STRONG SOLUTIONS OF A CONTINUUM MODEL FOR EPITAXIAL GROWTH WITH ELASTICITY ON VICINAL SURFACES

XIN YANG LU

AbStract. In this paper we analyze the parabolic equation

$$
\begin{equation*}
u_{t}=-\left[H\left(u_{x}\right)+\log \left(u_{x x}+a\right)+\left(u_{x x}+a\right)^{2} / 2\right]_{x x}, \quad u(0)=u^{0} \tag{1}
\end{equation*}
$$

where $a>0$ is a given parameter, and H denotes the Hilbert transform. Equation (1) arises from a continuum model for heteroepitaxial growth organizing according to misfit elasticity forces, derived by Xiang (SIAM J. Appl. Math. 63:241-258, 2002), and subsequently studied by Dal Maso, Fonseca and Leoni (Arch. Rational Mech. Anal. 212: 10371064, 2014). Then, it was proven by Fonseca, Leoni and the author, that (1) admits a unique weak solution, which is also Lipschitz regular in time (Commun. Part. Diff. Eq. 40(10):1942-1957, 2015). The aim of this paper is to prove existence, uniqueness and regularity of strong solutions of 11.

Keywords: epitaxial growth, vicinal surfaces, evolution equations, Hilbert transform, monotone operators

AMS Mathematics Subject Classification: 35K55, 35K67, 44A15, 74K35

1. Introduction

In this paper we study existence, uniqueness, and regularity of strong solutions of

$$
\begin{equation*}
u_{t}=-\left[H\left(u_{x}\right)+\Phi_{a}^{\prime}\left(u_{x x}\right)\right]_{x x}, \quad u(0)=u^{0}, \tag{2}
\end{equation*}
$$

where u^{0} is the initial datum, $a>0$ is a given constant, Φ_{a} is defined by

$$
\begin{gathered}
\Phi_{a}(\xi):=\Phi(\xi+a), \\
\Phi: \mathbb{R} \longrightarrow(-\infty,+\infty], \quad \Phi(\xi):=\left\{\begin{array}{cl}
+\infty & \text { if } \xi<0 \\
0 & \text { if } \xi=0 \\
\xi \log \xi+\xi^{3} / 6 & \text { if } \xi>0
\end{array}\right.
\end{gathered}
$$

and H denotes the Hilbert transform. That is,

$$
H(f)(x):=\frac{1}{2 \pi} P V \int_{I} \frac{f(x-y)}{\tan (y / 2)} \mathrm{d} y, \quad I:=(-\pi, \pi),
$$

with $P V$ denoting the Cauchy principal value. Equation (2) arises in the context of heteroepitaxial growth. It was proven, by Dal Maso, Fonseca and Leoni in (7), that (2) is equivalent to

$$
\begin{equation*}
h_{t}=-\left[H\left(h_{x}\right)+\left(\frac{1}{h_{x}}+h_{x}\right) h_{x x}\right]_{x x} . \tag{3}
\end{equation*}
$$

The latter is (upon space inversion) the continuum variant derived by Xiang in [14] of the discrete models describing heteroepitaxial growth proposed by Duport, Politi and Villain in [8], and by Tersoff, Phang, Zhang and Lagally in [13]. We refer the interested reader to the related works by Xiang and E [15], and by Xu and Xiang [16].

The choice (in [7]) to study (2]) on $I=(-\pi, \pi)$, and then extend to \mathbb{R} by periodicity, is based on the fact that only the function u and its derivatives (and never the space coordinate x alone) appear explicitly in (2). The main advantage to study (2) on $I=(-\pi, \pi)$ is the ability to use Poincare's inequality.

It was also proven by Dal Maso, Fonseca and Leoni (7, Theorems 1 and 2]) that (2) admits a weak solution u satisfying some particular variational inequalities. Subsequently, the existence of a Lipschitz regular weak solution of (2) was proven by Fonseca, Leoni and the author [9]. More precisely, (9, Theorem 1] states that given $T, a>0$, and $u^{0} \in W_{\mathrm{per}_{0}}^{2,2}(I)$ (defined in (6) below) satisfying

- there exists $z^{0} \in L_{\text {per }_{0}}^{2}(I)$ such that

$$
\begin{equation*}
\int_{I}\left[z^{0} v-H\left(u_{x x}^{0}\right) v_{x}+\Phi_{a}\left(v_{x x}\right)-\Phi_{a}\left(u_{x x}^{0}\right)\right] \mathrm{d} x \geq 0 \tag{4}
\end{equation*}
$$

for any $v \in W_{\text {per }_{0}}^{2,3}(I)$,
then there exists a unique solution u of (2) in the sense that

$$
\begin{equation*}
\int_{0}^{T} \int_{I} u_{t}(t) \varphi(t) \mathrm{d} x \mathrm{~d} t=\int_{0}^{T} \int_{I}\left[H\left(u_{x x}(t)\right) \varphi_{x}(t)-\Phi_{a}^{\prime}\left(u_{x x}(t)\right) \varphi_{x x}(t)\right] \mathrm{d} x \mathrm{~d} t \tag{5}
\end{equation*}
$$

for any test function $\varphi \in C_{c}^{\infty}((0, T) \times I ; \mathbb{R})$. Moreover, the solution u satisfies

$$
\begin{gathered}
u \in L^{\infty}\left(0, T ; W_{\operatorname{per}_{0}}^{2,3}(I)\right) \cap C^{0}\left([0, T] ; L_{\operatorname{per}_{0}}^{2}(I)\right), \\
u_{t} \in L^{\infty}\left(0, T ; L_{\operatorname{per}_{0}}^{2}(I)\right), \quad u(0)=u^{0} .
\end{gathered}
$$

Here, and for future reference, given $k \in \mathbb{N}, p \in[1,+\infty], W_{\text {per }_{0}}^{k, p}(I)$ and $L_{\text {per }_{0}}^{p}(I)$ are defined by

$$
\begin{align*}
W_{\mathrm{per}_{0}}^{k, p}(I) & :=\left\{f \in W_{\mathrm{loc}}^{k, p}(\mathbb{R}): f \text { is } 2 \pi \text {-periodic and } \int_{I} f \mathrm{~d} x=0\right\} \tag{6}\\
L_{\mathrm{per}_{0}}^{p}(I) & :=\left\{f \in L_{\mathrm{loc}}^{p}(\mathbb{R}): f \text { is } 2 \pi \text {-periodic and } \int_{I} f \mathrm{~d} x=0\right\}
\end{align*}
$$

and endowed with the standard norm of $W_{\mathrm{loc}}^{k, p}(\mathbb{R})$ and $L_{\mathrm{loc}}^{p}(\mathbb{R})$ respectively. Moreover, it can be shown, by straightforward computation, that $W_{\text {per }}^{k, p}(I)$ and $L_{\text {per }_{0}}^{p}(I)$ are reflexive for all $k \in \mathbb{N}$ and $p \in(1,+\infty)$.

It has been suggested by Leoni that, for sufficiently regular initial datum, equation (2) should admit a strong solution. The aim of this paper is to study existence, uniqueness and regularity of strong solutions of (22). The main results are:

Theorem 1. (Existence and regularity) Given $T, a>0$, an initial datum $u^{0} \in W_{\text {per }_{0}}^{2,2}(I)$ such that

$$
\begin{equation*}
H\left(u_{x}^{0}\right)_{x x}+\Phi_{a}^{\prime}\left(u_{x x}^{0}\right)_{x x} \in L_{\text {per }_{0}}^{2}(I) \tag{7}
\end{equation*}
$$

then there exists a strong solution

$$
u \in L^{\infty}\left(0, T ; W_{\operatorname{per}_{0}}^{2,2}(I)\right) \cap C^{0}\left([0, T] ; L_{\operatorname{per}_{0}}^{2}(I)\right), \quad u_{t} \in L^{\infty}\left(0, T ; L_{\operatorname{per}_{0}}^{2}(I)\right),
$$

such that

$$
\begin{equation*}
u_{t}(t)=-H\left(u_{x}(t)\right)_{x x}-\Phi_{a}^{\prime}\left(u_{x x}(t)\right)_{x x} \quad \text { for a.e. } t \in[0, T], \quad u(0)=u^{0} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{\infty}\left(0, T ; L_{\text {per }_{0}}^{2}(I)\right)} \leq\left\|H\left(u_{x}^{0}\right)_{x x}+\Phi_{a}^{\prime}\left(u_{x x}^{0}\right)_{x x}\right\|_{L_{\text {per }_{0}}^{2}(I)} \tag{9}
\end{equation*}
$$

Theorem 2. (Uniqueness and stability) Under the same hypotheses of Theorem 1, the strong solution given by Theorem 1 is unique.

Moreover, denote by u the unique strong solution of (2), and let

$$
\begin{align*}
D & :=\left\{z \in L_{\operatorname{per}_{0}}^{2}(I): H\left(z_{x}\right)_{x x}+\Phi_{a}^{\prime}\left(z_{x x}\right)_{x x} \in L_{\operatorname{per}_{0}}^{2}(I)\right\}, \tag{10}\\
Y & :=L^{2}\left(0, T ; W_{\operatorname{per}_{0}}^{2,2}(I)\right) \cap C^{0}\left([0, T] ; L_{\operatorname{per}_{0}}^{2}(I)\right), \\
\|\cdot\|_{Y} & :=\|\cdot\|_{L^{2}\left(0, T ; W_{\operatorname{per}_{0}}^{2}(I)\right)}^{2,2}+\|\cdot\|_{C^{0}\left([0, T] ; L_{\operatorname{per}_{0}}^{2}(I)\right)} .
\end{align*}
$$

Then the function

$$
\begin{equation*}
\sigma:\left(D,\|\cdot\|_{L^{2}(I)}\right) \longrightarrow\left(Y,\|\cdot\|_{Y}\right), \quad \sigma\left(u^{0}\right):=u \tag{11}
\end{equation*}
$$

which maps an initial datum u^{0} into the solution u of (2), is 2-Lipschitz continuous.

Corollary 3. (Exponential decay for speed) Under the same hypotheses of Theorem 1. denote by u the unique solution of (22). Then, setting,

$$
\begin{equation*}
B: W_{\text {per }_{0}}^{2,2}(I) \longrightarrow\left(W_{\text {per }_{0}}^{2,2}(I)\right)^{\prime}, \quad B u:=H\left(u_{x}\right)_{x x}+\Phi_{a}^{\prime}\left(u_{x x}\right)_{x x} \tag{12}
\end{equation*}
$$

it holds

$$
\left\|u_{t}(t)\right\|_{L^{2}(I)} \leq e^{-t}\left\|B u^{0}\right\|_{L^{2}(I)}
$$

The theory for evolution equations governed by symmetric maximal monotone operators (see Definition 4 below) is quite rich (see for instance Brézis [2] and references therein). Similarly, the theory for evolution equations governed by accretive operators (see Definition 5 below) is also quite rich (see for instance Barbu [1], Crandall and Liggett [5], Crandall and Pazy [6]). However, there are essentially two main difficulties in our analysis:
(1) first, the operator B governing (2) is not symmetric, unbounded, and not accretive.
(2) Second, the domain of B is not the entire space $W_{\text {per }}^{0} 2,2(I)$, due to the non-definition of Φ on $(-\infty, 0)$.
To overcome these issues, we will exploit heavily the variational structure of (2), and the monotonicity of B. Crucial steps are Lemma 6 and Proposition 7.

2. Preliminary results

The main aim of this section is to present the setting of our problem, and to prove the crucial estimates in Lemma 6 and Proposition 7. As done by Dal Maso, Fonseca and Leoni in [7], and by Fonseca, Leoni and the author in [9, we will study (2) on the space domain $I=(-\pi, \pi)$ (and then extend by periodicity).

Let

$$
V:=W_{\operatorname{per}_{0}}^{2,2}(I), \quad U:=L_{\operatorname{per}_{0}}^{2}(I) .
$$

Endow U with the standard inner product of $L^{2}(I)$

$$
\left\langle u^{*}, u\right\rangle_{U^{\prime}, U}:=\int_{I} u^{*} u \mathrm{~d} x, \quad u^{*} \in U^{\prime}, u \in U,
$$

and identify U with its dual U^{\prime}. Endow V with the norm $\|v\|_{V}:=\left\|v_{x x}\right\|_{L^{2}(I)}$. It is straightforward to check that U, V are reflexive. The duality pairing on V will be denoted by $\langle,\rangle_{V^{\prime}, V}$. More explicitly, given $v^{*} \in V^{\prime}, v \in V$, it holds

$$
\left\langle v^{*}, v\right\rangle_{V^{\prime}, V}=\int_{I} v^{*} v \mathrm{~d} x .
$$

Note that the embeddings $V \hookrightarrow U \hookrightarrow V^{\prime}$ are compact, hence $\left(V, U, V^{\prime}\right)$ is a Gelfand triple. Since the underlying space V is reflexive, it is straightforward to check (by direct computation, without using Aubin-Lions lemma) that the embeddings

$$
L^{2}(0, T ; V) \hookrightarrow L^{2}(0, T ; U) \hookrightarrow L^{2}\left(0, T ; V^{\prime}\right)
$$

are also continuous. For future references, given a Banach space X and an operator $A: X \longrightarrow X^{\prime}, \operatorname{dom}_{X}(A)$ denotes the "domain" of A in X. That is,

$$
\operatorname{dom}_{X}(A):=\left\{x \in X: A x \in X^{\prime}\right\} .
$$

We recall the following classical definitions (see for instance [1]).
Definition 4. Given a Banach space X, denote by $\langle,\rangle_{X^{\prime}, X}$ the duality pairing between X^{\prime} and X. A single-valued operator $A: X \longrightarrow X^{\prime}$ is:
(1) monotone if for any $u, v \in \operatorname{dom}_{X}(A)$, it holds

$$
\langle A u-A v, u-v\rangle_{X^{\prime}, X} \geq 0
$$

Similarly, a set $G \subseteq X \times X^{\prime}$ is "monotone" if for any pair $\left(u, u^{\prime}\right)$, $\left(v, v^{\prime}\right) \in G$, it holds

$$
\left\langle u^{\prime}-v^{\prime}, u-v\right\rangle_{X^{\prime}, X} \geq 0
$$

(2) maximal monotone if the graph

$$
\Gamma_{A}:=\{(u, A u): u \in X\} \subseteq X \times X^{\prime}
$$

is not a proper subset of any monotone set;
(3) hemi-continuous if for any $u, v, w \in X$ the mapping

$$
t \longmapsto\langle A(u+t v), w\rangle_{X^{\prime}, X}
$$

is continuous.
Definition 5. Given a Banach space X, a single-valued operator $\tilde{A}: X \longrightarrow$ X, its graph $\Gamma_{\tilde{A}}(X):=\{(x, \tilde{A} x): x \in X$ such that $\left.\tilde{A} x \in X)\right\}$ is:
(1) accretive if for any couple $(x, \tilde{A} x),(y, \tilde{A} y)$, there exists an element $z \in J_{X}(x-y)$ such that $\langle z, \tilde{A} x-\tilde{A} y\rangle_{X^{\prime}, X} \geq 0$, where $J_{X}: X \rightarrow X^{\prime}$ denotes the duality mapping;
(2) demi-closed if for any sequence $\left(x_{n}\right) \subseteq X$, such that $x_{n} \rightarrow x$ strongly in X, and $\tilde{A} x_{n} \rightharpoonup \xi \in X$, it holds $(x, \xi) \in \Gamma_{\tilde{A}}(X)$.

The next lemma proves some key properties of B.
Lemma 6. The operator $B: V \longrightarrow V^{\prime}$ satisfies the following properties:
(i) B is maximal monotone,
(ii) (coercivity) for any $u, v \in \operatorname{dom}_{V}(B)$ it holds

$$
\langle B u-B v, u-v\rangle_{V^{\prime}, V} \geq\|u-v\|_{V}^{2},
$$

(iii) the graph of B is demi-closed in $V \times V^{\prime}$. That is, given a sequence $\left(x_{k}\right) \subseteq V$ such that $x_{k} \rightarrow x$ strongly in $V, B x_{k} \rightarrow y$ in V^{\prime}, then (x, y) belongs to the graph of B, and $y=B x$.

Proof. To prove (i) and (ii), we use the same arguments from 9, Lemma 6]. For completeness, we report the proof. Set

$$
\begin{aligned}
\tilde{B}: V \longrightarrow V^{\prime}, & \langle\tilde{B} u, v\rangle_{V^{\prime}, V}:=\int_{I}\left[2 u_{x x} v_{x x}-H\left(u_{x x}\right) v_{x}\right] \mathrm{d} x, \\
\Psi_{a}: \mathbb{R} \longrightarrow(-\infty+\infty], & \Psi_{a}(\xi):=\Phi_{a}(\xi)-\xi^{2}, \\
\psi: V \rightarrow(-\infty+\infty], & \psi(u):=\left\{\begin{array}{cl}
\int_{I} \Psi_{a}\left(u_{x x}\right) \mathrm{d} x & \text { if } u \in V, \\
+\infty & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Direct computation gives $B=\tilde{B}+\partial \psi$. Here, and for future reference, " ∂ " denotes the sub-gradient operator. More precisely, it is easily checked (by direct computation) that $\partial \psi(z)=\left\{\Psi_{a}^{\prime}\left(z_{x x}\right)_{x x}\right\}$ for all $z \in \operatorname{dom}_{V}(\partial \psi)$. Note also that $\operatorname{dom}_{V}(\partial \psi) \subseteq \operatorname{dom}_{V}(\psi) \subseteq V$. Since

$$
\Psi_{a}^{\prime \prime}(\xi)=\xi+a+\frac{1}{\xi+a}-2 \geq 0 \quad \text { for any } \xi>-a
$$

Ψ_{a} is convex on $(-a,+\infty)$. Consequently, ψ is convex. By construction $B=\tilde{B}+\partial \psi$ is hemi-continuous. To prove monotonicity, note that [4, Proposition 9.1.9] and $\int_{I} u_{x x} \mathrm{~d} x=0$ give

$$
\begin{equation*}
\left\|H\left(u_{x x}\right)\right\|_{U}=\left\|u_{x x}\right\|_{U}+\frac{1}{2 \pi}\left(\int_{I} u_{x x} \mathrm{~d} x\right)^{2}=\left\|u_{x x}\right\|_{U} \tag{13}
\end{equation*}
$$

while $\left\|u_{x}\right\|_{U} \leq\left\|u_{x x}\right\|_{U}$ holds in view of [10, Section 7.7]. Hence

$$
\begin{equation*}
\left\|H\left(u_{x x}\right)\right\|_{U}\left\|u_{x}\right\|_{U} \leq\left\|u_{x x}\right\|_{U}^{2}, \tag{14}
\end{equation*}
$$

and

$$
\begin{aligned}
\langle\tilde{B}(u-v), u-v\rangle_{V^{\prime}, V} & =\int_{I}\left(2\left|u_{x x}-v_{x x}\right|^{2}-H(u-v)_{x x}(u-v)_{x}\right) \mathrm{d} x \\
& =2\left\|u_{x x}-v_{x x}\right\|_{U}^{2}-\int_{I} H(u-v)_{x x}(u-v)_{x} \mathrm{~d} x \\
& \geq 2\left\|u_{x x}-v_{x x}\right\|_{U}^{2}-\left\|H(u-v)_{x x}\right\|_{U}\left\|(u-v)_{x}\right\|_{U} \\
& \stackrel{14}{\geq}\left\|u_{x x}-v_{x x}\right\|_{U}^{2} .
\end{aligned}
$$

As ψ is convex (hence $\partial \psi$ is monotone), combining (14) and (13) gives

$$
\begin{aligned}
\langle B u-B v & , u-v\rangle_{V^{\prime}, V} \\
& =\langle\tilde{B}(u-v), u-v\rangle_{V^{\prime}, V}+\langle\partial \psi(u)-\partial \psi(v), u-v\rangle_{V^{\prime}, V} \\
& \geq\|u-v\|_{V}^{2} .
\end{aligned}
$$

Thus B is monotone and hemi-continuous, hence (by [3, Theorem 1.2]) maximal monotone.

Statement (iii) follows from the well-known result stating that the graph of any maximal monotone operator is demi-closed. For further details, we refer to [12, Theorem 1, Remarks 3-4].

3. An Existence Result

The next proposition is a refinement of the existence result from [11, Section 5]. Due to its relevance to our arguments, we dedicate an entire section to its proof.

Proposition 7. Let \tilde{B} and ψ be the functionals from Lemma 6, Let $u^{0} \in$ $\operatorname{dom}_{U}(B)$ be a given initial datum, satisfying

$$
\begin{equation*}
u^{0} \in \operatorname{dom}_{U}(B), \quad B u^{0} \in U \tag{15}
\end{equation*}
$$

Then there exists a function

$$
\begin{equation*}
u \in L^{\infty}(0, T ; V) \cap C^{0}([0, T] ; U), \quad u_{t} \in L^{\infty}(0, T ; U) \tag{16}
\end{equation*}
$$

such that $u(0)=u^{0}$ and

$$
\begin{equation*}
\left\langle u_{t}(t), v-u(t)\right\rangle_{U^{\prime}, U}+\langle\tilde{B} u(t), v-u(t)\rangle_{V^{\prime}, V}+\psi(v)-\psi(u(t)) \geq 0 \tag{17}
\end{equation*}
$$

for a.e. time $t \in(0, T)$, and all $v \in V$. Moreover, it holds

$$
\begin{equation*}
\left\|u_{t}\right\|_{L^{\infty}(0, T ; U)} \leq\left\|B u^{0}\right\|_{U} \tag{18}
\end{equation*}
$$

Remark. The main improvement is that we only assume that the initial datum u^{0} satisfies 15 , instead of

- " $u^{0} \in W_{\text {per }_{0}}^{2,2}(I)$ and there exists $z^{0} \in L_{\text {per }_{0}}^{2}(I)$ satisfying

$$
\int_{I}\left[z^{0} v-H\left(u_{x x}^{0}\right) v_{x}+\Phi_{a}\left(v_{x x}\right)-\Phi_{a}\left(u_{x x}^{0}\right)\right] \mathrm{d} x \geq 0
$$

for any $v \in W_{\operatorname{per}_{0}}^{2,3}(I) "$.
We note that such functions u^{0} satisfying (15) exist: for instance, since

$$
B u^{0}=H\left(u_{x}^{0}\right)_{x x}+\left[\log \left(u_{x x}^{0}+a\right)+\left(u_{x x}^{0}+a\right)^{2} / 2\right]_{x x}
$$

all the functions of the form $u^{0}(x):=b \sin x$, with $|b|<a$, satisfy 15 .
Proof. (of Proposition 7) The proof is essentially divided into three steps:
(1) first, using the classic method of time discretization, we construct a sequence of piece-wise linear approximate solutions $u^{\varepsilon}:[0, T] \longrightarrow V$;
(2) then we prove that $\left(u^{\varepsilon}\right)_{\varepsilon}$ is uniformly bounded in $L^{\infty}(0, T ; V) \cap$ $W^{1, \infty}([0, T] ; U)$, and we obtain a (weak) limit function

$$
u \in L^{\infty}(0, T ; V) \cap C^{0}([0, T] ; U), \quad u_{t} \in L^{\infty}(0, T ; U)
$$

(3) finally, we prove that such u is solution of 17 .

Step 1. Let $\varepsilon>0$ be given. Consider the partition

$$
\begin{gathered}
0=t_{0}<t_{1}<\cdots<t_{n_{\varepsilon}-1}<t_{n_{\varepsilon}} \leq T \leq t_{n_{\varepsilon}}+\varepsilon, \\
t_{j}-t_{j-1}=\varepsilon, \quad j=1, \cdots, n_{\varepsilon}:=\lfloor T / \varepsilon\rfloor,
\end{gathered}
$$

where $\lfloor\cdot\rfloor$ denotes the integer part mapping. Construct the recursive sequence ($u_{\varepsilon, i}$) in the following way: $u_{\varepsilon, 0}:=u^{0}$, and given $u_{\varepsilon, i-1} \in V$, let $u_{\varepsilon, i} \in V$ be a solution of

$$
\left\langle\frac{u_{\varepsilon, i}-u_{\varepsilon, i-1}}{t_{i}-t_{i-1}}+B u_{\varepsilon, i}, v-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} \geq 0 \quad \text { for all } v \in V \text {. }
$$

Observe that this is equivalent to find $u_{\varepsilon, i} \in V$ such that

$$
\begin{equation*}
\left\langle(\mathrm{id}+\varepsilon B) u_{\varepsilon, i}, v-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} \geq\left\langle u_{\varepsilon, i-1}, v-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} \quad \text { for all } v \in V \text {. } \tag{19}
\end{equation*}
$$

Since B is maximal monotone, $\mathrm{id}+\varepsilon B: \operatorname{dom}_{U}(B) \longrightarrow U^{\prime}$ is surjective for all $\varepsilon>0$, hence there exists $u_{\varepsilon, i} \in \operatorname{dom}_{U}(B) \subseteq V$ (since \tilde{B} - from Lemma 6is bounded and linear, and $\partial \psi$ is well-defined only on V) such that $u_{\varepsilon, i-1}=$ $(\mathrm{id}+\varepsilon B) u_{\varepsilon, i}$. Moreover, $\mathrm{id}+\varepsilon B$ is also injective since B is monotone, hence $u_{\varepsilon, i}=(\mathrm{id}+\varepsilon B)^{-1} u_{\varepsilon, i-1}$ is unique. Thus $u_{\varepsilon, i} \in \operatorname{dom}_{U}(B) \subseteq V$ is solution of (19). Define the piece-wise linear functions u^{ε} satisfying

$$
u^{\varepsilon}:[0, T] \longrightarrow V, \quad u^{\varepsilon}(k \varepsilon):=u_{\varepsilon, k}, \quad k=0, \cdots,\lfloor T / \varepsilon\rfloor .
$$

Step 2. By construction, $u_{\varepsilon, i}=(\mathrm{id}+\varepsilon B)^{-1} u_{\varepsilon, i-1}$, thus

$$
\begin{align*}
u_{\varepsilon, i}-u_{\varepsilon, i-1} & =(\mathrm{id}+\varepsilon B)^{-1} u_{\varepsilon, i-1}-(\mathrm{id}+\varepsilon B)^{-1} u_{\varepsilon, i-2} \\
& \Longrightarrow\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U} \leq\left\|u_{\varepsilon, i-1}-u_{\varepsilon, i-2}\right\|_{U} \tag{20}
\end{align*}
$$

since $(\operatorname{id}+\varepsilon B)^{-1}: U \longrightarrow \operatorname{dom}_{U}(B)$ is non-expansive as B is maximal monotone. Note that, by construction $u_{\varepsilon, 1}=(\mathrm{id}+\varepsilon B)^{-1} u^{0}$, and we get

$$
u_{\varepsilon, 1}-u^{0}=(\operatorname{id}+\varepsilon B)^{-1} u^{0}-(\operatorname{id}+\varepsilon B)^{-1}(\operatorname{id}+\varepsilon B) u^{0},
$$

hence

$$
\begin{aligned}
\left\|u_{\varepsilon, 1}-u^{0}\right\|_{U} & =\left\|(\mathrm{id}+\varepsilon B)^{-1} u^{0}-(\mathrm{id}+\varepsilon B)^{-1}(\mathrm{id}+\varepsilon B) u^{0}\right\|_{U} \\
& \leq\left\|u^{0}-(\mathrm{id}+\varepsilon B) u^{0}\right\|_{U}=\varepsilon\left\|B u^{0}\right\|_{U},
\end{aligned}
$$

which in turn gives

$$
\begin{equation*}
\frac{\left\|u_{\varepsilon, 1}-u^{0}\right\|_{U}}{\varepsilon} \leq\left\|B u^{0}\right\|_{U} . \tag{21}
\end{equation*}
$$

Combining (20) and (21) gives

$$
\frac{\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}}{\varepsilon} \leq\left\|B u^{0}\right\|_{U} \quad \text { for all } \varepsilon>0, i=0, \cdots,\lfloor T / \varepsilon\rfloor .
$$

Since

$$
\frac{\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}}{\varepsilon}=\left\|u_{t}^{\varepsilon}(t)\right\|_{U} \quad \text { for } t \in((i-1) \varepsilon, i \varepsilon),
$$

it follows

$$
\begin{equation*}
\left\|u_{t}^{\varepsilon}\right\|_{U} \leq\left\|B u^{0}\right\|_{U} \Longrightarrow \sup _{\varepsilon}\left(\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)-u^{0}\right\|_{U}\right) \leq T\left\|B u^{0}\right\|_{U} . \tag{22}
\end{equation*}
$$

To estimate $\left\|u^{\varepsilon}(t)\right\|_{V}$, note that $(\operatorname{id}+\varepsilon B) u_{\varepsilon, i}=u_{\varepsilon, i-1}$ implies

$$
\begin{aligned}
\left\|u_{\varepsilon, i}\right\|_{V}^{2} & \leq\left|\left\langle B u_{\varepsilon, i}, u_{\varepsilon, i}\right\rangle_{V^{\prime}, V}\right|=\left|\left\langle\frac{u_{\varepsilon, i}-u_{\varepsilon, i-1}}{\varepsilon}, u_{\varepsilon, i}\right\rangle_{V^{\prime}, V}\right| \\
& \leq \frac{\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}}{\varepsilon}\left\|u_{\varepsilon, i}\right\|_{U} \\
& \leq\left\|B u^{0}\right\|_{U}\left(T\left\|B u^{0}\right\|_{U}+\left\|u^{0}\right\|_{U}\right)
\end{aligned}
$$

therefore

$$
\begin{equation*}
\sup _{\varepsilon}\left(\sup _{t \in[0, T]}\left\|u^{\varepsilon}(t)\right\|_{V}^{2}\right) \leq\left\|B u^{0}\right\|_{U}\left(T\left\|B u^{0}\right\|_{U}+\left\|u^{0}\right\|_{U}\right) \tag{23}
\end{equation*}
$$

Step 3. Consider an arbitrary sequence $\varepsilon_{n} \rightarrow 0$. In view of (22) and (23), there exists (upon subsequence, which we do not relabel) a function $u \in L^{\infty}(0, T ; V)$ such that

$$
\begin{equation*}
u^{\varepsilon_{n}} \stackrel{*}{\rightharpoonup} u \text { in } L^{\infty}(0, T ; V), \quad u_{t}^{\varepsilon_{n}} \stackrel{*}{\rightharpoonup} u_{t} \text { in } L^{\infty}(0, T ; U), \tag{24}
\end{equation*}
$$

where " $\stackrel{*}{ }$ " denotes the convergence in the weak-* topology. Combining (22), (23) and (24) gives (16) and (18).

Fix an arbitrary $p \in(2,+\infty)$. In view of (24), we have

$$
u^{\varepsilon_{n}} \rightharpoonup u \text { in } L^{p}(0, T ; V), \quad u_{t}^{\varepsilon_{n}} \rightharpoonup u_{t} \text { in } L^{p}(0, T ; U),
$$

In particular, $u^{\varepsilon_{n}} \rightharpoonup u$ in $L^{p}\left(t_{1}, t_{2} ; V\right)$ and $u_{t}^{\varepsilon_{n}} \rightharpoonup u_{t}$ in $L^{p}\left(t_{1}, t_{2} ; U\right)$ for any $0 \leq t_{1}<t_{2} \leq T$. The main advantage of working with $p \in(2,+\infty)$ (instead of $p=\infty$) is that the functional ψ is weakly sequentially lower semi-continuous. This will be crucial for the proof of (27) below.

By construction, each $u^{\varepsilon_{n}}$ satisfies

$$
\begin{equation*}
\left\langle u_{t}^{\varepsilon_{n}}(t)+B u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \geq 0 \tag{25}
\end{equation*}
$$

for a.e. $t \in[0, T]$, and all $v \in V$. Since $B=\tilde{B}+\partial \psi$, with \tilde{B} and ψ from Lemma 6, and ψ is convex, (25) gives

$$
\left\langle u_{t}^{\varepsilon_{n}}(t)+\tilde{B} u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V}+\psi(v)-\psi\left(u^{\varepsilon_{n}}(t)\right) \geq 0
$$

for a.e. $t \in[0, T]$, and all $v \in V$. Integrating on an arbitrary time set $\left(t_{1}, t_{2}\right)$ with $0 \leq t_{1}<t_{2} \leq T$ gives

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left[\left\langle u_{t}^{\varepsilon_{n}}(t)+\tilde{B} u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V}+\psi(v)-\psi\left(u^{\varepsilon_{n}}(t)\right)\right] \mathrm{d} t \geq 0 \tag{26}
\end{equation*}
$$

for all $v \in V$. Next, we claim

$$
\begin{align*}
\limsup _{n \rightarrow+\infty}-\int_{t_{1}}^{t_{2}} \psi\left(u^{\varepsilon_{n}}(t)\right) \mathrm{d} t & \leq-\int_{t_{1}}^{t_{2}} \psi(u(t)) \mathrm{d} t \tag{27}\\
\lim _{n \rightarrow+\infty} \int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t & =\int_{t_{1}}^{t_{2}}\langle\tilde{B} u(t), v-u(t)\rangle_{V^{\prime}, V} \mathrm{~d} t \tag{28}\\
\lim _{n \rightarrow+\infty} \int_{t_{1}}^{t_{2}}\left\langle u_{t}^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t & =\int_{t_{1}}^{t_{2}}\left\langle u_{t}(t), v-u(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t . \tag{29}
\end{align*}
$$

To prove (27), it suffices to note that $-\psi$ is concave, hence weak uppersemicontinuous, and $u^{\varepsilon_{n}} \rightharpoonup u$ in $L^{p}\left(t_{1}, t_{2} ; V\right)$.

Substep 3.1: proof of (28). Note that

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t & =\int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), v-u(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t \\
& +\int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), u(t)-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t
\end{aligned}
$$

where

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), v-u(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t=\int_{t_{1}}^{t_{2}}\langle\tilde{B} u(t), v-u(t)\rangle_{V^{\prime}, V} \mathrm{~d} t \tag{30}
\end{equation*}
$$

due to the boundedness and linearity of \tilde{B}. To prove

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{t_{1}}^{t_{2}}\left\langle\tilde{B} u^{\varepsilon_{n}}(t), u(t)-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t=0, \tag{31}
\end{equation*}
$$

observe that

$$
u^{\varepsilon_{n}} \rightharpoonup u \text { in } L^{p}(0, T ; V), \quad u_{t}^{\varepsilon_{n}} \rightharpoonup u_{t} \text { in } L^{p}(0, T ; U),
$$

and the embeddings $V \hookrightarrow W_{\text {per }_{0}}^{1,2}(I) \hookrightarrow U$ are all compact. Thus Aubin-Lions lemma gives that $u^{\varepsilon_{n}} \rightarrow u$ strongly in $L^{p}\left(0, T ; W_{\text {per }_{0}}^{1,2}(I)\right)$. Therefore,

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} \mid & \left\langle\tilde{B} u^{\varepsilon_{n}}(t), u(t)-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V} \mid \mathrm{d} t \\
& =\int_{t_{1}}^{t_{2}} \int_{I}\left|H u_{x x}^{\varepsilon_{n}}(t, x)\left(u_{x}(t, x)-u_{x}^{\varepsilon_{n}}(t, x)\right)\right| \mathrm{d} x \mathrm{~d} t \\
& \leq \int_{t_{1}}^{t_{2}}\left\|H u_{x x}^{\varepsilon_{n}}(t)\right\|_{U}\left\|u_{x}(t)-u_{x}^{\varepsilon_{n}}(t)\right\|_{U} \mathrm{~d} t \\
& \stackrel{113}{=} \int_{t_{1}}^{t_{2}}\left\|u_{x x}^{\varepsilon_{n}}(t)\right\|_{U}\left\|u_{x}(t)-u_{x}^{\varepsilon_{n}}(t)\right\|_{U} \mathrm{~d} t \\
& \leq\left\|u^{\varepsilon_{n}}(t)\right\|_{L^{\infty}(0, T ; V)} \int_{t_{1}}^{t_{2}}\left\|u_{x}(t)-u_{x}^{\varepsilon_{n}}(t)\right\|_{U} \mathrm{~d} t \\
& \leq\left\|u^{\varepsilon_{n}}(t)\right\|_{L^{\infty}(0, T ; V)}\left|t_{2}-t_{1}\right|^{1-1 / p}\left\|u_{x}(t)-u_{x}^{\varepsilon_{n}}(t)\right\|_{L^{p}(0, T ; U)} \xrightarrow{n \rightarrow+\infty} 0
\end{aligned}
$$

Thus (31) is proven. Combining (30) and (31) gives (28).
Substep 3.2: proof of (29). Since $\left(u_{t}^{\varepsilon_{n}}\right)_{n}$ is bounded in $L^{\infty}(0, T ; U)$, it follows

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}\left|\left\langle u_{t}^{\varepsilon_{n}}(t), u(t)-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V}\right| \mathrm{d} t \\
& \quad \leq \int_{t_{1}}^{t_{2}}\left\|u_{t}^{\varepsilon_{n}}(t)\right\|_{U}\left\|u(t)-u^{\varepsilon_{n}}(t)\right\|_{U} \mathrm{~d} t \\
& \quad \leq\left\|u_{t}^{\varepsilon_{n}}(t)\right\|_{L^{\infty}(0, T ; U)}\left|t_{2}-t_{1}\right|^{1-1 / p}\left\|u(t)-u^{\varepsilon_{n}}(t)\right\|_{L^{p}(0, T ; U)} \xrightarrow{n \rightarrow+\infty} 0 \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\langle u_{t}^{\varepsilon_{n}}(t), v-u(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t \rightarrow \int_{t_{1}}^{t_{2}}\left\langle u_{t}(t), v-u(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t \tag{33}
\end{equation*}
$$

Combining (32) and (33) gives (29).
Combining (27), (28) and (29) gives

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} & {\left[\left\langle u_{t}(t)+\tilde{B}(t), v-u(t)\right\rangle_{V^{\prime}, V}+\psi(v)-\psi(u(t))\right] \mathrm{d} t } \\
& \geq \limsup _{n \rightarrow+\infty} \int_{t_{1}}^{t_{2}}\left[\left\langle u_{t}^{\varepsilon_{n}}(t)+\tilde{B} u^{\varepsilon_{n}}(t), v-u^{\varepsilon_{n}}(t)\right\rangle_{V^{\prime}, V}+\psi(v)-\psi\left(u^{\varepsilon_{n}}(t)\right)\right] \mathrm{d} t \\
& \geq 0
\end{aligned}
$$

The arbitrariness of t_{1}, t_{2} gives (17), concluding the proof.

4. Proof of the main results

Now we are ready to prove that the function u given by Proposition 7 is the desired solution.

The proof of Theorem 1 uses some ideas from [1]. However, it is noted that $B: V \longrightarrow V^{\prime}$ is not accretive, thus crucial monotonicity estimates have to be achieved differently.

Proof. (of Theorem 1) Let u be a solution of (17) given by Proposition 7. Since, in Proposition $7, u_{t}$ was a (weak-*) limit $L^{\infty}(0, T ; U)$ of $u_{t}^{\varepsilon_{n}}$ satisfying $\sup _{n}\left\|u_{t}^{\varepsilon_{n}}\right\|_{L^{\infty}(0, T ; U)} \leq\left\|B u^{0}\right\|_{U}$, it follows

$$
\left\|u_{t}\right\|_{L^{\infty}(0, T ; U)} \leq \liminf _{n \rightarrow+\infty}\left\|u_{t}^{\varepsilon}\right\|_{L^{\infty}(0, T ; U)} \leq\left\|B u^{0}\right\|_{U}
$$

which proves (9). By construction, u satisfies also

$$
\begin{equation*}
u \in L^{\infty}(0, T ; V) \cap C^{0}([0, T] ; U), \quad u_{t} \in L^{\infty}(0, T ; U) \tag{34}
\end{equation*}
$$

We need to check that such u satisfies

$$
\begin{equation*}
u_{t}(t)=-B u(t) \quad \text { for a.e. } t \in[0, T], \quad u(0)=u^{0} . \tag{35}
\end{equation*}
$$

Consider $t>0$ such that

$$
\begin{equation*}
u(t-h)=u(t)-h u_{t}(t)-h g(h), \quad h>0 \tag{36}
\end{equation*}
$$

for some function $g(h)$ satisfying

$$
\begin{equation*}
\lim _{h \rightarrow 0}\|g(h)\|_{U}=0 \tag{37}
\end{equation*}
$$

In view of (34), the set of times such that (36) holds for some g satisfying (37) has full measure. Since id $+h B: U \longrightarrow U$ is bijective, we define

$$
x^{h}:=(\operatorname{id}+h B)^{-1} u(t-h) \in \operatorname{dom}_{U}(B) .
$$

Thus we get

$$
\begin{equation*}
u(t)-x^{h}=h\left[B x^{h}+u_{t}(t)+g(h)\right] . \tag{38}
\end{equation*}
$$

Multiplying both sides by $u(t)-x^{h}$ gives

$$
\begin{align*}
& \left\langle u(t)-x^{h}, u(t)-x^{h}\right\rangle_{V^{\prime}, V} \\
& \quad=h\left\langle B x^{h}+u_{t}(t), u(t)-x^{h}\right\rangle_{U^{\prime}, U}+h\left\langle g(h), u(t)-x^{h}\right\rangle_{V^{\prime}, V} . \tag{39}
\end{align*}
$$

Next, we claim

$$
\begin{equation*}
\left\langle B x^{h}+u_{t}(t), u(t)-x^{h}\right\rangle_{U^{\prime}, U} \leq 0 . \tag{40}
\end{equation*}
$$

Since u is a solution of (17), taking $v=x^{h}$ gives

$$
\left\langle u_{t}(t), x^{h}-u(t)\right\rangle_{U^{\prime}, U}+\left\langle\tilde{B} u(t), x^{h}-u(t)\right\rangle_{V^{\prime}, V}+\psi\left(x^{h}\right)-\psi(u(t)) \geq 0,
$$

hence, due to the convexity of ψ and the monotonicity of \tilde{B}, we get

$$
\begin{aligned}
0 \leq & \left\langle u_{t}(t), x^{h}-u(t)\right\rangle_{U^{\prime}, U}+\left\langle\tilde{B} u(t)+\partial \psi\left(x^{h}\right), x^{h}-u(t)\right\rangle_{V^{\prime}, V} \\
= & \left\langle u_{t}(t), x^{h}-u(t)\right\rangle_{U^{\prime}, U}+\left\langle\tilde{B} x^{h}+\partial \psi\left(x^{h}\right), x^{h}-u(t)\right\rangle_{V^{\prime}, V} \\
& +\left\langle\tilde{B} u(t)-\tilde{B} x^{h}, x^{h}-u(t)\right\rangle_{V^{\prime}, V} \\
\leq & \left\langle u_{t}(t), x^{h}-u(t)\right\rangle_{U^{\prime}, U}+\left\langle\tilde{B} x^{h}+\partial \psi\left(x^{h}\right), x^{h}-u(t)\right\rangle_{V^{\prime}, V} \\
= & \left\langle u_{t}(t), x^{h}-u(t)\right\rangle_{U^{\prime}, U}+\left\langle B x^{h}, x^{h}-u(t)\right\rangle_{V^{\prime}, V},
\end{aligned}
$$

which proves (40). Thus (39) gives

$$
\begin{aligned}
\left\langle u(t)-x^{h}, u(t)-x^{h}\right\rangle_{V^{\prime}, V} & =h\left\langle B x^{h}+u_{t}(t)+g(h), u(t)-x^{h}\right\rangle_{V^{\prime}, V} \\
& \leq h\left\langle g(h), u(t)-x^{h}\right\rangle_{V^{\prime}, V},
\end{aligned}
$$

hence $\left\|u(t)-x^{h}\right\|_{U} / h \rightarrow 0$ as $h \rightarrow 0$. Note that, by construction, we have

$$
B x^{h}=\frac{u(t-h)-x^{h}}{h}=\frac{u(t)-x^{h}}{h}+\frac{u(t-h)-u(t)}{h},
$$

hence

$$
B x^{h}=\frac{u(t-h)-x^{h}}{h}=\frac{u(t)-x^{h}}{h}+\frac{u(t-h)-u(t)}{h} \rightarrow-u_{t}(t),
$$

strongly in U. Summing up, we proved that $x^{h} \rightarrow u(t), B x^{h} \rightarrow-u(t)$, and

$$
\left\{(w, B w): w \in \operatorname{dom}_{U}(B), B w \in U\right\}
$$

is demi-closed in $U \times U$, thus we infer (by [12, Theorem 1, Remarks 34]) $B u(t)=-u(t)$. Since this argument holds for a.e. $t \in[0, T]$, 35) is proven.

Proof. (of Theorem 2) From [10, Section 7.7] we get $\|v\|_{U} \leq\|v\|_{V}$ for all $v \in V$. Consider initial data $u^{0,1}, u^{0,2} \in D$ (with D defined in (10)), and let u^{1}, u^{2} be corresponding solutions to (2) given by Theorem 1. Therefore, it holds

$$
u_{t}^{1}(t)+\tilde{B} u^{1}(t)+\partial \psi\left(u^{1}(t)\right)=u_{t}^{2}(t)+\tilde{B} u^{2}(t)+\partial \psi\left(u^{2}(t)\right)=0
$$

for a.e. $t \in[0, T]$, hence

$$
u_{t}^{1}(t)-u_{t}^{2}(t)+\tilde{B}\left(u^{1}(t)-u^{2}(t)\right)+\partial \psi\left(u^{1}(t)\right)-\partial \psi\left(u^{2}(t)\right)=0
$$

for a.e. $t \in[0, T]$. Multiplying both sides by $u^{1}(t)-u^{2}(t)$ gives

$$
\begin{aligned}
\left\langle u_{t}^{1}(t)-u_{t}^{2}(t),\right. & \left.u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V}+\left\langle\tilde{B}\left(u^{1}(t)-u^{2}(t)\right), u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V} \\
+ & \left\langle\partial \psi\left(u^{1}(t)\right)-\partial \psi\left(u^{2}(t)\right), u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V}=0
\end{aligned}
$$

for a.e. $t \in[0, T]$. Note that

$$
\begin{aligned}
\left\langle u_{t}^{1}(t)-u_{t}^{2}(t), u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V} & =\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2}, \\
\left\langle\tilde{B}\left(u^{1}(t)-u^{2}(t)\right), u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V} & \geq \frac{1}{2}\left\|u^{1}(t)-u^{2}(t)\right\|_{V}^{2}, \\
\left\langle\partial \psi\left(u^{1}(t)\right)-\partial \psi\left(u^{2}(t)\right), u^{1}(t)-u^{2}(t)\right\rangle_{V^{\prime}, V} & \geq 0,
\end{aligned}
$$

which gives

$$
\begin{equation*}
0 \geq \frac{\mathrm{d}}{\mathrm{~d} t}\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2}+\left\|u^{1}(t)-u^{2}(t)\right\|_{V}^{2} \tag{41}
\end{equation*}
$$

hence

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2} & \leq-\left\|u^{1}(t)-u^{2}(t)\right\|_{V}^{2} \leq-\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2} \\
& \Longrightarrow\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2} \leq e^{-t}\left\|u^{0,1}-u^{0,2}\right\|_{U}^{2} \tag{42}
\end{align*}
$$

Integrating (41) on $[0, s]$ (for arbitrarily chosen $s \in(0, T])$ gives

$$
\begin{align*}
\int_{0}^{s}\left\|u^{1}(t)-u^{2}(t)\right\|_{V}^{2} \mathrm{~d} t & \leq-\int_{0}^{s} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u^{1}(t)-u^{2}(t)\right\|_{U}^{2} \mathrm{~d} t \\
& =\left\|u^{0,1}-u^{0,2}\right\|_{U}^{2}-\left\|u^{1}(s)-u^{2}(s)\right\|_{U}^{2} \\
& \leq\left\|u^{0,1}-u^{0,2}\right\|_{U}^{2} \tag{43}
\end{align*}
$$

Choosing $u^{0,1}=u^{0,2}$ proves that the solution given by Theorem 1 is unique.

Given $u^{0} \in D$, a sequence $\left(u^{0, n}\right)_{n} \subseteq D$ such that $u^{0, n} \rightarrow u^{0}$ strongly in U, estimate (42) gives

$$
u^{n} \rightarrow u \quad \text { strongly in } C^{0}([0, T] ; U),
$$

while (43) gives

$$
u^{n} \rightarrow u \quad \text { strongly in } L^{2}(0, T ; V),
$$

where u^{n} (resp. u) denotes the (unique) solution of (2) associated to the initial datum $u^{0, n}$ (resp. u^{0}). Thus the map σ defined in (11) is continuous. Combining (42) and (43), and setting

$$
u^{1}:=\sigma\left(u^{0,1}\right), \quad u^{2}:=\sigma\left(u^{0,2}\right),
$$

we get

$$
\begin{aligned}
\left\|u^{1}-u^{2}\right\|_{L^{2}(0, T ; V)} & +\left\|u^{1}-u^{2}\right\|_{C^{0}([0, T] ; U)} \\
& =\left(\int_{0}^{T}\left\|u^{1}(t)-u^{2}(t)\right\|_{V}^{2} \mathrm{~d} t\right)^{1 / 2}+\sup _{t \in[0, T]}\left\|u^{1}(t)-u^{2}(t)\right\|_{U} \\
& \leq 2\left\|u^{0,1}-u^{0,2}\right\|_{U}
\end{aligned}
$$

thus σ is 2-Lipschitz continuous, concluding the proof.
Remark. Theorems 1 and 2 give the existence and uniqueness of a strong solution $u:[0, T] \longrightarrow V$. In particular, it is also a solution in the weak sense, i.e.

$$
\begin{equation*}
\int_{0}^{T} \int_{I} u_{t}(t) \varphi(t) \mathrm{d} x \mathrm{~d} t=\int_{0}^{T} \int_{I}\left[H\left(u_{x x}(t)\right) \varphi_{x}(t)-\Phi_{a}^{\prime}\left(u_{x x}(t)\right) \varphi_{x x}(t)\right] \mathrm{d} x \mathrm{~d} t \tag{44}
\end{equation*}
$$

for any test function $\varphi \in C_{c}^{\infty}((0, T) \times I ; \mathbb{R})$. Thus, if the initial datum u^{0} satisfies the variational inequality (4) for some $z^{0} \in U$, then by [9, Theorem 1], the following (stronger) regularity result holds:

$$
u \in L^{\infty}\left(0, T ; W_{\text {per }_{0}}^{2,3}(I)\right) \cap C^{0}([0, T] ; U), \quad u_{t} \in L^{\infty}(0, T ; U)
$$

Proof. (of Corollary (3) Let u be the (unique) strong solution given by Theorem 1. Recall that, in the proof of Proposition 7, the sequence u^{ε} was defined as the unique piece-wise linear function with nodes $u_{\varepsilon, i}, i=$ $0, \cdots,\lfloor T / \varepsilon\rfloor$, such that $u_{\varepsilon, i}=(\mathrm{id}+\varepsilon B)^{-1} u_{\varepsilon, i-1}$. In particular, we get

$$
\begin{align*}
\left\langle u_{\varepsilon, i}-u_{\varepsilon, i-1}+\varepsilon B u_{\varepsilon, i}, v-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} & \geq 0, \tag{45}\\
\left\langle u_{\varepsilon, i-1}-u_{\varepsilon, i-2}+\varepsilon B u_{\varepsilon, i-1}, v-u_{\varepsilon, i-1}\right\rangle_{V^{\prime}, V} & \geq 0, \tag{46}
\end{align*}
$$

for all $v \in V$. Choosing $v=u_{\varepsilon, i-1}$ in (45) and $v=u_{\varepsilon, i}$ in (46) gives

$$
\begin{array}{r}
\left\langle u_{\varepsilon, i}-u_{\varepsilon, i-1}+\varepsilon B u_{\varepsilon, i}, u_{\varepsilon, i-1}-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} \geq 0, \\
\left\langle u_{\varepsilon, i-1}-u_{\varepsilon, i-2}+\varepsilon B u_{\varepsilon, i-1}, u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\rangle_{V^{\prime}, V} \geq 0,
\end{array}
$$

and summing both sides gives

$$
\begin{aligned}
\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}^{2} & \leq \varepsilon\left\langle B u_{\varepsilon, i}-B u_{\varepsilon, i-1}, u_{\varepsilon, i-1}-u_{\varepsilon, i}\right\rangle_{V^{\prime}, V} \\
& +\left\langle u_{\varepsilon, i-1}-u_{\varepsilon, i-2}, u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\rangle_{V^{\prime}, V} \\
& \leq-\varepsilon\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}^{2}+\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}\left\|u_{\varepsilon, i-2}-u_{\varepsilon, i-1}\right\|_{U}
\end{aligned}
$$

i.e.,

$$
\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U} \leq-\varepsilon\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}+\left\|u_{\varepsilon, i-2}-u_{\varepsilon, i-1}\right\|_{U},
$$

which gives

$$
\begin{equation*}
\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U} \leq(1+\varepsilon)^{-1}\left\|u_{\varepsilon, i-2}-u_{\varepsilon, i-1}\right\|_{U} \tag{47}
\end{equation*}
$$

Taking $i=1, v=u^{0}$ in (45) yields

$$
\left\langle u_{\varepsilon, 1}-u^{0}+\varepsilon B u_{\varepsilon, 1}, u^{0}-u_{\varepsilon, 1}\right\rangle_{V^{\prime}, V} \geq 0,
$$

which gives

$$
\begin{aligned}
\left\|u_{\varepsilon, 1}-u^{0}\right\|_{U}^{2} & \leq \varepsilon\left\langle B u_{\varepsilon, 1}, u^{0}-u_{\varepsilon, 1}\right\rangle_{V^{\prime}, V} \\
& =\varepsilon\left\langle B u_{\varepsilon, 1}-B u^{0}, u^{0}-u_{\varepsilon, 1}\right\rangle_{V^{\prime}, V}+\varepsilon\left\langle B u^{0}, u^{0}-u_{\varepsilon, 1}\right\rangle_{V^{\prime}, V} \\
& \leq \varepsilon\left\|B u^{0}\right\|_{U}\left\|u_{\varepsilon, 1}-u^{0}\right\|_{U},
\end{aligned}
$$

hence $\left\|u_{\varepsilon, 1}-u^{0}\right\|_{U} \leq \varepsilon\left\|B u^{0}\right\|_{U}$. Combining with (47) gives

$$
\begin{equation*}
\frac{\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U}}{\varepsilon} \leq(1+\varepsilon)^{-(i-1)}\left\|B u^{0}\right\|_{U} . \tag{48}
\end{equation*}
$$

By construction it holds $\left\|u_{t}^{\varepsilon}(s)\right\|_{U}=\left\|u_{\varepsilon, i}-u_{\varepsilon, i-1}\right\|_{U} / \varepsilon$ for every $s \in((i-$ $1) \varepsilon, i \varepsilon)$. Thus, for $t \in[0, T]$ such that $t / \varepsilon \notin \mathbb{N}$, it holds

$$
\begin{aligned}
\left\|u_{t}^{\varepsilon}(t)\right\|_{U} & =\frac{\left\|u_{\varepsilon,\lfloor t / \varepsilon\rfloor+1}-u_{\varepsilon,\lfloor t / \varepsilon\rfloor}\right\|_{U}}{\varepsilon} \\
& \leq(1+\varepsilon)^{-\lfloor t / \varepsilon\rfloor}\left\|B u^{0}\right\|_{U} \leq(1+\varepsilon)^{1-t / \varepsilon}\left\|B u^{0}\right\|_{U}
\end{aligned}
$$

Since (upon subsequence) $u_{t}^{\varepsilon} \stackrel{*}{\rightharpoonup} u_{t}$ in $L^{\infty}(t-\delta, t+\delta ; U)$ for any $\delta>0$, we get

$$
\operatorname{esssup}_{s \in(t-\delta, t+\delta)}\left\|u_{t}(s)\right\|_{U} \leq\left\|B u^{0}\right\|_{U} \lim _{\varepsilon \rightarrow 0}(1+\varepsilon)^{1-(t-\delta) / \varepsilon}=e^{-t+\delta}\left\|B u^{0}\right\|_{U}
$$

and we conclude by the arbitrariness of δ.

Acknowledgements

The author thanks Professors Irene Fonseca and Giovanni Leoni for useful comments and suggestions, and the Center for Nonlinear Analysis (NSF PIRE Grant No. OISE-0967140), where part of this research was carried out. The author acknowledges the support by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie Mellon-Portugal Program under Grant SFRH/BD/35695/2007.

Part of this research was carried out when the author was affiliated with Carnegie Mellon University.

References

[1] Barbu V.: Nonlinear semigroups and differential equations in Banach spaces, Noordhoof, Leydon, 1976
[2] Brézis H.: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution, Lecture Notes 5, North Holland, 1972
[3] Browder F.E.: Multivalued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc., vol. 118, pp. 338-351, 1965
[4] Butzer P.L. and Nessel R.J.: Fourier analysis and approximation. Volume 1: onedimensional theory, Academic Press, New York and London, 1971
[5] Crandall M.G. and Liggett T.M.: Generation of semigroups of nonlinear transformations in general Banach spaces, Amer. J. Math., vol. 93, pp. 265-298, 1971
[6] Crandall M.G. and Pazy A.: Nonlinear evolution equations in Banach spaces, Israel J. Math., vol. 11(1), pp. 57-94, 1972
[7] Dal Maso G., Fonseca I. and Leoni G.: Analytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Arch. Rational Mech. Anal., vol. 212, pp. 1037-1064, 2014
[8] Duport C., Politi P. and Villain J.: Growth instabilities induced by elasticity in a vicinal surface, J. Phys., vol. 1(5), pp. 1317-1350, 1995
[9] Fonseca I., Leoni G. and Lu X.Y.: Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., vol. 40(10), pp. 1942-1957, 2015
[10] Hardy G.H., Littlewood J.E. and Pólya G.: Inequalities, Cambridge Mathematical Library, Cambridge, 1988
[11] KaČUR J.: Method of Rothe in evolution equations, Teubner Verlaggesellschaft, Leipzig, 1985
[12] Suryanarayana M.B.: Monotonicity and upper semicontinuity, Bull. Amer. Math. Soc., vol. 82(6), pp. 936-938, 1976
[13] Tersoff J., Phang Y.H., Zhang Z. and Lagally M.G.: Step-bunching instability of vicinal surfaces under stress, Phys. Rev. Lett., vol. 75, pp. 2730-2733, 1995
[14] Xiang Y.: Derivation of a continuum model for epitaxial growth with elasticity on vicinal surface, SIAM J. Appl. Math., vol. 63, pp. 241-258, 2002
[15] XIang Y. and E W.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces, Phys. Rev. B, vol. 69, pp. 035409-1-035409-16, 2004
[16] Xu H. and Xiang Y.: Derivation of a continuum model for the long-range elastic interaction on stepped epitaxial surfaces in $2+1$ dimensions, SIAM J. Appl. Math., vol. 69(5), pp. 1393-1414, 2009

Department of Mathematics and Statistics, Burnside Hall, McGill UniverSity, 805 Sherbrooke Street West, H3A0B9 Montréal, Canada

E-mail address: xinyang.lu@mcgill.ca

