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Abstract. In this paper we consider the problem of maximizing the k-th Steklov eigenvalue of

the Laplacian (or a more general spectral functional), among all sets of Rd of prescribed volume.

We prove existence of an optimal set and get some qualitative properties of the solutions in a
relaxed setting. In particular, in R2, we prove that the optimal set consists in the union of at

most k disjoint Jordan domains with finite perimeter. A key point of our analysis is played by

an isodiametric control of the Stelkov spectrum. We also perform some numerical experiments
and exhibit the optimal shapes maximizing the k-th eigenvalues under area constraint in R2,

for k = 1, . . . , 10.
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1. Introduction

Let Ω ⊆ Rd be a bounded Lipschitz set. A number σ ∈ R+ is an eigenvalue of the Steklov
problem for the Laplace operator provided there exists a non-zero function u ∈ H1(Ω) which
satisfies {

−∆u = 0 in Ω
∂u
∂n = σu on ∂Ω,

in the weak sense

∀v ∈ H1(Ω) :

∫
Ω

∇u∇vdx = σ

∫
∂Ω

uvdx.

All the eigenvalues of the Steklov problem can be computed by the usual min-max formula

∀k ∈ N : σk(Ω) = min
S∈Sk+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫
∂Ω
u2dx

,
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where Sk+1 denotes the family of all subspaces of dimension k + 1 in H1(Ω). Then

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω) ≤ . . .→ +∞.

The problem we discuss in this paper is the following

(1.1) max{F (σ1(Ω), . . . , σk(Ω)) : Ω ⊆ Rd,Ω bounded and Lipschitz, |Ω| = m},

where F : Rk → R is a functional non decreasing in each variable and upper semi-continuous. By
|Ω| we denoted the Lebesgue measure of Ω. Typical examples are

F (σ1, . . . , σk) = σk, F (σ1, . . . , σk) =
( 1

σ1
+ · · ·+ 1

σk

)−1

.

Following the results of Weinstock [26] and Brock [9] (see also [21]), the ball maximizes the first
Steklov eigenvalue σ1(Ω) and, even more, the functional( 1

σ1(Ω)
+ · · ·+ 1

σd(Ω)

)−1

among all sets of given volume of Rd. We also refer to the pioneering paper of Hersch, Payne
and Schiffer [22] for a series of results in the family of simply connected sets of the plane under a
perimeter constraint, and to the paper of Girouard and Polterovich [19] for a recent and complete
overview of this topic. It is important to notice that in many spectral inequalities associated
to the Steklov spectrum, the natural constraint is the surface area of the boundary, which is
not considered in this paper. From a different perspective, we also refer to the recent result
of Petrides [24] in which the maximization of the Steklov eigenvalues is studied in the class of
Riemanian metrics on a prescribed smooth manifold with boundary, under a constraint on the
length of the boundary.

Our first objective is to analyze the existence of a solution for problem (1.1), i.e. we search to
prove that there exists some set Ω for which the maximum is attained in (1.1). In general, proving
the existence of a solution for a shape optimization problem of spectral type is not an easy task.
There exists only one general result, which involves the Dirichlet eigenvalues of the Laplacian, and
was proved by Buttazzo and Dal Maso in 1993 (see [12]). For that purpose, Buttazzo and Dal Maso
extended the class of competing sets to a larger one. Precisely, instead on looking for an optimal
shape in the class of smooth open sets, they searched it in the class of quasi-open sets, which (by a
monotonicity argument) is equivalent to search it in the class of measurable sets. Once existence
is achieved, the question, which turns out to be classical in shape optimization, is to prove the
smoothness of the solution, and return back in this way to the original problem. The regularity
question is quite difficult as soon as the spectral functional involves higher eigenvalues, and for
the moment is still unsolved even for more classical situations (e.g. the Dirichlet Laplacian).

Even in the absence of a regularity result, the existence of an optimal shape in a weak setting
is still of interest. In this paper, we extend the variational definition of the Steklov eigenvalues
to a measurable set in Rd, which has a finite perimeter in the sense of De Giorgi, calling them
relaxed eigenvalues (this terminology has already been introduced in [11, Chapter 7]). As soon
as the measurable set is smooth, the classical definition of the Steklov eigenvalues is recovered.
In Theorem 5.6 we prove the existence of a solution which maximizes the general functional (1.1)
of the relaxed eigenvalues among all measurable sets of Rd with finite perimeter. Moreover, we
prove that an optimal set has necessarily to have both perimeter and diameter below a certain
threshold (depending on the functional, volume and the dimension of the space). In particular,
in two dimensions of the space, the optimal set is open. A key result in our analysis is due to
Colbois, El Soufi and Girouard [15, 14], which gives a control on the Steklov spectrum in terms of
the isoperimetric ratio. Roughly speaking, a maximizing sequence of measurable sets should have
a uniformly bounded perimeter. A second key argument that we developed for proving existence
of a solution, is a local control of the spectrum with respect to the mass. Precisely, we prove that
if the mass is too small in some region, then either the set has very low eigenvalues or it has to be
disconnected. In this way, we obtain also an isodiametric control of the Steklov spectrum, which
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is new, up to the authors’ knowledge. Precisely, we prove that (Proposition 4.3)

σk(Ω) diam(Ω) ≤ C(d)k
2
d+1,

for every k ∈ N and every smooth (or not) connected set Ω ⊆ Rd, with a constant C(d) depending
only on the dimension of the space.

In Section 6 we perform a detailed analysis of the two dimensional case. Precisely, instead of
working with measurable sets and their reduced boundary, we work with open sets and take into
account the full topological boundary. We prove (see Theorem 6.4) the existence of an optimal
open set with a topological boundary of finite Hausdorff measure, which is a finite union of at most
k Jordan domains, whose closures intersect pairwise in at most one point. An interesting question
(which remains open), is to prove that in two dimensions of the space, the solution obtained in
the framework of measurable sets coincides with this one.

In general, when extending the shape optimization problem in a larger class of domains, the
risk is that the value of the shape functional on the new class is strictly larger than the original
one. In order to prove equality, one has either to prove a density argument in a topology for which
the spectrum is continuous, or to prove a regularity result for the boundary of the optimal relaxed
shape. For the relaxed formulations we give in this paper, we are not able to prove such result in
the full generality, but we do not have a counterexample as well. In some particular cases, we can
prove indeed that our relaxed formulation leads to the same optimal shape, as in the usual class
of Lipschitz sets.

In Section 7 we give some numerical approximations of the sets maximizing σk(Ω) for k from
2 to 10, and for some other functionals of eigenvalues. We observe numerical evidence that the
optimal shapes have the symmetry of the regular k-gons. With respect to the previous numerical
simulations (e.g. [8, 1]), our method avoids imposing star shapedness of the competing domains
and is applied to more general spectral functionals, satisfying the monotonicity assumption.

A technical tool which is connected to the upper semicontinuity properties of the relaxed eigen-
values but which may be of independent interest, is a lower semi-continuity result for the L2-norms
of the traces of a weakly convergent sequence in H1(Rd) on boundaries of moving sets (Propositions
2.3 and 2.6).

The paper is organized as follows. In Section 2 we recall the notation and the basic facts
concerning sets of finite perimeter and Hausdorff convergence employed throughout the paper. In
particular we prove the two lower semicontinuity results mentioned above (Proposition 2.3 and
Proposition 2.6). Section 3 collects some basic properties of the Steklov spectrum of Lipschitz
domains, which yield indications on how a relaxation on larger classes of domains can be carried
over. In Section 4 we prove a fundamental lemma (see Lemma 4.1) which is pivotal for the whole
analysis of the paper. We show that this lemma readily implies the isodiametric control of the
Steklov eigenvalues. Section 5 is devoted to the existence question in the class of sets of finite
perimeter, the case of open planar domains is studied in Section 6, and Section 7 contains the
numerical computations. As mentioned above, the existence of optimal shapes in both cases is
based on the isoperimetric control of the spectrum analogous to that proved in [14]: we show how
to adapt the arguments to the relaxed spectrum in the Appendix.

2. Notation and preliminaries

In this section we fix the basic notation employed throughout the paper, and recall some notions
concerning sets of finite perimeter and Hausdorff convergence of compact sets. Moreover, we will
prove two lower semicontinuity results (see Proposition 2.3 and Proposition 2.6) which will be
important to deal with the shape optimization problems of Section 5 and Section 6.

2.1. Basic notation. Given E ⊆ Rd, we will denote by |E| its Lebesgue measure, by Ec its
complement, by 1E its characteristic function, and we set tE := {tx : x ∈ E} for every t ∈ R.
Hd−1(E) will stand for the Hausdorff (d−1)-dimensional measure of E (see [17, Chapter 2]), which
coincides with the usual area measure if E is a piecewise regular hypersurface. Two measurable sets
E1, E2 ⊆ Rd are said to be “well separated” if there exist two open sets A1, A2 with |E1 \A1| = 0
and |E2 \A2| = 0, and dist(A1, A2) > 0.
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For x ∈ Rd and r > 0, Br(x) stands for the ball of center x and radius r, while Qr(x) denotes
the cube centered at x, with sides parallel to the axis of length r.

We will denote byMb(Rd) the space of bounded Radon measures on Rd. If µ is a Borel measure
on Rd and A ⊆ Rd is Borel regular, we will denote by µbA the restriction of µ to A.

Given Ω ⊆ Rd open and 1 ≤ p ≤ +∞, Lp(Ω;Rk) stands for the usual space of (classes
of) p-summable Rk-valued functions on Ω, while H1(Ω) will denote the Sobolev space of square
summable functions whose gradient in the sense of distributions is also square-summable.

2.2. Sets of finite perimeter. For the general theory of sets of finite perimeter, we refer the
reader to [3, Section 3.3]. Here we recall some basic facts in a form which is suitable to our
analysis.

Given E ⊆ Rd measurable and A ⊆ Rd open, the perimeter of E in A is defined as

P (E,A) := sup

{∫
E

div(ϕ) dx : ϕ ∈ C∞c (A;Rd), ‖ϕ‖∞ ≤ 1

}
,

and E is said to have finite perimeter in A if P (E,A) < +∞. When A = Rd, we write simply
P (E).

If E ⊆ Rd has finite perimeter, then there exists ∂∗E ⊆ ∂E, called the reduced boundary of E,
such that for every A ⊆ Rd open we have

P (E,A) = Hd−1(∂∗E ∩A).

It turns out that the set ∂∗E is countably Hd−1-rectifiable, i.e., there exists a sequence (Mn)n∈N
of C1-submanifold in Rd such that Hd−1(∂∗E \ ∪nMn) = 0.

The following compactness result holds true.

Proposition 2.1 (Compactness). Let A ⊆ Rd be open and bounded, and let (En)n∈N be a
sequence of measurable subsets of A such that supn P (En, A) < +∞. Then there exists E ⊆ A
with finite perimeter in A such that up to a subsequence

1En → 1E strongly in L1(A)

and

P (E,A) ≤ lim inf
n

P (En, A).

In order to establish a fundamental lemma in Section 4, we will use a suitable isoperimetric
inequality in annuli, which is uniform with respect to their width. In order to formulate the
statement, we use the notation

Ar1,r2(0) := {x ∈ Rd : r1 < |x| < r2}.

Lemma 2.2 (Uniform relative isoperimetric inequality in annuli). Let m > 0 be given.
Then there exist two constants c = c(d) and w = w(m, d) such that for every r ≥ 0, l ≥ w and
every measurable set E ⊆ Ar,r+l(0) with |E| ≤ m we have

|E|
d−1
d ≤ cP (E,Ar,r+l(0)).

Proof. In the proof we will use some basic facts concerning the space BV (Rd) of functions of
bounded variation: we refer the reader to [3] for a comprehensive treatment of the subject. Recall
that E ⊆ Rd with |E| < +∞ has finite perimeter if and only if 1E ∈ BV (Rd).

We divide the proof in several steps.

Step 1. We will make use of the following two relative isoperimetric inequalities.

(a) There exists c1 = c1(d) > 0 such that for every r > 0 and E ⊆ Br(0) measurable

min{|E|
d−1
d , |Br(0) \ E|

d−1
d } ≤ c1P (E,Br(0)).

(b) There exists c2 = c2(d) > 0 such that for every r > 0 and E ⊆ B̄cr(0) measurable

(2.1) |E|
d−1
d ≤ c2P (E, B̄cr(0)).
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The proof of (a) can be found for example in [3, Remark 3.50]. For the proof of (b) we can reason
as follows. Let u ∈ BV (B̄cr(0)). Then by Sobolev imbedding applied to u1B̄cr(0) ∈ BV (Rd) we
obtain(∫

B̄cr(0)

|u|
d
d−1

) d−1
d

≤ C(d)|D(u1B̄cr(0))|(Rd) = C(d)

(
|Du|(B̄cr(0)) +

∫
∂Br(0)

|u| dHd−1

)
,

where C(d) is the Sobolev imbedding constant, while the integration on ∂Br(0) involves the trace
of u. Reasoning on smooth functions vanishing outside a ball, by density we obtain that for every
u ∈ BV (B̄cr(0)) ∫

∂Br(0)

|u| dHd−1 ≤ |Du|(B̄cr(0)).

We thus obtain (∫
B̄cr(0)

|u|
d
d−1

) d−1
d

≤ 2C(d)|Du|(B̄cr(0)),

so that the isoperimetric inequality (2.1) follows now by considering u = 1E .

Step 2. Let us prove that there exist ε = ε(d) > 0 and c = c(d) with the following property: for
every r ≥ 0, l ≥ 1 and every measurable set E with E ⊆ Ar,r+l(0) and |E| < ε we have

(2.2) |E|
d−1
d ≤ cP (E,Ar,r+l(0))

Indeed from the equality

|E| =
∫ r+l

r

Hd−1 (E ∩ ∂Br+s(0)) ds,

we can find l0 ∈]0, l[ such that

Hd−1 (E ∩ ∂Br+l0(0)) ≤ |E|.
Let us consider the sets

E1 := E ∩Br+l0(0) and E2 := E \Br+l0(0).

By the relative isoperimetric inequality in a ball applied to E2 in Br+l(0), we get

(2.3) |E2|
d−1
d ≤ c1P (E2, Br+l(0)) ≤ c1

(
P (E,Ar,r+l(0)) +Hd−1 (E ∩ ∂Br+l0(0))

)
≤ c1 (P (E,Ar,r+l(0)) + |E|) .

On the other hand, by the isoperimetric inequality outside a ball applied to E1 in B̄cr we obtain

(2.4) |E1|
d−1
d ≤ c2P (E1, B̄

c
r) ≤ c2

(
P (E,Ar,r+l(0)) +Hd−1 (E ∩ ∂Br+l0(0))

)
≤ c2 (P (E,Ar,r+l(0)) + |E|) .

Combining (2.3) and (2.4) we obtain for c := max{c1, c2}(
|E|
2

) d−1
d

≤ c (P (E,Ar,r+l(0)) + |E|) ,

so that (2.2) follows if ε is sufficiently small.

Step 3. Let w = w(m, d) > 0 be such that wdε = m, where ε is given in Step 2. If E ⊆ Ar,r+l(0)
with l ≥ w and |E| ≤ m, then for E1 := 1

wE we have

E1 ⊆
1

w
Ar,r+l(0) = A r

w ,
r
w+ l

w
(0), |E1| ≤ ε,

l

w
≥ 1,

so that thanks to (2.2)

1

wd−1
|E|

d−1
d = |E1|

d−1
d ≤ cP (E1, A r

w ,
r
w+ l

w
(0)) =

c

wd−1
P (E,Ar,r+l(0)),

i.e., the conclusion follows. �
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The following lower semicontinuity result will be used in Section 5 to infer suitable upper
semicontinuity properties of the relaxed Steklov eigenvalues.

Proposition 2.3. Let (En)n∈N be a sequence of measurable sets of finite perimeter of Rd such
that

(2.5) lim sup
n→∞

Hd−1(∂∗En) < +∞ and 1En
L1(Rd)−→ 1E

for some set E of finite perimeter in Rd. Let (un)n∈N be a sequence in H1(Rd) such that

un ⇀ u weakly in H1(Rd)

for some u ∈ H1(Rd).
Then

(2.6)

∫
∂∗E

u2 dHd−1 ≤ lim inf
n

∫
∂∗En

u2
n dHd−1.

Proof. The result is a direct consequence of [10, Theorem 2] applied to the functions vn := un1En .
Under the assumption

un → u strongly in H1(Rd),
which is the one which naturally arises in our application in Section 5, the proof is much easier,
and follows from some basic facts concerning the space BV (Rd) of functions of bounded variation
(we refer the reader to [3] for a comprehensive treatment of the subject).

Indeed, it is not restrictive to assume

sup
n

∫
∂∗En

u2
ndHd−1 < +∞.

It turns out that (see [3, Theorem 3.84])

vn := u2
n1En ∈ BV (Rd),

with distributional derivative given by

Dvn = 2un∇un1En dx+ u2
nνnHd−1b∂∗En,

where νn denotes the inner normal to En. Since

vn → v := u21E strongly in L1(Rd)

and

un∇un1En → u∇u1E strongly in L1(Rd;Rd),
the lower semicontinuity of the total variation (see [3, Remark 3.5]) entails precisely (2.6). �

2.3. Hausdorff convergence of compact sets. The family K(Rd) of closed sets in Rd can be
endowed with the Hausdorff metric dH defined by

(2.7) dH(K1,K2) := max

{
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}
with the conventions dist(x, ∅) = +∞ and sup ∅ = 0, so that dH(∅,K) = 0 if K = ∅ and
dH(∅,K) = +∞ if K 6= ∅.

The Hausdorff metric has good compactness properties (see [5, Theorem 4.4.15]).

Proposition 2.4 (Compactness). Let (Kn)n∈N be a sequence of compact sets contained in a
fixed compact set of Rd. Then there exists a compact set K ⊆ Rd such that up to a subsequence

Kn → K in the Hausdorff metric.

For our analysis we will need the following property due to Go la̧b: for the proof we refer the
reader to [18, Theorem 3.18] or [5, Theorem 4.4.17].
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Theorem 2.5 (Go la̧b). Let (Kn)n∈N be a sequence of compact connected sets in Rd such that

Kn → K in the Hausdorff metric.

Then K is connected and

H1(K) ≤ lim inf
n
H1(Kn).

The following lower semicontinuity result will be used in Section 6 to deduce suitable upper
semicontinuity properties of the relaxed Steklov eigenvalues for planar domains.

Proposition 2.6. Let (Kn)n∈N be a sequence of compact sets in R2 with at most k connected
components, such that H1(Kn) < +∞ and

Kn → K in the Hausdorff metric,

where K is compact with H1(K) < +∞. Let (un)n∈N be a sequence in H1(R2) such that

un ⇀ u weakly in H1(R2),

for some u ∈ H1(R2). Then ∫
K

u2 dH1 ≤ lim inf
n

∫
Kn

u2
n dH1.

Proof. Let us divide the proof in several steps.

Step 1: A measure theoretic approach. Without loss of generality, we can assume that Kn

and K are connected,

sup
n

∫
Kn

u2
n dH1 < +∞,

and that the positive Radon measures on R2

µn(A) :=

∫
A∩Kn

u2
n dH1.

are such that

(2.8) µn
∗
⇀ µ weakly∗ in Mb(R2),

for some positive measure µ ∈Mb(R2). The result follows if we prove that

(2.9)
dµ

dν
(x) ≥ u2(x) for H1-a.e. x ∈ K,

where dµ
dν denotes the Radon-Nikodym derivative of µ with respect to ν := H1bK. Indeed, if this

is the case, is view of the fact that

µ(A) =

∫
A∩K

dµ

dν
dH1 + µs(A),

where µs is singular with respect to ν, we can write

lim inf
n

∫
Kn

u2
n dH1 = lim inf

n
µn(R2) ≥ µ(R2) ≥ µa(R2) =

∫
K

dµ

dν
dH1 ≥

∫
K

u2 dH1,

and the result follows.
Recall that K is H1-countably rectifiable, being compact and connected in R2 with H1(K) <

+∞ (see [18, Theorem 3.14]). So it suffices to prove inequality (2.9) for every x ∈ K in which K
admits an approximate tangent line lx, which is a Lebesgue point for u, and for which

dµ

dν
(x) = lim

ρ→0+

µ(Q̄2ρ(x))

ν(Q̄2ρ(x))
.

Indeed H1-a.e. point in K satisfies these properties.
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Step 2: Some geometric properties of K. Up to an isometry, we may assume x = 0 and that
the approximate tangent line l is horizontal. Then by definition of approximate tangent line, as
ε→ 0+ we have

(2.10) H1bKε
∗
⇀ H1bl weakly∗ in Mb(R2),

where Kε := 1
εK.

We claim that for every r > 0

(2.11) Kε ∩Q2r(0)→ l ∩Q2r(0) in the Hausdorff metric.

Indeed, given any sequence εn → 0, by the compactness of Hausdorff convergence and using a
diagonal argument, we can find a subsequence (εnh)h∈N such that for every m ∈ N, m ≥ 1

Kεnh
∩ Q̄2m(0)→ Km

0 in the Hausdorff metric.

It is readily checked that for every m ≥ 1

(2.12) Km
0 ⊆ Km+1

0 and Km
0 ∩Q2m(0) = Km+1

0 ∩Q2m(0).

Let us set K0 :=
⋃∞
m=1K

m
0 . We claim that

(2.13) K0 = l

(a) We have K0 ⊆ l. Indeed, assume by contradiction that ξ ∈ K0 \ l with Bη(ξ) ∩ l = ∅.
Using the measure convergence (2.10), we obtain that

(2.14) H1(Kεnh
∩Bη(ξ))→ 0.

But Kεnh
is connected by arcs (see [18, Lemma 3.12]), so that the points ξnh ∈ Kεnh

such

that ξnh → ξ are connected to 0 through an arc contained in Kεnh
, against (2.14).

(b) We have on the contrary l ⊆ K0. Indeed, assume by contradiction that ξ ∈ l \K0. Then
there exists η > 0 such that Kεnh

∩Bη(ξ) = ∅ for h large, against (2.10).

In view of (2.12) and (2.13) we deduce that for ε→ 0 and for every r > 0

Kε ∩ Q̄2r(0)→ l ∩ Q̄2r(0) in the Hausdorff metric,

i.e., convergence (2.11) holds true.

Step 3: Blow up. Let now ε := εm → 0. Notice that thanks to (2.10) we have

H1(Q̄2εm(0) ∩K)

2εm
→ 1

so that

(2.15)
dµ

dν
(0) = lim

m

µ(Q̄2εm(0))

ν(Q̄2εm(0))
= lim

m

µ(Q̄2εm(0))

2εm
.

Since for (2.8)
µ(Q̄εm(0)) ≥ lim sup

n
µn(Q̄εm(0)),

and in view of (2.11), using the Hausdorff convergence of Kn to K we can find a sequence (nm)m∈N
with

ε2
m + µ(Q̄2εm(0)) ≥ µnm(Q̄2εm(0)),

such that setting

K̂m :=
1

εm
Knm ∩ Q̄2(0) and vm(y) := unm(εmy).

we have

(2.16) K̂m → l ∩ Q̄2(0) in the Hausdorff metric

and

(2.17) vm ⇀ u(0) weakly in H1(Q2(0)).

The sequence (nm)m∈N can be chosen in order to satisfy also the convergence (2.17) since

(2.18) un(εmy)→ u(εmy) strongly in L2(Q2(0)),
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(2.19) (∇(un(εmy)))n∈N is uniformly bounded in L2(Q2(0);R2)

and

(2.20) u(εmy)→ u(0) strongly in H1(Q2(0)).

Convergence (2.18) is a consequence of the weak convergence of un to u, while property (2.19)
follows by the equality ∫

Q2(0)

|∇(un(εmy))|2 dy =

∫
Q2εm (0)

|∇un(x)|2 dx.

Concerning (2.20) we have, since 0 is a Lebesgue point for u∫
Q2(0)

|u(εmy)− u(0)|2 dy =
1

ε2
m

∫
Q2εm (0)

|u(x)− u(0)|2 dx→ 0,

while ∫
Q2(0)

|∇(u(εmy))|2 dy =

∫
Q2εm (0)

|∇u(x)|2 dx→ 0.

We can write

(2.21) lim inf
m

µ(Q̄2εm(0))

2εm
≥ lim inf

m

µnm(Q̄2εm(0))

2εm
= lim inf

m

1

2εm

∫
Knm∩Q̄2εm (0)

u2
nm dH

1

=
1

2
lim inf
m

∫
K̂m

v2
m dH1.

Collecting (2.21) and (2.15), in order to prove (2.9) it suffices to check that

(2.22)
1

2
lim inf
m

∫
K̂m

v2
m dH1 ≥ u2(0).

Step 4: Slicing and conclusion. Let us check inequality (2.22). Let (mk)k∈N be such that

(2.23) lim
k

∫ 1

−1

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s) dx1 = lim inf
m

∫ 1

−1

∫
(K̂m)x1

v2
m(x1, s) dH0(s) dx1

≤ lim inf
m

∫
K̂m

v2
m dH1,

where

(K̂m)x1
:= {s ∈ [−1, 1] : (x1, s) ∈ K̂m}.

Notice that the last inequality is a consequence of the area formula in view of the countably
H1-rectifiability of K̂m. It is not restrictive to assume

(2.24) lim inf
m

∫
K̂m

v2
m dH1 < +∞.

In view of (2.17), for a.e. x1 ∈ [−1, 1] we have

(2.25) vmk(x1, ·)→ u(0) strongly in L2(−1, 1).

Let us assume that for every x1 ∈]− 1, 1[ we have

(2.26) (K̂mk)x1 6= ∅

for k large enough (depending on x1 in general). Thanks to the Hausdorff convergence (2.16) we
have

(2.27) (K̂mk)x1
→ (x1, 0) in the Hausdorff metric.
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Let us fix ε > 0. We can write thanks to (2.17), (2.23) and (2.24)∫ 1

−1

lim inf
k

[
ε

∫ 1

−1

|∂2vmk(x1, s)|2 ds+

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s)

]
dx1

≤ lim inf
k

[
ε

∫
Q2(0)

|∂2vmk |2 dx+

∫ 1

−1

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s) dx1

]
< +∞.

We deduce that for a.e. x1 ∈]− 1, 1[ there exists a further subsequence (vmkh )h∈N, depending on
x1 in general, such that

(2.28) lim
h

[
ε

∫ 1

−1

|∂2vmkh (x1, s)|2 ds+

∫
(K̂mkh

)x1

v2
mkh

(x1, s) dH0(s)

]

= lim inf
k

[
ε

∫ 1

−1

|∂2vmk(x1, s)|2 ds+

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s)

]
< +∞.

Thanks to (2.25) we deduce that

vmkh (x1, ·) ⇀ u(0) weakly in H1(−1, 1).

Using (2.27) and (2.28), and recalling that the weak H1-convergence in dimension one entails also
uniform convergence, we can write

u2(0) ≤ lim inf
h

∫
(K̂mkh

)x1

v2
mkh

(x1, s) dH0(s)

≤ lim inf
k

[
ε

∫ 1

−1

|∂2vmk |2(x1, s) ds+

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s)

]
.

By Fatou’s lemma and (2.23) we get

2u2(0) =

∫ 1

−1

u2(0) dx1 ≤ lim inf
k

[
ε

∫
Q2(0)

|∂2vmk |2 dx+

∫ 1

−1

∫
(K̂mk )x1

v2
mk

(x1, s) dH0(s) dx1

]

≤ εC1 + lim inf
m

∫
K̂m

v2
m dH1,

for some C1 independent of ε. Inequality (2.22) now follows by sending ε→ 0.
Assume that (2.26) does not hold, i.e., for some a ∈]−1, 1[ we have along a further subsequence

(mkh)h∈N

(2.29) (K̂mkh
)a = ∅.

Then for every x1 6= a and h ∈ N large enough we have (K̂mkh
)x1 6= ∅: indeed, if this is not the

case, taking into account that in view of (2.16) we get

K̂mkh
∩ (]a, x1[×R) 6= ∅ (assuming for example x1 > a),

we deduce that the original compact set Kmkh
cannot be connected, against the assumption. We

can thus repeat the previous arguments for x1 6= a and the subsequence (mkh)h∈N, deducing again
inequality (2.22), so that the proof is concluded. �

3. Some basic properties of the Steklov spectrum

In this section, we collect some basic properties of the Steklov eigenvalues of Lipschitz domains,
which yield some hints on how to find a suitable extension to a larger class of sets in which the
optimization problem (1.1) is well posed.
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Definition of the Steklov spectrum and first properties. Let Ω ⊆ Rd be a bounded
Lipschitz open set. As mentioned in the introduction, σ is an eigenvalue of the Steklov problem
for the Laplace operator provided there exists a non-zero function u ∈ H1(Ω) which satisfies{

−∆u = 0 in Ω
∂u
∂n = σu on ∂Ω,

The Steklov eigenvalues are given by the min-max formula

∀k ∈ N : σk(Ω) = min
S∈Sk+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫
∂Ω
u2dx

,

where Sk+1 denotes the family of all subspaces of dimension k + 1 in H1(Ω). Then

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω) ≤ . . .

and σk(Ω)→ +∞. As usual, in this formulation an eigenvalue can appear several times, according
to its multiplicity.

For every t > 0 we have the following rescaling property:

(3.1) σk(tΩ) =
1

t
σk(Ω).

The min-max formula entails also the following property for the spectrum of disconnected domains:
if Ω1,Ω2 ⊆ Rd are bounded Lipschitz disjoint domains, then σk(Ω1 ∪ Ω2) is given by the value of
the (k + 1)-th term of the ordered non decreasing rearrangement of the numbers

σ0(Ω1), . . . , σk(Ω1), σ0(Ω2), . . . , σk(Ω2).

Isoperimetric control of the eigenvalues. Following the result of [14, Theorem 2.2], one has
a control on the k-th Steklov eigenvalue via the perimeter of the boundary of a bounded Lipschitz
domain Ω ⊆ Rd:

(3.2) σk(Ω) ≤ Cd
k

2
d

Hd−1(∂Ω)
1
d−1

.

Monotonicity with respect to inclusions. Let Ω ⊆ Rd be a bounded connected Lipschitz
open set. Assume that K is the closure of an open Lipschitz subset of Ω, such that K ⊂ Ω. We
claim that for every k ∈ N,

(3.3) σk(Ω \K) ≤ σk(Ω).

Indeed, let Sk+1 = span{u0, . . . , uk} be a system of L2(∂Ω)-orthogonal eigenfunctions correspond-
ing to σ0(Ω), . . . , σk(Ω). Then, they generate a subspace of dimension k+ 1 in H1(Ω). Moreover,
the same functions restricted to Ω \K are independent as well. This is a consequence of the fact
that they are harmonic, via the unique continuation principle.

Consequently, for every u ∈ Sk+1 we have∫
Ω\K |∇u|

2dx∫
∂(Ω\K)

u2dx
≤
∫

Ω
|∇u|2dx∫
∂Ω
u2dx

,

and hence

max
u∈Sk+1\{0}

∫
Ω\K |∇u|

2dx∫
∂(Ω\K)

u2dx
≤ max
u∈Sk+1\{0}

∫
Ω
|∇u|2dx∫
∂Ω
u2dx

= σk(Ω).

Taking the infimum on the left hand side, among subspaces of dimension k + 1 in H1(Ω \K), we
get inequality (3.3).

The previous items lead to the following considerations concerning the shape optimization problem
(1.1).
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(a) The isoperimetric inequality (3.2) plays a crucial role to prove the existence of optimal
domains: it implies that for a maximizing sequence we have a uniform bound on the
perimeters, the bound depending essentially on the functional F , the volume m and the
dimension of the space. This remark yields that some compactness could be available in
the class of sets of finite perimeter.

(b) In view of (3.3), one understands that optimal domains have to be searched in the class
of Lipschitz sets which do not have ”inner holes”. Indeed, removing the hole as above
increases the eigenvalues and the measure of the domain. If one rescales the set without
the hole in order to have the volume equal to m, the eigenvalues will increase again, thanks
to (3.1).

If a hole shrinks to an inner crack, the previous arguments assert that a Lipschitz set
from which we remove a Lipschitz crack can not be optimal (provided that we define
suitably the Steklov eigenvalues of this non admissible domain). In dimension two this
implies that necessarily the maximum has to be searched in the class of open sets whose
complement is connected, i.e., union of open disjoint simply connected sets.

4. A fundamental lemma and a new isodiametric inequality

In this section we establish Lemma 4.1 on which a large part of the analysis of the present paper
is based. Then we show how this lemma implies an isodiametric control of the Steklov spectrum,
which is new up to the authors’ knowledge.

In order to formulate the statement of our fundamental lemma, we use the notation

Ar1,r2(0) := {x ∈ Rd : r1 < |x| < r2}.

Lemma 4.1. Let m,λ > 0, and let w = w(m, d) > 0 be the constant of the isoperimetric inequality
given by Lemma 2.2. There exists L = L(m,λ, d) > w such that for every r ≥ 0, l ≥ L and every
measurable set E ⊆ Ar,r+l(0) with finite perimeter and with |E| = m, at least one of the following
two possibilities occur.

(a) There exists a function ϕ ∈ H1
0 (Ar,r+l(0)) with

∫
∂∗E

ϕ2dHd−1 > 0 and∫
E
|∇ϕ|2dx∫

∂∗E
ϕ2dHd−1

≤ λ.

(b) We have

|E ∩Ar+ l−w
2 ,r+ l+w

2
(0)| = 0.

Proof. Let L be a number such that

(4.1)
L− w

2
>

m
1
2d

(λc)
1
2

∞∑
k=1

1

(2
1
2d )k

,

where c is the isoperimetric constant of Lemma 2.2.
Let l ≥ L and let E ⊆ Ar,r+l(0) be a measurable set with finite perimeter such that |E| = m.

Let us assume that conclusion (a) does not hold, and let us infer that situation (b) takes place.
For every t ∈

[
0, l−w2

]
we introduce the quantities

m(t) := |E ∩ (Ar,r+t(0) ∪Ar+l−t,r+l(0))| and p(t) := P (E,Ar+t,r+l−t(0)).

Notice that we can assume p(t) 6= 0 since otherwise the second possibility occurs trivially. Con-
sidering the test function

ϕ1(x) :=
1

t
dist(x,Rd \Ar,r+l(0)) ∧ 1,

we have ∫
E
|∇ϕ1|2dx∫

∂∗E
ϕ2

1dHd−1
≤

m(t)
t2

p(t)
.

so that

(4.2) λt2p(t) ≤ m(t).
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Since the width of the annulus Ar+t,r+l−t(0) is greater than w, using the relative isoperimetric
inequality given by Lemma 2.2 we deduce

p(t) ≥ c(m−m(t))
d−1
d .

so that

(4.3) m(t) ≥ λct2(m−m(t))
d−1
d .

Notice that there exists t1 ∈]0, l−w2 [ such that m(t1) = m
2 . For otherwise we would get

m

2
≥ λc

(
l − w

2

)2 (m
2

) d−1
d

,

which is against (4.1). We can estimate t1 using again (4.3), and we obtain

t1 ≤
m

1
2d

(λc)
1
2

1

2
1
2d

<
l − w

2
.

We now repeat the same argument on the annulus Ar+t1,r+l−t1(0) with the set E∩Ar+t1,r+l−t1(0)

which has a measure equal to m
2 . For every t ∈ [0, l−w2 − t1] we set

m2(t) := |E ∩ (Ar+t1,r+t1+t(0) ∪Ar+l−t1−t,r+l−t1(0))| and p2(t) := P (E,Ar+t1+t,r+l−t1−t(0)),

and consider the test function

ϕ2(x) :=
1

t
dist(x,Rd \Ar+t1,r+l−t1(0)) ∧ 1.

Proceeding as before, in view of our choice (4.1) for the constant L, we obtain the existence of
t2 ∈]0, l2 − w − t1[ such that |E ∩Ar+t1+t2,r+l−t1−t2(0)| = m

22 , with the explicit estimate

t2 ≤
m

1
2d

(λc)
1
2

1

(2
1
2d )2

.

Thanks to (4.1), the argument can be carried out an infinite number of times exhausting in this
way the entire measure of E. This means that

|E ∩Ar+ l−w
2 ,r+ l+w

2
(0)| = 0,

so that situation (b) occurs, and the proof is thus completed. �

Remark 4.2. Lemma 4.1 is clearly valid if we replace the reduced boundary ∂∗E with the full
topological boundary ∂E, being ∂∗E ⊆ ∂E.

Lemma 4.1 entails the following isodiametric control of the Steklov spectrum on connected
domains.

Proposition 4.3 (Isodiametric control of the spectrum). There exists a constant C(d)
depending only on the dimension of the space, such that for every k ∈ N and for every bounded
connected Lipschitz open set Ω ⊂ Rd

(4.4) σk(Ω) diam(Ω) ≤ C(d)k
2
d+1.

Proof. Notice that inequality (4.4) is scale invariant thanks to (3.1). We can thus assume that
|Ω| = 1 and that 0 ∈ Ω. Let us apply Lemma 4.1 with m = λ = 1, and associated constant
L = L(d). Then two possibilities can occur: either

(a) diam(Ω) ≤ (k + 1)L,

or

(b) diam(Ω) > (k + 1)L.
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Assume that point (a) holds true: the we can write thanks to the isoperimetric inequality (3.2)

(4.5) σk(Ω) diam(Ω) ≤ σk(Ω)(k + 1)L = σk(Ω)|Ω| 1d (k + 1)L

≤ c
1
d−1

d σk(Ω)Hd−1(∂Ω)
1
d−1 (k + 1)L ≤ c

1
d−1

d Cdk
2
d (k + 1)L,

where cd is the isoperimetric constant such that |Ω| d−1
d ≤ cdHd−1(∂Ω).

Assume point (b) holds true. Let us pick 0 < t < 1 so that diam(tΩ) = (k + 1)L. Then, since
tΩ is connected, we are in the first alternative of Lemma 4.1 relative to any annulus of the form
AiL,(i+1)L(0) for i = 0, . . . , k. We find thus (k + 1) functions ϕ0, . . . , ϕk ∈ H1(Rd) with disjoint
supports such that for every i = 0, . . . , k∫

tΩ
|∇ϕi|2 dx∫

∂(tΩ)
ϕ2
i dHd−1

≤ 1.

If we set S := span{ϕ0, . . . , ϕk}, then we get

σk(tΩ) ≤ max
ϕ∈S\{0}

∫
tΩ
|∇ϕ|2 dx∫

∂(tΩ)
ϕ2 dHd−1

≤ 1.

Then the rescaling property of σk together with the choice of t yields

(4.6) σk(Ω) = tσk(tΩ) ≤ t =
(k + 1)L

diam(Ω)
.

The conclusion follows gathering (4.5) and (4.6), by choosing

C(d) = 2Lmax{c
1
d−1

d Cd, 1}.

�

We point out that the power 2
d + 1 in (4.4) is probably not sharp, but it is sufficient for the

purposes of our paper.

5. Existence of optimal shapes: the class of measurable sets

In this section we extend the notion of the Steklov eigenvalues to arbitrary sets of finite perime-
ter, and reformulate the associated shape optimization problem (1.1) in such a way to get existence
of optimal domains.

The choice of the class of sets of finite perimeter is motivated by the remarks contained in Section
3, in particular by the isoperimetric control (3.2). A natural candidate to replace the topological
boundary in the variational definition of the eigenvalues is given by the reduced boundary.

Let Ω ⊆ Rd have finite perimeter, and let u ∈ H1(Rd). Since Hd−1-a.e. point in Rd is a
Lebesgue point for u (indeed the set of Lebesgue points is full in capacity, see [17, Section 4.8]),
the term

∫
∂∗Ω

u2dHd−1 is well defined, possibly taking a value equal to +∞.
The definition of the relaxed eigenvalues is the following.

Definition 5.1 (Relaxed Steklov eigenvalues). Let Ω ⊆ Rd be a set of finite perimeter. For
every k ∈ N we set

σ̃k(Ω) := inf
S∈Sk+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫

∂∗Ω
u2dHd−1

,

where Sk+1 denotes the family of all subspaces of dimension k + 1 in H1(Rd) which are (k +
1)-dimensional also as subspaces of L2(Ω) (we assume that the Rayleigh quotient is zero if the
denominator is +∞).

The following lemma contains some basic properties of the relaxed eigenvalues.

Lemma 5.2. Let Ω ⊆ Rd have finite perimeter. Then the following items hold true.

(a) Classical setting. If Ω ⊆ Rd is bounded and Lipschitz, then σ̃k(Ω) = σk(Ω).
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(b) Rescaling. For every t > 0

σ̃k(tΩ) =
1

t
σ̃k(Ω).

(c) Isoperimetric control. If |Ω| < +∞,

(5.1) σ̃k(Ω) ≤ Cd
k

2
d

Hd−1(∂∗Ω)
1
d−1

,

where Cd is the constant of the isoperimetric inequality (3.2).
(d) “Disconnected” sets. If Ω1,Ω2 ⊆ Rd are well separated with Ω1 bounded, then σ̃k(Ω1∪Ω2)

is given by the value of the (k + 1)-th term of the ordered non decreasing rearrangement
of the numbers

σ̃0(Ω1), . . . , σ̃k(Ω1), σ̃0(Ω2), . . . , σ̃k(Ω2).

In particular, if Ω ⊂ Rd is given by the union of k+1 well separated sets of finite perimeter,
the first k sets being bounded, then σ̃k(Ω) = 0.

Proof. The proof of (a), (b), (d) is completely analogous to that of the classical setting. The
proof of (5.1) can be obtained by adapting the arguments of [14, Theorem 2.2] to sets of finite
perimeter, replacing the topological boundary with the reduced boundary: for the sake of the
reader, we reproduce the proof in the Appendix. �

Remark 5.3. If the boundary of Ω is not smooth, it is possible that σ̃k(Ω) = 0 for every k ∈ N.
This is not in contradiction with our objective, which is to maximize the relaxed eigenvalues and
to expect optimal sets to be smooth.

The following result will be important to get compactness in shape optimization problems.

Proposition 5.4 (A priori bound on the diameter). Let Ω ⊂ Rd be a set of finite perimeter
such that

|Ω| = m and σ̃k(Ω) > λ,

where m,λ > 0. Then, up to negligible sets, we can split Ω in at most k parts

Ω = Ω1 ∪ · · · ∪ Ωh, h ≤ k

where the sets Ωi are bounded, with finite perimeter and well separated. Moreover the bound on
the diameter depends only on m and λ.

Proof. We apply Lemma 4.1 relative to m and λ: let L = L(m,λ, d) > 0 be the associated
constant.

Let us construct Ω1. Up to a translation, we can assume that the origin is a point of density
one for Ω. Let us consider the annuli

Ai := AiL,(i+1)L := {x ∈ Rd : iL < |x| < (i+ 1)L}, i = 0, . . . , k.

Notice that it cannot happen that all the sets Ω ∩ Ai for i = 0, . . . , k satisfy the first alternative
of Lemma 4.1. Indeed, if this was the case, we could build k+ 1 functions ϕ0, . . . , ϕk with disjoint
supports and such that for every i = 0, . . . , k∫

Ω
|∇ϕi|2dx∫

∂∗Ω
ϕ2
i dHd−1

≤ λ.

This would imply σ̃k(Ω) ≤ λ, in view of the variational definition, against the assumption.
We have thus two alternatives.

(a) One of the annuli, say Aj , has negligible intersection with Ω: in this case we set

Ω1 := Ω ∩BjL(0).

(b) If all the annuli have an intersection with positive measure with Ω, then in one of them,
say Aj , the second situation of Lemma 4.1 occurs. In this case we set

Ω1 := Ω ∩BjL+L
2

(0).
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Notice that
diam(Ω1) ≤ (k + 1)L.

We proceed to construct Ω2 following the previous arguments reasoning on the set Ω \ Ω1, if this
is not negligible: indeed it is such that |Ω\Ω1| < m and still σ̃k(Ω\Ω1) > λ thanks to point (d) of
Lemma 5.2. According to Lemma 4.1, in this case we have by construction that up to negligible
sets

dist(Ω1,Ω \ Ω1) ≥ w,
where w depends only on m and d. The procedure can be repeated to build at most k subsets of
Ω which satisfy the conclusion, the bound on the diameter being given by (k+ 1)L: the existence
of k + 1 components would readily imply σ̃k(Ω) = 0 in view of point (d) in Lemma 5.2, against
the assumption. �

Remark 5.5. The previous proof is based only on the alternatives given by Lemma 4.1.

Let now F : Rk → R be such that

(5.2) F is non decreasing in each variable and upper semi-continuous.

We relax the original shape optimization problem (1.1) to

(5.3) max{F (σ̃1(Ω), . . . , σ̃k(Ω)) : Ω ⊆ Rd has finite perimeter and |Ω| = m}.
In order to avoid trivial situations, we assume that F is not constant on the family of admissible
sets, i.e., there exists Ω0 with

(5.4) F (σ̃1(Ω0), . . . , σ̃k(Ω0)) > F (0, . . . , 0).

The main result of the section is the following.

Theorem 5.6 (Existence of optimal domains). Assume (5.2) and (5.4). Then problem (5.3)
has at least one solution. Moreover, up to negligible sets, any optimal set is bounded and can be
written as the union of at most k subsets of finite perimeter, pairwise disjoint and lying at positive
distance.

Proof. In view of the assumptions on F , there exists some value λ > 0 such that for every
0 ≤ λi ≤ λ, i = 1, . . . , k, we have

F (σ̃1(Ω0), . . . , σ̃k(Ω0)) > F (λ1, . . . , λk).

This means that every domain with σ̃k(Ω) ≤ λ can not be optimal.
Let now (Ωn)n∈N be a maximizing sequence. We have σ̃k(Ωn) > λ for every n ∈ N. By the

isoperimetric control (5.1) we infer that

(5.5) sup
n
Hd−1(∂∗Ωn) < +∞.

In view of Proposition 5.4 we can write up to negligible sets

Ωn = Ω1
n ∪ · · · ∪ Ωhnn , hn ≤ k,

where the sets are equibounded and well separated. Up to a translation of these subsets, we can
thus assume that the Ωn are contained in a fixed ball of Rd. Thanks to (5.5), we deduce that, up
to a subsequence,

(5.6) 1Ωn → 1Ω strongly in L1(Rd),
where Ω ⊆ Rd has finite perimeter and |Ω| = m.

Notice that for every h ∈ N
(5.7) lim sup

n→∞
σ̃h(Ωn) ≤ σ̃h(Ω).

Indeed, let ε > 0 and let Sh+1 = span{u0, . . . , uh} ⊆ H1(Rd) be an admissible subspace for the
computation of σ̃h(Ω) such that

σ̃h(Ω) ≥ max
u∈Sh+1\{0}

∫
Ω
|∇u|2dx∫

∂∗Ω
u2dHd−1

− ε.
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For each index n, assume that

un :=

h∑
i=0

αni ui

attains the maximum

max
u∈Sh+1\{0}

∫
Ωn
|∇u|2dx∫

∂∗Ωn
u2dHd−1

.

Without restricting the generality, we may assume that

h∑
i=0

(αni )2 = 1, αni → αi.

Denoting u :=
∑h
i=0 αiui we have

un → u strongly in H1(Rd).

We deduce

(5.8) lim
n→∞

∫
Ωn

|∇un|2dx =

∫
Ω

|∇u|2dx and lim inf
n→∞

∫
∂∗Ωn

u2
ndHd−1 ≥

∫
∂∗Ω

u2dHd−1,

the first equality being a consequence of the convergence (5.6) of the Ωn, the second inequality
following by Proposition 2.3.

Notice that Sh+1 is admissible for the computation of σ̃h(Ωn) for n large enough.We obtain

lim sup
n→∞

σ̃h(Ωn) ≤ lim sup
n→∞

∫
Ωn
|∇un|2dx∫

∂∗Ωn
u2
ndHd−1

≤
∫

Ω
|∇u|2dx∫

∂∗Ω
u2dHd−1

≤ σ̃h(Ω) + ε.

Letting ε→ 0, inequality (5.7) follows.
Thanks to assumption (5.2) on F we deduce that

F (σ̃1(Ω), . . . , σ̃k(Ω)) ≥ lim sup
n→∞

F (σ̃1(Ωn), . . . , σ̃k(Ωn)),

so that Ω is the optimum we are looking for.
If Ω is an optimal domain, then σ̃k(Ω) > λ as noticed above: we can thus apply Proposition

5.4 to get that, up to negligible sets, Ω is bounded and can be written as the union of at most
k subsets of finite perimeter, pairwise disjoint and lying at positive distance. The proof is now
concluded. �

A surprising property occurs in dimension 2. Precisely, we have the following.

Corollary 5.7. Let d = 2. Under the assumptions of Theorem 5.6, there exist optimal sets which
are open. Moreover, if F in strictly increasing in at least one variable, then every optimal set is
a union of disjoint, open, Jordan domains. The boundary of any couple of these domains may
intersect in at most one point.

We postpone the proof of this result at the end of the next section, where the two dimensional
case will be studied in detail. Roughly speaking, this result is a consequence of the structure
theorem of connected sets with finite perimeter due to Ambrosio, Caselles, Masnou and Morel
[4, Theorem 7] and of the monotonicity properties of the Steklov spectrum for the simultaneous
set/boundary inclusions.

In some particular cases, for instance if the topological boundary of the optimal set is of finite
H1-measure or if the number of its connected components is finite, then we can prove that the
optimal set consists in the union of at most k Jordan domains.
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6. Dimension two: the class of open sets

It is natural to consider the shape optimization problem of the Steklov spectrum in the class
of open sets. As the topological and the reduced boundaries are in general different, we shall
rephrase the shape optimization problem by replacing the reduced boundary with the topological
one. Of course, having in mind Corollary 5.7, we may expect that the two optimisation problems
lead to the same solution. This is an open question, to which we do not have a complete answer.
We comment this issue in Remark 6.7 at the end of the section.

Let us introduce the shape optimization problem in the context of two dimensional open sets.
Let Ω ⊆ R2 be open. The arguments leading to Definition 5.1 of the relaxed Steklov eigenvalues
are still valid for Ω: as mentioned above, we replace the reduced boundary with the full topological
boundary.

Definition 6.1. Let Ω ⊆ R2 be open. For every k ∈ N we set

(6.1) σ̃k(Ω) := inf
S∈Sk+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫

∂Ω
u2dH1

,

where Sk+1 denotes the family of all subspaces of dimension k + 1 in H1(R2) which are (k +
1)-dimensional also as subspaces of L2(Ω) (we assume that the Rayleigh quotient is zero if the
denominator is +∞).

The key point is that the two-dimensional setting together with some geometric lower semicon-
tinuity properties for the H1-measure on connected compact sets (Go la̧b Theorem 2.5), permit
us to deal successfully with the full topological boundary of the domain, instead only with the
reduced boundary as in the previous section.

The following lemma collects some basic properties of the relaxed eigenvalues.

Lemma 6.2. Let Ω ⊆ R2 be open. The following items hold true for every k ∈ N.

(a) Classical setting. If Ω is bounded and Lipschitz, then σ̃k(Ω) = σk(Ω).
(b) Rescaling: for every t > 0

σ̃k(tΩ) =
1

t
σ̃k(Ω).

(c) Isoperimetric inequality. If |Ω| < +∞,

(6.2) σ̃k(Ω) ≤ C2
k

H1(∂Ω)
,

where C2 is a universal constant.
(d) Disconnected domains. If Ω1,Ω2 ⊆ R2 are well separated with Ω1 bounded, then σ̃k(Ω1 ∪

Ω2) is given by the value of the (k+1)-th term of the ordered non decreasing rearrangement
of the numbers

σ̃0(Ω1), . . . , σ̃k(Ω1), σ̃0(Ω2), . . . , σ̃k(Ω2).

In particular, if Ω ⊂ R2 is given by the union of k + 1 well separated open subsets, the
first k subsets being bounded, then σ̃k(Ω) = 0.

Proof. The proof of items (a), (b), (d) is straightforward. The isoperimetric control (6.2) is
the analogue of the isoperimetric inequality (3.2) in the new setting. The proof is obtained by
adapting the arguments of [14, Theorem 2.2]: for the sake of the reader, we reproduce the proof
in the Appendix. �

The following result will be important to get compactness in shape optimization problems: the
proof is precisely that of Proposition 5.4 taking into account Remark 5.5 and Remark 4.2.

Proposition 6.3 (A priori bound on the diameter). Let Ω ⊂ R2 be such that

|Ω| = m and σ̃k(Ω) > λ,

where m,λ > 0. Then we can split Ω in at most k open subsets

Ω = Ω1 ∪ · · · ∪ Ωh, h ≤ k
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where the Ωi are bounded, with H1(∂Ωi) < +∞ and well separated. The bound on the diameter
depends only on m and λ.

Proof. �

As in the preceding section, let F : Rk → R be such that

(6.3) F is non decreasing in each variable and upper semi-continuous.

We relax the original shape optimization problem (1.1) to

(6.4) max{F (σ̃1(Ω), . . . , σ̃k(Ω)) : Ω ⊆ R2 open, |Ω| = m,H1(∂Ω) < +∞}.

The requirement H1(∂Ω) < +∞ is motivated by item (c) in Lemma 6.2. Indeed, the isoperimetric
control (6.2) entails that only sets with H1(∂Ω) below a certain threshold (depending on F and
m) are interesting for problem (6.4). In order to avoid trivial situations, we assume that F is not
constant on the family of admissible sets, i.e., there exists Ω0 with

(6.5) F (σ̃1(Ω0), . . . , σ̃k(Ω0)) > F (0, . . . , 0).

The main result of the section is the following.

Theorem 6.4 (Existence of optimal domains). Assume (6.3) and (6.5). Then problem (6.4)
has at least one solution which is bounded and given by the union of at most k disjoint Jordan
domains whose closures intersect pairwise in at most one point. Moreover, if in addition F is
strictly increasing in its arguments, every optimal set Ωopt is bounded and it is contained in an

optimal domain Ω̂opt (so |Ω̂opt \ Ωopt| = 0) satisfying the previous properties.

In order to prove Theorem 6.4, we need some preliminary work in order to construct a suitable
maximizing sequence for problem (6.4). We start with the following observation which heavily
depends on our two-dimensional setting.

Lemma 6.5. Let Ω ⊂ R2 be an admissible domain for problem (6.4) such that Ω ⊆ BR(0). Then

there exists Ω̂ ⊆ BR(0) with Ω ⊆ Ω̂ and ∂Ω̂ ⊆ ∂Ω, such that the following items hold true.

(a) Ω̂ is union of open simply connected sets.

(b) Ω̂c = int(Ω̂c).
(c) For every h ∈ N

σ̃h(Ω̂) ≥ σ̃h(Ω).

(d) If σ̃k(Ω) > 0, then ∂Ω̂ has at most k connected components.

Proof. Let U := int(Ωc), and let us denote by V the unbounded connected component of U . Then
∂V ⊆ ∂Ω. We define

Ω̂ := R2 \ V .
By construction we have

(6.6) Ω ⊆ Ω̂ ⊆ BR(0), ∂Ω̂ ⊆ ∂Ω and Ω̂c = int(Ω̂c),

so that point (b) is proved, and in particular H1(∂Ω̂) < +∞. Moreover the connected components

of Ω̂ are open sets which are simply connected, as their complement is readily seen to be connected,
so that point (a) follows.

Thanks to (6.6) we have for every h ∈ N

(6.7) σ̃h(Ω) = inf
S∈Sh+1

max
u∈S\{0}

∫
Ω
|∇u|2dx∫

∂Ω
u2dHd−1

≤ inf
S∈Sh+1

max
u∈S\{0}

∫
Ω̂
|∇u|2dx∫

∂Ω̂
u2dHd−1

= σ̃h(Ω̂).

In order to prove point (d), let us proceed as follows. Since ∂Ω̂ is compact, for every n ≥ 1 we
can find a finite number of open balls such that

∂Ω̂ ⊆
kn⋃
j=1

B(xnj , r
n
j )
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with xnj ∈ ∂Ω̂n and rnj ≤ 1
n . Let us set Un :=

⋃kn
j=1B(xnj , r

n
j ). We claim that for n large enough

(6.8) Un := A1
n ∪A2

n ∪ · · · ∪Akn
where Ain is open and connected (possibly empty), i.e., Un has at most k connected components.
As a consequence, if we set

Kn :=

kn⋃
j=1

B̄(xnj , r
n
j ),

we have that Kn has at most k connected components with

(6.9) dH(∂Ω̂,Kn) ≤ 1

n
,

where dH is defined in (2.7). Since Kn → ∂Ω̂ in the Hausdorff metric, we infer that ∂̂̂Ω has at
most k connected components, and point (d) follows.

In order to conclude the proof, we need only to check claim (6.8). This is a consequence of

the fact that σ̃k(Ω̂) ≥ σ̃k(Ω) > 0. If indeed by contradiction Un has more than k connected
components, that is

Un := A1
n ∪A2

n ∪ · · · ∪Amnn
with mn > k (notice that the number of connected components is finite as Un is given by the union
of a finite number of balls), then up to reducing the radii we can assume that they are also well

separated in R2. Then we can divide the connected components of Ω̂ in mn > k well separated
groups : the i-th group is defined by collecting the connected components whose boundary is
contained in Ain. Notice that the definition of the groups is well posed since the connected

components of Ω̂ are simply connected by point (a): as a consequence, their boundaries are
connected, and thus contained in at most one of the Ain. From point (d) of Lemma 6.2, we get
σ̃k(Ω) = 0, a contradiction. The proof is now concluded. �

In the following lemma we exhibit a suitable maximizing sequence for problem (6.4) with addi-
tional geometric properties.

Lemma 6.6. Assume (6.3) and (6.5). Then there exists a maximizing sequence (Ωn)n∈N for
problem (6.4) such that the following items hold true.

(a) There exists λ > 0 such that σ̃i(Ωn) > λ for every n ∈ N and i = 1, . . . , k. In particular

sup
n
H1(∂Ωn) < +∞.

(b) There exists R > 0 such that for every n ∈ N

Ωn ⊂ BR(0).

(c) For every n ∈ N the domain Ωn satisfies points (a), (b) of Lemma 6.5, and ∂Ωn has at
most k connected components.

Proof. In view of the assumptions on F , there exists some value λ > 0 such that for every
0 ≤ λi ≤ λ, i = 1, . . . , k, we have

F (σ̃1(Ω0), . . . , σ̃k(Ω0)) > F (λ1, . . . , λk).

If (Ωn)n∈N is a maximizing sequence, we can thus assume σ̃i(Ωn) > λ for every n ∈ N and
i = 1, . . . , k. The bound on H1(∂Ωn) is then a consequence of the isoperimetric inequality (6.2).

By Proposition 6.3, up to translating some connected components, the sequence (Ωn)n∈N sat-
isfies also point (b).

Let us apply Lemma 6.5 to the sequence (Ωn)n∈N, and rescale in order to recover the mea-
sure constraint: thanks to the assumptions on F , and since the rescaling operation increases the
eigenvalues (see point (b) of Lemma 6.2), we obtain a new maximizing sequence of domains which
satisfy in addition points (a) and (b) of Lemma 6.5. Finally, the bound on the number of con-
nected components follows since the k-th eigenvalue is greater than λ > 0, so that the proof is
concluded. �
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We are now in a position to prove the main existence result of the section.

Proof of Theorem 6.4. Recall that if (Ωn)n∈N is a sequence of open sets contained in a fixed
bounded set D ⊂ R2, we say that

Ωn → Ω in the Hausdorff complementary topology

for some open set Ω ⊆ R2 provided that Ωcn → Ωc in the Hausdorff metric. Let us divide the proof
in several steps.

Step 1: Compactness. Let (Ωn)n∈N be the maximizing sequence given by Lemma 6.6. Then
there exists an admissible domain such that up to a subsequence

Ωn → Ω in the Hausdorff complementary topology,

(6.10) 1Ωn → 1Ω strongly in L1(R2),

and
∂Ωn → K in the Hausdorff metric,

where the compact set K has at most k connected components with ∂Ω ⊆ K and H1(K) < +∞.
Indeed, up to a subsequence we have

Ωn → Ω in the Hausdorff complementary topology

and
∂Ωn → K in the Hausdorff metric,

where Ω ⊂ R2 is open and bounded, and K ⊂ R2 is compact with at most k connected components.
By the definition of Hausdorff complementary convergence we get easily

∂Ω ⊆ K and Ωn → Ω ∪K in the Hausdorff metric.

By Go la̧b’s theorem (see Theorem 2.5) we infer that

H1(K) ≤ lim inf
n
H1(∂Ωn)

so that H1(K) < +∞, and in particular H1(∂Ω) < +∞. Moreover, since by the Hausdorff
complementary convergence

1Ωn → 1Ω pointwise on R2 \K,
being |K| = 0 we infer also that

1Ωn → 1Ω strongly in L1(R2).

We deduce |Ω| = m, so that Ω is an admissible domain for problem (6.4), and the conclusion
follows.

Step 2: Upper semicontinuity and existence of an optimal domain. For every h ∈ N we
have

(6.11) lim sup
n

σ̃h(Ωn) ≤ σ̃h(Ω).

Indeed let ε > 0 and let Sh+1 = span{u0, . . . , uh} ⊆ H1(R2) be an admissible subspace for the
computation of σ̃h(Ω) such that

σ̃h(Ω) ≥ max
u∈Sh+1\{0}

∫
Ω
|∇u|2dx∫

∂Ω
u2dH1

− ε.

For each index n, assume that

un :=

h∑
i=0

αni ui

attains the maximum

max
u∈Sh+1\{0}

∫
Ωn
|∇u|2dx∫

∂Ωn
u2dH1

.
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Without restricting the generality, we may assume that

h∑
i=0

(αni )2 = 1, αni → αi.

Denoting u :=
∑h
i=0 αiui we have

un → u strongly in H1(R2).

In view of (6.10) we deduce

lim
n→∞

∫
Ωn

|∇un|2dx =

∫
Ω

|∇u|2dx.

Moreover, thanks to Proposition 2.6 and since ∂Ω ⊆ K we have

lim inf
n→∞

∫
∂Ωn

u2
ndH1 ≥

∫
K

u2dH1 ≥
∫
∂Ω

u2dH1.

Notice that Sh+1 is admissible for the computation of σ̃h(Ωn) for n large enough.We obtain

lim sup
n→∞

σ̃h(Ωn) ≤ lim sup
n→∞

∫
Ωn
|∇un|2dx∫

∂Ωn
u2
ndHd−1

≤
∫

Ω
|∇u|2dx∫

∂Ω
u2dHd−1

≤ σ̃h(Ω) + ε.

Letting ε→ 0, inequality (6.11) follows.
Thanks to the assumptions on F we get

lim sup
n→∞

F (σ̃1(Ωn), . . . , σ̃k(Ωn)) ≤ F (σ̃1(Ω), . . . , σ̃k(Ω)),

so that Ω is an optimal domain for problem (6.4).
We can apply Lemma 6.5 to Ω and rescale to get a new optimal bounded domain, still denoted

by Ω, satisfying int(Ωc) connected, unbounded, with Ωc = int(Ωc), and such that

Ω =
⋃
n∈N

An,

where An is simply connected. Moreover, ∂Ω has at most k-connected components.

Step 3: First properties of the optimal domain. Let Ω be the optimal domain given by
Step 2.

Since ∂An is connected and with H1(∂An) < +∞, we deduce that ∂An is locally connected
(see [13]). By [25, Theorem 2.1], we infer that there exists a conformal mapping

(6.12) f : B1(0)→ An

which admits a continuous extension to B1(0) (with of course f(∂B1(0)) ⊆ ∂An).
We claim that the following items hold true.

(a) An is a Jordan domain, i.e., ∂An is a Jordan curve. In particular the function f in (6.12)
admits an extension

f : B̄1(0)→ Ān

which is a homeomorphism.
(b) ∂Ai ∩ ∂Aj consists of at most one point.

In order to prove point (a), let us check that ∂An has no cut points, i.e., points a such that
∂An \ {a} is not connected: the property then follows by [25, Theorem 2.6]. By contradiction,
let a be a cut point for ∂An. Then, thanks to [25, Proposition 2.5], f−1(a) contains at least two
points x1, x2. Let [x1, x2] be the segment in B̄1(0) connecting x1, x2. Then [x1, x2] divides the
disk in two parts: let C be the one such that f(C) is inside the loop f([x1, x2]) which intersects
∂An in a. We have that if l is the arc on ∂B1(0) bounding C with [x1, x2], then f(l) = {a}. For,
if f(x) 6= a for some x ∈ l, then f(x) would be a point of ∂Ω inside the loop f([x1, x2]). Being

int(Ωc) connected, unbounded and with Ωc = int(Ωc), there would be a curve in int(Ωc) with one
extreme inside the loop (so inside An) and one extreme outside An. This curve should then cross
the loop, which is impossible as its points are not in int(Ωc). We reach a contradiction since it is
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known that f−1(a) has zero measure (even zero capacity, see the comment after [25, Proposition
2.5]).

In order to prove point (b), let us assume by contradiction that ∂Ai ∩ ∂Aj contains two points
a1 and a2. Let

(6.13) fi : B1(0)→ Ai, fj : B1(0)→ Aj

be the associated homeomorphisms. Let x1, x2 ∈ ∂B1(0) and y1, y2 ∈ ∂B1(0) be the points
associated to a1, a2 through fi and fj respectively. Reasoning as above, the loop

fi([x1, x2]) ∪ fj([y1, y2])

contains points in int(Ωc). Again there would be a curve in int(Ωc) with one extreme inside the
loop and one extreme outside: this curve should then cross the loop, which is impossible as its
points are not in int(Ωc).

Step 4: Some properties of the boundary. Let us prove some topological properties con-
cerning ∂Ω, more precisely in connection with the boundaries of its connected components. We
claim that the following property holds true.

Let Ai and Aj be two connected components of Ω. Let us consider the open set

Nδ(∂Ω) :=
⋃
n∈N

Bδn(xn)

containing ∂Ω, where xn ∈ ∂Ω, δn < δ and

(6.14) 2π
∑
n∈N

δn < 2(H1(∂Ω) + 1).

The existence of such a covering follows directly from the definition of Hausdorff measure.
We claim that there exists a point a ∈ ∂Ai such that for any given ε > 0 the following
property holds true: for δ small enough, a connected component of Nδ(∂Ω)\Bε(a) cannot
touch both ∂Ai and ∂Aj .

Let us assume firstly that ∂Ai∩∂Aj = {a} according to Step 2. Let us proceed by contradiction,
assuming that for every δ > 0 small enough, ∂Ai and ∂Aj both touch a connected component of

Nδ(∂Ω) \ Bε(a). Thanks to (6.14), there exists a curve γδ joining ∂Ai and ∂Aj with length less

than 2(H1(∂Ω) + 1) and contained in Nδ(∂Ω) \Bε(a). As δ → 0, we conclude for the existence of
a curve γ with finite length in ∂Ω \Bε(a) joining ∂Ai and ∂Aj . We replace γ by a geodesic (still
denoted by γ), so that we can assume that that γ intersects ∂Ai in a unique point ai and ∂Aj in
a unique point aj , with ai, aj 6= a. We can now connect ai to a inside Ai (through the image a
of a cord via the conformal mapping (6.13)) and a to aj inside Aj , creating with these two arcs

and γ a Jordan curve in Ω. This curve cannot contain points of Ωc, since this would be against
the fact that Ωc = int(Ωc) and int(Ωc) is connected. Then the curve is the boundary of an open
connected set in Ω which intersects Ai and Aj , a contradiction.

Let us assume that ∂Ai ∩ ∂Aj = ∅, and that they belong to the same connected component
of ∂Ω (otherwise the result is trivial, without the need to choose a point a). Since ∂Ω has finite
H1-measure, we get that its connected components are arcwise connected (see [18, Lemma 3.12]).
This implies that there exists a curve γ in ∂Ω joining ∂Ai and ∂Aj , which we may assume to be a
geodesic. Then we have that γ intersects ∂Ai in a unique point a. Let us assume by contradiction
that for every δ > 0, a connected component of Nδ(∂Ω) \ Bε(a) intersects both ∂Ai and ∂Aj .
Reasoning as above, there exists a curve γ̂ of finite length in ∂Ω \ Bε(a) joining ∂Ai and ∂Aj ,
which again we may assume to be geodesic. Let â be the unique point of intersection of γ̂ and
∂Ai. As before, we form a Jordan curve out of γ, γ̂, ∂Aj and a simple arc in Ai connecting a
and ai. Again this curve encloses an open connected set contained in Ω, different from Ai and
intersecting Ai, a contradiction.
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Step 5: Bound on the number of connected components. Let us prove that Ω = ∪h∈NAh
admits at most k connected components, completing thus the proof of the properties of the optimal
domain given by Step 2.

We proceed again by contradiction assuming that there are A1, . . . , Ak+1 different connected
components of Ω. For every η > 0 we will construct ϕi,η ∈ H1(R2) with i = 1, . . . , k+1 such that,
setting Sηk+1 := span{ϕ1,η, . . . , ϕk+1,η},

(6.15) lim
η→0

max
ϕ∈Sηk+1\{0}

∫
Ω
|∇ϕ|2 dx∫

∂Ω
ϕ2 dH1

= 0,

yielding σ̃k(Ω) = 0, against the fact that σ̃k(Ω) > 0 (see Step 3).
According to Step 4, there exists a finite number of points a1, . . . , am such that for every given

fixed ε > 0, by choosing δ > 0 small enough a connected component of the open set

(6.16) Nδ(∂Ω) \ (Bε(a1) ∪ · · · ∪Bε(am))

cannot intersect both ∂Ai and ∂Aj for i 6= j ∈ {1, . . . , k + 1}. As a consequence, a connected
component of the open set

(6.17) (Ω ∪Nδ(∂Ω)) \ (Bε(a1) ∪ · · · ∪Bε(am))

cannot intersect both Ai and Aj for i 6= j ∈ {1, . . . , k + 1}.
Let us now fix η > 0 small enough so that the balls {Bη(ai) : i = 1, . . . , k+ 1} are disjoint. Let

us consider ψη ∈ C∞(R2) such that

ψη =

{
1 outside Bη(a1) ∪ · · · ∪Bη(am),

0 in Bη1(a1) ∪ · · · ∪Bη1(am),

where η1 < η and

lim
η→0

∫
R2

|∇ψη|2 dx = 0.

The function ψη is easily constructed through capacity arguments.
Let now choose ε < η1, and let δ > 0 be small enough. We consider the smooth function

φi,η ∈ C∞((Ω ∪Nδ(∂Ω)) \ (Bε(a1) ∪ · · · ∪Bε(am)))

which is equal to ψη on the connected components which intersect Ai, and zero on the others.

We then extend φi,η to a smooth function on (Ω ∪Nδ(∂Ω)) ∪ (Bε(a1) ∪ · · · ∪ Bε(am)) by setting
it equal to zero on the balls. The restriction to Ω of this function is then the trace of a function
ϕi,η ∈ H1(R2) for which

lim
η→0

∫
Ω

|∇ϕi,η|2 dx ≤ lim
η→0

∫
R2

|∇ψη|2 dx = 0.

On the other hand, by construction

lim inf
η→0

∫
∂Ω

ϕ2
i,η dH1 ≥ H1(∂Ai),

while for i 6= j (since ∂Ai ∩ ∂Aj contains at most one point)∫
∂Ω

ϕi,ηϕj,η dH1 = 0.

We thus infer that (6.15) holds true, so that the step is complete.

Step 6: Conclusion. Assume now in addition that F is strictly increasing with respect to its
arguments, and let Ωopt be an optimal domain. Then thanks to (6.5) we have σ̃k(Ωopt) > 0, so
that by Proposition 6.3 we deduce that Ωopt is bounded. Let us apply Lemma 6.5 to Ωopt, getting

the new domain Ω̂opt. Notice that |Ω̂opt\Ωopt| = 0, for otherwise we could rescale Ω̂opt to recover a
new admissible domain satisfying the measure constraint on which the shape functional is strictly
greater than on Ωopt, a contradiction. The new domain satisfies the properties of Step 2, so that
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it is given by the union of at most k disjoint Jordan domains whose closures intersect pairwise in
at most one point in view of Step 3 and Step 5. The proof of the theorem is now concluded. �

We are now in position to prove Corollary 5.7. In fact, the structure result of simple sets in
two dimensions, proved in [4], gives the equivalence of the measurable optimal set with an open
one, union of disjoint Jordan domains. We refer the reader to [4] for the definitions of simple,
indecomposable, saturated measurable sets.

Proof of Corollary 5.7. Assume that Ω is an optimal set for problem (5.3) in two dimensions of
the space. We know that ∂∗Ω is of finite H1-measure and so we can apply [4, Theorem 1] to
decompose Ω as an at most countable disjoint union of indecomposable sets {Ei}i∈I , such that

H1(∂∗Ω) =
∑
i∈I
H1(∂∗Ei).

We denote sat(Ei) the saturation of the set Ei (see [4], Section 5). Then

Ei ⊆ sat(Ei), ∂∗sat(Ei) ⊆ ∂∗Ei,

and we may assume that {sat(Ei)}i are pairwise disjoint. Let us denote Ωs = ∪i∈Isat(Ei).
Following a monotonicity argument similar to those of the proof of point (c) of Lemma 6.6 (see in
particular (6.7)), we get that

σ̃k(Ωs) ≥ σ̃k(Ω).

Now, the conclusion of Corollary 5.7 comes from [4, Theorem 7], since any set sat(Ei) is simple.
Assume that F is strictly increasing in at least one variable. If |Ωs \Ω| > 0 we can rescale to the

right measure and increase strictly the eigenvalues. This is not possible, so that every Ei has to
be saturated, hence equivalent to a Jordan domain. The boundary of any couple of these domains
may intersect in at most one point: indeed, if the intersection ∂Ei∩∂Ej contains two points, then
we can replace Ei and Ej with the union of Ei ∪Ej and of the associated holes, obtaining a new
domain with larger volume and less perimeter: this leads to a contradiction by using the above
mentioned monotonicity arguments.

�

Remark 6.7 (Relationship between the existence results of Corollary 5.7 and Theorem
6.4). Clearly one starts with two different settings. As the topological boundary is, in general,
larger than the reduced boundary and every open set is measurable, one can naturally expect that
the maximization in the class of measurable sets (Theorem 5.6 and Corollary 5.7) may lead to a
larger value than the maximum in the class of open sets (Theorem 6.4). It turns out, that from
Corollary 5.7 one knows that the optimal set is open. At this point, the question is whether the
topological boundary of this set coincides with its reduced boundary. If the answer was positive,
then the two problems would lead to the same solution, namely the union of at most k-Jordan
domains. In particular, this would be the case in which the number of connected components of
the solution is finite.

This observation leads to the following, stronger, one: if the topological boundary of the solution
has finite H1-measure, then the conclusion is still the same. Indeed, one can use the construction
of the test functions as in Step 5 of the proof of Theorem 6.4 to bound the number of connected
components.

In absence of any information about the topological boundary of the solution, we are not able
to conclude with the equivalence of the two problems. So we leave the following.

Open problem. Assume F (Ω) = σk(Ω) in (5.3). Prove that every solution of Corollary 5.7 has
at most k connected components.
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7. Numerical experiments

In this section we shall give some numerical approximations of the optimal shapes for several
spectral functionals, in particular for the maximization of the k-th eigenvalue of the Steklov prob-
lem, k = 1, 2, . . . , 10. This last question has been recently addressed in [8] and in [1]. In this
section, we have a double purpose: on the one hand we shall consider more general spectral func-
tionals and on the other hand we shall work with non-starshaped domains. Following our existence
result we can consider more general functionals (like convex combinations of eigenvalues) and, in
two dimensions, we can work with simply connected sets. Star-shapedness is not guaranteed, and
for this reason we develop a parametric approach to handle this situation.

In the star-shaped case, it is classical to parametrize the domain by the radial function, which
can be seen as a truncated Fourier series with a finite number of coefficients. Shape derivative
formulas allow us to write the derivative with respect to each Fourier coefficient and thus, a gradient
descent algorithm can be used. This method has been used successfully in spectral optimization
in [1], [6], [23], etc.

As in general we do not have any theoretical guarantee that the optimizer lies in the class of the
star shaped domains, we introduce a method which allows us to work directly in the class of simply
connected two dimensional domains. We consider a general parametrization γ : t 7→ (x(t),y(t))
for t ∈ [0, 2π]. The coordinate functions x,y are supposed to be periodic of period 2π. Thus,
these functions have the following Fourier series expansions

x(t) = a0 +

∞∑
j=1

aj cos(jθ) +

∞∑
j=1

bj sin(jθ)

y(t) = c0 +

∞∑
j=1

cj cos(jθ) +

∞∑
j=1

dj sin(jθ).

Supposing that the shape Ω bounded by the curve γ, which is regular enough, the coefficients
(aj), (bj), (cj), (dj) decay very rapidly to 0. Thus, we expect that truncating these Fourier series
to their first coefficients up to a certain threshold, we don’t lose much information on the shape
Ω.

In case of variation of the shape by a vector field V , the general shape derivative formula for a
simple Steklov eigenvalue provided in [16, Section E] is given by

(7.1)
dσk
dV

=

∫
∂Ω

(|∇τuk|2 − |∂nuk|2 − σkH|uk|2)V.n dσ.

As a consequence, the derivatives of the Steklov eigenvalues with respect to the coefficients
(aj), (bj), (cj), (dj) are:

dσk
daj

=

∫ 2π

0

(|∇τuk|2 − (∂nuk)2 − σkHu2
k)y′(θ) cos(jθ)dθ

dσk
dbj

=

∫ 2π

0

(|∇τuk|2 − (∂nuk)2 − σkHu2
k)y′(θ) sin(jθ)dθ

dσk
dcj

= −
∫ 2π

0

(|∇τuk|2 − (∂nuk)2 − σkHu2
k)x′(θ) cos(jθ)dθ

dσk
ddj

= −
∫ 2π

0

(|∇τuk|2 − (∂nuk)2 − σkHu2
k)x′(θ) sin(jθ)dθ,

where uk is L2(∂Ω) unit normalized eigenfunction associated to σk. All quantities containing the
eigenfunction uk in the above integrals are always evaluated in (x(θ),y(θ)).

We use a gradient descent algorithm implemented in Matlab and we make sure that the curve γ
does not self intersect. This is checked at every iteration by testing if a fine polygonal discretization
of ∂Ω has self intersections. In practice, for the maximization of the Steklov eigenvalues, the
gradient descent algorithm with small step size prevents the curve γ from self-intersecting.
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For the numerical computation of the Steklov spectrum in [8] the author uses fundamental
solutions while in [1] the authors use a single layer potential method. The numerical results
presented below were announced in the phd thesis [7] and use fundamental solutions (see [2]).
The main idea is to consider functions which are harmonic inside the domain Ω and impose the
boundary eigenvalue condition in a finite number of points chosen on ∂Ω. We choose to work with
linear combinations of radial harmonic functions with centers outside the domain Ω.

Given a general shape Ω, we consider a uniform discretization of its boundary (xi)
N
i=1 and

introduce the points (yi) at fixed distance r from ∂Ω on the exterior normals in (xi) to ∂Ω. We
consider the radial harmonic functions φi(x) = log |x − yi| and we search for functions u of the
form

u = α1φ1 + ...+ αNφN ,

which satisfy the boundary condition

α1∂nφ1(xi) + ...+ αN∂nφN (xi) = σ(α1φ1(xi) + ...+ αNφN (xi)),

for i = 1...N . This is a generalized eigenvalue problem and can be solved using the function eigs

in Matlab, giving all the ingredients for the computation of the spectrum and of the derivative.
The precision of this method is justified for regular domains in [8], where a comparison with
mesh-based methods is provided. The following result is proved in [8].

Proposition 7.1. Consider Ω a bounded, open, regular domain, and suppose that uε satisfies the
following approximate eigenvalue problem:

(7.2)

{
−∆uε = 0 in Ω

∂nuε = σεuε + fε on ∂Ω.

Then if ‖fε‖L2(∂Ω) is small, there exists a constant C, depending on only on Ω, and a Steklov
eigenvalue σk satisfying

|σε − σk|
σk

≤ C‖fε‖L2(∂Ω).

We were able to check numerically the well known results concerning the maximization of
simple quantities depending on the Steklov eigenvalues due to Weinstock [26], Brock [9], Hersch-
Payhe-Schiffer [22]. We tested a wide range of optimization problems which gave rise to some
numerical conjectures presented below (the area is assumed to be fixed and is numerically handled

by considering the scale invariant quantities σk(Ω)|Ω| 12 ):

• min

(
1

σ1
+ ...+

1

σn

)
is realized by the disk;

• maxσ1,maxσ1σ2 are realized by disks.
• (Conjecture) the maximizers of σk with area constraint are connected and have the sym-

metry of a regular k-gons. Furthermore, we observe that at the optimum the eigenvalues
are multiple, the multiplicity cluster starts at k and has length 3 when k is odd and 2
when k is even. The numerical results for k ∈ [2, 10] can be seen in Figure 1. Our results
agree with those obtained in [1] with different methods.

• (Conjecture) the product σ1σ2...σn is maximized by the disk.
• (Conjecture) We say that A ⊂ {0, 1, 2, 3, ...} has the property (P ) if 1 ∈ A and 2k ∈
A ⇒ 2k − 1 ∈ A. If A has the property (P ) then

∑
k∈A

1

σk
is minimized by the disk. For

example
1

σ1
+

1

σ3
+

1

σ4
is minimized by the disk. This fact was verified for various sets A

having property (P ) with A ⊂ {0, 1, ..., 15}.

• (Conjecture), see [22].

n∑
k=1

1

σ2k−1σ2k
is minimized by the disk.
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σ1 = 1.77 σ2 = 2.91 σ3 = 4.14 σ4 = 5.28 σ5 = 6.49

σ6 = 7.64 σ7 = 8.84 σ8 = 10.00 σ9 = 11.19 σ10 = 12.35

Figure 1. Shapes which maximize the k-th Steklov eigenvalue under area con-
straint, k = 2, 3, ..., 10.

maxσ1 + σ2 = 3.75 maxσ1 + σ2 + σ3 = 4
√
π maxσ1 + ...+ σk (k ≤ 10)

maxσ2 · σ3 = 8.69 maxσ3 · σ4 = 17.18 maxσ2 · σ3 · σ4 = 29.59

Figure 2. Several numerical optimizations of functionals depending on the
Steklov spectrum

In Figure 2 we find the optimal shapes for several functionals depending on the Steklov spec-
trum under area constraint. This supports the versatility of the numerical method and of the
optimization procedure. Although most of the functionals considered are not of particular inter-
est, we note a few facts concerning the minimizers of sums of Steklov eigenvalues. We see that
σ1 +σ2 is maximized by a shape with two axes of symmetry. On the other hand, for k ∈ [3, 10] we
observe some numerical evidence that σ1 + ...+σk is maximized by the disk under area constraint.

8. Appendix: Isoperimetric control of the relaxed spectrum

In this section we reproduce the arguments of [14] to obtain the isoperimetric inequalities (5.1)
and (6.2) for the relaxed Steklov eigenvalues considered in the paper. It is convenient to introduce
the following notation: for an annulus with center in x0 ∈ Rd

A := {x ∈ Rd : r1 < |x− x0| < r2},

we set

2A :=
{
x ∈ Rd :

r1

2
< |x− x0| < 2r2

}
.
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Proof of inequality (5.1). Let Ω ⊆ Rd be a set of finite perimeter with |Ω| = m. In view of [20,
Corollary 3.12] applied to the finite non atomic measure

ν := Hd−1b∂∗Ω,
there exists 2k + 2 annuli A1, . . . A2k+2 in Rd such that for every i, j = 1, . . . , 2k + 2, i 6= j

(8.1) Hd−1(∂∗Ω ∩Ai) ≥ γd
Hd−1(∂∗Ω)

2k + 2

and

(8.2) 2Ai ∩ 2Aj = ∅.
Here γd is a constant depending only on the dimension d of the space. We can reorder the annuli
in such a way that

(8.3) |Ω ∩ 2Ai| ≤
|Ω|
k + 1

for i = 1, . . . , k + 1.

If Ai = {r1,i < |x− xi| < r2,i}, let us set

hi(x) :=


1
r2,i

dist(x,Rd \ (2Ai)) if x 6∈ Br2,i(xi),
1 if x ∈ Ai,

1
r1,i

dist(x,Rd \ (2Ai)) if x ∈ Br1,i(xi).

Notice that hi ∈ H1(Rd) with hi = 0 outside 2Ai. Moreover ∇hi = 0 in Ai, with

|∇hi| =
1

r2,i
in B2r2,i(xi) \Br2,i(xi)

and

|∇hi| =
1

r1,i
in Br1,i(xi) \B r1,i

2
(xi),

so that

αd :=

∫
2Ai

|∇hi|d dx

is a constant depending only on the dimension d. In view of (8.1) and (8.3), using Hölder inequality
and the isoperimetric inequality for sets of finite perimeter we obtain

(8.4)

∫
Ω
|∇hi|2 dx∫
∂∗Ω

h2
i dx

≤

(∫
2Ai
|∇hi|d dx

) 2
d |Ω ∩ (2Ai)|

d−2
d

Hd−1(Ai ∩ ∂∗Ω)
≤
αd

(
|Ω|
k+1

) d−2
d

γd
Hd−1(∂∗Ω)

2k+2

≤ βd(k + 1)
2
d
|Ω| d−2

d

Hd−1(∂∗Ω)
≤ Cdk

2
d
Hd−1(∂∗Ω)

d−2
d−1

Hd−1(∂∗Ω)

= Cdk
2
d

1

Hd−1(∂∗Ω)
1
d−1

,

where Cd depends only on d. Since the functions h1, . . . , hk+1 have disjoint supports in view of
(8.2), by considering Sk+1 := span{h1, . . . , hk+1} ⊆ H1(Rd) we deduce that

σ̃k(Ω) ≤ Cd
k

2
d

Hd−1(∂∗Ω)
1
d−1

,

so that the proof is concluded. �

Proof of the isoperimetric inequality (6.2). Let Ω ⊂ R2 be an open set with |Ω| < +∞ and
H1(∂Ω) < +∞. In particular Ω has finite perimeter. We can follow step by step the proof
of inequality (5.1) above considering the non atomic finite measure

ν := H1b∂Ω.
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Notice that the isoperimetric inequality for sets of finite perimeter entails

|Ω| ≤ δ2H1(∂∗Ω)2 ≤ δ2H1(∂Ω)2,

where δ2 > 0, being ∂∗Ω ⊆ ∂Ω. Then we can repeat the computations in (8.4) obtaining

σ̃k(Ω) ≤ C2
k

H1(∂Ω)
,

so that the conclusion follows. �
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