THE APPROXIMATION OF HIGHER-ORDER INTEGRALS OF THE CALCULUS OF VARIATIONS AND THE LAVRENTIEV PHENOMENON*

ALESSANDRO FERRIERO ${ }^{\dagger}$

$$
\begin{aligned}
& \text { Abstract. We prove the following approximation theorem: given a function } x:[a, b] \rightarrow \mathbb{R}^{N} \text { in } \\
& \text { the Sobolev space } \mathbf{W}^{\nu+1,1}, \nu \geq 1, \text { and } \epsilon>0 \text {, there exists a function } x_{\epsilon} \text { in } \mathbf{W}^{\nu+1, \infty} \text { such that } \\
& \int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x_{\epsilon}^{(\nu)}, x_{\epsilon}^{(\nu+1)}\right) \psi_{i}\left(t, x_{\epsilon}, x_{\epsilon}^{\prime}, \ldots, x_{\epsilon}^{(\nu)}\right)<\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, x^{\prime}, \ldots, x^{(\nu)}\right)+\epsilon, \\
& x_{\epsilon}(a)=x(a), \quad x_{\epsilon}(b)=x(b), \\
& x_{\epsilon}^{\prime}(a)=x^{\prime}(a), \quad x_{\epsilon}^{\prime}(b)=x^{\prime}(b), \\
& \vdots \\
& x_{\epsilon}^{(\nu)}(a)=x^{(\nu)}(a), \quad x_{\epsilon}^{(\nu)}(b)=x^{(\nu)}(b),
\end{aligned}
$$

provided that, for every i in $\{1, \ldots, m\}, L_{i} \psi_{i}$ is continuous in a neighborhood of x, L_{i} is convex in its second variable, and ψ_{i} evaluated along x has positive sign. We discuss the optimality of our assumptions comparing them with an example of Sarychev [J. Dynam. Control Systems, 3 (1997), pp. 565-588].

As a consequence, we obtain the nonoccurrence of the Lavrentiev phenomenon. In particular, the integral functional $\int_{a}^{b} L\left(x^{(\nu)}, x^{(\nu+1)}\right)$ does not exhibit the Lavrentiev phenomenon for any given boundary values $x(a)=A, x(b)=B, x^{\prime}(a)=A^{\prime}, x^{\prime}(b)=B^{\prime}, \ldots, x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}$.

Furthermore, we prove the following necessary condition: an action functional with Lagrangian of the form $\sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, x^{\prime}, \ldots, x^{(\nu)}\right)$, with $\nu \geq 0$, exhibiting the Lavrentiev phenomenon takes the value $+\infty$ in any neighborhood of a minimizer.

Key words. calculus of variations, Lavrentiev phenomenon, reparameterization
AMS subject classifications. 49J30, 49N45, 49N60
DOI. 10.1137/S0363012903437721

1. Introduction. In 1926, Lavrentiev [11] proposed an example of a first-order integral functional of the calculus of variations, $\mathcal{I}(x)=\int_{a}^{b} L\left(t, x, x^{\prime}\right)$, whose infimum taken over the space of the absolutely continuous functions $\mathbf{W}^{1,1}(a, b)$ is strictly less than the infimum taken over the space of Lipschitz continuous functions $\mathbf{W}^{1, \infty}(a, b)$, with $x(a)=A$ and $x(b)=B$. Later, Manià [13] published a simpler example of the same phenomenon where the Lagrangian is

$$
L_{1}\left(x^{\prime}\right) \psi_{1}(t, x)=\left|x^{\prime}\right|^{6}\left(x^{3}-t\right)^{2}
$$

Several papers have been devoted to the problem of finding conditions under which the Lavrentiev phenomenon does not occur: Angell [2], Clarke, Vinter [8], Ball, Mizel [3], Lowen [12], Alberti, Serra Cassano [1]. In a recent paper by Cellina, Ferriero, and Marchini [5] a large class of Lagrangians of the form $L_{1}\left(x, x^{\prime}\right) \psi_{1}(t, x)$ has been treated, including the autonomous and some nonautonomous cases, under no additional conditions besides the convexity of L_{1} in x^{\prime} and the positivity of ψ_{1}.

[^0]Besides the first-order case, the Lavrentiev phenomenon occurs as well in the case with $(\nu+1)$-order derivatives, $\mathcal{I}(x)=\int_{a}^{b} L\left(t, x, x^{\prime}, \ldots, x^{(\nu+1)}\right)$. For $\nu=1$, in 1994 Cheng and Mizel [7] described a restricted Lavrentiev phenomenon in which the gap occurs for a dense subset of the absolutely continuous nonnegative functions, and they proved that even autonomous Lagrangian $L\left(x, x^{\prime}, x^{\prime \prime}\right)$ can exhibit it. Some years later Sarychev [15] proved that a class of Lagrangians of the form

$$
L_{1}\left(x^{\prime \prime}\right) \psi_{1}\left(x, x^{\prime}\right)+L_{2}\left(x^{\prime \prime}\right)
$$

exhibits the Lavrentiev phenomenon provided that $\psi_{1}\left(x, x^{\prime}\right)=\phi\left(k x-k\left|x^{\prime}-1\right|^{k-1}-\right.$ $\left.(k-1)\left|x^{\prime}-1\right|^{k}\right)$ for appropriate constants k, that L_{1}, L_{2}, ϕ satisfy certain growth conditions, and that $\phi(0)=0$. For example, $L_{1}\left(x^{\prime \prime}\right)=\left|x^{\prime \prime}\right|^{7}, L_{2}\left(x^{\prime \prime}\right)=\alpha\left|x^{\prime \prime}\right|^{3 / 2}$, $\phi_{1}(\cdot)=(\cdot)^{2}, k=3$, and $\alpha>0$ sufficiently small yield a Lagrangian whose integral exhibits the Lavrentiev phenomenon when the boundary values are $x(0)=0$, $x(1)=5 / 3, x^{\prime}(0)=1, x^{\prime}(1)=2$.

The Lagrangians proposed by Manià and Sarychev have the property that L_{1} evaluated along the minimizer x is not integrable (this is possible because there exists at least one point t in $[a, b]$ such that ψ_{1} evaluated along x in t is 0). A condition avoiding the occurrence of this fact will turn out, in this paper, to be essential for the nonoccurrence of the Lavrentiev phenomenon.

We prove the following general approximation theorem: let $x:[a, b] \rightarrow \mathbb{R}^{N}$ be a function in $\mathbf{W}^{\nu+1,1}$ (independently on whether is a minimizer or not), then the integrability of L_{i} evaluated along x (or the assumption that $\psi_{i}>0$), for every i, implies that, given $\epsilon>0$, there exists a function x_{ϵ} in $\mathbf{W}^{\nu+1, \infty}$ with the same boundary values of x in a and in b, i.e., $x_{\epsilon}(a)=x(a), x_{\epsilon}(b)=x(b), x_{\epsilon}^{\prime}(a)=x^{\prime}(a), x_{\epsilon}^{\prime}(b)=x^{\prime}(b)$, $\ldots, x_{\epsilon}^{(\nu)}(a)=x^{(\nu)}(a), x_{\epsilon}^{(\nu)}(b)=x^{(\nu)}(b)$, such that

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x_{\epsilon}^{(\nu)}, x_{\epsilon}^{(\nu+1)}\right) \psi_{i}\left(t, x_{\epsilon}, x_{\epsilon}^{\prime}, \ldots, x_{\epsilon}^{(\nu)}\right) \\
& <\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, x^{\prime}, \ldots, x^{(\nu)}\right)+\epsilon
\end{aligned}
$$

We underline that an application of this result is the nonoccurrence of the Lavrentiev phenomenon for a class of functionals of the calculus of variations with $(\nu+1)$-order derivatives, $\nu \geq 1$. (The case $\nu=0, m=1$ has already been treated in [5]. The case $\nu=0, m>1$ can be obtained modifying slightly the proof of the main result of [5]; see [10].) Moreover, we infer a necessary condition for the Lavrentiev phenomenon.

In section 2 we state our results, we discuss the optimality of the assumptions, and we infer the nonoccurrence of the Lavrentiev phenomenon. In section 3 we prove the main result. In section 4 we deal with a necessary condition for the Lavrentiev phenomenon: a functional

$$
\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, x^{\prime}, \ldots, x^{(\nu)}\right)
$$

with $\nu \geq 0$, exhibiting the Lavrentiev phenomenon takes the value $+\infty$ in any neighborhood of a minimizer \bar{x}.
2. The main result and the Lavrentiev phenomenon. For $\delta>0, B[c, \delta]$ denotes the closed ball in \mathbb{R}^{N} centered in c with radius δ. For a function x in $\mathbf{C}^{\nu}[a, b]$,
with values in \mathbb{R}^{N}, the closed δ-tube along $\left(x, \ldots, x^{(\nu)}\right)$

$$
\begin{aligned}
& \mathrm{T}_{\delta}^{\nu}[x]=\left\{\left(t, z_{0}, \ldots, z_{\nu}\right) \in[a, b] \times \mathbb{R}^{(\nu+1) N}:\right. \\
& \left.\left(z_{0}, \ldots, z_{\nu}\right) \in B[x(t), \delta] \times \cdots \times B\left[x^{(\nu)}(t), \delta\right], t \in[a, b]\right\}
\end{aligned}
$$

and the closed δ-neighborhood of the image $\operatorname{Im}\left(x^{(\nu)}\right)$ of $x^{(\nu)}$

$$
\mathrm{I}_{\delta}\left[x^{(\nu)}\right]=\left\{z \in \mathbb{R}^{N}: \operatorname{dist}\left(z, \operatorname{Im}\left(x^{(\nu)}\right)\right) \leq \delta\right\}
$$

are compact sets.
We recall that the space $\mathbf{W}^{\nu+1, p}(a, b)$ can be seen as the space of functions x in $\mathbf{C}^{\nu}[a, b]$ such that $x^{(\nu)}$ is absolutely continuous with derivative in $\mathbf{L}^{p}(a, b), p \geq 1$.

The following approximation theorem is our main result.
Theorem 2.1. Let x be a function in $\mathbf{W}^{\nu+1,1}(a, b), \nu \geq 1$, and let the real-valued functions L_{1}, \ldots, L_{m} and $\psi_{1}, \ldots, \psi_{m}$ be continuous on $\mathrm{I}_{\delta}\left[x^{(\nu)}\right] \times \mathbb{R}^{N}$ and on $\mathrm{T}_{\delta}^{\nu}[x]$, respectively, for some $\delta>0$.

Assume that, for every i in $\{1, \ldots, m\}$,

- $L_{i}(\xi, \cdot)$ is convex, for every ξ in $\mathbf{1}_{\delta}\left[x^{(\nu)}\right]$,
- ψ_{i} is nonnegative, and $\psi_{i}\left(t, x(t), x^{\prime}(t), \ldots, x^{(\nu)}(t)\right)>0$, for every t in $[a, b]$.

Then
(i) $\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), x^{\prime}(t), \ldots, x^{(\nu)}(t)\right) d t>-\infty$;
(ii) given any $\epsilon>0$, there exists a function x_{ϵ} in $\mathbf{W}^{\nu+1, \infty}(a, b)$ such that

$$
\mathcal{I}\left(x_{\epsilon}\right)<\mathcal{I}(x)+\epsilon,
$$

and

$$
\begin{array}{ll}
x_{\epsilon}(a)=x(a), & x_{\epsilon}(b)=x(b) \\
x_{\epsilon}^{\prime}(a)=x^{\prime}(a), & x_{\epsilon}^{\prime}(b)=x^{\prime}(b) \\
\vdots & \\
x_{\epsilon}^{(\nu)}(a)=x^{(\nu)}(a), & x_{\epsilon}^{(\nu)}(b)=x^{(\nu)}(b)
\end{array}
$$

As a corollary we obtain the nonoccurrence of the Lavrentiev phenomenon.
ThEOREM 2.2. Let $\Omega_{0}, \ldots, \Omega_{\nu}$ be open sets in $\mathbb{R}^{N}, \nu \geq 1$, such that the set $E=\left\{x \in \mathbf{W}^{\nu+1,1}(a, b): x(t) \in \Omega_{0}, \ldots, x^{(\nu)}(t) \in \Omega_{\nu} \forall t \in[a, b]\right\}$ is nonempty.

Let $L_{1}, \ldots, L_{m}: \Omega_{\nu} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $\psi_{1}, \ldots, \psi_{m}:[a, b] \times \Omega_{0} \times \cdots \times \Omega_{\nu} \rightarrow(0,+\infty)$ be continuous and such that $L_{i}(\xi, \cdot)$ is convex, for any ξ in Ω_{ν}, and any i in $\{1, \ldots, m\}$.

Then, for all boundary values $A, B \in \Omega_{0}, A^{(1)}, B^{(1)} \in \Omega_{1}, \ldots, A^{(\nu)}, B^{(\nu)} \in \Omega_{\nu}$, the infimum of

$$
\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), x^{\prime}(t), \ldots, x^{(\nu)}(t)\right) d t
$$

over the space $E_{a, b}=\left\{x \in E: x(a)=A, x(b)=B, x^{\prime}(a)=A^{(1)}, x^{\prime}(b)=B^{(1)}, \ldots\right.$, $\left.x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}\right\}$ is equal to the infimum of the same functional \mathcal{I} over the space $E_{a, b} \cap \mathbf{W}^{\nu+1, \infty}(a, b)$.

Proof. Let $\left\{x_{n}\right\}_{n} \subset E_{a, b}$ be a minimizing sequence for \mathcal{I} : by the fact that $\psi_{i}>0$, for every i, the theorem follows from Theorem 2.1 applied to any x_{n}, with $\epsilon=1 / n$.

Setting $m=1, \psi_{1}=1$, and $L_{1}=L$, we obtain that a Lagrangian depending only on $x^{(\nu)}$ and $x^{(\nu+1)}$ satisfies the assumptions of Theorem 2.2. Hence, the integral functional

$$
\int_{a}^{b} L\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) d t
$$

does not exhibit the Lavrentiev phenomenon, for any boundary values

$$
\begin{array}{ll}
x(a)=A, & x(b)=B \\
x^{\prime}(a)=A^{(1)}, & x^{\prime}(b)=B^{(1)} \\
\vdots & \\
x^{(\nu)}(a)=A^{(\nu)}, & x^{(\nu)}(b)=B^{(\nu)}
\end{array}
$$

This extends some previous results ([1], [4]), where functionals without boundary conditions, or with boundary conditions only in a, have been considered.

We point out that the assumption $\psi_{i}\left(t, x(t), x^{\prime}(t), \ldots, x^{(\nu)}(t)\right) \neq 0 \forall t \in[a, b]$ in Theorem 2.1 will be used only to infer that $\int_{a}^{b} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right)$ is finite, provided that $\mathcal{I}(x)$ is finite (point (a) in the proof). The theorem holds under the weaker assumption $\int_{a}^{b}\left|L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right)\right|<+\infty$, for every i.

To verify how sharp our assumptions are, consider the following example of A. V. Sarychev [15]: for $\nu=1, m=1$, minimize the functional

$$
\int_{0}^{1}\left|x^{\prime \prime}(t)\right|^{7}\left[3 x(t)-3\left|x^{\prime}(t)-1\right|^{2}-2\left|x^{\prime}(t)-1\right|^{3}\right]^{2} d t
$$

with boundary conditions $x(0)=0, x(1)=5 / 3, x^{\prime}(0)=1, x^{\prime}(1)=2$. He proved that the infimum taken over the space $\mathbf{W}^{2,1}(0,1)$, assumed in $\bar{x}(t)=(2 / 3) \sqrt[2]{t^{3}}+t$, is strictly lower than the infimum taken over the space $\mathbf{W}^{2, \infty}(0,1)$.

The assumption $\int_{a}^{b}\left|L_{1}\left(x^{\prime}, x^{\prime \prime}\right)\right|<+\infty$ along \bar{x} is not verified. Indeed, setting $\psi_{1}(t, x, \xi)=\left[3 x-3|\xi-1|^{2}-2|\xi-1|^{3}\right]^{2}$ and $L_{1}(\xi, w)=|w|^{7}$, we see that $\psi_{1} \geq 0$ (but, for example, $\left.\psi_{1}\left(0, x(0), x^{\prime}(0)\right)=0\right)$ and that

$$
\int_{0}^{1}\left|\bar{x}^{\prime \prime}(t)\right|^{7} d t=\int_{0}^{1} \frac{1}{(2 \sqrt{t})^{7}} d t=+\infty .
$$

3. Proof of the main theorem. In what follows, \mathbf{x} denotes the matrix $(x, \ldots$, $\left.x^{(\nu-1)}\right)$ and $\mathrm{x}=x^{(\nu-1)}$, so that $\mathrm{x}^{\prime}=x^{(\nu)}, \mathrm{x}^{\prime \prime}=x^{(\nu+1)}\left(\right.$ similarly, $\mathbf{z}=\left(z, \ldots, z^{(\nu-1)}\right)$, and $\left.\mathbf{z}=z^{(\nu-1)}\right)$. The Lagrangian we consider takes the form

$$
\sum_{i=1}^{m} L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right)
$$

(In case $\nu=1, \mathbf{x}, \mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}$ coincide with $x, x^{\prime}, x^{\prime \prime}$, respectively.)
(i) For every $t \in[a, b], L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \geq L_{i}\left(\mathrm{x}^{\prime}(t), 0\right)+\left\langle p_{0}(t), \mathrm{x}^{\prime \prime}(t)\right\rangle$, where $p_{0}(t)$ is any selection from the subdifferential $\partial_{w} L_{i}\left(\mathrm{x}^{\prime}(t), 0\right)$ of L_{i} with respect to its second variable. Set $E_{i}=\left\{t \in[a, b]:\left[L_{i}\left(x^{\prime}(t), x^{\prime \prime}(t)\right)\right]^{-} \neq 0\right\}$, so that

$$
\begin{aligned}
& \int_{a}^{b}\left[L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right)\right]^{-} d t \\
& \leq-\int_{E_{i}}\left[L_{i}\left(\mathrm{x}^{\prime}(t), 0\right)+\left\langle p_{0}(t), \mathrm{x}^{\prime \prime}(t)\right\rangle\right] \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t
\end{aligned}
$$

for any i. Since ψ_{i} is bounded and, by Proposition 2 in [5], $p_{0}(t)$ is bounded, the claim follows by Hölder's inequality.
(ii) Fix $\epsilon>0$; set $\bar{\epsilon}=\epsilon / m$. Without loss of generality, we shall assume $\epsilon<1$, and also $\delta<1$.

In case $\int_{a}^{b} L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t=+\infty$, for some i, any Lipschitz function x_{ϵ} satisfying the boundary conditions is acceptable. Hence we can assume, for every i,

$$
\int_{a}^{b} L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t<+\infty
$$

The proof is in three steps. In Step (1) of the proof we introduce the new functions \tilde{L}_{i} such that $\tilde{L}_{i}=L_{i}+$ const and such that their polar functions \tilde{L}_{i}^{*} (with respect to the second variable) are nonnegative. In Step (3) we define a variation z_{n} in $\mathbf{W}^{\infty, 1}(a, b)$, with the same boundary values of x in a and in b, such that $\mathcal{I}\left(z_{n}\right)<\mathcal{I}(x)+\epsilon$. In order to define z_{n}, in Step (2) we define a sequence of reparameterizations s_{n} of $[a, b]$.

Step (1). We claim that there exists functions \tilde{L}_{i} and a constant η such that $\tilde{L}_{i}=L_{i}+\eta$ and $\tilde{L}_{i}^{*} \geq 0$, for any i.

In fact, consider the set

$$
V_{i}=\left\{(\xi, p): \xi \in \mathbf{I}_{\delta}\left[x^{(\nu)}\right], p \in \partial_{w} L_{i}(\xi, w),|w| \leq 1\right\}
$$

By Proposition 2 in [5], arguing by contradiction, we obtain that V_{i} is compact. Let $L_{i}^{*}(\xi, p)=\sup _{w \in \mathbb{R}^{N}}\langle p, w\rangle-L_{i}(\xi, w)$ be the polar function of L_{i} with respect to its second variable. Then, $\min _{V_{i}} L_{i}^{*}$ is attained and is finite. Applying Proposition 3 in [5], we obtain that $L_{i}^{*}(\xi, p) \geq \min _{V_{i}} L_{i}^{*}$, for every $\xi \in \mathbf{I}_{\delta}\left[x^{(\nu)}\right]$, for every $p \in \partial_{w} L_{i}(\xi, w)$ and for every $w \in \mathbb{R}^{N}$. Set $\eta=\min \left\{\min _{V_{1}} L_{1}^{*}, \ldots, \min _{V_{m}} L_{m}^{*}\right\}$.

Consider $\tilde{L}_{i}(\xi, w)=L_{i}(\xi, w)+\eta$. Since $\partial_{w} L_{i}(\xi, w)=\partial_{w} \tilde{L}_{i}(\xi, w)$, we have that $\tilde{L}_{i}^{*}(\xi, p) \geq 0$, for any i. (We denote $\tilde{\mathcal{I}}_{i}$ the functional $\int_{a}^{b} \tilde{L}_{i} \psi_{i}$.)
(a) We set some preliminary constants, depending on $\bar{\epsilon}$ fixed, that we shall use in the following steps.

By the condition on ψ_{i}, there exists $c>0$ such that $\psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) \geq c$, for every t in $[a, b]$, and we obtain

$$
\begin{aligned}
+\infty & >\int_{a}^{b}\left|L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right)\right| d t+\eta \int_{a}^{b} \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t \\
& \geq \int_{a}^{b}\left|\tilde{L}_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right)\right| d t \geq c \int_{a}^{b}\left|\tilde{L}_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right)\right| d t
\end{aligned}
$$

Set $\ell_{i}=\int_{a}^{b}\left|\tilde{L}_{i}\left(\mathrm{x}^{\prime}(s), \mathrm{x}^{\prime \prime}(s)\right)\right| d s, \ell=\max \left\{\ell_{1}, \ldots, \ell_{m}\right\}$, and Ψ and $\tilde{\mathbf{L}}$ the maximum value of $\left|\psi_{1}\right|, \ldots,\left|\psi_{m}\right|$ over $\mathrm{T}_{\delta}^{\nu}[x]$ and of $\left|\tilde{L}_{1}\right|, \ldots,\left|\tilde{L}_{m}\right|$ over $\mathbf{I}_{\delta}\left[x^{(\nu)}\right] \times B\left[0,\left|\mathbf{x}^{\prime \prime}(\tau)\right|+\delta\right]$, respectively. Denote $\alpha=\max \left\{1,(b-a)^{\nu}\right\}$.

From the uniform continuity of $\psi_{1}, \ldots, \psi_{m}$ on $\mathrm{T}_{\delta}^{\nu}[x]$, we infer that we can fix $h \in \mathbb{N}, 1 / 2^{h}<\delta$, such that whenever $\left(t_{1}, \mathbf{x}_{1}, \xi_{1}\right),\left(t_{2}, \mathbf{x}_{2}, \xi_{2}\right) \in \mathrm{T}_{\delta}^{\nu}[x]$ and

$$
\left|t_{1}-t_{2}\right| \leq \frac{b-a}{2^{h}}, \quad\left|\mathbf{x}_{1, j}-\mathbf{x}_{2, j}\right| \leq \frac{1}{2^{h}} \forall j \in\{0, \ldots, \nu-1\}, \quad\left|\xi_{1}-\xi_{2}\right| \leq \frac{1}{2^{h}}
$$

we have

$$
\left|\psi_{i}\left(t_{1}, \mathbf{x}_{1}, \xi_{1}\right)-\psi_{i}\left(t_{2}, \mathbf{x}_{2}, \xi_{2}\right)\right|<\min \left\{\frac{\bar{\epsilon}}{8(\ell+\tilde{\mathbf{L}}+1)}, \frac{\bar{\epsilon}}{2(|\eta|+1)(b-a)}\right\}
$$

for any i.
Let $\theta: \mathbb{R} \rightarrow[0,1]$ be a \mathbf{C}^{∞} increasing function with value 0 on $(-\infty, 0]$ and 1 on $[1,+\infty)$. Observe that $1 \leq\left\|\theta^{(j)}\right\|_{\infty} \leq\left\|\theta^{(j+1)}\right\|_{\infty}$, for any $j \geq 0$. Set $\Theta=\left\|\theta^{(\nu+1)}\right\|_{\infty}$.

There exists a point τ in (a, b) that is a Lebesgue point for the functions $\tilde{L}_{1}\left(x^{\prime}(\cdot), x^{\prime \prime}(\cdot)\right) \psi_{1}\left(\cdot, \mathbf{x}(\cdot), x^{\prime}(\cdot)\right), \ldots, \tilde{L}_{m}\left(x^{\prime}(\cdot), x^{\prime \prime}(\cdot)\right) \psi_{m}\left(\cdot, \mathbf{x}(\cdot), x^{\prime}(\cdot)\right)$ and $x^{\prime \prime}, x^{\prime \prime}(\tau)$ in \mathbb{R}^{N}. By definition of Lebesgue point, there exists a positive number ρ less than

$$
\min \left\{\frac{1}{2^{h+4}(\nu+2)(\nu+1) \nu \Theta \alpha^{2}}, \frac{\bar{\epsilon}}{32 \tilde{\mathbf{L}} \Psi}\right\}
$$

such that, for any λ^{-}, λ^{+}in $(0, \rho)$,

$$
\begin{array}{r}
\int_{\tau-\lambda^{-}}^{\tau+\lambda^{+}}\left|\tilde{L}_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right)-\tilde{L}_{i}\left(\mathrm{x}^{\prime}(\tau), \mathrm{x}^{\prime \prime}(\tau)\right) \psi_{i}\left(\tau, \mathbf{x}(\tau), \mathrm{x}^{\prime}(\tau)\right)\right| d t \\
\leq\left(\lambda^{+}+\lambda^{-}\right) \bar{\epsilon}
\end{array}
$$

for any i, and

$$
\int_{\tau-\lambda^{-}}^{\tau+\lambda^{+}}\left|\mathrm{x}^{\prime \prime}(t)-\mathrm{x}^{\prime \prime}(\tau)\right| d t \leq\left(\lambda^{+}+\lambda^{-}\right) \frac{1}{2^{h+4}(\nu+1) \nu \Theta \alpha}
$$

Fix $t_{0}^{-}=(b-a) v^{-} / 2^{\gamma}, t_{0}^{+}=(b-a) v^{+} / 2^{\gamma}$, where $\gamma \in \mathbb{N}, v^{-}, v^{+} \in\left\{0,1, \ldots, 2^{\gamma}\right\}$, $v^{-}<v^{+}$, are such that $\tau \in\left(\tau^{-}, \tau^{+}\right) \subset(\tau-\rho, \tau+\rho)$.

We define the absolutely continuous function $\mathbf{z}^{\prime}:[a, b] \rightarrow \mathbb{R}^{N}$ by $z^{\prime}(t)=x^{(\nu)}(a)+$ $\int_{a}^{t} z^{\prime \prime}$, where

$$
\mathrm{z}^{\prime \prime}(t)= \begin{cases}x^{(\nu+1)}(\tau)+\frac{1}{\tau^{+}-\tau^{-}} \int_{\tau^{-}}^{\tau^{+}}\left[\mathrm{x}^{\prime \prime}-\mathrm{x}^{\prime \prime}(\tau)\right], & t \in\left[\tau^{-}, \tau^{+}\right] \\ x^{(\nu+1)}(t) & \text { otherwise }\end{cases}
$$

By definition, $z^{\prime \prime}(t)=\mathrm{x}^{\prime \prime}(t), \mathrm{z}^{\prime}(t)=\mathrm{x}^{\prime}(t)$, for any t in $\left[a, \tau^{-}\right] \cup\left[\tau^{+}, b\right]$. For any t in $\left[\tau^{-}, \tau^{+}\right]$, we have that $\mathrm{z}^{\prime \prime}(t) \in B\left[0,\left|\mathrm{x}^{\prime \prime}(\tau)\right|+\delta / 2\right]$ and

$$
\left|z^{\prime}(t)-x^{\prime}(t)\right| \leq 2 \int_{\tau^{-}}^{\tau^{+}}\left|x^{\prime \prime}(\tau)-x^{\prime \prime}\right|<\left(\tau^{+}-\tau^{-}\right) \frac{1}{2^{h+3}(\nu+1) \nu \Theta \alpha}
$$

Step (2). Our purpose is to show that there exists a sequence of reparameterizations s_{n} of $[a, b]$ into itself such that $z^{\prime} \circ s_{n}$ is Lipschitz continuous on $[a, b]$.

From the uniform continuity of $x, \ldots, x^{(\nu)}$ on $\left[a, \tau^{-}\right] \cup\left[\tau^{+}, b\right]$, we infer that we can fix $k \in \mathbb{N}$, such that whenever $\left|s_{1}-s_{2}\right| \leq(b-a) / 2^{k}$, we have $\left|x^{(j)}\left(s_{1}\right)-x^{(j)}\left(s_{2}\right)\right|<$ $\left(\tau^{+}-\tau^{-}\right)^{\nu+2}$, for any j in $\{1, \ldots, \nu\}$.

For $v=0, \ldots, 2^{k}-1$, set $I_{v}=\left[(b-a) v / 2^{k},(b-a)(v+1) / 2^{k}\right], H_{v}=\int_{I_{v}}\left|z^{\prime \prime}(s)\right| d s$, $\mu=\max \left\{2^{k+1} H_{v} /(b-a): v=0, \ldots, 2^{k}-1\right\}$, and

$$
T_{H_{v}}=\left\{s \in I_{v}:\left|\mathbf{z}^{\prime \prime}(s)\right| \leq \frac{2^{k+1} H_{v}}{b-a}\right\}
$$

we have that $\left|T_{H_{v}}\right| \geq(b-a) / 2^{k+1}$.

Since $\left\{\left(\mathrm{z}^{\prime}(s), \mathrm{z}^{\prime \prime}(s)\right): s \in \bigcup_{v=0}^{2^{k}-1} T_{H_{v}}\right\}$ belongs to a compact set and L_{1}, \ldots, L_{m} are continuous, there exists a constant M, such that

$$
\left|\tilde{L}_{i}\left(\mathbf{z}^{\prime}(s)+\xi, 2 \mathbf{z}^{\prime \prime}(s)+w\right) \frac{1}{2}-\tilde{L}_{i}\left(\mathbf{z}^{\prime}(s)+\xi, \mathbf{z}^{\prime \prime}(s)+\frac{w}{2}\right)\right| \leq M
$$

for any $s \in \bigcup_{v=0}^{2^{k}-1} T_{H_{v}}$, any $|\xi| \leq \delta$, any $|w| \leq \delta$, and any i.
For every $n \in \mathbb{N}$, set $S_{n}^{v}=\left\{s \in I_{v}:\left|\mathbf{z}^{\prime \prime}(s)\right|>n\right\}$. From the integrability of $\mathbf{z}^{\prime \prime}$ it follows that $\int_{S_{n}^{v}}\left(\left|z^{\prime \prime}(s)\right| / n-1\right) d s$ converges to 0 , as n goes to ∞. Hence, we can fix a subset Σ_{n}^{v} of $T_{H_{v}}$ such that $\left|\Sigma_{n}^{v}\right|=2 \int_{S_{n}^{v}}\left(\left|\mathrm{z}^{\prime \prime}(s)\right| / n-1\right) d s$.

We define the absolutely continuous functions t_{n} by $t_{n}(s)=a+\int_{a}^{s} t_{n}^{\prime}$, where

$$
t_{n}^{\prime}(s)= \begin{cases}1+\left(\left|z^{\prime \prime}(s)\right| / n-1\right), & s \in S_{n}=\bigcup_{v=0}^{2^{k}-1} S_{n}^{v} \\ 1-1 / 2, & s \in \Sigma_{n}=\bigcup_{v=0}^{2^{k}-1} \Sigma_{n}^{v} \\ 1, & \text { otherwise }\end{cases}
$$

One verifies that t_{n} admits inverse function s_{n} on the interval $[a, b]$. Furthermore, for any v in $\left\{0, \ldots, 2^{k}-1\right\}$, the restriction of t_{n} to I_{v} maps I_{v} onto itself. Hence, $\left|t_{n}(s)-s\right| \leq(b-a) / 2^{k}$, for any s in $[a, b]$. If n is greater than $\left|\mathrm{x}^{\prime \prime}(\tau)\right|+\delta / 2$, the restriction of t_{n} to $\left[\tau^{-}, \tau^{+}\right]$is the identity.

The function $z^{\prime} \circ s_{n}$ is Lipschitz continuous on $[a, b]$. In fact, fix t where $s_{n}^{\prime}(t)$ exists: we obtain

$$
\left|\frac{d\left(\mathbf{z}^{\prime} \circ s_{n}\right)}{d t}(t)\right|=\left|\mathbf{z}^{\prime \prime}\left(s_{n}(t)\right) s_{n}^{\prime}(t)\right| \begin{cases}=n, & t \in S_{n} \\ \leq \mu, & t \in \Sigma_{n} \\ \leq n, & \text { otherwise }\end{cases}
$$

Step (3). We construct a function $z_{n}:[a, b] \rightarrow \mathbb{R}^{N}$, with the same boundary values of x in a and b, such that z_{n} belongs to $\mathbf{W}^{\nu+1, \infty}(a, b)$ and $\tilde{\mathcal{I}}_{i}\left(z_{n}\right)<\tilde{\mathcal{I}}_{i}(x)+\bar{\epsilon} / 2$.

Set $f^{\prime}(t)=\theta\left(\left(t-\tau^{-}\right) /\left(\tau^{+}-\tau^{-}\right)\right)$, for any t in $[a, b]$ (the function θ as defined in point (a)): then f^{\prime} is identically 0 on $\left[a, \tau^{-}\right]$, it is identically 1 on $\left[\tau^{+}, b\right]$, and $\left\|f^{(j+1)}\right\|_{\infty}=\left\|\theta^{(j)}\right\|_{\infty} /\left(\tau^{+}-\tau^{-}\right)^{j}$, for any $j \geq 0$.

We define ν absolutely continuous functions $z_{n, \nu-1}, \ldots, z_{n, 0}:[a, b] \rightarrow \mathbb{R}^{N}$ by

$$
\begin{aligned}
& z_{n, \nu-1}(t)=x^{(\nu-1)}(a)+\int_{a}^{t} \mathrm{z}^{\prime} \circ s_{n}+f^{\prime}(t) D_{\nu-1}, \\
& z_{n, \nu-2}(t)=x^{(\nu-2)}(a)+\int_{a}^{t} z_{n, \nu-1}+f^{\prime}(t) D_{\nu-2}, \\
& \vdots \\
& z_{n, 0}(t)=x(a)+\int_{a}^{t} z_{n, 1}+f^{\prime}(t) D_{0},
\end{aligned}
$$

where, for any j in $\{0, \cdots, \nu-2\}$,

$$
D_{j}=x^{(j)}(b)-x^{(j)}(a)-\int_{a}^{b} z_{n, j+1}, \quad D_{\nu-1}=x^{(\nu-1)}(b)-x^{(\nu-1)}(a)-\int_{a}^{b} z^{\prime} \circ s_{n}
$$

Set $z_{n}=z_{n, 0}$. The derivatives of z_{n} up to the order $\nu+1$ are

$$
\begin{aligned}
& z_{n}^{\prime}(t)=z_{n, 1}(t)+f^{\prime \prime}(t) D_{0}, \\
& z_{n}^{\prime \prime}(t)=z_{n, 2}(t)+f^{\prime \prime \prime}(t) D_{0}+f^{\prime \prime}(t) D_{1}, \\
& \vdots \\
& z_{n}^{(\nu-1)}(t)=z_{n, \nu-1}(t)+\sum_{j=0}^{\nu-2} f^{(\nu-j)}(t) D_{j}, \\
& z_{n}^{(\nu)}(t)=\mathrm{z}^{\prime}\left(s_{n}(t)\right)+\sum_{j=0}^{\nu-1} f^{(\nu-j+1)}(t) D_{j}, \\
& z_{n}^{(\nu+1)}(t)=\mathrm{z}^{\prime \prime}\left(s_{n}(t)\right) s_{n}^{\prime}(t)+\sum_{j=0}^{\nu-1} f^{(\nu-j+2)}(t) D_{j} .
\end{aligned}
$$

We denote by H^{\prime} the function $\sum_{j=0}^{\nu-1} f^{(\nu-j+1)} D_{j}$. By the properties of $f^{(j)}$ and s_{n}, we have that z_{n} belongs to $\mathbf{W}^{\nu+1, \infty}(a, b)$, with $\left\|z_{n}^{(\nu+1)}\right\|_{\infty} \leq n+\left\|\mathrm{H}^{\prime \prime}\right\|_{\infty}$ (where $\|\cdot\|_{\infty}$ is the essential supremum on $(a, b))$, and it has the same boundary values of x in a and b.
(b) We claim that $\left\|z_{n}^{(j)}-x^{(j)}\right\|_{\infty} \leq 1 / 2^{h}$ and $\left\|z_{n}^{(j)} \circ t_{n}-x^{(j)}\right\|_{\infty} \leq 1 / 2^{h}$, for any j in $\{0, \ldots, \nu\}$, eventually in n.

In fact, for any n greater than $\left|x^{\prime \prime}(\tau)\right|+\delta / 2$, we have

$$
\begin{aligned}
&\left|D_{\nu-1}\right| \leq \int_{a}^{\tau^{-}}\left|\mathrm{x}^{\prime}-\mathrm{x}^{\prime} \circ s_{n}\right|+\int_{\tau^{-}}^{\tau^{+}}\left|\mathrm{x}^{\prime}-\mathrm{z}^{\prime}\right|+\int_{\tau^{+}}^{b}\left|\mathrm{x}^{\prime}-\mathrm{x}^{\prime} \circ s_{n}\right| \\
& \leq\left(\tau^{+}-\tau^{-}\right)^{2}\left[3 \alpha\left(\tau^{+}-\tau^{-}\right)^{\nu}+\frac{1}{2^{h+3}(\nu+1) \nu \Theta \alpha}\right] \\
& \leq\left(\tau^{+}-\tau^{-}\right)^{2} \frac{1}{2^{h+2}(\nu+1) \nu \Theta \alpha}, \\
&\left|D_{\nu-2}\right| \leq \int_{a}^{\tau^{+}}\left|\mathrm{x}^{\prime}(t)-\mathrm{x}^{\prime}(a)-\int_{a}^{t} \mathrm{z}^{\prime} \circ s_{n}-f^{\prime}(t) D_{n, \nu-1}\right| d t \\
&+\int_{\tau^{+}}^{b}\left|\mathrm{x}^{\prime}(t)-\mathrm{x}^{\prime}(b)+\int_{t}^{b} \mathrm{z}^{\prime} \circ s_{n}-\left[1-f^{\prime}(t)\right] D_{n, \nu-1}\right| d t \\
& \leq \int_{a}^{\tau^{+}} \int_{a}^{t}\left|\mathrm{x}^{\prime}-\mathrm{z}^{\prime} \circ s_{n}\right| d t+\left(\tau^{+}-\tau^{-}\right)\left|D_{n, \nu-1}\right|+\int_{\tau^{+}}^{b} \int_{t}^{b}\left|\mathrm{x}^{\prime}-\mathrm{z}^{\prime} \circ s_{n}\right| d t \\
& \leq\left(\tau^{+}-\tau^{-}\right)^{3}\left[4 \alpha\left(\tau^{+}-\tau^{-}\right)^{\nu-1}+\frac{1}{2^{h+3}(\nu+1) \nu \Theta \alpha}\right]+\left(\tau^{+}-\tau^{-}\right)\left|D_{\nu-1}\right| \\
& \leq\left(\tau^{+}-\tau^{-}\right)^{3} \frac{2}{2^{h+2}(\nu+1) \nu \Theta \alpha}, \\
& \vdots \\
&\left|D_{j}\right| \leq\left(\tau^{+}-\tau^{-}\right)^{\nu-j+1} \frac{\nu-j}{2^{h+2}(\nu+1) \nu \Theta \alpha} \leq\left(\tau^{+}-\tau^{-}\right)^{\nu-j+1} \frac{1}{2^{h+2}(\nu+1) \Theta}
\end{aligned}
$$

so that $\left\|\mathrm{H}^{\prime}\right\|_{\infty} \leq \sum_{j=0}^{\nu-1}\left\|f^{(\nu-j+1)}\right\|_{\infty}\left(\tau^{+}-\tau^{-}\right)^{\nu-j+1} /\left[2^{h+2}(\nu+1) \Theta\right] \leq\left(\tau^{+}-\tau^{-}\right) / 2^{h+2}$,
$\left\|\mathrm{H}^{\prime \prime}\right\|_{\infty} \leq 1 / 2^{h+2}$, and

$$
\begin{aligned}
\left|\mathrm{z}^{\prime}\left(s_{n}(t)\right)-\mathrm{x}^{\prime}(t)\right| \quad & \leq\left(\tau^{+}-\tau^{-}\right)\left[3 \alpha\left(\tau^{+}-\tau^{-}\right)^{\nu+1}+\frac{1}{2^{h+3}(\nu+1) \nu \Theta \alpha}\right] \\
& \leq \frac{1}{2^{h+2}(\nu+1) \nu \Theta \alpha}, \\
\left|z_{n, \nu-1}(t)-x^{(\nu-1)}(t)\right| & \leq \int_{a}^{b}\left|\mathrm{z}^{\prime} \circ s_{n}-\mathrm{x}^{\prime}\right|+(b-a)\left|D_{\nu-1}\right| \leq(1+b-a)\left|D_{\nu-1}\right| \\
& \leq \frac{2 \alpha}{2^{h+2}(\nu+1) \nu \Theta \alpha}, \\
& \\
\left|z_{n, j}(t)-x^{(j)}(t)\right| \quad & \leq \frac{(\nu-j+1) \alpha}{2^{h+2}(\nu+1) \nu \Theta \alpha} \leq \frac{1}{2^{h+2}} \quad \forall j \in\{0, \ldots, \nu-1\} .
\end{aligned}
$$

Hence, we can fix n such that $M \Psi\left|\Sigma_{n}\right|<\bar{\epsilon} / 8,\left\|z_{n}^{(j)}-x^{(j)}\right\|_{\infty} \leq 1 / 2^{h+1}$, and

$$
\left\|z_{n}^{(j)} \circ t_{n}-x^{(j)}\right\|_{\infty} \leq\left\|z_{n}^{(j)} \circ t_{n}-x^{(j)} \circ t_{n}\right\|_{\infty}+\left\|x^{(j)} \circ t_{n}-x^{(j)}\right\|_{\infty} \leq 1 / 2^{h}
$$

for any j in $\{0, \ldots, \nu\}$. The graph of the function $\left(\mathbf{z}_{n}, \mathbf{z}_{n}^{\prime}\right)$ is included in $\mathrm{T}_{\delta}^{\nu}[x]$, and $\mathrm{z}_{n}^{\prime \prime}(t) \in B\left[0,\left|\mathrm{x}^{\prime \prime}(\tau)\right|+\delta\right]$, for any t in $\left[\tau^{-}, \tau^{+}\right]$. (From what follows, it turns out that z_{n} is the sought variation x_{ϵ}.)
(c) We show that $\tilde{\mathcal{I}}_{i}\left(z_{n}\right)<\tilde{\mathcal{I}}_{i}(x)+\bar{\epsilon} / 2$, for any i.

Using the change of variable formula [16], we compute $\tilde{\mathcal{I}}_{i}\left(z_{n}\right)-\tilde{\mathcal{I}}_{i}(x)$ as the sum of the following three appropriate terms:

$$
\begin{aligned}
& \int_{a}^{b} \tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime \prime}\left(t_{n}(s)\right)\right) \psi_{i}\left(t_{n}(s), \mathbf{z}_{n}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right)\right) t_{n}^{\prime}(s) d s \\
& -\int_{a}^{b} \tilde{L}_{i}\left(\mathbf{x}^{\prime}(s), \mathrm{x}^{\prime \prime}(s)\right) \psi_{i}\left(s, \mathbf{x}(s), \mathrm{x}^{\prime}(s)\right) d s \\
& =\int_{a}^{b}\left[\tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime \prime}\left(t_{n}(s)\right)\right) t_{n}^{\prime}(s)-\tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right)\right] \\
& \quad \times \psi_{i}\left(t_{n}(s), \mathbf{z}_{n}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right)\right) d s \\
& \quad+\int_{a}^{b} \tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right) \\
& \quad \times\left[\psi_{i}\left(t_{n}(s), \mathbf{z}_{n}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right)\right)-\psi_{i}\left(s, \mathbf{x}(s), \mathrm{x}^{\prime}(s)\right)\right] d s \\
& \quad+\int_{a}^{b}\left[\tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right)-\tilde{L}_{i}\left(\mathrm{x}^{\prime}(s), \mathrm{x}^{\prime \prime}(s)\right)\right] \psi_{i}\left(s, \mathbf{x}(s), \mathrm{x}^{\prime}(s)\right) d s \\
& =I_{i}^{1}+I_{i}^{2}+I_{i}^{3}
\end{aligned}
$$

To estimate I_{i}^{1}, it is enough to estimate its integrand over the sets S_{n} and Σ_{n} (because it is identically 0 elsewhere). Since $\Sigma_{n} \subset T$ and $\left\|\mathrm{H}^{\prime \prime}\right\|_{\infty} \leq \delta$, we obtain that

$$
\begin{aligned}
& \tilde{L}_{i}\left(\mathbf{z}^{\prime}(s)+\mathrm{H}^{\prime}\left(t_{n}(s)\right), 2 \mathrm{z}^{\prime \prime}(s)+\mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right) \frac{1}{2} \\
& -\tilde{L}_{i}\left(\mathrm{z}^{\prime}(s)+\mathrm{H}^{\prime}\left(t_{n}(s)\right), \mathrm{z}^{\prime \prime}(s)+\frac{\mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)}{2}\right) \leq M
\end{aligned}
$$

for every s in Σ_{n}. By Propositions 3 and 4 in [5], for every s in S_{n},

$$
\begin{aligned}
& \tilde{L}_{i}\left(\mathrm{z}_{n}^{\prime}\left(t_{n}(s)\right), n \frac{\mathrm{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)}{\left|\mathrm{z}^{\prime \prime}(s)\right|}\right) \frac{\left|\mathrm{z}^{\prime \prime}(s)\right|}{n} \\
& -\tilde{L}_{i}\left(\mathrm{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathrm{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right) \leq-\left(\frac{\left|\mathrm{z}^{\prime \prime}(s)\right|}{n}-1\right) \tilde{L}_{i}^{*}\left(\mathrm{z}_{n}^{\prime}\left(t_{n}(s)\right), p\right) \leq 0,
\end{aligned}
$$

where $p \in \partial_{w} L_{i}\left(\mathrm{z}_{n}^{\prime}\left(t_{n}(s)\right), n\left(\mathrm{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right) /\left|\mathrm{z}^{\prime \prime}(s)\right|\right)$. Using the fact that ψ_{i} is positive and bounded by Ψ, we have $I_{i}^{1} \leq M \Psi\left|\Sigma_{n}\right|<\bar{\epsilon} / 8$.

To estimate I_{i}^{2}, we observe that

$$
\tilde{L}_{i}\left(\mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right), \mathbf{z}^{\prime \prime}(s)+t_{n}^{\prime}(s) \mathrm{H}^{\prime \prime}\left(t_{n}(s)\right)\right)= \begin{cases}\tilde{L}_{i}\left(\mathrm{z}_{n}^{\prime}(s), \mathrm{z}^{\prime \prime}(s)+\mathrm{H}^{\prime \prime}(s)\right), & s \in\left[\tau^{-}, \tau^{+}\right], \\ \tilde{L}_{i}\left(\mathrm{x}^{\prime}(s), \mathrm{x}^{\prime \prime}(s)\right), & \text { otherwise } .\end{cases}
$$

By the fact that $\left|\psi_{i}\left(t_{n}(s), \mathbf{z}_{n}\left(t_{n}(s)\right), \mathbf{z}_{n}^{\prime}\left(t_{n}(s)\right)\right)-\psi_{i}\left(s, \mathbf{x}(s), \mathbf{x}^{\prime}(s)\right)\right| \leq \bar{\epsilon} /[8(\ell+\tilde{\mathbf{L}}+1)]$, for any s in $[a, b]$, and that $\mathrm{z}^{\prime \prime}+\mathrm{H}^{\prime \prime} \in B\left[0,\left|\mathrm{x}^{\prime \prime}(\tau)\right|+\delta\right]$ on $\left[\tau^{-}, \tau^{+}\right]$, we have $I_{i}^{2} \leq \bar{\epsilon} / 8$.

To estimate I_{i}^{3}, it is enough to estimate the integrals over $\left[\tau^{-}, \tau^{+}\right]$ (because it is identically 0 elsewhere). Recalling that τ is a Lebesgue point for $\tilde{L}_{i}\left(\mathrm{x}^{\prime}(\cdot), \mathrm{x}^{\prime \prime}(\cdot)\right) \psi_{i}\left(\cdot, \mathbf{x}(\cdot), \mathrm{x}^{\prime}(\cdot)\right)$, we have

$$
\begin{aligned}
& I_{i}^{3} \leq \int_{\tau^{-}}^{\tau^{+}}\left[\tilde{L}_{i}\left(\mathrm{z}_{n}^{\prime}(s), \mathrm{z}^{\prime \prime}(s)+\mathrm{H}^{\prime \prime}(s)\right) \psi_{i}\left(s, \mathbf{x}(s), \mathrm{x}^{\prime}(s)\right)\right. \\
&\left.\quad-\tilde{L}_{i}\left(\mathrm{x}^{\prime}(\tau), \mathrm{x}^{\prime \prime}(\tau)\right) \psi_{i}\left(\tau, \mathbf{x}(\tau), \mathrm{x}^{\prime}(\tau)\right)\right] d s+\frac{\bar{\epsilon}}{8} \\
& \leq 4 \rho \tilde{\mathbf{L}} \Psi+\frac{\bar{\epsilon}}{8}<\frac{\bar{\epsilon}}{4} .
\end{aligned}
$$

Hence, $I_{i}^{1}+I_{i}^{2}+I_{i}^{3}<\bar{\epsilon} / 2$, for any i.
Conclusion. We have obtained

$$
\begin{aligned}
& \int_{a}^{b} L_{i}\left(\mathrm{z}_{n}^{\prime}(t), \mathrm{y}_{n}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{z}_{n}(t), \mathrm{z}_{n}^{\prime}(t)\right) d t-\int_{a}^{b} L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t \\
& <\int_{a}^{b}\left[L_{i}\left(\mathrm{z}_{n}^{\prime}(t), \mathrm{z}_{n}^{\prime \prime}(t)\right)+\eta\right] \psi_{i}\left(t, \mathbf{z}_{n}(t), \mathrm{z}_{n}^{\prime}(t)\right) d t \\
& \quad-\int_{a}^{b}\left[L_{i}\left(\mathrm{x}^{\prime}(t), \mathrm{x}^{\prime \prime}(t)\right)+\eta\right] \psi_{i}\left(t, \mathbf{x}(t), \mathrm{x}^{\prime}(t)\right) d t+\frac{\bar{\epsilon}}{2} \\
& =\int_{a}^{b} \tilde{L}_{i}\left(\mathrm{z}_{n}^{\prime}(t), \mathrm{z}_{n}^{\prime \prime}(t)\right) \psi_{i}\left(t, \mathbf{z}_{n}(t), \mathrm{z}_{n}^{\prime}(t)\right) d t-\int_{a}^{b} \tilde{L}_{i}\left(\mathrm{x}^{\prime}(s), \mathrm{x}^{\prime \prime}(s)\right) \psi_{i}\left(s, \mathbf{x}(s), \mathrm{x}^{\prime}(s)\right) d s+\frac{\bar{\epsilon}}{2} \\
& <\bar{\epsilon} .
\end{aligned}
$$

Hence, $\mathcal{I}\left(z_{n}\right)-\mathcal{I}(x)<\sum_{i=1}^{m} \bar{\epsilon}=\epsilon$.
So, setting $x_{\epsilon}=z_{n}$, we have proved the theorem.
4. A necessary condition for the Lavrentiev phenomenon. The content of this section is provided to show the following necessary condition: a functional

$$
\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}, x^{(\nu+1)}\right) \psi_{i}\left(t, x, x^{\prime}, \ldots, x^{(\nu)}\right)
$$

with $\nu \geq 0$, exhibiting the Lavrentiev phenomenon takes the value $+\infty$ in any neighborhood of a minimizer \bar{x}; or equivalently if \mathcal{I} assumes only finite values on a neighborhood of \bar{x}, then \mathcal{I} does not exhibit the Lavrentiev phenomenon.

This is proved in the following corollary to Theorem 2.1 and Theorem 1 in [5].
Corollary 4.1. Let $\Omega_{0}, \ldots, \Omega_{\nu}$ be open sets in $\mathbb{R}^{N}, \nu \geq 0$, such that the set $E=\left\{x \in \mathbf{W}^{\nu+1,1}(a, b): x(t) \in \Omega_{0}, \ldots, x^{(\nu)}(t) \in \Omega_{\nu} \forall t \in[a, b]\right\}$ is nonempty. Let $A, B \in \Omega_{0}, A^{(1)}, B^{(1)} \in \Omega_{1}, \ldots, A^{(\nu)}, B^{(\nu)} \in \Omega_{\nu}$ be given boundary values.

Let $L_{1}, \ldots, L_{m}: \Omega_{\nu} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $\psi_{1}, \ldots, \psi_{m}:[a, b] \times \Omega_{0} \times \cdots \times \Omega_{\nu} \rightarrow[0,+\infty)$ be continuous and such that $L_{i}(\xi, \cdot)$ is convex, for any ξ in Ω_{ν}, any i in $\{1, \ldots, m\}$.

Let

$$
\mathcal{I}(x)=\int_{a}^{b} \sum_{i=1}^{m} L_{i}\left(x^{(\nu)}(t), x^{(\nu+1)}(t)\right) \psi_{i}\left(t, x(t), x^{\prime}(t), \ldots, x^{(\nu)}(t)\right) d t
$$

be a functional exhibiting the Lavrentiev phenomenon, and let \bar{x} be a minimum of \mathcal{I} over $E_{a, b}=\left\{x \in E: x(a)=A, x(b)=B, x^{\prime}(a)=A^{(1)}, x^{\prime}(b)=B^{(1)}, \ldots\right.$, $\left.x^{(\nu)}(a)=A^{(\nu)}, x^{(\nu)}(b)=B^{(\nu)}\right\}$.

Assume that for any $\delta>0$ there exists $\sigma_{\delta}>0$ such that $\sigma_{\delta} \rightarrow 0$, for $\delta \rightarrow 0$, and that ψ_{i} restricted to $\mathrm{T}_{\delta}^{\nu}[\bar{x}]$ may vanish only on the graph of $\left(\bar{x}, \bar{x}^{\prime}, \ldots, \bar{x}^{(\nu)}\right)$ or on a σ_{δ}-neighborhood of $\left(a, A, \ldots, A^{(\nu)}\right)$ or on a σ_{δ}-neighborhood of $\left(b, B, \ldots, B^{(\nu)}\right)$, for any i in $\{1, \ldots, m\}$.

Then, for any $\epsilon>0$, there exists x_{ϵ} in $E_{a, b}$ such that the graph of $\left(x_{\epsilon}, x_{\epsilon}^{\prime}, \ldots, x_{\epsilon}^{(\nu)}\right)$ is included in $\mathrm{T}_{\epsilon}^{\nu}[\bar{x}]$ and $\mathcal{I}\left(x_{\epsilon}\right)=+\infty$.

Proof. Fix $\epsilon>0$. From Theorem 2.1 and Theorem 1 in [5], it follows that $\int_{a}^{b}\left|L_{i}\left(\bar{x}^{(\nu)}, \bar{x}^{(\nu+1)}\right)\right|=+\infty$, for at least one i in $\{1, \ldots, m\}$.

Without loss of generality, we suppose that $\int_{a}^{(a+b) / 2}\left|L_{i}\left(\bar{x}^{(\nu)}, \bar{x}^{(\nu+1)}\right)\right|=+\infty$.
Let $g:(-\infty,+\infty) \rightarrow[0,1]$ be a \mathbf{C}^{∞} increasing function with value 1 on $[b,+\infty)$ and 0 on $(-\infty,(a+b) 3 / 4]$. We define the integrable function $x_{\delta, \nu+1}:[a, b] \rightarrow \mathbb{R}^{N}$ by

$$
x_{\delta, \nu+1}(t)= \begin{cases}0, & t \in\left[a, a+\sigma_{\delta}\right) \\ \bar{x}^{(\nu+1)}\left(t-\sigma_{\delta}\right), & \text { otherwise }\end{cases}
$$

and ν absolutely continuous functions $x_{\delta, j}(t)=A^{(j)}+\int_{a}^{t} x_{\delta, j+1}+g(t) D_{\delta, j}$, for any t in $[a, b]$, where $D_{\delta, j}=B^{(j)}-A^{(j)}-\int_{a}^{b} x_{\delta, j+1}$, for any j in $\{0, \ldots, \nu\}$.

Set $x_{\delta}=x_{\delta, 0}$. The derivatives of x_{δ} up to the order $\nu+1$ are

$$
\begin{aligned}
& x_{\delta}^{\prime}(t)=x_{\delta, 1}(t)+g^{\prime}(t) D_{\delta, 0} \\
& x_{\delta}^{\prime \prime}(t)=x_{\delta, 2}(t)+g^{\prime \prime}(t) D_{\delta, 0}+g^{\prime}(t) D_{\delta, 1} \\
& \vdots \\
& x_{\delta}^{(\nu+1)}(t)=x_{\delta, \nu+1}(t)+\sum_{j=0}^{\nu} g^{(\nu-j+1)}(t) D_{\delta, j}
\end{aligned}
$$

By definition, x_{δ} belongs to $\mathbf{W}^{\nu+1,1}(a, b)$, it has the same boundary values of \bar{x} in a and in b, and, for j in $\{\nu, \nu+1\}$, for any t in $\left[a+\sigma_{\delta},(a+b) 3 / 4\right]$, we have $x_{\delta}^{(j)}(t)=\bar{x}^{(j)}\left(t-\sigma_{\delta}\right)$. Furthermore, there exist constants c_{j}, d_{j}, independent on δ, such that $\left|D_{\delta, j}\right| \leq c_{j} \int_{b-\sigma_{\delta}}^{b}\left|\bar{x}^{(\nu+1)}\right|$ and $\left|\left|x_{\delta, j}-x_{\delta}^{(j)} \|_{\infty} \leq d_{j} \int_{b-\sigma_{\delta}}^{b}\right| \bar{x}^{(\nu+1)}\right|$. Hence, for any j in $\{0, \ldots, \nu\}$,

$$
\left\|\bar{x}^{(j)}-x_{\delta}^{(j)}\right\|_{\infty} \leq\left(c_{j}+\left\|g^{(\nu+1)}\right\|_{\infty} \sum_{j=0}^{\nu} d_{j}\right) \int_{b-\sigma_{\delta}}^{b}\left|\bar{x}^{(\nu+1)}\right|
$$

By hypothesis, we can choose $\bar{\delta}>0$ such that $\left(c_{j}+\left\|g^{(\nu+1)}\right\|_{\infty} \sum_{j=0}^{\nu} d_{j}\right) \int_{b-\sigma_{\bar{\delta}}}^{b}\left|\bar{x}^{(\nu+1)}\right|$ $<\epsilon$ and $\sigma_{\bar{\delta}}<(b-a) / 4$.

Set $\Psi_{i}=\min \left\{\psi_{i}\left(t, x_{\bar{\delta}}(t), \ldots, x_{\bar{\delta}}^{(\nu)}(t)\right): t \in\left[a+\sigma_{\bar{\delta}},(a+b) 3 / 4\right]\right\}:$ by hypothesis, Ψ_{i} is positive. We have obtained that the graph of $\left(x_{\bar{\delta}}, x_{\bar{\delta}}^{\prime}, \ldots, x_{\bar{\delta}}^{(\nu)}\right)$ belongs to $\mathrm{T}_{\epsilon}^{\nu}[\bar{x}]$ and

$$
\begin{aligned}
& \int_{a}^{b}\left|L_{i}\left(x_{\bar{\delta}}^{(\nu)}(t), x_{\bar{\delta}}^{(\nu+1)}(t)\right) \psi_{i}\left(t, x_{\bar{\delta}}(t), \ldots, x_{\bar{\delta}}^{(\nu)}(t)\right)\right| d t \\
& \geq \int_{a+\sigma_{\bar{\delta}}}^{(a+b) 3 / 4}\left|L_{i}\left(\bar{x}^{(\nu)}\left(t-\sigma_{\bar{\delta}}\right), \bar{x}^{(\nu+1)}\left(t-\sigma_{\bar{\delta}}\right)\right)\right| \psi_{i}\left(t, x_{\bar{\delta}}(t), \ldots, x_{\bar{\delta}}^{(\nu)}(t)\right) d t \\
& \geq \Psi_{i} \int_{a}^{(a+b) / 2}\left|L_{i}\left(\bar{x}^{(\nu)}(t), \bar{x}^{(\nu+1)}(t)\right)\right| d t=+\infty .
\end{aligned}
$$

From (i) in the proof of Theorem 2.1 and Theorem 1 in [5], we infer that $\mathcal{I}\left(x_{\bar{\delta}}\right)=+\infty$. So, setting $x_{\epsilon}=x_{\bar{\delta}}$, we have proved the corollary.
The corollary above applies to the functionals of Manià and Sarychev, for instance, and to the examples of functionals exhibiting the Lavrentiev phenomenon proposed in [3], [4], [11], [12], [13], [14], and [15].

Acknowledgment. We thank the anonymous referees for many interesting comments.

REFERENCES

[1] G. Alberti and F. Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals, in Calculus of Variations, Homogenization and Continuum Mechanics, Ser. Adv. Math. Appl. Sci. 18, World Scientific, River Edge, NJ, 1994, pp. 1-17.
[2] T. S. Angell, A note on approximation of optimal solutions of free problems of the calculus of variations, Rend. Circ. Mat. Palermo (2), 28 (1979), pp. 258-272.
[3] J. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal., 90 (1985), pp. 325-388.
[4] M. Belloni, Interpretation of Lavrentiev phenomenon by relaxation: The higher order case, Trans. Amer. Math. Soc., 347 (1995), pp. 2011-2023.
[5] A. Cellina, A. Ferriero, and E. M. Marchini, Reparametrizations and approximate values of integrals of the calculus of variations, J. Differential Equations, 193 (2003), pp. 374-384.
[6] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983.
[7] C. W. Cheng and V. J. Mizel, On the Lavrentiev phenomenon for autonomous second-order integrands, Arch. Rational Mech. Anal., 126 (1994), pp. 21-33.
[8] F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289 (1985), pp. 73-98.
[9] F. H. Clarke and R. B. Vinter, A regularity theory for variational problems with higher order derivatives, Trans. Amer. Math. Soc., 320 (1990), pp. 227-251.
[10] A. Ferriero, The Lavrentiev Phenomenon in the Calculus of Variations, Ph.D. thesis, Universitá degli Studi di Milano-Bicocca, Milano, Italy, 2004.
[11] M. Lavrentiev, Sur quelques problemes du calcul des variations, Ann. Mat. Pura Appl., 4 (1926), pp. 7-28.
[12] P. D. Lowen, On the Lavrentiev phenomenon, Canad. Math. Bull., 30 (1987), pp. 102-108.
[13] B. Manià, Sopra un esempio di Lavrentieff, Boll. Unione Mat. Ital., 13 (1934), pp. 147-153.
[14] V. J. Mizel, Recent progress on the Lavrentiev phenomenon, with applications, in Differential Equations and Control Theory, Lecture Notes in Pure and Appl. Math. 225, Dekker, New York, 2002, pp. 257-261.
[15] A. V. Sarychev, First- and second-order integral functionals of the calculus of variations which exhibit the Lavrentiev phenomenon, J. Dynam. Control Systems, 3 (1997), pp. 565-588.
[16] J. Serrin and D. E. Varberg, A general chain rule for derivatives and the change of variable formula for the Lebesgue integral, Amer. Math. Monthly, 76 (1969), pp. 514-520.

[^0]: *Received by the editors November 14, 2003; accepted for publication (in revised form) October 9, 2004; published electronically June 27, 2005.
 http://www.siam.org/journals/sicon/44-1/43772.html
 ${ }^{\dagger}$ Dipartimento di Matematica e Applicazioni, Universitá degli Studi di Milano-Bicocca,Via R. Cozzi 53, 20126 Milano, Italy (ferriero@matapp.unimib.it).

