

(−∆)su+ V (x)u = f(x, |u|)u in RN ,

introduced by Laskin [29, 30]. Here the nonlinearity f satisfies general conditions. We refer, for
instance, to [18,19,41] and the references therein for recent results.

Throughout the paper, without explicit mention, we also assume that A : RN → RN and
V : RN → R+ are continuous functions, and that V satisfies,

(V1) there exists V0 > 0 such that infRN V ≥ V0.

The Kirchhoff function M : R+
0 → R+

0 is assumed to be continuous and to verify

(M1) for any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ ;

(M2) there exists ϑ ∈ [1, 2∗s/2) such that tM(t) ≤ ϑM (t) for all t ≥ 0, M (t) =
∫ t

0 M(τ)dτ .

A simple typical example of M is given by M(t) = a+ b tϑ−1 for t ∈ R+
0 , where a ∈ R+

0 , b ∈ R+
0

and a+ b > 0. When M is of this type, problem (1.1) is said to be non–degenerate if a > 0, while
it is called degenerate if a = 0.

Clearly, assumptions (M1) and (M2) cover the degenerate case. It is worth pointing out that
the degenerate case is rather interesting and is treated in well–known papers in Kirchhoff theory,
see for example [13]. In the large literature on degenerate Kirchhoff problems, the transverse
oscillations of a stretched string, with nonlocal flexural rigidity, depends continuously on the
Sobolev deflection norm of u via M(‖u‖2). From a physical point of view, the fact that M(0) = 0
means that the base tension of the string is zero, a very realistic model. The presence of the
nonlinear coefficient M is crucial to be considered when the changes in tension during the motion
cannot be neglected. In the case of linear string vibrations, the tension is constant that is
M(t) ≡M(0) > 0. When the inertial effects of longitudinal modes can be neglected, the tension
is spatially uniform along the string and can be directly computed from the elongation of the
string according to the Hooke law and arriving to the form of M proposed by Kirchhoff and
derived properly by Carrier. Again the case M(0) = 0 means that the base tension of the string
is zero, a very lifelike prototype.

After the model proposed in 1883 by Kirchhoff in [26] several physicists also considered such
equations for their researches in the theory of nonlinear vibrations theoretically or experimentally,
see [8,9,34,35]. Carrier [8,9] developed a more rigorous approach to model transverse vibration via
the coupled governing equation of planar vibration and recovered the nonlinear integro–partial–
differential equation, without quoting Kirchhoff. Narasimha [34] also obtained the equation,
called nowadays the Kirchhoff string equation in the literature, using another approach.
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For fractional degenerate Kirchhoff problems we refer to [3, 7, 32, 40, 45] and the references
therein for more details in bounded domains and in the whole space. Recent existence results of
solutions for fractional non–degenerate Kirchhoff problems are given, for example, in [20,38,44,46].

Assumptions (M1) and (M2) on the Kirchhoff function M are enough to assure the existence
of solutions of (1.1). However, to get the existence of ground states, we assume also the further
mild request

(M3) there exists m0 > 0 such that M(t) ≥ m0t
ϑ−1 for all t ∈ [0, 1],

where ϑ is the number given in (M2) when (M2) is assumed, otherwise ϑ is any number greater
than or equal to 1.

Of course, (M3) is satisfied also in the model case, even when M(0) = 0, that is in the
degenerate case. In [40], condition (M3) was also applied to investigate the existence of entire
solutions for the stationary Kirchhoff type equations driven by the fractional p–Laplacian operator
in RN .

Superlinear nonlinearities f satisfy

(f1) f ∈ RN × R+ → R is a Carathéodory function and there exist C > 0 and p ∈ (2ϑ, 2∗s)
such that

|f(x, t)| ≤ C(1 + |t|p−2) for all (x, t) ∈ RN × R+;

(f2) There exists a constant µ > 2ϑ such that

0 < µF (x, t) ≤ f(x, t)t2, F (x, t) =

∫ t

0
f(x, τ)τdτ,

whenever x ∈ RN and t ∈ R+;
(f3) f(x, t) = o(1) as t→ 0+, uniformly for x ∈ RN ;
(f4) inf

x∈RN
F (x, 1) > 0.

A typical example of f , verifying (f1)–(f4), is given by f(x, |u|) = |u|p−2, with 2ϑ < p < 2∗s. The
fractional solution spaces HA,V (RN ,C) and Hs

A,V (RN ,C) are introduced precisely in Section 3.

We say that u ∈HA,V (RN ,C) (resp. u ∈ Hs
A,V (RN ,C)) is a (weak) solution of (1.1), if

<
[
M([u]2s,A)

∫∫
R2N

[
u(x)− ei(x−y)·A(x+y

2
)u(y)

]
·
[
ϕ(x)− ei(x−y)·A(x+y

2
)ϕ(y)

]
|x− y|N+2s

dxdy +

∫
RN

V uϕdx

]
= <

∫
RN

f(x, |u|)uϕdx,

for all ϕ ∈HA,V (RN ,C) (resp. ϕ ∈ Hs
A,V (RN ,C)).

Now we are in a position to state the first existence result.

Theorem 1.1 (Superlinear case). Assume that V satisfies (V1), f satisfies (f1)–(f4) and M ful-
fills (M1)–(M2). Then (1.1) admits a nontrivial radial mountain pass solution u0 ∈HA,V (RN ,C).

Furthermore, if M satisfies (M1)–(M3), then (1.1) has a ground state u ∈HA,V (RN ,C) with pos-
itive energy.

Sublinear nonlinearities f verify

(f5) There exist q ∈ (1, 2) and a ∈ L
2

2−q (RN ) such that

|f(x, t)| ≤ a(x)tq−2 for all (x, t) ∈ RN × R+.
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(f6) There exist q ∈ (1, 2), δ > 0, a0 > 0 and a nonempty open subset Ω of RN such that

F (x, t) ≥ a0t
q for all (x, t) ∈ Ω× (0, δ).

A typical example of f , verifying (f5)–(f6), is f(x, |u|) = (1 + |x|2)(q−2)/2|u|q−2 with 1 < q < 2.
The second result reads as follows.

Theorem 1.2 (Sublinear case). Assume that V satisfies (V1), f satisfies (f5)–(f6) and M is
continuous in R+

0 and satisfies (M1) and (M3), with ϑ ≥ 1. Then (1.1) admits a nontrivial
solution u ∈ Hs

A,V (RN ,C), which is a ground sate of (1.1).

To get infinitely many solutions for equation (1.1) in the local sublinear–superlinear case, we also
assume

(V2) There exists h > 0 such that

lim
|y|→∞

L N
(
{x ∈ Bh(y) : V (x) ≤ c}

)
= 0

for all c > 0.
(f7) F (x, t) ≥ 0 for all (x, t) ∈ RN ×R+

0 , and there exist q ∈ (1, 2), a nonempty open subset Ω
of RN and a1 > 0 such that

F (x, t) ≥ a1t
q for all (x, t) ∈ Ω× R+.

An example of f , which satisfies assumptions (f1) and (f7), is

f(x, t) = (1 + |x|2)(q−2)/2tq−2 + tp−2 for all (x, t) ∈ RN × R+
0 ,

when 1 < q < 2 ≤ 2ϑ < p < 2∗s.

Theorem 1.3 (Multiplicity – local superlinear–sublinear case). Assume that V satisfies (V1)–
(V2), that f fulfills (f1) and (f7) and that M is a continuous function in R+

0 , verifying (M1) and
(M3), with ϑ ≥ 1. Then (1.1) admits a sequence (uk)k of nontrivial solutions.

Remark 1.4. (i) Condition (V2), which is weaker than the coercivity assumption: V (x) → ∞
as |x| → ∞, was first proposed by Bartsch and Wang in [4] to overcome the lack of compactness.

(ii) To our best knowledge, Theorem 1.3 is the first result for the Schrödinger–Kirchhoff equa-
tions involving concave–convex nonlinearities in the fractional setting. We also refer to [45] for
some related multiplicity results.

Remark 1.5. As it is pointed out in [22], in place of the midpoint prescription

(x, y) 7→ A

(
x+ y

2

)
,

other (physically justified [22]) prescriptions are viable such as the averaged prescription

(x, y) 7→
∫ 1

0
A ((1− ϑ)x+ ϑy) dϑ =: A](x, y).

If (−∆)sA and (−∆)sA] are the fractional operators associated with the potentials A((x + y)/2)

and A](x, y) respectively it follows that (−∆)sA] is Gauge-covariant, while (−∆)sA is not, namely

(−∆)s(A+∇φ)]
= eiφ(−∆)sA]e

−iφ, for all φ ∈ S (Rn).
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This is usually relevant for Schrödinger type operators. The results and proofs in this paper
carry on in the same way for the operator with averaged prescription A]. Furthermore, the result
of [43] extends to the case of A] with the same proof, that is

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A](x,y)u(y)|2

|x− y|n+ps
dxdy = KN

∫
Ω
|∇u− iA(x)u|2dx,

see the discussion in Section 2 for A((x+ y)/2).

The paper is organized as follows. In Section 2 we provide a few remarks about the singular
limit as s ↑ 1. In Section 3, we recall some necessary definitions and properties for the functional
setting. In Section 4, we obtain some preliminary results. In Section 5, the existence of ground
states of (1.1) is obtained by using the mountain pass theorem together with the Nehari method,
and by the direct methods respectively. In Section 6, the existence of infinitely many solutions
of (1.1) is obtained by using the symmetric mountain pass theorem.
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of the Istituto Nazionale di Alta Matematica (INdAM). The manuscript was realized within the
auspices of the INdAM – GNAMPA Project Problemi variazionali su varietà Riemanniane e
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2. Remarks on the singular limit as s ↑ 1

The functional framework investigated in the paper admits a very nice consistency property
with more familiar local problems, in the singular limit as the fractional diffusion parameter s
approaches 1. Let Ω be a nonempty open subset of RN . We denote by L2(Ω,C) the Lebesgue
space of complex valued functions with summable square, endowed with the norm ‖u‖L2(Ω,C). We

indicate by Hs
A(Ω) the space of functions u ∈ L2(Ω,C) with finite magnetic Gagliardo semi–norm,

given by

[u]Hs
A(Ω) =

(∫∫
Ω×Ω

|u(x)− ei(x−y)·A(x+y
2

)u(y)|2

|x− y|N+2s
dxdy

)1/2

.

The space Hs
A(Ω) is equipped with the norm

‖u‖Hs
A(Ω) =

(
‖u‖2L2(Ω,C) + [u]2Hs

A(Ω)

)1/2
.

The space Hs
0,A(Ω) is the completion of C∞c (Ω,C) in Hs

A(Ω).

Indeed, in the recent paper [43], the following theorem was proved, which is a Bourgain–Brezis–
Mironescu type result in the framework of magnetic Sobolev spaces.

Proposition 2.1 (Theorems 1.1 and 1.2 of [43]). Let Ω be an open bounded subset of RN , with
Lipschitz boundary and let A be of class C2 over Ω. Then,

lim
s↑1

(1− s)
∫∫

Ω×Ω

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|N+2s
dxdy = KN

∫
Ω
|∇u− iA(x)u|2dx
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for every u ∈ H1
A(Ω), where

KN =
1

2

∫
SN−1

|ω · e|2dHN−1(ω),

and SN−1 is the unit sphere of RN and e any unit vector of RN . Furthermore,

lim
s↑1

(1− s)
∫∫

R2N

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|N+2s
dxdy = KN

∫
Ω
|∇u− iA(x)u|2dx

for every u ∈ H1
0,A(Ω).

Problem (1.1) could be treated in an arbitrary smooth open bounded subset Ω of RN , provided
that the solution space is W , which consists of all functions u in Hs

A(RN ), with u = 0 in RN \Ω.
More precisely, consider the non–degenerate model case

M(t) = a(s) + b(s)t, where a(s) ≈ 1− s and b(s) ≈ (1− s)2b0 as s ↑ 1.

Then the corresponding problem (1.1) in Ω writes as
(

1 + (1− s)b0
∫∫

R2N

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|N+2s
dxdy

)
̂(−∆)sAu+ V (x)u = f(x, |u|)u in Ω,

u = 0 in RN \ Ω,

where u belongs to the solution space W and

̂(−∆)sAu = (1− s)(−∆)sAu.

This is natural since the Gagliardo semi–norms are typically multiplied by normalizing constants
which vanish at the rate of 1− s. Since by Proposition 2.1

(1− s)
∫∫

R2N

|u(x)− ei(x−y)·A(x+y2 )u(y)|2

|x− y|N+2s
dxdy ≈

∫
Ω
|∇u− iA(x)u|2dx as s ↑ 1,

̂(−∆)sAu = (1− s)(−∆)sAu ≈ −(∇u− iA)2u, as s ↑ 1,

the above problem converges to the local problem−
(

1 + b0

∫
Ω
|∇u− iA(x)u|2dx

)
(∇u− iA)2u+ V (x)u = f(x, |u|)u in Ω,

u = 0 on ∂Ω,

which as A→ O reduces to−
(

1 + b0

∫
Ω
|∇u|2dx

)
∆u+ V (x)u = f(x, |u|)u in Ω,

u = 0 on ∂Ω.

This is the classical model of a Schrödinger–Kirchhoff equation. When b0 = 0, the last two
problems become the classical Schrödinger Dirichlet problems with or without external magnetic
potential A.
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3. Functional setup

We first provide some basic functional setting that will be used in the next sections. The
critical exponent 2∗s is defined as 2N/(N − 2s). Let L2(RN , V ) denote the Lebesgue space of real
valued functions with V (x)|u|2 ∈ L1(RN ), equipped with norm

‖u‖2,V =

(∫
RN

V (x)|u|2dx
)1/2

for all u ∈ L2(RN , V ).

The fractional Sobolev space Hs
V (RN ) is then defined as

Hs
V (RN ) =

{
u ∈ L2(RN , V ) : [u]s <∞

}
,

where [u]s is the Gagliardo semi–norm

[u]s =

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

.

The space Hs
V (RN ) is endowed with the norm

‖u‖s =
(
‖u‖22,V + [u]2s

)1/2
.

The localized norm, on a compact subset K of RN , for the space Hs
V (K), is denoted by

(3.1) ‖u‖s,K =

(∫
K
V (x)|u|2dx+

∫∫
K×K

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

.

The embedding Hs
V (RN ) ↪→ Lν(RN ) is continuous for any ν ∈ [2, 2∗s] by [16, Theorem 6.7], namely

there exists a positive constant C such that

‖u‖Lν(RN ) ≤ C‖u‖s for all u ∈ Hs
V (RN ).

Let us set

Hs
r,V (RN ) =

{
u ∈ Hs

V (RN ) : u(x) = u(|x|) for all x ∈ RN
}
.

To prove the existence of radial weak solutions of (1.1), we shall use the following embedding
theorem due to P.L. Lions.

Theorem 3.1 (Compact embedding, I – Théorème II.1 of [31]). Let N ≥ 2. For any α ∈ (2, 2∗s)
the embedding Hs

r,V (RN ) ↪→↪→ Lα(RN ) is compact.

Furthermore, we also have

Theorem 3.2 (Compact embedding, II – Theorem 2.1 of [39]). Assume that conditions (V1)–(V2)
hold. Then, for any ν ∈ (2, 2∗s) the embedding Hs

V (RN ) ↪→↪→ Lν(RN ) is compact.

Let L2
V (RN ,C) be the Lebesgue space of functions u : RN → C with V |u|2 ∈ L1(RN ), endowed

with the (real) scalar product

〈u, v〉L2,V = <
∫
RN

V (x)uvdx for all u, v ∈ L2(RN ,C),

where z̄ denotes complex conjugation of z ∈ C. Consider now, according to [14], the magnetic
Gagliardo semi–norm given by

[u]s,A =

(∫∫
R2N

|u(x)− ei(x−y)·A(x+y
2

)u(y)|2

|x− y|N+2s
dxdy

)1/2

.
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Define Hs
A,V (RN ) as the closure of C∞c (RN ,C) with respect to the norm

‖u‖s,A =
(
‖u‖2L2,V + [u]2s,A

)1/2
.

A scalar product on Hs
A,V (RN ) is given by

〈u, v〉s,A = 〈u, v〉L2,V + <
∫∫

R2N

[
u(x)− ei(x−y)·A(x+y

2
)u(y)

]
·
[
v(x)− ei(x−y)·A(x+y

2
)v(y)

]
|x− y|N+2s

dxdy.

Arguing as in [14, Proposition 2.1], we see that
(
Hs
A,V (RN ), 〈·, ·〉s,A

)
is a real Hilbert space.

Lemma 3.3. For each u ∈ Hs
A,V (RN ,C)

|u| ∈ Hs
V (RN ) and

∥∥|u|∥∥
s
≤ ‖u‖s,A.

Proof. The assertion follows directly from the pointwise diamagnetic inequality∣∣|u(x)| − |u(y)|
∣∣ ≤ ∣∣∣u(x)− ei(x−y)·A(x+y

2
)u(y)

∣∣∣ ,
for a.e. x, y ∈ RN , see [14, Lemma 3.1, Remark 3.2]. �

Following Lemma 3.3 and using the same discussion of [14, Lemma 3.5], we have

Lemma 3.4. The embedding

Hs
A,V (RN ,C) ↪→ Lp(RN ,C)

is continuous for all p ∈ [2, 2∗s]. Furthermore, for any compact subset K ⊂ RN and all p ∈ [1, 2∗s)
the embeddings

Hs
A,V (RN ,C) ↪→ Hs

V (K,C) ↪→↪→ Lp(K,C)

are continuous and the latter is compact, where Hs
V (K,C) is endowed with (3.1).

Define now

HA,V (RN ,C) =
{
u ∈ Hs

A,V (RN ,C) : u(x) = u(|x|), x ∈ RN
}
.

By Theorems 3.1–3.2 and Lemma 3.3, we have the following lemma (cf. also [14, Lemma 4.1]).

Lemma 3.5. Let V satisfy (V1). Let (un)n be a bounded sequence in HA,V (RN ,C). Then, up to

a subsequence, (|un|)n converges strongly to some function u in Lp(RN ) for all p ∈ (2, 2∗s).
Moreover, if V satisfies (V1)–(V2), then for all bounded sequence (un)n in Hs

A,V (RN ,C) the

sequence (|un|)n admits a subsequence converging strongly to some u in Lp(RN ) for all p ∈ [2, 2∗s).

4. Preliminary results

The functional I : HA,V (RN ,C)→ R, associated with equation (1.1), is defined by

I(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V −

∫
RN

F (x, |u|)dx.

It is easy to see that I is of class C1(HA,V (RN ,C),R) and

〈I ′(u), v〉 =<
[
M([u]2s,A)

∫∫
R2N

(u(x)− ei(x−y)·A(x+y
2

)u(y))(v(x)− ei(x−y)·A(x+y
2

)v(y))

|x− y|N+2s
dxdy

+

∫
RN

V uvdx

]
−<

∫
RN

f(x, |u|)uvdx,
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for all u, v ∈HA,V (RN ,C). Hereafter, 〈·, ·〉 denotes the duality pairing between
(
HA,V (RN ,C)

)′
and HA,V (RN ,C).

Hence, the critical points of I are exactly the weak solutions of (1.1). Moreover, M ([u]2s,A) is

weakly lower semi–continuous in HA,V (RN ,C) by the weak lower semi–continuity of u 7→ [u]2s,A
jointly with the monotonicity and continuity of M . Hence, I is weakly lower semi–continuous in
HA,V (RN ,C), being

∫
RN F (x, |u|)dx weakly continuous in HA,V (RN ,C).

Definition 4.1. We say that I satisfies the (PS) condition in HA,V (RN ,C), if any (PS) sequence

(un)n ⊂ HA,V (RN ,C), namely a sequence such that (I(un))n is bounded and I ′(un) → 0 as

n→∞, admits a strongly convergent subsequence in HA,V (RN ,C).

Lemma 4.2 (Palais–Smale condition). Let (M1)–(M2) and (f1)–(f3) hold. Then I satisfies the
(PS) condition in HA,V (RN ,C).

Proof. Let (un)n be a (PS) sequence in HA,V (RN ,C). Then there exists C > 0 such that
|I(un)| ≤ C and |〈I ′(un), un〉| ≤ C‖un‖s,A for all n. As in Lemma 4.5 of [7], see also [12], we
divide the proof into two parts.

•Case infn∈N[un]s,A = d > 0. By (M1), there exists κ = κ(d) > 0 with M(t) ≥ κ > 0 for all
t ≥ d. Thus, (M2) and (f2) yield

(4.1)

C + C‖un‖s,A ≥ I(un)− 1

µ
〈I ′(un), un〉

=
1

2
M ([un]2s,A)− 1

µ
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

− 1

µ

∫
RN

(µF (x, |un|)− f(x, |un|)|un|2)dx

≥ 1

2
M ([un]2s,A)− 1

µ
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

≥
(

1

2ϑ
− 1

µ

)
M([un]2s,A)[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V

≥ κ
(

1

2ϑ
− 1

µ

)
[un]2s,A +

(
1

2
− 1

µ

)
‖un‖2L2,V .

This implies at once that (un)n is bounded in HA,V (RN ,C), being µ > 2ϑ. Going if necessary to
a subsequence, thanks to Lemmas 3.4 and 3.5, we have

un ⇀ u in HA,V (RN ,C), un → u a.e. in RN ,

|un| → |u| in Lp(RN ),(4.2)

|un| ≤ h a.e. in RN , for some h ∈ Lp(RN ).

To prove that (un)n converges strongly to u in HA,V (RN ,C) as n → ∞, we first introduce a

simple notation. Let ϕ ∈ HA,V (RN ,C) be fixed and denote by L(ϕ) the linear functional on

HA,V (RN ,C) defined by

〈L(ϕ), v〉 = <
∫∫

R2N

(ϕ(x)− ei(x−y)·A(x+y
2

)ϕ(y))

|x− y|N+2s
(v(x)− ei(x−y)·A(x+y

2
)v(y))dxdy,(4.3)

for all v ∈HA,V (RN ,C). Clearly, by the Hölder inequality, L(ϕ) is continuous, being

|〈L(ϕ), v〉| ≤ ‖ϕ‖s,A‖v‖s,A.
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Hence the weak convergence in (4.2) gives

lim
n→∞

〈L(u), un − u〉 = 0.

Furthermore, by the boundedness of M([un]2s,A) we have

lim
n→∞

M([un]2s,A)〈L(u), un − u〉 = 0.(4.4)

By (f1) and (f3), for any ε > 0 there exists Cε > 0 such that

(4.5) |f(x, t)t| ≤ ε|t|+ Cε|t|p−1 for all x ∈ RN and t ∈ R+.

Using the Hölder inequality, we obtain

(4.6)

∫
RN

∣∣(f(x,|un|)un − f(x, |u|)u)(un − u)
∣∣dx

≤
∫
RN

[ε(|un|+ |u|) + Cε(|un|p−1 + |u|p−1)]|un − u|dx

≤ ε(‖un‖L2 + ‖u‖L2)‖un − u‖L2 + Cε(‖un‖p−1
Lp + ‖u‖p−1

Lp )‖un − u‖Lp
≤ Cε+ CCε‖un − u‖Lp .

The Brézis–Lieb lemma and the fact that |un| → |u| in Lp(RN ) give

lim
n→∞

∫
RN
|un − u|pdx = lim

n→∞

∫
RN

(
|un|p − |u|p

)
dx = 0.

Inserting this in (4.6), we get

lim
n→∞

∫
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx = 0,(4.7)

since ε is arbitrary. Of course, 〈I ′(un) − I ′(u), un − u〉 → 0 as n → ∞, since un ⇀ u in
HA,V (RN ,C) and I ′(un)→ 0 in the dual space of HA,V (RN ,C). Thus,

o(1) = 〈I ′(un)− I ′(u), un − u〉
= M([un]2s,A)〈L(un)− L(u), un − u〉+ ‖un − u‖2L2,V

+
(
M([un]2s,A)−M([u]2s,A)

)
〈L(u), un − u〉 − <

∫
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx,

this, together with (4.4) and (4.7), implies that

lim
n→∞

(
M([un]2s,A)〈L(un)− L(u), un − u〉+ ‖un − u‖2L2,V

)
= 0,

which yields un → u in HA,V (RN ,C), since M([un]2s,A) ≥ κ > 0 for all n ≥ 1.

•Case infn∈N[un]s,A = 0. If 0 is an isolated point for ([un]s,A)n, then there is a subsequence
([unk ]s,A)k such that infk∈N[unk ]s,A = d > 0 and one can proceed as before. If, instead, 0 is an
accumulation point for ([un]s,A)n, there is a subsequence, still labeled as (un)n, such that

(4.8) [un]s,A → 0, un → 0 in L2∗s (RN ) and a.e. in RN .

We claim that (un)n converges strongly to 0 in HA,V (RN ,C). To this aim, we need only to show
that ‖un‖2,V → 0 thanks to (4.8). Now, (4.1) and (4.8) yield that as n→∞

C + C‖un‖2,V + o(1) ≥
(

1

2
− 1

µ

)
‖un‖22,V + o(1).
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Hence, (un)n is bounded in L2(RN , V ) and so in HA,V (RN ,C). Thus, by (4.8) and Lemma 3.4

un ⇀ 0 in HA,V (RN ,C) and un → 0 in Lp(RN ),(4.9)

being p ∈ (2, 2∗s). Clearly, by (4.5) and (4.9), for every ε > 0∣∣∣∣∣
∫
RN

f(x, |un|)u2
ndx

∣∣∣∣∣ ≤ ε‖un‖22 + Cε‖un‖pp = εC + o(1)

as n→∞. Thus,

(4.10) lim
n→∞

∫
RN

f(x, |un|)u2
ndx = 0,

being ε > 0 arbitrary. Obviously, 〈I ′(un), un〉 → 0 as n → ∞, by (4.9) and the fact that

I ′(un)→ 0 in
(
HA,V (RN ,C)

)′
. Hence, by the continuity of M and (4.8)–(4.10), we have

o(1) = 〈I ′(un), un〉 = M([un]2s,A)[un]2s,A + ‖un‖22,V −
∫
RN

f(x, |un|)u2
ndx

= ‖un‖22,V + o(1)

as n→∞. This shows the claim.
Therefore, I satisfies the (PS) condition in HA,V (RN ,C) also in this second case and this

completes the proof. �

Before going to the proof of Theorem 1.1, we give some useful preliminary results.

Lemma 4.3 (Mountain Pass Geometry I). Assume that (M1)–(M2), (f1) and (f3) hold. Then
there exist constant %, α > 0 such that I(u) ≥ α for all u ∈HA,V (RN ,C) with ‖u‖s,A = %.

Proof. It follows from (f3) that for any ε ∈ (0, 1) there exists δ = δ(ε) > 0 such that |f(x, t)| ≤ ε
for all x ∈ RN and t ∈ [0, δ]. On the other hand, (f1) yields that |f(x, t)| ≤ C

(
1 + δ2−p)|t|p−2 for

all x ∈ RN and t > δ. In conclusion,

|f(x, t)| ≤ ε+ C
(
1 + δ2−p)|t|p−2 for all x ∈ RN and t ∈ R+

0 .(4.11)

Whence, for some Cε > 0, we get

|F (x, t)| ≤
∫ t

0
|f(x, τ)τ |dτ ≤ ε

2
t2 + Cεt

p,(4.12)

for all x ∈ RN and t ≥ 0. Moreover, (M2) gives

M (t) ≥M (1)tϑ for all t ∈ [0, 1],(4.13)
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while (M1) implies that M (1) > 0. Thus, using (4.12), (4.13) and the Hölder inequality, we
obtain for all u ∈HA,V (RN ,C), with ‖u‖s,A ≤ 1,

I(u) =
1

2
M (‖u‖2s,A) +

1

2
‖u‖2L2,V −

∫
RN

F (x, |u|)dx

≥ M (1)

2
[u]2ϑs,A +

1

2
‖u‖2L2,V −

ε

2

∫
RN
|u|2dx− Cε

∫
RN
|u|pdx

≥ M (1)

2
[u]2ϑs,A +

(1

2
− ε

2V0

)
‖u‖2L2,V − CεC

p
p‖u‖

p
s,A

≥ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2ϑs,A + ‖u‖2L2,V )− CεCpp‖u‖

p
s,A

≥ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2ϑs,A + ‖u‖2ϑL2,V )− CεCpp‖u‖

p
s,A

≥ 21−ϑ min

{
M (1)

2
,
V0 − ε

2V0

}
([u]2s,A + ‖u‖2L2,V )ϑ − CεCpp‖u‖

p
s,A

=

(
21−ϑ min

{
M (1)

2
,
V0 − ε

2V0

}
− CεCpp‖u‖

p−2ϑ
s,A

)
‖u‖2ϑs,A,

where Cp is the embedding constant of HA,V (RN ,C) into Lp(RN ,C) given by Lemma 3.4. Here

we used that ‖un‖L2,V ≤ ‖un‖s,A ≤ 1 and the inequality (a+ b)ϑ ≤ 2ϑ−1(aϑ + bϑ) for all a, b ≥ 0.
Choosing ε = V0/2 and taking ‖u‖s,A = % ∈ (0, 1) so small that

21−ϑ min

{
M (1)

2
,
V0

4

}
− CV0/2C

p
p%

p−2ϑ > 0,

we have

I(u) ≥ α =

(
21−ϑ min

{
M (1)

2
,
V0

4

}
− CV0/2C

p
p%

p−2ϑ

)
%2ϑ > 0,

for all u ∈HA,V (RN ,C), with ‖u‖s,A = %. �

Lemma 4.4 (Mountain Pass Geometry II). Assume that (M1)–(M2) and (f1)–(f4) hold. Then
there exists e ∈ C∞c (RN ,C), with ‖e‖s,A ≥ 2, such that I(e) < 0. In particular, ‖e‖s,A > ρ, where
ρ > 0 is the number introduced in Lemma 4.3

Proof. For any x ∈ RN , set k(t) = F (x, t)t−µ for all t ≥ 1. Condition (f2) implies that k is
nondecreasing on [1,∞). Therefore, k(t) ≥ k(1) for any t ≥ 1, that is,

F (x, t) ≥ F (x, 1)tµ ≥ cF |t|µ for all x ∈ RNand t ≥ 1,(4.14)

where cF = infx∈RN F (x, 1) > 0 by assumption (f4). From (f3) there exists δ ∈ (0, 1) such that
|f(x, t)t| ≤ t for all x ∈ RN and t ∈ [0, δ]. Furthermore, |f(x, t)| ≤ 2C for all x ∈ RN and all t,
with δ < t ≤ 1, thanks to (f1). Hence, the above inequalities imply that f(x, t)t ≥ −(1 + 2C)t
for x ∈ RN and t ∈ [0, 1]. Thus,

F (x, t) =

∫ t

0
f(x, τ)τdτ ≥ −1 + 2C

2
t2 for all x ∈ RN and t ∈ [0, 1].(4.15)

Combining (4.14) with (4.15), we obtain

F (x, t) ≥ cF |t|µ − CF |t|2 for all x ∈ RN and t ≥ 0,(4.16)
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where CF = cF + (1 + 2C)/2. Again (M2) gives

M (t) ≤M (1)tϑ for all t ≥ 1,(4.17)

with M (1) > 0 by (M1). Fix u ∈ C∞c (RN ,C), with [u]s,A = 1. By (4.16) and (4.17) as t→∞

I(tu) =
1

2
M ([tu]2s,A) +

1

2
‖tu‖2L2,V −

∫
RN

F (x, t|u|)dx

≤ M (1)

2
t2ϑ[u]2ϑs,A +

1

2
‖tu‖2L2,V − cF t

µ‖u‖µ
Lµ(RN )

+
M1

V0
t2‖u‖2L2,V

≤ M (1)

2
t2ϑ − cFCµµ tµ‖u‖

µ
s,A +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V

≤ M (1)

2
t2ϑ − cFCµµ tµ[u]µs,A +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V

=
M (1)

2
t2ϑ − cFCµµ tµ +

(
M1

V0
+

1

2

)
t2‖u‖2L2,V → −∞,

since 2 ≤ 2ϑ < µ. The assertion follows at once, taking e = T0u, with T0 > 0 large enough. �

5. Proof of Theorems 1.1 and 1.2

The following standard Mountain Pass Theorem will be used to get our main result.

Theorem 5.1. Let J be a functional on a real Banach space E and of class C1(E,R). Let us
assume that there exists α, ρ > 0 such that
(i) J(u) ≥ α for all u ∈ E with ‖u‖ = ρ,
(ii) J(0) = 0 and J(e) < α for some e ∈ E with ‖e‖ > ρ.
Let us define Γ = {γ ∈ C([0, 1];E) : γ(0) = 0, γ(1) = e}, and

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

Then there exists a sequence (un)n in E such that J(un) → c and J ′(un) → 0 in E′, the dual
space of E, as n→∞.

5.1. Proof of Theorem 1.1. Taking into account Lemmas 4.3 and 4.4, by Theorem 5.1 there
exists a sequence (un)n ⊂ HA,V (RN ,C) such that I(un) → c > 0 and I ′(un) → 0 as n → ∞.

Then, in view of Lemma 4.2, there exists a nontrivial critical point u0 ∈HA,V (RN ,C) of I with
I(u0) = c > 0 = I(0).

Set N = {u ∈ HA,V (RN ,C) \ {0} : I ′(u) = 0}. Then u0 ∈ N 6= ∅. Next we show that I is
coercive and bounded from below on N . Indeed, by I ′(u) = 0 and (f2), we get∫

RN
F (x, |u|)dx ≤ 1

µ

∫
RN

f(x, |u|)|u|2dx =
1

µ

(
M([u]2s,A)[u]2s,A + ‖u‖2L2,V

)
.(5.1)

By using (5.1), (M2) and the fact that 2 ≤ 2ϑ < µ, for all u ∈ N , we have

I(u) ≥ 1

2
M (‖u‖2s,A) +

1

2
‖u‖2L2,V −

1

µ
(M([u]2s,A)[u]2s,A + ‖u‖2L2,V )

=

(
1

2ϑ
− 1

µ

)
M([u]2s,A)[u]2s,A +

(
1

2
− 1

µ

)
‖u‖2L2,V ≥ 0.
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Hence, by (M1) and (M3) for u ∈ N

I(u) ≥
(

1

2ϑ
− 1

µ

)
·

(
‖u‖2L2,V +

{
κ[u]2s,A, if [u]s,A ≥ 1

m0[u]2ϑs,A, if [u]s,A ≤ 1

)
,(5.2)

where κ = κ(1) > 0 by (M1). Hence in all cases, for all u ∈ N

I(u) ≥ min{κ,m0}
(

1

2ϑ
− 1

µ

)
‖u‖2s,A − 1,

by the elementary inequality tϑ ≥ t− 1 for all t ∈ R+
0 . In particular, I is coercive and bounded

from below on N .
Define cmin = inf{I(u) : u ∈ N }. Clearly, 0 ≤ cmin ≤ I(u0) = c. Let (un)n be a minimizing

for cmin, namely I(un)→ cmin and 〈I ′(un), un〉 = 0. Then, since N is a complete metric space,
by Ekeland’s variational principle we can find a new minimizing sequence, still denoted by (un)n,
which is a (PS) sequence for I at the level cmin. Moreover, Lemma 4.2 implies that (un)n has
a convergence subsequence, which we still denote by (un)n, such that un → u in HA,V (RN ,C).
Thus cmin = I(u) and 〈I ′(u), u〉 = 0.

We claim that cmin > 0. Otherwise, there is (un)n ⊂ HA,V (RN ,C) \ {0} with I ′(un) = 0 and
I(un) → 0. This via (5.2) implies that ‖un‖s,A → 0. On the other hand, by (4.11), we have for
any ε ∈ (0, V0)

M([un]2s,A)[un]2s,A + ‖un‖2L2,V =

∫
RN

f(x, |un|)|un|2dx ≤
ε

V0
‖un‖2L2,V + CεC

p
p‖un‖

p
s,A.

Thus, M([un]2s,A)[un]2s,A +
(

1 − ε/V0

)
‖un‖2L2,V ≤ CεC

p
p‖un‖ps,A. Now take N1 so large that

‖un‖s,A ≤ 1 for all n ≥ N1. Hence, (M3) implies that for all n ≥ N1

m0[un]2ϑs,A +
(
1− ε/V0

)
‖un‖2ϑL2,V ≤ CεC

p
p‖un‖

p
s,A,

that is

min
{
m0,

(
1− ε/V0

)}
≤ CεCpp‖un‖

p−2ϑ
s,A .

This is a contradiction since 2ϑ < p and proves the claim.
Thus, u is a nontrivial critical point of I, with I(u) = cmin > 0. Therefore, u is a ground state

solution of (1.1). �

5.2. Proof of Theorem 1.2. By (f5), (V1) and the Hölder inequality, for all u ∈ Hs
s,A(RN ,C)

we have

I(u) ≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V −

∫
RN

a(x)|u|qdx

≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V − ‖a‖L 2

2−q
‖u‖q

L2

≥ 1

2
M ([u]2s,A) +

1

4
‖u‖2L2,V +

V0

4
‖u‖2L2 − ‖a‖

L
2

2−q
‖u‖q

L2

≥ 1

2
M ([u]2s,A) +

1

4
‖u‖2L2,V − C0,

C0 =
‖a‖

L
2

2−q

2q
(2q − 1)

(
2‖a‖

L
2

2−q

qV0

)q/(2−q)
.
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As shown in (5.2), this, (M1) and (M3) imply at once that for all u ∈ Hs
s,A(RN ,C)

I(u) ≥ min{κ,m0}
4

‖u‖2s,A − 1− C0,

κ = κ(1). Hence I is coercive and bounded below on Hs
s,A(RN ,C). Set

J(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V , H(u) =

∫
RN

F (x, |u|)dx

for all u ∈ Hs
A,V (RN ). Then J is weakly lower semi–continuous in Hs

A,V (RN ), since M is

continuous and monotone non–decreasing in R+
0 . Moreover, by using a similar discussion as [40,

Lemma 2.3], one can show that H is weakly continuous on Hs
A,V (RN ) under condition (f5).

Thus, I(u) = J(u) − H(u) is weakly lower semi–continuous in Hs
A,V (RN ). Then there exists

u0 ∈ Hs
A,V (RN ) such that

I(u0) = inf{I(u) : u ∈ Hs
A,V (RN )}.

Next we show u0 6= 0. Let x0 ∈ Ω and let R > 0 such that BR(x0) ⊂ Ω. Fix ϕ ∈ C∞0 (BR(x0))
with 0 ≤ ϕ ≤ 1, ‖ϕ‖s,A ≤ C(R) and ‖ϕ‖Lq(BR(x0)) 6= 0. Then, by (f6) for all t ∈ (0, δ)

I(tϕ) ≤ t2

2

(
sup

0≤ξ≤(δC(R))2
M(ξ)

)
[ϕ]2s,A +

t2

2
‖ϕ‖2L2,V − t

q

∫
BR(x0)

a0|ϕ|qdx

≤ t2

2

(
sup

0≤ξ≤(δC(R))2
M(ξ) + 1

)
‖ϕ‖2s,A − tqa0‖ϕ‖Lq(BR(x0)).

Since 1 < q < 2, we get I(t̄ϕ) < 0 by taking t̄ > 0 small enough. Hence I(u0) ≤ I(t̄ϕ) < 0, and
so u0 is a nontrivial critical point. In other words, u0 is a nontrivial solution of (1.1). �

6. Proof of Theorem 1.3

We first recall the following symmetric mountain pass theorem in [25].

Theorem 6.1. Let X be an infinite dimensional real Banach space. Suppose that J is in C1(X,R)
and satisfies the following condition:
(a) J is even, bounded from below, J(0) = 0 and J satisfies the (PS) condition;
(b) For each k ∈ N there exists Ek ⊂ Γk such that supu∈Ek J(u) < 0, where

Γk = {E : E is closed symmetric subset of X and 0 /∈ E, γ(E) ≥ k}

and γ(E) is a genus of a closed symmetric set E. Then J admits a sequence of critical points
(uk)k such that J(uk) ≤ 0, uk 6= 0 and ‖uk‖ → 0 as k →∞.

Let h ∈ C1(R+
0 ,R) be a radial decreasing function such that 0 ≤ h(t) ≤ 1 for all t ∈ R+

0 ,
h(t) = 1 for 0 ≤ t ≤ 1 and h(t) = 0 for t ≥ 2. Let φ(u) = h(‖u‖2s,A). Following the idea of [20],
we consider the truncation functional

I(u) =
1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V − φ(u)

∫
RN

F (x, |u|)dx.
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Clearly, I ∈ C1(Hs
A,V (RN ,C),R) and

〈I ′(u), v〉 = M([u]2s,A)〈L(u), v〉+ <
∫
RN

V (x)uvdx

− 2φ′(u)

∫
RN

F (x, |u|)dx · 〈L(u), v〉 − φ(u)<
∫
RN

f(x, |u|)uvdx

for all u, v ∈ Hs
A,V (RN ,C). Here L(u) is the linear functional on Hs

A,V (RN ,C), introduced in (4.3).

6.1. Proof of Theorem 1.3. For all u ∈ Hs
A,V (RN ,C), with ‖u‖s,A ≥ 2, we get

I(u) ≥ 1

2
M ([u]2s,A) +

1

2
‖u‖2L2,V ≥

1

2
min{κ, m0}‖u‖2s,A,

by (M1) and (M3), where κ = κ(1), as in the proof of Theorem 1.2. Hence I(u) → ∞ as
‖u‖s,A →∞ and I is coercive and bounded from below on Hs

A,V (RN ,C).

Let (un)n be a (PS) sequence, i.e. I(un) is bounded and I ′(un) → 0 as n → ∞. Then the
coercivity of I implies that (un)n is bounded in Hs

A,V (RN ,C). Without loss of generality, we

assume that un ⇀ u in Hs
A,V (RN ,C) and un → u a.e. in RN . We now claim that

lim
n→∞

∫
RN

(f(x, |un|)un − f(x, |u|)u)(un − u)dx = 0.(6.1)

Clearly, |f(x, t)t| ≤ C(|t|+ |t|p−1) for all x ∈ RN and t ∈ R+
0 by (f1). Using the Hölder inequality,

we obtain ∫
RN
|(f(x, |un|)un − f(x, |u|)u)(un − u)|dx

≤
∫
RN

C[|un|+ |u|+ |un|p−1 + |u|p−1]|un − u|dx(6.2)

≤ C(‖un‖L2 + ‖u‖L2)‖un − u‖L2 + C(‖un‖p−1
Lp + ‖u‖p−1

Lp(RN )
)‖un − u‖Lp(RN )

≤ C(‖un − u‖L2 + ‖un − u‖Lp).

Lemma 3.5 guarantees that |un| → |u| in Lp(RN ) and |un| → |u| in L2(RN ). Hence, un → u in
Lp(RN ,C) and in L2(RN ,C) by the Brézis–Lieb lemma. Inserting these facts in (6.2), we get the
desired claim (6.1).

Now, 〈I ′(un) − I ′(u), un − u〉 → 0, since I ′(un) → 0 and un ⇀ u in Hs
A,V (RN ,C). By (6.1),

we have as n→∞
o(1) = 〈I ′(un)− I ′(u), un − u〉 = M([un]2s,A)〈L(un), un − u〉 −M([u]2s,A)〈L(u), un − u〉

+ <
∫
RN

V (x)(un − u)(un − u)dx− 2φ′(un)

∫
RN

F (x, |un|)dx · 〈L(un), un − u〉

− 2φ′(u)

∫
RN

F (x, |u|)dx · 〈L(u), un − u〉 − φ(un)<
∫
RN

f(x, |un|)un(un − u)dx

− φ(u)<
∫
RN

f(x, |u|)u(un − u)dx.

From (f7) and the facts that un ⇀ u in Hs
A,V (RN ,C) and φ′ ≤ 0 it follows that

0 ≤M([un]2s,A)〈L(un)− L(u), un − u〉+ <
∫
RN

V (x)(un − u)(un − u)dx ≤ o(1).(6.3)

We divide the proof into two parts.
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Case infn∈N[un]s,A = d > 0. By (M1), there exists κ = κ(d) > 0 with M(t) ≥ κ > 0 for all t ≥ d.
This, together with (6.3), implies that

lim
n→∞

[ ∫∫
R2N

|un(x)− u(x)− ei(x−y)·A(x+y
2

)(un(y)− u(y))|2

|x− y|N+2s
dxdy +

∫
RN

V (x)|un − u|2dx
]

= 0.

Hence un → u in Hs
A,V (RN ,C).

Case infn∈N[un]s,A = 0. If 0 is an isolated point for ([un]s,A)n, then there is a subsequence
([unk ]s,A)k such that infk∈N[unk ]s,A = d > 0 and one can proceed as before.

If, instead, 0 is an accumulation point for ([un]s,A)n, there is a subsequence, still labeled as

(un)n, such that [un]s,A → 0 and un → 0 in L2∗s (RN ) as n → ∞ and again (6.3) implies at once

that un → 0 in Hs
A,V (RN ,C), since 〈L(un)− L(u), un − u〉 → 0 and M([un]2s,A)→M(0) ≥ 0.

In conclusion, I satisfies the (PS) condition in Hs
A,V (RN ,C). For each k ∈ N, we take k disjoint

open setsKi such that
⋃k
i=1Ki ⊂ Ω. For each i = 1, . . . , k let ui ∈ (Hs

A,V (RN ,C)
⋂
C∞0 (Ki,C))\{0},

with ‖ui‖s,A = 1, and Wk = span{u1, u2, . . . , uk}. Therefore, for any u ∈Wk, with ‖u‖s,A = ρ ≤ 1
small enough, we obtain by (f7), being q ∈ (1, 2),

I(u) ≤ 1

2

(
max
0≤t≤1

M(t)

)
[u]2s,A +

1

2
‖u‖2L2,V −

∫
Ω
a1|u|qdx

≤ 1

2

(
1 + max

0≤t≤1
M(t)

)
‖u‖2s,A − C

q
ka1‖u‖qs,A

=
1

2

(
1 + max

0≤t≤1
M(t)

)
ρ2 − Cqka1ρ

q < 0,

where Ck > 0 is a constant such that ‖u‖Lq(RN ,C) ≤ Ck‖u‖s,A for all u ∈ Wk, since all norms
on Wk are equivalent. Therefore, we deduce

{u ∈Wk : ‖u‖s,A = ρ} ⊂ {u ∈Wk : I(u) < 0}.
Obviously, γ({u ∈ Wk : ‖u‖s,A = ρ}) = k, see [10]. Hence by the monotonicity of the genus γ,
cf. [27], we obtain

γ(u ∈Wk : I(u) < 0) ≥ k.
Choosing Ek = {u ∈ Wk : I(u) < 0}, we have Ek ⊂ Γk and supu∈Γk

I(u) < 0. Thus, all the
assumptions of Theorem 6.1 are satisfied, Hence, there exists a sequence (uk)k such that

I(uk) ≤ 0, I ′(uk) = 0, and ‖uk‖s,A → 0 as k →∞.
Therefore, we can take k so large that ‖uk‖s,A ≤ 1, and so these infinitely many functions uk are
solutions of (1.1). �
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