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This note is devoted to the differentiability properties of H-Lipschitz maps defined on ab-
stract Wiener spaces and with values in metric spaces, so we start by recalling some basic
definitions related to the Wiener space structure.

Let (E, ‖ · ‖) be a separable Banach space endowed with a Gaussian measure γ. Recall that
a Gaussian measure γ on E equipped with its Borel σ−algebra B is a probability measure on
(E,B) such that the law (pushforward measure) of each continuous linear functional on E is
Gaussian, that is, γ ◦ (e∗)−1 is a Gaussian measure on R for each e∗ ∈ E∗ \ {0}, possibly a Dirac
mass. If we assume, as we shall do, that γ is not supported in a proper subspace of E, then all
such measures are Gaussian measures. We shall also assume, for the sake of simplicity, that γ
is centered, i.e.

∫
E xdγ(x) = 0.

The Cameron Martin space associated to (E, γ) can be defined, as a vector space, by

H :=
{∫

E
xφ(x)dγ(x) : φ ∈ L2(γ)

}
,

where the integral above, well defined thanks to Fernique’s exponential integrability theorem
(see [L, 4.1]), has to be understood as a Bochner integral. By Hölder’s inequality we have
‖

∫
E xφ(x)dγ‖ ≤ c‖φ‖L2(γ) with c = c(γ).

We denote by i : L2(γ) → H ⊂ E the map φ →
∫
E xφ(x)dγ(x), and by K the kernel of

i. Let us observe that, since i is continuous, K is closed in L2(γ), and so we can define the
Cameron-Martin norm

‖i(φ)‖H = min
ψ∈K

‖φ− ψ‖L2(γ),

whose induced scalar product 〈·, ·〉H satisfies

〈i(φ), i(ψ)〉H =
∫
E
φψdγ ∀φ ∈ L2(γ),∀ψ ∈ K⊥ (∗).
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Observe that H is a Hilbert space which is continuously injected in E, because the continuity
of i gives ‖h‖ ≤ c‖h‖H. Since γ is not supported in proper subspaces of E it follows that H is
a dense subset of E. However, since i is not injective in general, it is often more convenient to
work with the map j∗ : E∗ → H, dual of the inclusion map j : H → E (i.e. j∗(e∗) is defined by
〈j∗(e∗), h〉H = 〈e∗, h〉):

E∗
j∗−→ H∗ ∼ H j−→ E.

It is easy to check that the set j∗(E∗) is dense in H for the norm ‖ · ‖H and the fact that j is
dense implies that j∗ is injective.

The triple (E,H, γ) is called an abstract Wiener space.

For the scopes of this paper the following characterization of H is of fundamental importance:

Theorem 1 (Cameron-Martin theorem) Let v ∈ E and let Tvγ(B) = γ(B + v) be the
shifted measure. Then Tvγ � γ if and only if v ∈ H.

Definition 2 Let (E,H, γ) be an abstract Wiener space and let (Y, dY ) be a metric space. A
mapping f : E → Y is said to be H−Lipschitzian at x with constant C if

dY (f(x+ h), f(x)) ≤ C‖h‖H, ∀h ∈ H.

If, for some constant C, f is H−Lipschitzian at x with constant C for γ−a.e. x, then we say
that f is H−Lipschitzian with constant C.

We state in the next theorem two properties of H−Lipschitzian functions; the first one
corresponds, in this context, to Rademacher’s theorem.

Theorem 3 [ES],[B, 5.11.8] Let f : E → R be H-Lipschitzian. Then

(i) there exists a Borel γ−negligible set N ⊂ E such that, for all x ∈ E \ N , the map h 7→
f(x+ h) is Gâteaux differentiable at 0;

(ii) there exists a modification f̃ of f in a γ−negligible set which is H−Lipschitzian at all
x ∈ E.

In addition, we mention the relation between real-valued H−Lipschitzian functions and the
Sobolev space W 1,∞

H (E, γ) for Gaussian measures (see [B, Section 5.2]). In what follows, the
weak H−derivative for the Sobolev spaces will be denoted by ∇H.

Theorem 4 If f ∈ W 1,∞
H (E, γ), then there exists a modification f̃ of f in a γ−negligible set

which is H−Lipschitzian at all x ∈ E, with constant C = ess-sup |∇f |H. Conversely, all
H−Lipschitzian functions f : E → R belong to W 1,∞

H (E, γ).

2



We are going to study the differentiability properties of H−Lipschitz functions f : E → Y ,
where (E,H, γ) is an abstract Wiener space and Y is a separable metric space or the dual of a
separable Banach space. To this aim, following the same approach of [A] and [R], we introduce
the Sobolev class W 1,∞

H (E, γ, Y ), where Y is any metric space, via the connection with the
R−valued Sobolev space W 1,∞

H (E, γ).

Definition 5 Let (E,H, γ) be an abstract Wiener space, let (Y, dY ) be a metric space and let F
be the collection of all 1−Lipschitz maps between Y and R. Then, a Borel function f : E → Y
belongs to W 1,∞

H (E, γ, Y ) if the following two condition hold:

(i) φ ◦ f ∈W 1,∞
H (E, γ) for each φ ∈ F .

(ii) There exists C ≥ 0 such that ‖∇H(φ ◦ f)‖∞ ≤ C for each φ ∈ F .

Recall that any separable metric space (Y, dY ) embeds isometrically in duals of separable
Banach spaces, for example in `∞(N) = (`1(N))∗. A possible embedding is for instance given by
the map

x→ {dY (x, xi)− dY (x0, xi)}

where {xi} is a dense sequence in Y and x0 ∈ Y is a base point. The next result provides
an extension of Theorem 4 when the target is the dual of a separable Banach space. By the
above-mentioned isometric embedding theorem, the result applies also to maps with values in
separable metric spaces.

Proposition 6 Let (E,H, γ) be an abstract Wiener space and let Y = G∗ be a dual Ba-
nach space, with G separable. If f ∈ W 1,∞

H (E, γ, Y ), then f has a Borel modification f̃ in
a γ−negligible set with

‖f̃(x+ h)− f̃(x)‖Y ≤ C‖h‖H, ∀h ∈ H ∀x ∈ E.

Proof. Let D ⊂ G be a dense and countable vector space over Q. First, we define the function

ϕg : Y −→ R
x −→ 〈x, g〉,

which is ‖g‖−Lipschitz for any g ∈ D. Since f ∈ W 1,∞
H (E, γ, Y ), the function fg = ϕg ◦ f ∈

W 1,∞
H (γ) for each g ∈ D. We know that W 1,∞

H (E, γ) can be canonically identified with the
space of H−Lipschitzian functions. Moreover, by Theorem 3(ii) we have that there exists a
modification f̃g of fg which is H−Lipschitz at each x ∈ E.

Let us denote
Ng,g′ = {x ∈ E : f̃g+g′(x) 6= f̃g(x) + f̃g′(x)},

which is, thanks to the identity fg+g′ = fg + fg′ , a γ−negligible set. Now, we are going to
construct a full measure set Fg,g′ ⊂ E \Ng,g′ such that Fg,g′ is H-invariant, that is, Fg,g′ +H =

3



Fg,g′ . Let us take an orthonormal basis {en} in H. Denote by {hn} the countable set of all finite
linear combinations of the vectors ei with rational coefficients. The set

Ωn = {x ∈ E \Ng,g′ : x+ hn ∈ E \Ng,g′},

has full measure. If we put Fg,g′ =
⋂
n∈N Ωn, then Fg,g′ has full measure as well and it is

H−invariant. Indeed, let x ∈ Fg,g′ and let h ∈ H. We have to check that x+ h ∈ Fg,g′ . Let us
choose a sequence {hn} converging to h in the norm of H such that

f̃g+g′(x+ hn) = f̃g(x+ hn) + f̃g′(x+ hn).

Now, since f̃g+g′ , f̃g, f̃ ′g are H−Lipschitz functions we have that

|f̃g+g′(x+ h)− f̃g(x+ h)− f̃g′(x+ h)| =|f̃g+g′(x+ h)− f̃g(x+ h)− f̃g′(x+ h)

+ f̃g+g′(x+ hn)− f̃g(x+ hn)− f̃g′(x+ hn)|
≤ 3C‖hn − h‖H

If we let n tend to infinity, we get that

f̃g+g′(x+ h) = f̃g(x+ h) + f̃g′(x+ h),

as wanted. Observe that it Fg,g′ is H-invariant, then E \ Fg,g′ is also H-invariant. Since D is
countable, the Borel set N :=

⋃
g,g′∈D(E \Fg,g′) is γ−negligible and H-invariant (since X \N =⋂

g,g′ E \ Fg,g′ is an intersection of H-invariant sets).

Now, consider the functional
T : g ∈ D −→ f̃g(x),

which is Q−linear in D for each x /∈ N . In addition, we have that T is continuous. Indeed,

|f̃g(x)| ≤ sup
x∈E

|f̃g(x)| = ‖f̃g‖∞ = ‖fg‖∞ = sup
x∈E

〈f(x), g〉 = 〈‖f‖∞, g〉 ≤ C ′‖g‖,

for each g ∈ D. Hence, it is the restriction to D of a linear continuous functional on G. Now,
define f̃(x) as the unique element in G∗ such that

〈f̃(x), g〉 = f̃g(x) if x /∈ N

and f̃(x) = 0 if x ∈ N . In order to prove that f̃ is H−Lipschitzian for each x ∈ E, just observe
that

|〈f̃(x+ h)− f̃(x), g〉| = |f̃g(x+ h)− f̃g(x)| ≤ C‖h‖H‖g‖ if x /∈ N.
Now, since by hypothesis the H−Lipschitz constant is uniformly bounded for each g ∈ G, we
have, upon taking the supremum over G, that f̃ is an H−Lipschitz function at each x ∈ E.

�

Now we discuss the differentiability properties of these maps. First of all notice that, if
we consider a mapping taking values in a metric space admitting no linear structure, then the
differential properties cannot be interpreted in classical terms. It turns out that, the local
behavior of mappings of Rn into metric spaces can also be read in terms of the so called metric
differential introduced in [K] (see also [KS]).
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Definition 7 Let f : Rk → Y , where (Y, dY ) is any metric space. We shall denote

mdfx(u) = lim
t→0

dY (f(x+ tu), f(x))
|t|

(∗),

wherever this limit exists. f is metrically differentiable at x if (∗) exists for all u ∈ Rk and
mdfx(·) is a continuous seminorm on Rk.

A Lipschitz function from an interval to a Banach space need not be differentiable some-
where, but the notion of metric differentiability allows to give a generalization of the classical
Rademacher’s theorem.

Theorem 8 [AK, 3.2],[K],[KS] Any Lipschitz function f : Rk → Y is metrically differentiable
at L k-a.e. x ∈ Rk.

In [D] this theorem has been generalized to mappings between Banach spaces, when the
domain is separable. Another different generalization has been given in [P], when the domain is
a Carnot group. In that work, a metric differentiability theorem is obtained, as it is natural in
that context, along the “horizontal” directions.

The property we look for is the natural transposition in our context of the one given in
Definition 7:

Definition 9 Let (E,H, γ) be an abstract Wiener space and let (Y, dY ) be a metric space. We
say that f : E → Y is metrically differentiable at x if there exists a continuous seminorm mdfx(·)
in H such that

mdfx(h) = lim
t→0

dY (f(x+ th), f(x))
|t|

∀h ∈ H.

As we have mentioned before, using an isometric embedding of Y in a dual space, we reduce
ourselves to the case of duals of separable Banach spaces; the linear structure we gain allows us
to give a metric differentiability theorem through a weaker version of differentiability for maps
with values in dual Banach spaces, namely w∗−differentiability. It seems that this notion goes
back to [HM].

Definition 10 Let (E,H, γ) be an abstract Wiener space and let Y = G∗ be a dual Banach
space. A function f : E → Y is w∗−differentiable at x ∈ E if there exists a continuous linear
map wdfx : H → Y satisfying

f(x+ th)− f(x)− t · wdfx(h)
t

w∗
−→ 0 as t→ 0, ∀h ∈ H.

The following simple Lemma will be useful in the sequel.
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Lemma 11 Let N be a Borel set in E and let h ∈ j∗(E∗) be a vector with unit norm. If
L 1({t ∈ R : x+ th ∈ N}) = 0 for each x ∈ E then γ(N) = 0.

Before proving the Lemma above, we recall an useful tool which allows us to decompose
a measure into more elementary components. This process involves the notion of conditional
measure. Let h ∈ j∗(E∗) ⊂ H be a vector with unit norm. We can define the following linear
projection:

π : K ⊕ Rh −→ Rh
x −→ π(x) = 〈e∗, x〉h

where K is the kernel of e∗, and we can identify E with K ⊕Rh (since 〈e∗, h〉 = 〈h, h〉H = 1 we
obtain that π ◦ π = π). Now, we define the natural projection πK : E → K by x 7→ x − π(x)
and denote by ν the image of the measure γ under the projection πK . In [B, 3.10.2] it is proved
that the conditional measures γy (y ∈ K), characterized up to ν−negligible sets by the property
of being concentrated on y + Rh and by

γ(B) =
∫
K
γy(B)dν(y) ∀B ∈ B(E),

can be explicitly represented by

γy(B) = γ1({t ∈ R : y + th ∈ B})

where γ1 denotes the standard Gaussian measure on R.

Proof of Lemma 11. Using the disintegration of the measure γ described above we have that

γ(N) =
∫
K
γy(N)dν(y) =

∫
K
γ1({t ∈ R : th+ y ∈ N})dν(y)

=
∫
K

0dν(y) = 0 (γ1 � L 1).

�

Now, we are in a position to prove a metric differentiability theorem in the context of abstract
Wiener spaces.

Theorem 12 Let (E,H, γ) be an abstract Wiener space and let Y = G∗ be a dual Banach space,
with G separable. Let f : E → Y be H−Lipschitz. Then f : E → Y is w∗−differentiable and
metrically differentiable and

mdfx(h) = ‖wdfx(h)‖Y ∀h ∈ H

for γ−a.e. x ∈ E.

Proof. We denote by N̄ a Borel γ−negligible set such that f is H−Lipschitz, with constant C,
at all x ∈ E \ N̄ .
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Let D ⊂ G be a dense and countable vector space over Q. First, we define the function

fg : E −→ R
x −→ 〈f(x), g〉,

which is H−Lipschitz for any g ∈ D. Indeed, for x ∈ E \ N̄ we have

|〈f(x+ h)− f(x), g〉| ≤ ‖f(x+ h)− f(x)‖Y ‖g‖G ≤ C‖h‖H‖g‖G ∀h ∈ H.

By Stroock and Enchev’s Rademacher’s (Theorem 3(i)), there exists a Borel γ−negligible set
Ng ⊃ N̄ such that fg is H-differentiable (i.e. Gateaux differentiable, along the directions in H)
at all x ∈ E \Ng. Since D is countable, the Borel set N :=

⋃
g∈DNg is γ−negligible as well and

fg is H−differentiable at any x ∈ E \N for any g ∈ D.

Now, fix h ∈ H and consider the functional

Lh : g −→ Lh(g) = ∇hfg(x),

where ∇hfg(x) denotes the directional derivative of fg in the direction of h at x, that is,

∇hfg(x) := lim
t→0

fg(x+ th)− fg(x)
t

.

The functional Lh is Q−linear in D and since Lh is continuous (because, for each g ∈ D,
‖∇hfg(x)‖H ≤ C‖h‖H‖g‖G) it is the restriction to D of a linear continuous functional on G,
that we represent by a vector βh ∈ Y , with ‖βh‖Y ≤ C‖h‖H. Once more, h 7→ βh is additive
and continuous, so it corresponds to a continuous linear functional ∇f(x) : H → Y . Summing
up, for x ∈ E \N we have a continuous linear functional ∇f(x) : H → Y satisfying

∇hfg(x) = 〈∇f(x)(h), g〉 ∀h ∈ H, g ∈ D.

Using the definition of differentiability, we have that

lim
t→0

〈f(x+ th)− f(x)− t · ∇f(x)(h)
t

, g
〉

= lim
t→0

fg(x+ th)− fg(x)− t · ∇gfg(x)
t

= 0,

for each x ∈ E \ N , h ∈ H and g ∈ D. Since D is dense in G we obtain that the w∗−limit of
the difference quotients is 0 for each h ∈ H, and so f is w∗−differentiable at any x ∈ E \N and
wdfx = ∇f(x).

As a supremum of w∗−continuous functions, every dual norm is a w∗−lower semicontinuous
function. Using this fact, we have that

‖wdfx(h)‖Y ≤ lim inf
t→0+

‖f(x+ th)− f(x)‖Y
t

∀h ∈ H. (1)

Now, let D′ be a countable dense set in the unit sphere of H. Let us see that, given h ∈ H,
for γ−a.e.x it holds

L 1({τ ∈ R : x+ τh ∈ N}) = 0.
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Indeed,∫
E

L 1({τ : x+ τh ∈ N})dγ(x) =
∫

R
γ({x : x+ τh ∈ N})dτ ( Fubini’s Theorem )

=
∫

R
Tτh(γ)({x : x ∈ N})dτ

=
∫

R
0dτ = 0 (Tτhγ � γ).

Hence, if we set Nh := {x : L 1({τ : x+ τh ∈ N}) > 0} and N ′ :=
⋃
h∈D′ Nh, it is obvious that

γ(N ′) = 0.

By the fundamental Theorem of calculus for Lipschitz functions we obtain that

fg(x+ th)− fg(x) =
∫ t

0

d

dτ
fg(x+ τh)dτ

(∗)
=

∫ t

0
∇hfg(x+ τh)dτ,

for any t > 0, h ∈ D′, g ∈ D and x ∈ E \ (N ∪N ′). Observe that the identity (∗) above makes
sense because we have chosen x outside the set N ′, and so the integrands in the two integrals
are equal L 1−a.e. in R for each h ∈ D′ and each g ∈ D. Moreover, we have that

lim
%→0

1
%

∫ %

0
‖∇f(x+ τh)(h)‖Y dτ = ‖∇f(x)(h)‖Y (∗∗),

outside a γ−negligible set N ′′ ⊂ E for every h ∈ D′ and g ∈ D. Indeed, if we denote

Nh := {x ∈ E \N : (∗∗) does not hold },

we know by the Lebesgue differentiation theorem that L 1({t : x + th ∈ Nh}) = 0 for each
x ∈ E \ (N ∪N ′). Now, by Lemma 11 we obtain that γ(Nh) = 0 and if we set N ′′ :=

⋃
h∈D′ Nh

the assertion follows.

We have that

|〈f(x+ th)− f(x), g〉| =|fg(x+ th)− fg(x)| =
∣∣∣ ∫ t

0
∇hfg(x+ τh)dτ

∣∣∣
≤

∫ t

0
|∇hfg(x+ τh)|dτ =

∫ t

0
|〈∇f(x+ τh)(h), g〉|dτ

for any t > 0, h ∈ D′, g ∈ D and x ∈ E \ (N ∪N ′). By density, and taking the supremum over
all g ∈ G in the extreme parts of the previous inequality we obtain that

‖f(x+ th)− f(x)‖Y ≤
∫ t

0
‖∇f(x+ τh)(h)‖Y dτ.

If x /∈ (N ∪N ′ ∪N ′′) and h ∈ D′ we can divide both sides by t and let t tend to zero to obtain

lim sup
t→0+

‖f(x+ th)− f(x)‖Y
t

≤ ‖∇f(x)(h)‖Y = ‖wdfx(h)‖Y ∀h ∈ D′.

Again, by density of D′ in the unit sphere and 1−homogeneity of directional derivatives, the in-
equality above holds for any h ∈ H. This, combined with (1), proves the metric differentiability
of f at γ−a.e. x. �
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