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THE APPROXIMATION OF HIGHER-ORDER INTEGRALS OF
THE CALCULUS OF VARIATIONS

AND THE LAVRENTIEV PHENOMENON∗

ALESSANDRO FERRIERO†

Abstract. We prove the following approximation theorem: given a function x : [a, b] → R
N in

the Sobolev space Wν+1,1, ν ≥ 1, and ε > 0, there exists a function xε in Wν+1,∞ such that∫ b

a

m∑
i=1

Li(x
(ν)
ε , x

(ν+1)
ε )ψi(t, xε, x

′
ε, . . . , x

(ν)
ε ) <

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)) + ε,

xε(a) = x(a), xε(b) = x(b),

x′
ε(a) = x′(a), x′

ε(b) = x′(b),

...

x
(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b),

provided that, for every i in {1, . . . ,m}, Liψi is continuous in a neighborhood of x, Li is convex in
its second variable, and ψi evaluated along x has positive sign. We discuss the optimality of our
assumptions comparing them with an example of Sarychev [J. Dynam. Control Systems, 3 (1997),
pp. 565–588].

As a consequence, we obtain the nonoccurrence of the Lavrentiev phenomenon. In particular,

the integral functional
∫ b
a L(x(ν), x(ν+1)) does not exhibit the Lavrentiev phenomenon for any given

boundary values x(a) = A, x(b) = B, x′(a) = A′, x′(b) = B′, . . . , x(ν)(a) = A(ν), x(ν)(b) = B(ν).
Furthermore, we prove the following necessary condition: an action functional with Lagrangian

of the form
∑m

i=1 Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)), with ν ≥ 0, exhibiting the Lavrentiev phe-
nomenon takes the value +∞ in any neighborhood of a minimizer.
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1. Introduction. In 1926, Lavrentiev [11] proposed an example of a first-order

integral functional of the calculus of variations, I(x) =
∫ b

a
L(t, x, x′), whose infimum

taken over the space of the absolutely continuous functions W1,1(a, b) is strictly less
than the infimum taken over the space of Lipschitz continuous functions W1,∞(a, b),
with x(a) = A and x(b) = B. Later, Manià [13] published a simpler example of the
same phenomenon where the Lagrangian is

L1(x
′)ψ1(t, x) = |x′|6(x3 − t)2.

Several papers have been devoted to the problem of finding conditions under
which the Lavrentiev phenomenon does not occur: Angell [2], Clarke, Vinter [8],
Ball, Mizel [3], Lowen [12], Alberti, Serra Cassano [1]. In a recent paper by Cellina,
Ferriero, and Marchini [5] a large class of Lagrangians of the form L1(x, x

′)ψ1(t, x)
has been treated, including the autonomous and some nonautonomous cases, under
no additional conditions besides the convexity of L1 in x′ and the positivity of ψ1.
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Besides the first-order case, the Lavrentiev phenomenon occurs as well in the case

with (ν + 1)-order derivatives, I(x) =
∫ b

a
L(t, x, x′, . . . , x(ν+1)). For ν = 1, in 1994

Cheng and Mizel [7] described a restricted Lavrentiev phenomenon in which the gap
occurs for a dense subset of the absolutely continuous nonnegative functions, and they
proved that even autonomous Lagrangian L(x, x′, x′′) can exhibit it. Some years later
Sarychev [15] proved that a class of Lagrangians of the form

L1(x
′′)ψ1(x, x

′) + L2(x
′′)

exhibits the Lavrentiev phenomenon provided that ψ1(x, x
′) = φ(kx− k|x′ − 1|k−1 −

(k − 1)|x′ − 1|k) for appropriate constants k, that L1, L2, φ satisfy certain growth
conditions, and that φ(0) = 0. For example, L1(x

′′) = |x′′|7, L2(x
′′) = α|x′′|3/2,

φ1(·) = (·)2, k = 3, and α > 0 sufficiently small yield a Lagrangian whose inte-
gral exhibits the Lavrentiev phenomenon when the boundary values are x(0) = 0,
x(1) = 5/3, x′(0) = 1, x′(1) = 2.

The Lagrangians proposed by Manià and Sarychev have the property that L1 eval-
uated along the minimizer x is not integrable (this is possible because there exists
at least one point t in [a, b] such that ψ1 evaluated along x in t is 0). A condition
avoiding the occurrence of this fact will turn out, in this paper, to be essential for the
nonoccurrence of the Lavrentiev phenomenon.

We prove the following general approximation theorem: let x : [a, b] → R
N be a

function in Wν+1,1 (independently on whether is a minimizer or not), then the inte-
grability of Li evaluated along x (or the assumption that ψi > 0), for every i, implies
that, given ε > 0, there exists a function xε in Wν+1,∞ with the same boundary
values of x in a and in b, i.e., xε(a) = x(a), xε(b) = x(b), x′

ε(a) = x′(a), x′
ε(b) = x′(b),

. . . , x
(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b), such that

∫ b

a

m∑
i=1

Li(x
(ν)
ε , x(ν+1)

ε )ψi(t, xε, x
′
ε, . . . , x

(ν)
ε )

<

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)) + ε.

We underline that an application of this result is the nonoccurrence of the Lavrentiev
phenomenon for a class of functionals of the calculus of variations with (ν + 1)-order
derivatives, ν ≥ 1. (The case ν = 0, m = 1 has already been treated in [5]. The case
ν = 0, m > 1 can be obtained modifying slightly the proof of the main result of [5];
see [10].) Moreover, we infer a necessary condition for the Lavrentiev phenomenon.

In section 2 we state our results, we discuss the optimality of the assumptions,
and we infer the nonoccurrence of the Lavrentiev phenomenon. In section 3 we prove
the main result. In section 4 we deal with a necessary condition for the Lavrentiev
phenomenon: a functional

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)),

with ν ≥ 0, exhibiting the Lavrentiev phenomenon takes the value +∞ in any neigh-
borhood of a minimizer x̄.

2. The main result and the Lavrentiev phenomenon. For δ > 0, B[c, δ]
denotes the closed ball in R

N centered in c with radius δ. For a function x in Cν [a, b],
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with values in R
N , the closed δ-tube along (x, . . . , x(ν))

Tν
δ [x] = {(t, z0, . . . , zν) ∈ [a, b] × R

(ν+1)N :

(z0, . . . , zν) ∈ B[x(t), δ] × · · · ×B[x(ν)(t), δ], t ∈ [a, b]}

and the closed δ-neighborhood of the image Im(x(ν)) of x(ν)

Iδ[x
(ν)] = {z ∈ R

N : dist(z, Im(x(ν))) ≤ δ}

are compact sets.
We recall that the space Wν+1,p(a, b) can be seen as the space of functions x in

Cν [a, b] such that x(ν) is absolutely continuous with derivative in Lp(a, b), p ≥ 1.
The following approximation theorem is our main result.
Theorem 2.1. Let x be a function in Wν+1,1(a, b), ν ≥ 1, and let the real-valued

functions L1, . . . , Lm and ψ1, . . . , ψm be continuous on Iδ[x
(ν)] × R

N and on Tν
δ [x],

respectively, for some δ > 0.
Assume that, for every i in {1, . . . ,m},
• Li(ξ, ·) is convex, for every ξ in Iδ[x

(ν)],
• ψi is nonnegative, and ψi(t, x(t), x′(t), . . . , x(ν)(t)) > 0, for every t in [a, b].

Then

(i) I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt > −∞;

(ii) given any ε > 0, there exists a function xε in Wν+1,∞(a, b) such that

I(xε) < I(x) + ε,

and

xε(a) = x(a), xε(b) = x(b),

x′
ε(a) = x′(a), x′

ε(b) = x′(b),

...

x(ν)
ε (a) = x(ν)(a), x(ν)

ε (b) = x(ν)(b).

As a corollary we obtain the nonoccurrence of the Lavrentiev phenomenon.
Theorem 2.2. Let Ω0, . . . ,Ων be open sets in R

N , ν ≥ 1, such that the set
E = {x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, . . . , x

(ν)(t) ∈ Ων ∀t ∈ [a, b]} is nonempty.
Let L1, . . . , Lm : Ων×R

N → R and ψ1, . . . , ψm : [a, b]×Ω0×· · ·×Ων → (0,+∞) be
continuous and such that Li(ξ, ·) is convex, for any ξ in Ων , and any i in {1, . . . ,m}.

Then, for all boundary values A,B ∈ Ω0, A
(1), B(1) ∈ Ω1, . . . , A

(ν), B(ν) ∈ Ων ,
the infimum of

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt

over the space Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1), . . . ,
x(ν)(a) = A(ν), x(ν)(b) = B(ν)} is equal to the infimum of the same functional I over
the space Ea,b ∩ Wν+1,∞(a, b).

Proof. Let {xn}n ⊂ Ea,b be a minimizing sequence for I: by the fact that
ψi > 0, for every i, the theorem follows from Theorem 2.1 applied to any xn, with
ε = 1/n.
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Setting m = 1, ψ1 = 1, and L1 = L, we obtain that a Lagrangian depending
only on x(ν) and x(ν+1) satisfies the assumptions of Theorem 2.2. Hence, the integral
functional ∫ b

a

L(x(ν)(t), x(ν+1)(t))dt

does not exhibit the Lavrentiev phenomenon, for any boundary values

x(a) = A, x(b) = B,

x′(a) = A(1), x′(b) = B(1),

...

x(ν)(a) = A(ν), x(ν)(b) = B(ν).

This extends some previous results ([1], [4]), where functionals without boundary
conditions, or with boundary conditions only in a, have been considered.

We point out that the assumption ψi(t, x(t), x′(t), . . . , x(ν)(t)) 
= 0 ∀t ∈ [a, b] in

Theorem 2.1 will be used only to infer that
∫ b

a
Li(x

(ν), x(ν+1)) is finite, provided that
I(x) is finite (point (a) in the proof). The theorem holds under the weaker assumption∫ b

a
|Li(x

(ν), x(ν+1))| < +∞, for every i.
To verify how sharp our assumptions are, consider the following example of A. V.

Sarychev [15]: for ν = 1, m = 1, minimize the functional∫ 1

0

|x′′(t)|7[3x(t) − 3|x′(t) − 1|2 − 2|x′(t) − 1|3]2dt,

with boundary conditions x(0) = 0, x(1) = 5/3, x′(0) = 1, x′(1) = 2. He proved

that the infimum taken over the space W2,1(0, 1), assumed in x̄(t) = (2/3)
2
√
t3 + t, is

strictly lower than the infimum taken over the space W2,∞(0, 1).

The assumption
∫ b

a
|L1(x

′, x′′)| < +∞ along x̄ is not verified. Indeed, setting
ψ1(t, x, ξ) = [3x− 3|ξ− 1|2 − 2|ξ− 1|3]2 and L1(ξ, w) = |w|7, we see that ψ1 ≥ 0 (but,
for example, ψ1(0, x(0), x′(0)) = 0) and that∫ 1

0

|x̄′′(t)|7dt =

∫ 1

0

1

(2
√
t)7

dt = +∞.

3. Proof of the main theorem. In what follows, x denotes the matrix (x, . . . ,
x(ν−1)) and x = x(ν−1), so that x′ = x(ν), x′′ = x(ν+1) (similarly, z = (z, . . . , z(ν−1)),
and z = z(ν−1)). The Lagrangian we consider takes the form

m∑
i=1

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t)).

(In case ν = 1, x, x′, x′′ coincide with x, x′, x′′, respectively.)
(i) For every t ∈ [a, b], Li(x

′(t), x′′(t)) ≥ Li(x
′(t), 0) + 〈p0(t), x

′′(t)〉, where p0(t) is
any selection from the subdifferential ∂wLi(x

′(t), 0) of Li with respect to its second
variable. Set Ei = {t ∈ [a, b] : [Li(x

′(t), x′′(t))]− 
= 0}, so that∫ b

a

[Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))]−dt

≤ −
∫
Ei

[Li(x
′(t), 0) + 〈p0(t), x

′′(t)〉]ψi(t,x(t), x′(t))dt,
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for any i. Since ψi is bounded and, by Proposition 2 in [5], p0(t) is bounded, the
claim follows by Hölder’s inequality.

(ii) Fix ε > 0; set ε̄ = ε/m. Without loss of generality, we shall assume ε < 1,
and also δ < 1.

In case
∫ b

a
Li(x

′(t), x′′(t))ψi(t,x(t), x′(t))dt = +∞, for some i, any Lipschitz func-
tion xε satisfying the boundary conditions is acceptable. Hence we can assume, for
every i, ∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt < +∞.

The proof is in three steps. In Step (1) of the proof we introduce the new functions
L̃i such that L̃i = Li+const and such that their polar functions L̃∗

i (with respect to the
second variable) are nonnegative. In Step (3) we define a variation zn in W∞,1(a, b),
with the same boundary values of x in a and in b, such that I(zn) < I(x) + ε. In
order to define zn, in Step (2) we define a sequence of reparameterizations sn of [a, b].

Step (1). We claim that there exists functions L̃i and a constant η such that
L̃i = Li + η and L̃∗

i ≥ 0, for any i.
In fact, consider the set

Vi = {(ξ, p) : ξ ∈ Iδ[x
(ν)], p ∈ ∂wLi(ξ, w), |w| ≤ 1}.

By Proposition 2 in [5], arguing by contradiction, we obtain that Vi is compact. Let
L∗
i (ξ, p) = supw∈RN 〈p, w〉 − Li(ξ, w) be the polar function of Li with respect to its

second variable. Then, minVi L
∗
i is attained and is finite. Applying Proposition 3 in [5],

we obtain that L∗
i (ξ, p) ≥ minVi L

∗
i , for every ξ ∈ Iδ[x

(ν)], for every p ∈ ∂wLi(ξ, w)
and for every w ∈ R

N . Set η = min{minV1
L∗

1, . . . ,minVm
L∗
m}.

Consider L̃i(ξ, w) = Li(ξ, w) + η. Since ∂wLi(ξ, w) = ∂wL̃i(ξ, w), we have that

L̃∗
i (ξ, p) ≥ 0, for any i. (We denote Ĩi the functional

∫ b

a
L̃iψi.)

(a) We set some preliminary constants, depending on ε̄ fixed, that we shall use in
the following steps.

By the condition on ψi, there exists c > 0 such that ψi(t,x(t), x′(t)) ≥ c, for every
t in [a, b], and we obtain

+∞ >

∫ b

a

|Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt + η

∫ b

a

ψi(t,x(t), x′(t))dt

≥
∫ b

a

|L̃i(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt ≥ c

∫ b

a

|L̃i(x
′(t), x′′(t))|dt.

Set �i =
∫ b

a
|L̃i(x

′(s), x′′(s))|ds, � = max{�1, . . . , �m}, and Ψ and L̃ the maximum

value of |ψ1|, . . . , |ψm| over Tν
δ [x] and of |L̃1|, . . . , |L̃m| over Iδ[x

(ν)]×B[0, |x′′(τ)|+ δ],
respectively. Denote α = max{1, (b− a)ν}.

From the uniform continuity of ψ1, . . . , ψm on Tν
δ [x], we infer that we can fix

h ∈ N, 1/2h < δ, such that whenever (t1,x1, ξ1), (t2,x2, ξ2) ∈ Tν
δ [x] and

|t1 − t2| ≤
b− a

2h
, |x1,j − x2,j | ≤

1

2h
∀j ∈ {0, . . . , ν − 1}, |ξ1 − ξ2| ≤

1

2h
,

we have

|ψi(t1,x1, ξ1) − ψi(t2,x2, ξ2)| < min

{
ε̄

8(� + L̃ + 1)
,

ε̄

2(|η| + 1)(b− a)

}
,
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for any i.
Let θ : R → [0, 1] be a C∞ increasing function with value 0 on (−∞, 0] and 1 on

[1,+∞). Observe that 1 ≤ ||θ(j)||∞ ≤ ||θ(j+1)||∞, for any j ≥ 0. Set Θ = ||θ(ν+1)||∞.
There exists a point τ in (a, b) that is a Lebesgue point for the functions

L̃1(x
′(·), x′′(·))ψ1(·,x(·), x′(·)), . . . , L̃m(x′(·), x′′(·))ψm(·,x(·), x′(·)) and x′′, x′′(τ) in

R
N . By definition of Lebesgue point, there exists a positive number ρ less than

min

{
1

2h+4(ν + 2)(ν + 1)νΘα2
,

ε̄

32L̃Ψ

}

such that, for any λ−, λ+ in (0, ρ),

∫ τ+λ+

τ−λ−
|L̃i(x

′(t), x′′(t))ψi(t,x(t), x′(t)) − L̃i(x
′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))|dt

≤ (λ+ + λ−)ε̄

for any i, and

∫ τ+λ+

τ−λ−
|x′′(t) − x′′(τ)|dt ≤ (λ+ + λ−)

1

2h+4(ν + 1)νΘα
.

Fix t−0 = (b− a)v−/2γ , t+0 = (b− a)v+/2γ , where γ ∈ N, v−, v+ ∈ {0, 1, . . . , 2γ},
v− < v+, are such that τ ∈ (τ−, τ+) ⊂ (τ − ρ, τ + ρ).

We define the absolutely continuous function z′ : [a, b] → R
N by z′(t) = x(ν)(a) +∫ t

a
z′′, where

z′′(t) =

⎧⎪⎨
⎪⎩

x(ν+1)(τ) +
1

τ+ − τ−

∫ τ+

τ−
[x′′ − x′′(τ)], t ∈ [τ−, τ+],

x(ν+1)(t), otherwise.

By definition, z′′(t) = x′′(t), z′(t) = x′(t), for any t in [a, τ−] ∪ [τ+, b]. For any t in
[τ−, τ+], we have that z′′(t) ∈ B[0, |x′′(τ)| + δ/2] and

|z′(t) − x′(t)| ≤ 2

∫ τ+

τ−
|x′′(τ) − x′′| < (τ+ − τ−)

1

2h+3(ν + 1)νΘα
.

Step (2). Our purpose is to show that there exists a sequence of reparameteriza-
tions sn of [a, b] into itself such that z′ ◦ sn is Lipschitz continuous on [a, b].

From the uniform continuity of x, . . . , x(ν) on [a, τ−]∪ [τ+, b], we infer that we can
fix k ∈ N, such that whenever |s1 − s2| ≤ (b − a)/2k, we have |x(j)(s1) − x(j)(s2)| <
(τ+ − τ−)ν+2, for any j in {1, . . . , ν}.

For v = 0, . . . , 2k − 1, set Iv = [(b− a)v/2k, (b− a)(v + 1)/2k], Hv =
∫
Iv

|z′′(s)|ds,
μ = max{2k+1Hv/(b− a) : v = 0, . . . , 2k − 1}, and

THv =

{
s ∈ Iv : |z′′(s)| ≤ 2k+1Hv

b− a

}
;

we have that |THv | ≥ (b− a)/2k+1.
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Since {(z′(s), z′′(s)) : s ∈
⋃2k−1

v=0 THv} belongs to a compact set and L1, . . . , Lm

are continuous, there exists a constant M , such that∣∣∣∣L̃i(z
′(s) + ξ, 2z′′(s) + w)

1

2
− L̃i

(
z′(s) + ξ, z′′(s) +

w

2

)∣∣∣∣ ≤ M,

for any s ∈
⋃2k−1

v=0 THv
, any |ξ| ≤ δ, any |w| ≤ δ, and any i.

For every n ∈ N, set Sv
n = {s ∈ Iv : |z′′(s)| > n}. From the integrability of z′′ it

follows that
∫
Sv
n
(|z′′(s)|/n− 1)ds converges to 0, as n goes to ∞. Hence, we can fix a

subset Σv
n of THv

such that |Σv
n| = 2

∫
Sv
n
(|z′′(s)|/n− 1)ds.

We define the absolutely continuous functions tn by tn(s) = a +
∫ s

a
t′n, where

t′n(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 + (|z′′(s)|/n− 1), s ∈ Sn =
⋃2k−1

v=0 Sv
n,

1 − 1/2, s ∈ Σn =
⋃2k−1

v=0 Σv
n,

1, otherwise.

One verifies that tn admits inverse function sn on the interval [a, b]. Furthermore,
for any v in {0, . . . , 2k − 1}, the restriction of tn to Iv maps Iv onto itself. Hence,
|tn(s) − s| ≤ (b − a)/2k, for any s in [a, b]. If n is greater than |x′′(τ)| + δ/2, the
restriction of tn to [τ−, τ+] is the identity.

The function z′ ◦ sn is Lipschitz continuous on [a, b]. In fact, fix t where s′n(t)
exists: we obtain

∣∣∣∣d(z′ ◦ sn)

dt
(t)

∣∣∣∣ = |z′′(sn(t))s′n(t)|

⎧⎪⎨
⎪⎩

= n, t ∈ Sn,

≤ μ, t ∈ Σn,

≤ n, otherwise.

Step (3). We construct a function zn : [a, b] → R
N , with the same boundary

values of x in a and b, such that zn belongs to Wν+1,∞(a, b) and Ĩi(zn) < Ĩi(x)+ ε̄/2.

Set f ′(t) = θ((t − τ−)/(τ+ − τ−)), for any t in [a, b] (the function θ as defined
in point (a)): then f ′ is identically 0 on [a, τ−], it is identically 1 on [τ+, b], and
||f (j+1)||∞ = ||θ(j)||∞/(τ+ − τ−)j , for any j ≥ 0.

We define ν absolutely continuous functions zn,ν−1, . . . , zn,0 : [a, b] → R
N by

zn,ν−1(t) = x(ν−1)(a) +

∫ t

a

z′ ◦ sn + f ′(t)Dν−1,

zn,ν−2(t) = x(ν−2)(a) +

∫ t

a

zn,ν−1 + f ′(t)Dν−2,

...

zn,0(t) = x(a) +

∫ t

a

zn,1 + f ′(t)D0,

where, for any j in {0, · · · , ν − 2},

Dj = x(j)(b) − x(j)(a) −
∫ b

a

zn,j+1, Dν−1 = x(ν−1)(b) − x(ν−1)(a) −
∫ b

a

z′ ◦ sn.
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Set zn = zn,0. The derivatives of zn up to the order ν + 1 are

z′n(t) = zn,1(t) + f ′′(t)D0,

z′′n(t) = zn,2(t) + f ′′′(t)D0 + f ′′(t)D1,

...

z(ν−1)
n (t) = zn,ν−1(t) +

∑ν−2
j=0 f (ν−j)(t)Dj ,

z(ν)
n (t) = z′(sn(t)) +

∑ν−1
j=0 f (ν−j+1)(t)Dj ,

z(ν+1)
n (t) = z′′(sn(t))s′n(t) +

∑ν−1
j=0 f (ν−j+2)(t)Dj .

We denote by H′ the function
∑ν−1

j=0 f (ν−j+1)Dj . By the properties of f (j) and sn,

we have that zn belongs to Wν+1,∞(a, b), with ||z(ν+1)
n ||∞ ≤ n+ ||H′′||∞ (where || · ||∞

is the essential supremum on (a, b)), and it has the same boundary values of x in
a and b.

(b) We claim that ||z(j)
n − x(j)||∞ ≤ 1/2h and ||z(j)

n ◦ tn − x(j)||∞ ≤ 1/2h, for any
j in {0, . . . , ν}, eventually in n.

In fact, for any n greater than |x′′(τ)| + δ/2, we have

|Dν−1| ≤
∫ τ−

a

|x′ − x′ ◦ sn| +
∫ τ+

τ−
|x′ − z′| +

∫ b

τ+

|x′ − x′ ◦ sn|

≤ (τ+ − τ−)2
[
3α(τ+ − τ−)ν +

1

2h+3(ν + 1)νΘα

]

≤ (τ+ − τ−)2
1

2h+2(ν + 1)νΘα
,

|Dν−2| ≤
∫ τ+

a

∣∣∣∣x′(t) − x′(a) −
∫ t

a

z′ ◦ sn − f ′(t)Dn,ν−1

∣∣∣∣ dt
+

∫ b

τ+

∣∣∣∣∣x′(t) − x′(b) +

∫ b

t

z′ ◦ sn − [1 − f ′(t)]Dn,ν−1

∣∣∣∣∣ dt
≤

∫ τ+

a

∫ t

a

|x′ − z′ ◦ sn|dt + (τ+ − τ−)|Dn,ν−1| +
∫ b

τ+

∫ b

t

|x′ − z′ ◦ sn|dt

≤ (τ+ − τ−)3
[
4α(τ+ − τ−)ν−1 +

1

2h+3(ν + 1)νΘα

]
+ (τ+ − τ−)|Dν−1|

≤ (τ+ − τ−)3
2

2h+2(ν + 1)νΘα
,

...

|Dj | ≤ (τ+ − τ−)ν−j+1 ν − j

2h+2(ν + 1)νΘα
≤ (τ+ − τ−)ν−j+1 1

2h+2(ν + 1)Θ

∀j ∈ {0, . . . , ν − 1},

so that ||H′||∞ ≤
∑ν−1

j=0 ||f (ν−j+1)||∞(τ+−τ−)ν−j+1/[2h+2(ν+1)Θ] ≤ (τ+−τ−)/2h+2,



APPROXIMATION OF HIGHER-ORDER ACTIONS 107

||H′′||∞ ≤ 1/2h+2, and

|z′(sn(t)) − x′(t)| ≤ (τ+ − τ−)

[
3α(τ+ − τ−)ν+1 +

1

2h+3(ν + 1)νΘα

]

≤ 1

2h+2(ν + 1)νΘα
,

|zn,ν−1(t) − x(ν−1)(t)| ≤
∫ b

a

|z′ ◦ sn − x′| + (b− a)|Dν−1| ≤ (1 + b− a)|Dν−1|

≤ 2α

2h+2(ν + 1)νΘα
,

...

|zn,j(t) − x(j)(t)| ≤ (ν − j + 1)α

2h+2(ν + 1)νΘα
≤ 1

2h+2
∀j ∈ {0, . . . , ν − 1}.

Hence, we can fix n such that MΨ|Σn| < ε̄/8, ||z(j)
n − x(j)||∞ ≤ 1/2h+1, and

||z(j)
n ◦ tn − x(j)||∞ ≤ ||z(j)

n ◦ tn − x(j) ◦ tn||∞ + ||x(j) ◦ tn − x(j)||∞ ≤ 1/2h,

for any j in {0, . . . , ν}. The graph of the function (zn, z
′
n) is included in Tν

δ [x], and
z′′n(t) ∈ B[0, |x′′(τ)| + δ], for any t in [τ−, τ+]. (From what follows, it turns out that
zn is the sought variation xε.)

(c) We show that Ĩi(zn) < Ĩi(x) + ε̄/2, for any i.
Using the change of variable formula [16], we compute Ĩi(zn) − Ĩi(x) as the sum

of the following three appropriate terms:∫ b

a

L̃i(z
′
n(tn(s)), z′′n(tn(s)))ψi(tn(s), zn(tn(s)), z′n(tn(s)))t′n(s)ds

−
∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds

=

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′n(tn(s))) t′n(s) − L̃i(z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

]
× ψi(tn(s), zn(tn(s)), z′n(tn(s)))ds

+

∫ b

a

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

× [ψi(tn(s), zn(tn(s)), z′n(tn(s))) − ψi(s,x(s), x′(s))]ds

+

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) − L̃i(x

′(s), x′′(s))
]
ψi(s,x(s), x′(s))ds

= I1
i + I2

i + I3
i .

To estimate I1
i , it is enough to estimate its integrand over the sets Sn and Σn

(because it is identically 0 elsewhere). Since Σn ⊂ T and ||H′′||∞ ≤ δ, we obtain that

L̃i (z
′(s) + H′(tn(s)), 2z′′(s) + H′′(tn(s)))

1

2

− L̃i

(
z′(s) + H′(tn(s)), z′′(s) +

H′′(tn(s))

2

)
≤ M,
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for every s in Σn. By Propositions 3 and 4 in [5], for every s in Sn,

L̃i

(
z′n(tn(s)), n

z′′(s) + t′n(s)H′′(tn(s))

|z′′(s)|

)
|z′′(s)|

n

− L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) ≤ −

(
|z′′(s)|

n
− 1

)
L̃∗
i (z

′
n(tn(s)), p) ≤ 0,

where p ∈ ∂wLi(z
′
n(tn(s)), n(z′′(s) + t′n(s)H′′(tn(s)))/|z′′(s)|). Using the fact that ψi

is positive and bounded by Ψ, we have I1
i ≤ MΨ|Σn| < ε̄/8.

To estimate I2
i , we observe that

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) =

{
L̃i(z

′
n(s), z′′(s) + H′′(s)), s ∈ [τ−, τ+],

L̃i(x
′(s), x′′(s)), otherwise.

By the fact that |ψi(tn(s), zn(tn(s)), z′n(tn(s)))−ψi(s,x(s), x′(s))| ≤ ε̄/[8(�+ L̃ + 1)],
for any s in [a, b], and that z′′ + H′′ ∈ B[0, |x′′(τ)| + δ] on [τ−, τ+], we have I2

i ≤ ε̄/8.
To estimate I3

i , it is enough to estimate the integrals over [τ−, τ+]
(because it is identically 0 elsewhere). Recalling that τ is a Lebesgue point for
L̃i(x

′(·), x′′(·))ψi(·,x(·), x′(·)), we have

I3
i ≤

∫ τ+

τ−
[L̃i(z

′
n(s), z′′(s) + H′′(s))ψi(s,x(s), x′(s))

− L̃i(x
′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))]ds +

ε̄

8

≤ 4ρL̃Ψ +
ε̄

8
<

ε̄

4
.

Hence, I1
i + I2

i + I3
i < ε̄/2, for any i.

Conclusion. We have obtained∫ b

a

Li(z
′
n(t), y′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt

<

∫ b

a

[Li(z
′
n(t), z′′n(t)) + η]ψi(t, zn(t), z′n(t))dt

−
∫ b

a

[Li(x
′(t), x′′(t)) + η]ψi(t,x(t), x′(t))dt +

ε̄

2

=

∫ b

a

L̃i(z
′
n(t), z′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds +

ε̄

2

< ε̄.

Hence, I(zn) − I(x) <
∑m

i=1 ε̄ = ε.
So, setting xε = zn, we have proved the theorem.

4. A necessary condition for the Lavrentiev phenomenon. The content
of this section is provided to show the following necessary condition: a functional

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, . . . , x(ν)),
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with ν ≥ 0, exhibiting the Lavrentiev phenomenon takes the value +∞ in any neigh-
borhood of a minimizer x̄; or equivalently if I assumes only finite values on a neigh-
borhood of x̄, then I does not exhibit the Lavrentiev phenomenon.

This is proved in the following corollary to Theorem 2.1 and Theorem 1 in [5].
Corollary 4.1. Let Ω0, . . . ,Ων be open sets in R

N , ν ≥ 0, such that the set
E = {x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, . . . , x

(ν)(t) ∈ Ων ∀t ∈ [a, b]} is nonempty. Let
A,B ∈ Ω0, A

(1), B(1) ∈ Ω1, . . . , A
(ν), B(ν) ∈ Ων be given boundary values.

Let L1, . . . , Lm : Ων ×R
N → R and ψ1, . . . , ψm : [a, b]×Ω0 × · · · ×Ων → [0,+∞)

be continuous and such that Li(ξ, ·) is convex, for any ξ in Ων , any i in {1, . . . ,m}.
Let

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x′(t), . . . , x(ν)(t))dt

be a functional exhibiting the Lavrentiev phenomenon, and let x̄ be a minimum of
I over Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1), . . . ,
x(ν)(a) = A(ν), x(ν)(b) = B(ν)}.

Assume that for any δ > 0 there exists σδ > 0 such that σδ → 0, for δ → 0, and
that ψi restricted to Tν

δ [x̄] may vanish only on the graph of (x̄, x̄′, . . . , x̄(ν)) or on a
σδ-neighborhood of (a,A, . . . , A(ν)) or on a σδ-neighborhood of (b,B, . . . , B(ν)), for
any i in {1, . . . ,m}.

Then, for any ε > 0, there exists xε in Ea,b such that the graph of (xε, x
′
ε, . . . , x

(ν)
ε )

is included in Tν
ε [x̄] and I(xε) = +∞.

Proof. Fix ε > 0. From Theorem 2.1 and Theorem 1 in [5], it follows that∫ b

a
|Li(x̄

(ν), x̄(ν+1))| = +∞, for at least one i in {1, . . . ,m}.
Without loss of generality, we suppose that

∫ (a+b)/2

a
|Li(x̄

(ν), x̄(ν+1))| = +∞.
Let g : (−∞,+∞) → [0, 1] be a C∞ increasing function with value 1 on [b,+∞)

and 0 on (−∞, (a + b)3/4]. We define the integrable function xδ,ν+1 : [a, b] → R
N by

xδ,ν+1(t) =

{
0, t ∈ [a, a + σδ),

x̄(ν+1)(t− σδ), otherwise,

and ν absolutely continuous functions xδ,j(t) = A(j) +
∫ t

a
xδ,j+1 + g(t)Dδ,j , for any

t in [a, b], where Dδ,j = B(j) −A(j) −
∫ b

a
xδ,j+1, for any j in {0, . . . , ν}.

Set xδ = xδ,0. The derivatives of xδ up to the order ν + 1 are

x′
δ(t) = xδ,1(t) + g′(t)Dδ,0,

x′′
δ (t) = xδ,2(t) + g′′(t)Dδ,0 + g′(t)Dδ,1,

...

x
(ν+1)
δ (t) = xδ,ν+1(t) +

∑ν
j=0 g

(ν−j+1)(t)Dδ,j .

By definition, xδ belongs to Wν+1,1(a, b), it has the same boundary values of x̄
in a and in b, and, for j in {ν, ν + 1}, for any t in [a + σδ, (a + b)3/4], we have

x
(j)
δ (t) = x̄(j)(t − σδ). Furthermore, there exist constants cj , dj , independent on δ,

such that |Dδ,j | ≤ cj
∫ b

b−σδ
|x̄(ν+1)| and ||xδ,j − x

(j)
δ ||∞ ≤ dj

∫ b

b−σδ
|x̄(ν+1)|. Hence, for

any j in {0, . . . , ν},

||x̄(j) − x
(j)
δ ||∞ ≤

⎛
⎝cj + ||g(ν+1)||∞

ν∑
j=0

dj

⎞
⎠∫ b

b−σδ

|x̄(ν+1)|.
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By hypothesis, we can choose δ̄ > 0 such that (cj + ||g(ν+1)||∞
∑ν

j=0 dj)
∫ b

b−σδ̄
|x̄(ν+1)|

< ε and σδ̄ < (b− a)/4.

Set Ψi = min{ψi(t, xδ̄(t), . . . , x
(ν)

δ̄
(t)) : t ∈ [a + σδ̄, (a + b)3/4]}: by hypothesis,

Ψi is positive. We have obtained that the graph of (xδ̄, x
′
δ̄
, . . . , x

(ν)

δ̄
) belongs to Tν

ε [x̄]
and ∫ b

a

|Li(x
(ν)

δ̄
(t), x

(ν+1)

δ̄
(t))ψi(t, xδ̄(t), . . . , x

(ν)

δ̄
(t))|dt

≥
∫ (a+b)3/4

a+σδ̄

|Li(x̄
(ν)(t− σδ̄), x̄

(ν+1)(t− σδ̄))|ψi(t, xδ̄(t), . . . , x
(ν)

δ̄
(t))dt

≥ Ψi

∫ (a+b)/2

a

|Li(x̄
(ν)(t), x̄(ν+1)(t))|dt = +∞.

From (i) in the proof of Theorem 2.1 and Theorem 1 in [5], we infer that I(xδ̄) = +∞.
So, setting xε = xδ̄, we have proved the corollary.
The corollary above applies to the functionals of Manià and Sarychev, for instance,

and to the examples of functionals exhibiting the Lavrentiev phenomenon proposed
in [3], [4], [11], [12], [13], [14], and [15].
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