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ABSTRACT. In this paper we analyze the parabolic equation
w = = [H () +10g(t0 +a) + (un +a)2/2] . u(0) =0, (1)

where a > 0 is a given parameter, and H denotes the Hilbert transform.
Equation arises from a continuum model for heteroepitaxial growth
organizing according to misfit elasticity forces, derived by Xiang (STAM
J. Appl. Math. 63:241-258, 2002), and subsequently studied by Dal
Maso, Fonseca and Leoni (Arch. Rational Mech. Anal. 212: 1037-
1064, 2014). Then, it was proven by Fonseca, Leoni and the author,
that admits a unique weak solution, which is also Lipschitz regular
in time (Commun. Part. Diff. Eq. 40(10):1942-1957, 2015). The aim
of this paper is to prove existence, uniqueness and regularity of strong
solutions of .

Keywords: epitaxial growth, vicinal surfaces, evolution equations, Hilbert
transform, monotone operators

AMS Mathematics Subject Classification: 35K55, 35K67, 44A15,
74K35

1. INTRODUCTION

In this paper we study existence, uniqueness, and regularity of strong
solutions of

w = — [H(uz) + @;(um)]
where u is the initial datum, a > 0 is a given constant, ®, is defined by

Dy (&) = @(§ +a),

—+00 if £ <0,
O :R— (—o0,+0], @) := 0 it{=0,
Elog€+¢€3/6 if &€ >0,

and H denotes the Hilbert transform. That is,

H(Pa) = oopv [ 1220

_ d
27 1 tan(y/2) 4
1

U(O) = u07 (2)

xx?

I:=(—mm),
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with PV denoting the Cauchy principal value. Equation arises in the
context of heteroepitaxial growth. It was proven, by Dal Maso, Fonseca and
Leoni in [7], that is equivalent to

hi = — [H(hx) + <hlx + hx) hm} N (3)

The latter is (upon space inversion) the continuum variant derived by Xiang
in [I4] of the discrete models describing heteroepitaxial growth proposed by
Duport, Politi and Villain in [8], and by Tersoff, Phang, Zhang and Lagally
n [I3]. We refer the interested reader to the related works by Xiang and E
[15], and by Xu and Xiang [16].

The choice (in [7]) to study (2|) on I = (—m, 7), and then extend to R by
periodicity, is based on the fact that only the function u and its derivatives
(and never the space coordinate x alone) appear explicitly in . The
main advantage to study on [ = (—m,m) is the ability to use Poincaré’s
inequality.

It was also proven by Dal Maso, Fonseca and Leoni (|7, Theorems 1 and
2]) that admits a weak solution u satisfying some particular variational
inequalities. Subsequently, the existence of a Lipschitz regular weak solution
of was proven by Fonseca, Leoni and the author [9]. More precisely, [9,
Theorem 1] states that given T,a > 0, and u° € Wge% (I) (defined in (6)
below) satisfying

2
e there exists 20 € Lier,

/] (200 — H(u2, v, + o(vpe) — Ba(ul,)] dz > 0 (4)

(I) such that

for any v € W23 (I),

perg

then there exists a unique solution u of (2) in the sense that

[ [uattptyarar= [ [ aa@)a(0) ~ ) aal))pan )]
)

for any test function ¢ € C°((0,7) x I;R). Moreover, the solution u satisfies
u € L=(0, T Wik (1)) N CO([0, T Loy, (1)),
up € L0, T; Ly, (1)), u(0) = u’.
Here, and for future reference, given k& € N, p € [1,+0o0], erféfo( ) and
LB, (I) are defined by

Wééfo( ) = {f € I/Vllf)cp(R) : f is 2m-periodic and /Ifd:c = O}, (6)

LP e, (1) = {f e L} (R) : f is 2m-periodic and /Ifdx = 0} ;
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and endowed with the standard norm of W,"?(R) and L? (R) respectively.
Moreover, it can be shown, by straightforward computation, that Wlféfo(l )
and LP . (I) are reflexive for all K € N and p € (1, +00).

perg

It has been suggested by Leoni that, for sufficiently regular initial datum,
equation should admit a strong solution. The aim of this paper is to
study existence, uniqueness and regularity of strong solutions of . The
main results are:

Theorem 1. (Existence and regularity) Given T, a > 0, an initial datum
u® € W22 (I) such that

perg

H(Ug)m + (I)it(ugx)$x €L (1), (7)

perg

then there exists a strong solution

we L®0,T; W22 (I)nC[0,T]; L2, (I)),  us € L™®(0,T; L2, (I)),

perg perg perg

such that
u(t) = —H (uz(t))zx — P (g (t))ez  for ace. t €[0,T], u(0) =u’, (8)

and

[t oo (0,722, (1)) < IH (u)) e + ) (uoe)aellzz. (- (9)

per, perg

Theorem 2. (Uniqueness and stability) Under the same hypotheses of The-
orem[1], the strong solution given by Theorem [1] is unique.
Moreover, denote by u the unique strong solution of , and let

D:={zecL?, (I): H(%)zz + @, (222)2z € L., (1)}, (10)

pero pero
12 . 2,2 0 .72
Y=L (0’ T’ Wporo(l)) nc ([07T]’ LporO(I))’
-1y = 20wz, oy + 11 lleoqomyze,, ()

Then the function
o (D] ll2ry) — YLl lly), ow?) :=u, (11)

which maps an initial datum u® into the solution u of , is 2-Lipschitz
continuous.

Corollary 3. (Exponential decay for speed) Under the same hypotheses of
Theorem denote by u the unique solution of . Then, setting,

B:WZ (1) — (WX (D)), Bu:= H(ug)zs + P, (Uga)a,  (12)

perg perg
it holds
()l r2(ry < €| Bu|l 2py-
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The theory for evolution equations governed by symmetric maximal mono-
tone operators (see Definition [4| below) is quite rich (see for instance Brézis
[2] and references therein). Similarly, the theory for evolution equations
governed by accretive operators (see Definition [5| below) is also quite rich
(see for instance Barbu [I], Crandall and Liggett [5], Crandall and Pazy [6]).
However, there are essentially two main difficulties in our analysis:

(1) first, the operator B governing is not symmetric, unbounded,
and not accretive.
(2) Second, the domain of B is not the entire space ngja (I), due to the
non-definition of ® on (—o0,0).
To overcome these issues, we will exploit heavily the variational structure of
(2), and the monotonicity of B. Crucial steps are Lemma |§| and Proposition

[

2. PRELIMINARY RESULTS

The main aim of this section is to present the setting of our problem, and
to prove the crucial estimates in Lemma [6] and Proposition [/} As done by
Dal Maso, Fonseca and Leoni in [7], and by Fonseca, Leoni and the author
in [9], we will study ([2) on the space domain I = (—m,7) (and then extend
by periodicity).

Let

Vi=W2E (1),  U:=L (D).

Endow U with the standard inner product of L?(I)
(W up = /u*udx, W el uel,
I

and identify U with its dual U’. Endow V' with the norm |[v||y := |[vzz || £2(1)-
It is straightforward to check that U, V are reflexive. The duality pairing
on V will be denoted by (,)yy. More explicitly, given v* € V', v € V, it
holds

W)y = /v*v dz.
I
Note that the embeddings V < U < V' are compact, hence (V,U,V’) is a
Gelfand triple. Since the underlying space V is reflexive, it is straightforward

to check (by direct computation, without using Aubin-Lions lemma) that
the embeddings

L*(0,T;V) < L*(0,T;U) — L*(0,T;V")

are also continuous. For future references, given a Banach space X and an
operator A : X — X’ domx (A) denotes the “domain” of A in X. That is,

domx(A) :={re X : Ar € X'}.
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We recall the following classical definitions (see for instance [1]).

Definition 4. Given a Banach space X, denote by (,)x’ x the duality pair-
ing between X' and X. A single-valued operator A : X — X' is:

(1) monotone if for any u,v € domx(A), it holds
(Au— Av,u —v)xr x > 0.

Similarly, a set G C X x X' is “monotone” if for any pair (u,u’),
(v,0") € G, it holds

(u — v u—v)xr x > 0;
(2) maximal monotone if the graph
Typi={(u,Au):ue X} C X x X’

is not a proper subset of any monotone set;
(8) hemi-continuous if for any u,v,w € X the mapping

t— (A(u+tv), w)x x
18 continuous.
Definition 5. Given a Banach space X, a single-valued operator A: X —
X, its graph T 5(X) == {(v, Az) : © € X such that Az € X)} is:

(1) accretive if for any couple (z, Ax), (y, Ay), there exists an element
z € Jx(z —y) such that (z, Ax — Ay)xr x >0, where Jx : X — X'
denotes the duality mapping;

(2) demi-closed if for any sequence (x,) C X, such that x, — =
strongly in X, and Az, — & € X, it holds (z,£) € I';(X).

The next lemma proves some key properties of B.

Lemma 6. The operator B : V. — V' satisfies the following properties:
(i) B is mazximal monotone,
(ii) (coercivity) for any u,v € domy (B) it holds

(Bu— Bv,u—v)yy > |lu—vlff,

(iii) the graph of B is demi-closed in V' x V'. That is, given a sequence
(xr) €V such that z, — x strongly in V, Bxy — y in V', then
(x,y) belongs to the graph of B, and y = Bx.
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Proof. To prove (i) and (i), we use the same arguments from [9, Lemma 6].
For completeness, we report the proof. Set

B:V —V, (Bu,v)yry = / 20050 — H (uge)vs] dz,
I

U, : R — (—00+ o], Wo(8) = D,(¢) — &,

J1 Va(uge)de ifueV,
400 otherwise.

PV — (=004 o0, ¥(u) ::{

Direct computation gives B = B + dv. Here, and for future reference, “9”
denotes the sub-gradient operator. More precisely, it is easily checked (by
direct computation) that 01 (z) = {¥/) (244)zs} for all z € domy (9¢). Note
also that domy (9v) C domy (¢») C V. Since

1
Vi) = rat gm0 frawe> o

U, is convex on (—a,+o00). Consequently, ¢ is convex. By construction
B = B + 0 is hemi-continuous. To prove monotonicity, note that [4,
Proposition 9.1.9] and [; ug, dz = 0 give

1 2
1)l = faello + o (o) = Jumallos (13)

while ||ug || < ||ugz||r holds in view of [10, Section 7.7]. Hence

1H (uao) olluzllo < lluasll?, (14)

and
(Blu—v),u— vhyry = /1(2]um g — H(t = 0) (1 — v)) da

= 2||tge — Veo||F — /IH(u — V) g (u —v), dz
> 2| ugy — U:cxH2U — [[H(u = v)as|lv][(u = v)a|lo
| tze — UmHIQJ

As 1) is convex (hence 07 is monotone), combining and gives

(Bu — Bv,u —v)yry

- <B(u - U)?“’ - U>V’,V + <a¢(u) - 31/}(1))771 - U>V’,V
> Jlu — oy

Thus B is monotone and hemi-continuous, hence (by [3, Theorem 1.2]) max-
imal monotone.
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Statement (7ii) follows from the well-known result stating that the graph
of any maximal monotone operator is demi-closed. For further details, we
refer to [I12, Theorem 1, Remarks 3-4]. O

3. AN EXISTENCE RESULT

The next proposition is a refinement of the existence result from [I1]
Section 5]. Due to its relevance to our arguments, we dedicate an entire
section to its proof.

Proposition 7. Let B and ¥ be the functionals from Lemma @ Let u® €
domy (B) be a given initial datum, satisfying

u’ € domy (B), Bu® € U. (15)
Then there exists a function
u e L0, T; V)N C%([0,T); U), ug € L°(0,T;U) (16)
such that w(0) = u® and
(us(t), v = u(t))orp + (Bu(t),v —u(t))vry + ¢(v) = d(u(t)) >0 (17)
for a.e. timet € (0,T), and all v € V.. Moreover, it holds

el Lo om0y < 1Bulo- (18)

Remark. The main improvement is that we only assume that the initial
datum u satisfies , instead of

o “u¥ € W22 (I) and there exists 20 € L2

perg perg

(I) satisfying
S = B e + @a(var) — @aluly)] do > 0
I

for any v € W23 (I)".

perg

We note that such functions u satisfying exist: for instance, since
Buo = H(ug)mx + UOg(ugx + a) + (ugz + a)2/2]$$7
all the functions of the form u"(z) := bsinz, with |b| < a, satisfy (15).

Proof. (of Proposition (7)) The proof is essentially divided into three steps:
(1) first, using the classic method of time discretization, we construct a
sequence of piece-wise linear approximate solutions u® : [0,7] — V;
(2) then we prove that (u®). is uniformly bounded in L*°(0,7;V) N
W1 ([0, T); U), and we obtain a (weak) limit function
u € L0, T; V)N C([0,T); U), ug € L0, T;U);

(3) finally, we prove that such u is solution of (7).
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Step 1. Let € > 0 be given. Consider the partition
O=to<ti < - <tp—1<tn. <T <t +e,
tj—tj_lzé“, j:1,~-,n€:: LT/EJ,
where || denotes the integer part mapping. Construct the recursive se-

quence (uc;) in the following way: wu.o = u°, and given u.;—; € V, let
uz; € V be a solution of

Ueg i — Ugi—
<W+Bue,iav_ua,i> >0 forallveV.
ti —ti—1 1%ZR%

Observe that this is equivalent to find u.; € V such that
((d +eB)uei,v = Uei)yr v = (Ueyio1,V = Uei) v for allv € V. (19)

Since B is maximal monotone, id +¢B : domy (B) — U’ is surjective for all
e > 0, hence there exists u.; € domy(B) C V (since B — from Lemma |§| -
is bounded and linear, and 0v is well-defined only on V') such that u.;—; =
(id +eB)ue ;. Moreover, id +¢B is also injective since B is monotone, hence
ue; = (id +eB) lu ;1 is unique. Thus u.; € domy(B) C V is solution of
. Define the piece-wise linear functions u® satisfying

u® [0, T] — V, u(ke) ==y, k=0,---,|T/e].

Step 2. By construction, u.; = (id +eB) lu. ;_1, thus
Uej — Ugj—1 = (id —l—e’;‘B)flue,i_l — (id +€B)71U57i_2
= |luei — Uei—1lv < |Jteim1 — Uei—2||U, (20)

since (id +¢B)~! : U — domy (B) is non-expansive as B is maximal mono-
tone. Note that, by construction u.; = (id +eB)~1u’, and we get

uey —u’ = (id +eB) '’ — (id +eB) ! (id +eB)u®,
hence
ueq — u¥)|y = ||(id +eB) "’ — (id +eB) 7 (id +e B)u’||y
< |lu’ — (id +eB)u’|ly = e[| Bu" v,
which in turn gives

Jue,1 — ullly

Combining and gives

[ tei — ve i1l

< ||Bu’|y- (21)

< ||Bu || foralle >0, i=0,---,|T/e].

Since
||Ue,z‘ - Ua,i—lHU
€

= [Jui (t)||v for t € ((i — 1)e, ig),
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it follows

Jul < 186y — sup  sup u(®) ~ ) <TIBC . (22)
€ te€[0,7

To estimate ||u®(t)||y, note that (id+eB)u.; = uc ;—1 implies

Ugi — Ug i1
HUE,ZH%/ < <Bu€7i7u8,i> ’ = =t =t y Ue g
172N
’ € vV

< llue,i — ga,i—an e

< N1Bu |l (T Bu’lle + [[u’lv)

U

therefore

sup (sup ()1 ) < B (TIB o + o). (23)
€ t€[0,T)]

Step 3. Consider an arbitrary sequence &, — 0. In view of and
, there exists (upon subsequence, which we do not relabel) a function
u € L*®(0,T;V) such that

utt S in L0, T;V),  uf® 2wy in L°°(0,T;U), (24)

where “2” denotes the convergence in the weak-* topology. Combining

, and gives and .
Fix an arbitrary p € (2, +00). In view of (24)), we have

u™ — y in LP(0,T;V), ug™ — g in LP(0,T5U),

In particular, u®" — w in LP(ty,t9; V) and ui™ — w in LP(t1,t9;U) for
any 0 < t; < to9 < T. The main advantage of working with p € (2,400)
(instead of p = o0) is that the functional 1 is weakly sequentially lower
semi-continuous. This will be crucial for the proof of below.

By construction, each u®" satisfies
(ug™(t) + Bu" (t),v = u™ )}y =0 (25)
for a.e. t € [0,T], and all v € V. Since B = B + d¢, with B and ¢ from
Lemma |§|7 and v is convex, gives

(U5 () + Bum (£), v —u™ (1)), |+ (0) = (u (1)) 2 0

v/,
for a.e. t € [0,T], and all v € V. Integrating on an arbitrary time set (t1,%2)
with 0 <t; <9 < T gives

/: [<u§"(t) + Bufn(),v — uen(t)> Fb(v) — D (1) dt >0 (26)

\4Nn%
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for all v € V. Next, we claim

to to
lim sup — PY(u(t))dt < — Y(u(t))de, (27)
n—-4oo t1 t1
; 25 € € b2
ngrfoo , <Bu (t),v—u (t)>V',v dt = /t1 <Bu(t),v - u(t)>V,’V dt,
(28)
to to
im [ (@ (), 0 — S (t))yy dt = / (ue(t),v — u(t))yr ¢ db. (29)
n—+o0 Ji, ’ t1 ’

To prove , it suffices to note that —2) is concave, hence weak upper-
semicontinuous, and u®" — w in LP(t1,ta; V).

Substep 3.1: proof of . Note that

2 € € b2 €
/t1 <Bu (t),v—u (t)>V,7V dt = , <Bu (t),v—u(t)>vl,v dt
2 € €
+ | (Bu @) — ),

where
to

tm (Bu(1),0 - u(t)>V,’V dt = / ’ (Bu(t),v - u(t)>w L dt (30)

n—-+oo t1 ,

due to the boundedness and linearity of B. To prove
to

tim | (Bu (1), u(t) — ur (t)>v,7v dt =0, (31)

n—-+00

observe that
u™ = win LP(0,T;V), wui™ — w in LP(0,T;U),
and the embeddings V < W2 (I) < U are all compact. Thus Aubin-Lions

perg

lemma gives that u®» — u strongly in LP(0,T; WL2 (I)). Therefore,

perg
t2 D £ 5
S B @), u(e) — e (1),
to
= [ [t ) et ) - ui (2)] dedd
t1 I

to
< [ Ol a0 - w0l d
1

T, "
= | i @lulua(t) = ur @)l df
1

to
< Husn(t)HLOO(O,T;V)/t [ue(t) — ug (t) || dt

1

< = ()| o o, [tz = 1P e (t) = ug (D) ooy 0.
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Thus is proven. Combining and gives .
Substep 3.2: proof of (29). Since (ui"), is bounded in L>(0,T;U), it

follows

[ @), 000) — w0,

t1
1)
< [ @l = w @)l de
1
< I () e oiran lt2 = 17 u(t) = () oz "0, (32

and

/t t (U5 (1), 0 — u(t))yry dt - : (8,0 — u(®))yry At (33)

Combining and gives .

Combining , and gives
[ [ty + B0 = a@),, |+ 00 - vta(e))] a

| 4N

> lim sup /: Kuf" (t) + Buf(t),v — u°r (t)> +(v) —(u(t))| dt

n—-+oo 172N
> 0.
The arbitrariness of t1, ¢ty gives , concluding the proof. ([

4. PROOF OF THE MAIN RESULTS

Now we are ready to prove that the function u given by Proposition [7] is
the desired solution.

The proof of Theorem [1] uses some ideas from [I]. However, it is noted
that B : V — V' is not accretive, thus crucial monotonicity estimates have
to be achieved differently.

Proof. (of Theorem (1) Let u be a solution of given by Proposition
Since, in Proposition [T} u; was a (weak-*) limit L>(0,T;U) of u;" satisfying
supy, [|ug" || Lo om0y < | Bu’|lu, it follows

|t || oo (0,750 < %Eﬁ.&f 4§ || oo (0.70) < 1B ||,
which proves @ By construction, u satisfies also
u € L0, T;V)NCY0,T);U),  us € L®(0,T;U). (34)
We need to check that such u satisfies

ut(t) = —Bu(t) for a.e. t € [0, T, u(0) = u®. (35)
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Consider ¢t > 0 such that
u(t — h) = u(t) — hug(t) — hg(h), h >0, (36)
for some function g(h) satisfying
lim [|lg(h) o = 0. (37)
In view of , the set of times such that holds for some g satisfying
has full measure. Since id+hB : U — U is bijective, we define
h.= (id +hB)"lu(t — h) € domy (B).
Thus we get
u(t) — ™ = h[Ba" + w(t) + g(h)]. (38)
Multiplying both sides by wu(t) — " gives
(ult) — 2 ult) — ")y
= h{(Ba" 4+ uy(t),u(t) — 2" g + h{g(h),u(t) — z")yry.  (39)
Next, we claim
(Bx" + wy(t), u(t) — 2"y < 0. (40)
Since u is a solution of , taking v = 2 gives
(ur(t), 2" —u(®))vrv + (Bu(t), 2" —ult))v,v + (") — ¢(u(t)) 2 0,
hence, due to the convexity of ¢ and the monotonicity of B, we get
0 < (ug(t), 2" —u(®))vrv + (Bu(t) + 0(a), a" —u(t))vv
= (w(t), a" — u(t))orv + (Ba" + 0 (a"), 2" —u(t))yrv
+ (Bu(t) — Bz, 2" — u(t))y
< {ue(t), 2" — (b)) v + <B»’U + 31/1( "), 2" —u(t)v v
= (us(t), 2" —u(®))pr v + (Ba", 2" —u(®))vr v,
which proves . Thus gives
(ult) =2, u(t) — 2"y = W(Ba" +ue(t) + g(h), u(t) — ")yrv
< h{g(h), ult) — 2"y,
hence ||u(t) — 2"||;//h — 0 as h — 0. Note that, by construction, we have

Cu(t—h)—z" () -z u(t—h)—u(t)
Bat = h T h h ’

By — u(t — Z) — _ u(t)h— zh N u(t — hf)L —u(t) L u(t),
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strongly in U. Summing up, we proved that = — u(t), Bz" — —u(t), and
{(w, Bw) : w € domy (B), Bw € U}

is demi-closed in U x U, thus we infer (by [12 Theorem 1, Remarks 3-
4]) Bu(t) = —u(t). Since this argument holds for a.e. ¢t € [0,T], is
proven. O

Proof. (of Theorem [2)) From [I0, Section 7.7] we get ||v||r < ||v|y for all
v € V. Consider initial data u™', u®? € D (with D defined in (10)), and let
u!, u? be corresponding solutions to given by Theorem |1} Therefore, it
holds

up (t) + Bul(t) + 0 (ul (t)) = ui (t) + Bu(t) + 0y (u?(t)) = 0
for a.e. t € [0,T7], hence
ug (t) = uf (8) + B(u' (t) — u?(1)) + 0p(u' (1) — 0p(u?(1)) = 0
for a.e. t € [0, T]. Multiplying both sides by u'(t) — u?(t) gives
(ug (1) = ui (1), ul (1) = u*(©))yry + (Bu!(t) = u?(1), u! (t) — () vry
+ (00 (u' (1) — 0%(u? (1)), u' (t) — w*()yr,y =0
for a.e. t € [0,T]. Note that

(up (8) = ui (t), u' (t) = () = 5 — u' () — (BT,

(Bl (1) — (1)), () — (D) > (1) — (1)
(00 (1)) — DY (1), 0 (1) ~ (D) > 0,

which gives

0> %Ilul(t) — O+ [lu' () — @), (41)
hence
%Hul(t) — A ())f < —llu (1) = PO < —[lu'(t) = PO

= |lu'(t) = w*@O)F < e u® —u?[E. (42)

Integrating on [0, s] (for arbitrarily chosen s € (0,7]) gives

S S d
[t ® =i ae <~ [t o) - o) de
0 0
= [ = a2~ ' (5) — w2l
< ! - P23, (13)

Choosing u%! = u%2 proves that the solution given by Theorem [1]is unique.
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Given u® € D, a sequence (u®"), C D such that u%" — u° strongly in
U, estimate gives
u" = u strongly in C°([0, T];U),
while (43)) gives
u’ = u strongly in L*(0,T;V),

where u™ (resp. u) denotes the (unique) solution of associated to the
initial datum u%" (resp. u"). Thus the map o defined in is continuous.

Combining and , and setting
ul = O'(UO’I), u? = J(uO’Q),
we get

u' — || 20,00 + lut = w3l oo 110

- 1/2
= (/0 Hul(t)—UQ(t)II%/dt> + sup [lul () — u?(t)|v

te[0,7
‘U:

thus o is 2-Lipschitz continuous, concluding the proof. O

< 2”u0,1 _ uO,Q

Remark. Theorems [I] and [2] give the existence and uniqueness of a strong
solution w : [0,7] — V. In particular, it is also a solution in the weak
sense, i.e.

/ / w(t)p(t) da dt = / / (1t (£) () — !, (1t (1)) P ()] Az It
(14)
for any test function ¢ € C2°((0,T) x I;R). Thus, if the initial datum u° sat-
isfies the variational inequality for some 2° € U, then by [9, Theorem 1],
the following (stronger) regularity result holds:

w e L0, T; Wi (1) N CY([0,T1;U),  uy € L=(0,T;U).
Proof. (of Corollary [3)) Let u be the (unique) strong solution given by
Theorem [I}] Recall that, in the proof of Proposition [7} the sequence u®

was defined as the unique piece-wise linear function with nodes u.;, ¢ =
0,---,|T/e|, such that u.; = (id +¢B) 'uc;_1. In particular, we get

(Ue i — Ugi—1 + €BU 3, U — Ue i) yr v > 0, (45)
(Ugi—1 — Ugi—2 + EBUc i—1,V — Ue j—1)y7, v > 0, (46)
for all v € V. Choosing v = u.;—1 in and v = u.; in gives
(Usyi — Ugjim1 + €BU 3, Usim1 — Usi)yr v > 0,

(Uejim1 — Ueji—2 + EBU 1, Ue i — Uej—1)y7,v > 0,
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and summing both sides gives
[te; — tei1]|fr < e(Bue; — Buei1,Ue i1 — Uei)vr v
+ (Uit — Ueyi—2, Ui — Uei—1)V",V
< —¢lluei — ueiallf + lluei — tei-1llulluei—z — uei-1llu,
i.e.,
e — uei1lly < —€lluei — e i1l + lJuei—2 — ueia|lu,
which gives
e — ve i1 |lo < (1 + ) Hueima — ue i1 (47)
Taking i = 1, v = «° in yields
(ueq —u® + eBue 1, u’ — ue1)yry >0,
which gives
Jue1 — UOH%] < €<Bu€,17u0 - Us,1>V/,V
= &(Buz — Bu®, v’ —uc1)yry +e(Bu’,u’ —uc )y y
< el| Bu’|lullues — ulu,

hence |juc 1 — u®||y < ¢||Bu’|y. Combining with gives

lues ~veictl ¢ (14 60 Baty (48)

By construction it holds ||uf(s)||y = ||ue,i — ue,i—1l|v/€ for every s € ((i —
1)e,ie). Thus, for ¢t € [0,T] such that t/e ¢ N, it holds

Hua,ta 1_u5,ta”U
g (1)l = ==

< (L+o) W By < (14 6) 7% B
Since (upon subsequence) uf — u; in L®(t — 6,t + 6; U) for any & > 0, we
get

essSUD,e(1g5)[ue(5) |l < | Bully T (14 )10/ = =149 B0,

and we conclude by the arbitrariness of 9. ([l
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