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Abstract

The goal of this paper is to study the behavior of certain solutions to the Swift–Hohenberg
equation on a one–dimensional torus T. Combining results from Γ–convergence and ODE theory,
it is shown that solutions corresponding to initial data that is L1–close to a jump function v,
remain close to v for large time. This can be achieved by regarding the equation as the L2–
gradient flow of a second order energy functional, and obtaining asymptotic lower bounds on
this energy in terms of the number of jumps of v.

1 Introduction, Motivation and Main Results

The fourth order partial differential equation

ut = ru− (q̄2 + ∂2
x)2u+ f(u) (1.1)

is a generalization of the Swift–Hohenberg equation introduced in 1977 by Swift and Hohenberg [36]
as a model for the study of pattern formation, in connection with the Rayleigh–Bérnard convection,
e.g. see [13],[27]. Among many different applications, the most famous ones in the literature are
those in connection to pattern formation in vibrated granular materials [37], buckling of long elastic
structures [24], Taylor–Couette flow [23], [32], and in the study of lasers [28]. Moreover, in recent
years great attention has been paid to models of phase transitions in the study of pattern–formation
in bilayer membranes, see e.g. [11] where the Swift–Hohenberg equation turns out to be the gradient
flow of Ginzburg–Landau type energies, with respect to the right inner product structure.

Consider (1.1) on a periodic domain with a characteristic size L = 1/ε, where 0 < ε� 1. Letting
W be the primitive of s 7→ 2(f(s) + (r − q̄4)s), q := 2q̄2, and rescaling time and space by ε in (1.1)
one arrives at the rescaled form{

ut = −W ′(u)− 2ε2quxx − 2ε4uxxxx x ∈ T, t > 0,

u(x, 0) = u0,ε(x) x ∈ T,
(1.2)

where T is a one–dimensional torus. We assume that W : R → [0,+∞) is a double–well potential
with phases supported at −1 and 1, and we study the long–time behavior of solutions when q > 0 is
sufficiently small. In particular, due to the presence of the small parameter ε in (1.2) the solutions
are expected to develop interfacial structure driven by the minima of the potential W . Equation
(1.2) may be viewed as a gradient flow associated to a second order energy functional, and our
main result consists of an asymptotic lower bound on the corresponding energy functional and the
consequent bounds on the speed of evolution of the developed interfaces. Below we outline interfacial
dynamics results for the lower order Allen–Cahn equation and its generalizations that provide much
of the motivation for our analysis.
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1.1 Allen–Cahn Equation and Generalizations to Higher Order

Equations displaying interfacial dynamics have been studied extensively in the last two decades.
The prototypical example is the Allen–Cahn equation

ut = ε2uxx −W ′(u), x ∈ I, t > 0, (1.3)

(as well as its higher dimensional analog) seen as the L2–gradient flow of the energy

Gε(u; I) :=

∫
I

(
1

ε
W (u) +

ε

2
|ux|2

)
dx, u ∈ H1(I), (1.4)

where I ⊂ R is an interval. The special gradient–flow structure of (1.3) has allowed its analysis by
a wide variety of methods and techniques.

In particular, it has been shown for the Allen–Cahn equation (see [9] and the references therein)
that if ε� 1 the evolution from a sufficiently regular initial data occurs in four main stages. In the
first stage, the diffusion term ε2uxx can be ignored and the leading order dynamics are driven by the
ε independent ordinary differential equation ut = −W ′(u). This is the time-scale in which interfaces
develop, i.e., regions in the space domain that separate almost constant solutions corresponding to
the stable equilibria of the ordinary differential equation. This stage, referred to as the generation
of interface, has been analyzed for the Allen–Cahn equation first in [16], and subsequently in [9],
[10], [14], [35], and other papers.

As the regions separating unequal equilibria decrease in length, the spacial gradient necessarily
increases, and after O(| ln ε|) time the dynamics are driven by a balance between the two terms
on the right–hand side of (1.3). In particular, as shown in [9], after O(ε−1) time the solution is
exponentially close to the standing–wave profile

Φ(x; p1, . . . , pn) := ±
∏
n

φ

(
x− pi
ε

)
, (1.5)

parametrized by the positions p1, . . . pn, where φ satisfies

φ′′ = W ′(φ), lim
z→±∞

φ(x) = ±1, φ(0) = 0. (1.6)

The zeros p1(t), . . . , pn(t) of Φ can be viewed as specifying the location of the interfaces. In particular,
the residual ε2Φxx−W ′(Φ) is exponentially small and the corresponding third stage of the evolution
proceeds on an exponentially slow time scale until two zeros of the solution of (1.3) uε collide and
disappear as part of the fourth stage of the evolution.

The third stage, usually referred to as Slow Motion has been studied extensively. The most precise
interface evolution results for the Allen–Cahn equation are given in [7], [8], [19], [20]. Specifically,
the zeros of the solution uε are approximated by {pi}, which at leading order move according to the
evolution law

p′i = εS

(
exp

(
−µpi+1 − pi

ε

)
− exp

(
−µpi − pi−1

ε

))
, (1.7)

where µ =
√
W ′′(±1), S > 0 is a constant depending only on W . The proof of this reduction

involves invariant manifold theory and geometric analysis.
In [5] Bronsard and Kohn adopted a variational viewpoint to study the Allen–Cahn equation.

While their method does not recover the evolution equation above, it does provide relatively simple
energy arguments to obtain a bound on the speed of this evolution. In particular, Bronsard and
Kohn first prove that for any k > 0 there exists a constant ck > 0 such that, if v ∈ H1(I) is
sufficiently close in L1 norm to a step function taking values ±1 and having exactly N jumps, and
its energy satisfies

Gε(v; I) ≤ NcW + εk, (1.8)
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where cW =
∫ 1

−1

√
2W (s)ds, then

Gε(v; I) ≥ NcW − ckεk. (1.9)

Using this energy estimate they prove that the solution uε of (1.3) with Dirichlet or Neumann
boundary data, under the same conditions on the initial data u0,ε(x), satisfies

lim
ε→0

sup
0≤t≤ε−km

∫
I

|uε(x, t)− v(x)|dx = 0, (1.10)

for any m > 0. The limit in (1.10) may be viewed as providing an upper bound on the speed of the
evolution of the transition layers of uε. Improvements of (1.9) have been obtained in [4] and [22].
In particular, it has recently been established in [4] that for a sequence {vε} ⊂ H1(T) converging
to a step function taking values ±1 and having exactly N jumps, the Allen–Cahn functional admits
the following multiple order asymptotic expansion

G(vε;T) = NcW − 2α+κ
2
+

N∑
k=1

exp

(
−α+

dεk
ε

)
− 2α−κ

2
−

N∑
k=1

exp

(
−α−

dεk
ε

)

+ κ3
+β+

N∑
k=1

exp

(
−3α+

2

dεk
ε

)
+ κ3
−β−

N∑
k=1

exp

(
−3α−

2

dεk
ε

)

+ o

(
N∑
k=1

exp

(
−3α+

2

dεk
ε

))
+ o

(
N∑
k=1

exp

(
−3α−

2

dεk
ε

))
where α±, κ±, β± are constants dependent on the potential W and dεk is the distance between con-
secutive transition layers of vε. The gradient flow associated with the second order term in the above
energy expansion gives, up to a multiplicative constant, the evolution equation (1.7), providing a
crucial link between the variational and geometric approaches. Further insight into this connection
can be seen as part of a general framework of Γ–convergence of gradient flows developed in [33].

In regards to extensions to higher–order functionals, the problem has been studied in [25] in
connection with a family of higher order functionals of the form

H(u) :=
1

ε

∫
I

(
n∑
k−1

γkε
2k

2
|u(k)|2 +W (u)

)
dx, (1.11)

where u(k) stands for the k–th spatial derivative of u. Due to difficulties associated with higher
order nature of the functional, in particular, the lack of exact solutions of the corresponding Euler–
Lagrange equation, sharp bounds analogous to (1.1) have not been established. An important
condition on H in [25] is

• Hypothesis 1: There exists constants d0, η > 0 such that for every interval I ⊂ R with length
|I| ≥ d0 and all u ∈ Hn(I)∫

I

(
n∑
k−1

γk|u(k)|2
)
dx ≥ η

∫
I

(
|u(n)|2 + |u′|2

)
dx. (1.12)

Under this hypothesis the authors prove that for any u ∈ Hn(I) sufficiently close to a step function
taking values ±1 and having exactly N jumps,

Hε(u) ≥ Nm1 − C exp

(
−dλ

3ε

)
, (1.13)
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where λ is a constant satisfying λ < |Re(µ)|, for all eigenvalues µ of the linearization of

n∑
k=1

(−1)kγku
(2k) +W ′(u) = 0 (1.14)

at (±1, 0, . . . , 0).

The initial value problem (1.2) can be seen as the L2–gradient flow of the second order energy
functional

Eε(u;T) :=

∫
T

(
1

ε
W (u)− εq|ux|2 + ε3|uxx|2

)
dx, u ∈ H2(T) (1.15)

and our main goals are the extension and the improvement of the bound (1.13) for this energy and,
in turn, this will allow us to prove the slow motion of solutions of (1.2).

We note that the functional (1.15) does not satisfy Hypothesis 1 due to the negative term in
the energy. We use recently established interpolation inequality (see [11] and [12]) to overcome this
difficulty if q > 0 is sufficiently small. Moreover, in the proof of an energy estimate analogous to
(1.13), see Theorem 1.1, we do not assume any closeness condition on the H2 functions we work
with, we instead make an assumptions on the zeros of such functions.

Furthermore, inspired by [4], our analysis relies on the use of a particular test function, and on
the study of the solutions of the Euler–Lagrange equation associated to (1.15) via hyperbolic fixed
point theory, in particular through the work of Sell [34]. Thanks to this approach we are able to
improve the exponent in (1.13) and, consequently, obtain sharper bound on the speed of evolution
for solutions of (1.2).

We recall that the Γ–convergence of the energy functional Eε has been proved in [18] for the
case q = 0, and in [11] and [12] when q > 0 is small. The asymptotic behavior of Eε plays a crucial
role in our analysis: we will use results from Γ–convergence, together with a careful analysis of the
minimizers of the associated Euler–Lagrange equation, to study the speed of motion of solutions of
(1.2).

To conclude, we remark that the situation in the higher dimensional setting is quite different:
solutions of the higher dimensional version of (1.3) and other classical gradient flow–type equations
have been studied by many different authors, see, e.g., [1], [2], [6], [15], [26], [31]. Due to the lack of
results like (1.9), all of them use significantly different approaches to the one introduced in [5]. A
more recent work, see [30], closes the gap by making use of a Γ–convergence result proved in [29]
and doesn’t assume any specific structure of the initial data.

1.2 Statement of Main Results

Theorem 1.1. Let T be the one–dimensional unit torus, and let W satisfy the hypotheses (2.1)–
(2.4). Let α0 > 0. Then there exist q0 > 0 and ε0 > 0, possibly dependent on α0 and q0, such that
if q < q0 and w ∈ H2(T) has at least N zeros, {xk}Nk=1, satisfying mink |xk+1 − xk| ≥ α0 then

Eε(w;T) ≥ Nm1 − C
N∑
k=1

exp

(
−dkγ

ε

)
, (1.16)

for every 0 < ε < ε0, where dk = xk+1 − xk, γ > 0 is defined in (2.55) and depends only on W ,
while C > 0 is independent of ε.
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We remark that a similar estimate can be obtained when the domain is an interval I := (a0, b0),
with (1.16) replaced with

Eε(w; I) ≥ Nm1 − C
N∑
k=0

exp

(
−dkγ

ε

)
, (1.17)

where d0 := x1 − a0, dN := b0 − xN .

Remark 1.2. We highlight the fact that we are not requiring the function w of Theorem 1.1 to be
L1–close to a jump function, in contrast with [4], [5], [22], [25]. On the other hand, it is easy to
show that if w is L1–close to a jump function v taking values ±1, then there exists an α0 > 0 with
the property that the zeros of w are at least α0 > 0 apart, as in the statement of Theorem 1.1.

The energy estimate above is a crucial ingredient to prove slow motion of solutions of (1.2), when
the initial data is close in the L1 norm to a BV function, as in [5], [22], [25]. In particular, we will
consider regular solutions of (1.2), whose existence is proved in the Appendix, see Theorem 4.1. Our
analysis yields the following result.

Theorem 1.3. Let v ∈ BV (T; {±1}) be a function with N(v) 6= 0 jumps at xk(v), for k =
1, . . . , N(v), and let q0 > 0 be as in Theorem 1.1. Let d := mink |xk+1(v) − xk(v)|. Then there
exist ε0, δ0 > 0 with d− 4δ0 > 0 such that, if uε is a solution of (1.2) with uε ∈ L2((0,∞);H4(T)),
uεt ∈ L2((0,∞);H2(T)) and initial data u0,ε ∈ H2(T) satisfying

||u0,ε − v||L1(T) ≤ δ (1.18)

for 0 < δ < δ0 and

Eε(u0;T) ≤ E0(v;T) +
1

h(ε)
, (1.19)

for all 0 < ε < ε0 and for some function h : (0,∞)→ (0,∞), then for all q < q0,

lim
ε→0+

{
sup

0≤t≤Tε

∫
T
|uε(x, t)− u0,ε(x)|dx

}
= 0, (1.20)

where
Tε := δ2 min{h(ε), exp((d− 4δ)γ/ε)}.

Remark 1.4. If h(ε) = exp(dγ/ε), then

Tε = δ exp((d− 4δ)γ/ε)

which is consistent with the estimates obtained in [22] and [25]. On the other hand, we remark that
our Theorem 1.3 provides more general results.

Remark 1.5. To the best of our knowledge, only recently some regularity results for the Swift–
Hohenberg equation have been proved, see [21]. In the statement of Theorem 1.3 we assume that
the solutions are sufficiently regular. In the Appendix we prove existence of solutions (though with
weaker regularity) using De Giorgi’s technique of Minimizing Movements (see Theorem 4.1).

1.3 Outline of the Proof

A key step in proving the energy inequality (1.16) is a bound from below by the energy of an
appropriately chosen test function. Given w ∈ H2(T) satisfying the assumptions of Theorem 1.1,
we follow [4] to construct this test function by gluing together minimizers of the energy on each
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subinterval Ik := [xk, xk+1], where the admissible class now consists of H2(Ik) functions that equal
zero at the endpoints of Ik. Thus,

Eε(w;T) ≥
∑
k

Eε(ŵk; Ik), (1.21)

where ŵk also solves a fourth order Euler–Lagrange equation corresponding to the energy functional.
This initial energy inequality has several key advantages. First, it assumes no assumptions about

closeness of w to a step function taking values ±1. The required estimates can be proved for ŵk.
Secondly, the additional property that ŵk solves a fourth order ODE on the whole subinterval is key
in obtaining a sharper lower bound than the one established in [25]. Specifically, in the middle of
each subinterval Ik, we can show that the minimizer ŵk = ±1 +O(exp (−γ(xk+1 − xk)/2ε)), where
the exponent γ is related to the linearization of the Euler–Lagrange equation. In fact, obtaining
this bound is the central contribution of this paper, starting from Corollary 2.3 and culminating
in Proposition 2.7. The proofs of Lemmas 2.4 and 2.5, which give the initial crude estimates on
the ‘closeness’ of ŵk to ±1, follow the ideas of [25] supplemented by the use of the interpolation
inequality given in Lemma 2.2 and the use of ŵk instead of the original function w. A point of
departure is Lemma 2.6, in which the use of a Hartman–Grobman type theorem (see Theorem 5.4,
from [34]), combined with the extra information on ŵk and the analysis of the linearized problem,
allow us to obtain sharper exponential decay estimate.

Once these bounds on ŵk are obtained, we show that its energy is larger than the energy of the
‘optimal profile’ connecting the zeros of ŵk with ±1 and having energy m1/2. This is accomplished
in the proof of Theorem 1.1.

In the remainder of the paper, we use the energy lower bound to obtain slow motion results in
Section 3. Finally, in the Appendix we present a proof of existence of solutions for equation (1.2)
in the more general case of a bounded domain Ω ⊂ Rn, along with partial regularity results for the
solutions themselves.

2 Preliminaries and Assumptions

Throughout this paper we will work with a double–well potential W : R→ [0,∞) satisfying

W ∈ C5(R), W (s) = W (−s), for all s ∈ R; (2.1)

W (s) > 0, for s ≥ 0, s 6= 1; (2.2)

W (1) = W ′(1) = 0; (2.3)

there exists 0 < cW ≤ 1 such that W (s) ≥ cW |s− 1|2, for s ≥ 0. (2.4)

A prototype for W is given by

W (s) :=
1

4
(s2 − 1)2. (2.5)

2.1 Γ–convergence and Interpolation Inequalities

In this section we recall some properties of the energy

Eε(u; Ω) :=

∫
Ω

(
1

ε
W (u)− εq|∇u|2 + ε3|∇2u|2

)
dx, (2.6)

in the more general setting where Ω is a bounded open set of Rn with C1 boundary, q > 0 is a small
parameter, and W is a double–well potential, as in (2.5). In [11] Chermisi, Dal Maso, Fonseca and
Leoni proved that the sequence of functionals Eε : L2(Ω)→ R ∪ {+∞}, defined by

Eε(u) :=

{
Eε(u; Ω) if u ∈ H2(Ω),

+∞ if u ∈ L2(Ω) \H2(Ω),
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Γ–converges as ε→ 0+ to the functional E0 : L2(Ω)→ R ∪ {+∞},

E0(u) :=

{
mnPerΩ({u = 1}) if u ∈ BV (Ω; {−1,+1}),
+∞ if u ∈ L2(Ω) \BV (Ω; {−1,+1}),

where
mn := inf {Eε(u;Q) : 0 < ε ≤ 1, u ∈ An} ,

Q :=
(
− 1

2 ,
1
2

)n
, and

An :=
{
u ∈H2

loc(Rn), u(x) = −1 near x · en = −1

2
,

u(x) = 1 near x · en =
1

2
,

u(x) = u(x+ ei) for all x ∈ Rn, i = 1, . . . , n− 1
}
.

We define the one–dimensional rescaled energy

E(v;A) :=

∫
A

(
W (v)− q(v′)2 + (v′′)2

)
dx, (2.7)

and we introduce the set of admissible functions

A :=
{
v ∈ H2

loc(R) : v(x) = −1 near x = a, v(x) = 1 near x = b
}
. (2.8)

We note that it was proved in [11], Section 5.1, that

m1 = inf

{
E(v;R) : v ∈ H2

loc(R), lim
x→±∞

v(x) = ±1

}
, (2.9)

so that in dimension n = 1 we have

E0(u) =

{
Nm1 if u ∈ BV ((a, b); {−1,+1})
+∞ if u ∈ L2((a, b)) \BV ((a, b); {−1,+1}),

where N is the number of jumps of the function u. We further define

m± := inf
{
E(u;R+) : u ∈ H2

loc(R+), lim
x→∞

u(x) = ±1, u(0) = 0
}

= inf
{
E(u;R−) : u ∈ H2

loc(R−), lim
x→−∞

u(x) = ±1, u(0) = 0
}

(2.10)

and remark that in our case of symmetric potential W , m+ = m− = m1/2. One of the key tools to
prove the Γ–convergence result is the following nonlinear interpolation inequality, see e.g. Theorem
3.4 in [11].

Lemma 2.1. Let Ω be a bounded open set of Rn with C1 boundary, and assume that W satisfies
(2.1)–(2.4). Then there exists a constant q∗ > 0, independent of Ω, such that for every −∞ < q <
q∗/N there exists ε0 = ε0(Ω, q) > 0 such that

qε2

∫
Ω

|∇u|2dx ≤
∫

Ω

W (u)dx+ ε4

∫
Ω

|∇2u|2dx

for every ε ∈ (0, ε0) and every u ∈ H2(Ω).

In particular, in the one dimensional setting, we will often use the following nonrescaled version
of the previous result, see Lemma 3.1 in [12].
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Lemma 2.2. Let W be a continuous potential satisfying (2.2)–(2.4). Let I ⊂ R be an open, bounded
interval. Then there exists a constant q∗ > 0 such that

q∗
∫
I

(u′)2dx ≤ 1

L1(I)2

∫
I

W (u)dx+ L1(I)2

∫
I

(u′′)2dx

for every u ∈ H2(I).

Corollary 2.3. Let W and q∗ be as in Lemma 2.2. Then there exist σ > 0 such that for every open
interval I, every 0 < ε ≤ L1(I), and every −∞ < q ≤ q∗/4 ,

qε2

∫
I

(u′)2dx ≤
∫
I

(
W (u) + ε4(u′′)2

)
dx, (2.11)

and

Eε(u; I) ≥ σ
∫
I

(
W (u) + ε2(u′)2 + ε4(u′′)2

)
dx. (2.12)

for all u ∈ H2
loc(I).

Proof. Let I = (a, b) and u ∈ H2((a, b)). We change variables v(y) := u(εx), subdivide the resulting
rescaled domain Iε = (a/ε, b/ε) into

[
b−a
ε

]
subintervals, Ikε , of length between 1/2 and 2 (since

0 < ε ≤ b− a) and use Lemma 2.2 to obtain

q∗

4

∫ b

a

(u′)2dx =
q∗

4ε

∫ b/ε

a/ε

(v′)2dy =
1

4ε

∑
k

q∗
∫
Ikε

(v′)2dy ≤ 1

4ε

∑
k

∫
Ikε

(
4W (v) + 4(v′′)2

)
dy

=
1

ε

∫ b/ε

a/ε

(
W (v) + (v′′)2

)
dy =

∫ b

a

(W (u) + ε3(u′′)2)dx. (2.13)

Since q ≤ q∗/4, (2.11) easily follows. To prove (2.12) we follow closely the strategy used in the
proof of Theorem 1.1 of [11] and proceed as follows. Fix σ ∈ (0, 1) sufficiently small so that
(q + σ)/(1− σ) < q∗/4. Then,∫ b

a

(W (u)− qε2(u′)2 + ε4(u′′)2)dx = (1− σ)

∫ b

a

(
W (u)− q + σ

1− σ
ε2(u′)2 + ε4(u′′)2

)
dx

+ σ

∫ b

a

(
W (u) + ε2(u′)2 + ε4(u′′)2

)
dx,

(2.14)

and (2.12) follows since by (2.13) the first term on the right-hand side of (2.14) is nonnegative.

The following lemmas established for a generalization of the Modica–Mortola Functional in [25]
will be useful to prove our main result. While our energy does not satisfy the assumptions of [25],
their argument is easily extended to our case with the help of the interpolation inequality (2.12).
In particular, Lemma 2.4, shows that an H2 function with a uniformly bounded energy, necessarily
takes values close to {±1} and has small derivatives, except on a set of measure O(ε) and Lemma
2.5 gives a characterization of the global minimizers for the energy E(·, ·), defined in (2.7), subject
to small boundary conditions.

Lemma 2.4. Let I be an open interval, M > 0 and 0 < δ < 1. Then there exists a constant C1 > 0
such that for any 0 < ε ≤ L1(I) and every u ∈ H2(I) with Eε(u; I) ≤ M the following property
holds: there is a measurable set J ⊂ I with L1(J) ≤ C1ε such that

dist(u(x), {±1}) < δ and |εu′(x)| < δ and

hold for all x ∈ I \ J , where dist denotes the usual distance between a point and a set.
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Proof. By (2.12), for every 0 < ε ≤ L1(I) and u ∈ H2(I),∫
I

(
W (u)− qε2(u′)2 + ε4(u′′)2

)
dx ≥ σ

∫
I

(
W (u) + ε2(u′)2 + ε4(u′′)2

)
dx

≥ σ
∫
I

W (u)dx.

(2.15)

We now let J0 := {x ∈ I : dist(u(x), {±1}) ≥ δ} and from the definition of W we have c :=
inf{W (s) : dist(s, {±1}) ≥ δ} > 0. Then (2.15) implies

M ≥ Eε(u; I) ≥ σ

ε

∫
I

W (u)dx ≥ cσ

ε
L1(J0),

and therefore

L1(J0) ≤ Mε

cσ
.

Similarly, setting J1 := {x ∈ I : |εu′(x)| ≥ δ}, (2.15) yields the estimates

M ≥ Eε(u; I) ≥ σ

ε

∫
I

ε2(u′)2dx ≥ σδ2

ε
L1(J1) (2.16)

and consequently

L1(J1) ≤ Mε

σδ2
.

Setting J := J0 ∪ J1 yields the desired result.

Lemma 2.5. Let I := (a, b) be an open interval and W ∈ C2 satisfy (2.2)–(2.4). Given α =
(α1, α2) ∈ R2, β = (β1, β2) ∈ R2 define

M±α,β := {v ∈ H2(I) : v(a) = ±1 + α0, v
′(a) = α1, v(b) = ±1 + β0, v

′(b) = β1}. (2.17)

Then there exist constants δ0, C > 0 such that the following holds. If L1(I) > 1 and ||α||, ||β|| ≤ δ <
δ0 then the functional E(·; I) defined in (2.7) has a global minimizer v± on M±α,β. This minimizer
v± solves the Euler–Lagrange equation, and satisfies the estimates

||v± ± 1||L∞(I) ≤ Cδ, (2.18)

||v(k)
± |L2(I) ≤ Cδ for k = 1, . . . , 4. (2.19)

||v(k)
± ||L∞(I) ≤ Cδ for k = 1, . . . , 3. (2.20)

x1 x2a b

v̂

1
1− δ

Figure 1: If v̂ is close to 1 at x1 and x2, then it stays close in between.
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Proof. We prove the proposition when s = −1, the s = 1 case being identical. We divide the proof
into several steps. Moreover, we simplify the notation used for the Lp norms when the domain of
integration will be clear from the context.

Step 1. Fix δ > 0. We claim that there exists C1 > 0 such that if ||α||, ||β|| ≤ δ, then

inf
M−α,β

E(·; I) ≤ C1δ
2. (2.21)

To show this we note that, if ϕ0, ϕ1 ∈ C∞(R) satisfy ϕi(x) = 0 for all x ≥ 1/2, with ϕ0(0) =
1, ϕ′0(0) = 0, ϕ1(0) = 0, and ϕ′1(0) = 1, then the function

φ(x) := −1 + α0ϕ0(x− a) + α1ϕ1(x− a) + β0ϕ0(b− x)− β1ϕ1(b− x), x ∈ (a, b), (2.22)

belongs to M−α,β . Using φ as a test function, (2.21) follows from Taylor’s formula for W and the

facts that W (±1) = W ′(±1) = 0 and W ∈ C2(R).

Step 2. Fix 0 < δ < 1. We will show that there exists C2 > 0 such that for every v ∈ M−α,β , with
v ≤ 0 on I and ||α||, ||β|| ≤ δ we have

E(v; I) ≥ C2||v + 1||2L∞ . (2.23)

Suppose that |v(x) + 1| ≥ ||v + 1||∞/2 for all x ∈ I. Using (2.4) and (2.12) with ε = 1 we have,

E(v; I) ≥ σ
∫
I

W (v)dx ≥ σcW
∫
I

|v + 1|2 ≥ L1(I)
σ

4
cW ||v + 1||2L∞ (2.24)

Otherwise, there are points x0, x1 ∈ Ī satisfying

|v(x0) + 1| = ||v + 1||∞
2

and |v(x1) + 1| = ||v + 1||∞,

in which case, again by (2.4), (2.12) and Young’s Inequality

E(v; I) ≥ σ
∫
I

(
W (v) + |v′|2

)
dx ≥ 2σ

∫
I

√
W (v)|v′|

≥ 2cWσ

∣∣∣∣∫ x1

x0

|v + 1|v′dx
∣∣∣∣

= cWσ
(
(v + 1)2(x1)− (v + 1)2(x0)

)
=
σ

2
cW ||v + 1||L∞

and this proves (2.23).

Step 3. We claim that there exists δ0 > 0 and C3 = C3(δ0) > 0 such that if ||α||, ||β|| ≤ δ < δ0 and
v ∈M−α,β , with E(v; I) ≤ 2 infM−α,β

E, then

||v + 1||L∞ ≤ C3δ. (2.25)

By taking 0 < δ < 1 sufficiently small, we may assume that v ≤ 0 on I. Indeed, since v(a) =
−1 + α0 ≤ −1 + δ < 0, if v(x) > 0 for some x, then necessarily there exists x1 such that v(x1) = 0,
and so by (2.4),

E(v; I) ≥ σ
∫
I

(
W (v) + |v′|2

)
dx ≥ 2σ

∫ x1

a

√
W (v)|v′|

≥ 2CWσ

∣∣∣∣∫ x1

a

|v + 1|v′dx
∣∣∣∣

= σCW
(
(v + 1)2(x1)− (v + 1)2(a)

)
≥ σ(1− |α0|2),
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which contradicts Step 1 for δ sufficiently small. Hence, Steps 1 and 2 imply (2.25).

Step 4. Finally, (2.12) with ε = 1 and standard compactness and lower semicontinuity arguments
imply the existence of minimizer v− of E(·; I) and since by previous step v− ≤ 0 for δ < δ0 and

||v− + 1||2L2 ≤ L1(I)||v− + 1||2L∞ ≤ Cδ2, (2.26)

for some C > 0, again using (2.12) along with (2.21) yields

||v(k)
− ||L2 ≤ Cδ, for k = 1, 2.

Furthermore, since W is C2, from (2.26) and the Mean Value Theorem we have

W ′(v−) = W ′(v−)−W ′(−1) ≤ max
0≤ξ≤2

W ′′(ξ)(v− + 1). (2.27)

The Euler–Lagrange equation

2v
(iv)
− + 2qv′′− +W ′(v−) = 0,

the L∞ bound from Step 3 and (2.27) imply

||v(iv)
− ||L2 ≤ |q|||v′′−||L2 +

1

2
||W ′(v−)||L2 ≤ |q|||v′′−||L2 + C||v− + 1||L2 ≤ Cδ (2.28)

for some C > 0.
The energy bound (2.21) and standard interpolation inequalities (e.g., see Theorem 6.4 in [17])

imply (2.18), (2.19), (2.20).

2.2 The Euler–Lagrange Equation

In this section we further analyze the behavior of the minimizers of the energy Eε with the aid of
the corresponding Euler-Lagrange equation, and we prove our main result, Theorem 1.1.

Lemma 2.6. Consider the ordinary differential equation

x′ = F (x), (2.29)

where F : R4 → R4 is a C4 mapping satisfying F (x0) = 0 for some x0 ∈ R4. Assume DF (x0)
has four eigenvalues ±γ ± δi, where γ > 0 and δ ∈ R. Then for 0 < λ ≤ γ there exist a constant
C(γ, δ) > 0, T0(γ, δ) > 0 and R > 0 such that for all T > T0, if x : [0, T ] → B(x0, R) is a solution
of (2.29), then the inequality

|x(t)− x0| ≤ C(γ, δ) exp (−λT/2) (2.30)

holds for all t ∈
[
λT
2γ , T −

λT
2γ

]
. In particular, if γ = λ,

|x(T/2)− x0| ≤ C(γ, δ) exp (−γT/2) . (2.31)

Proof. Changing variables if necessary, we may assume, without loss of generality, that x0 = 0.
Let A := DF (0). By an extension of the Hartman–Grobman Theorem (see, e.g. [34] and Lemma
5.5 in the Appendix), there exist two open neighborhoods of 0, V1, V2 ⊂ R4, and a diffeomorphism
h : V1 → V2 of class C1, with h(0) = 0, such that if x(t) ∈ V1 for all t ∈ [0, T ] then the funciton
y(t) := h(x(t)), t ∈ [0, T ] is a solution of the linearized system

y′ = Ay. (2.32)

11



Let R > 0 be so small that B(0, R) ⊂ V1, and define V := h(B(0, R)). Then V is bounded and since
h(0) = 0, there exists L > 0 such that V ⊂ B(0, L). Hence if x(t) ∈ B(0, R) for all t ∈ [0, T ], then
y(t) ∈ B(0, L) for all t ∈ [0, T ].

Since the eigenvalues of A are all distinct, the solution of (2.32) has the form

y(t) = c1v1 exp ((−γ − δi)t) + c2v2 exp ((−γ + δi)t) + c3v3 exp ((γ − δi)t) + c4v4 exp ((−γ − δi)t) ,

where c1, . . . , c4 are complex valued constants and {vi} ⊂ C4 is a linearly independent set of eigen-
vectors of A. Letting P = [v1, v2, v3, v4] be the matrix of eigenvectors of A, we write the above
solution as

y(t) = P [c1 exp ((−γ − δi)t) , c2 exp ((−γ + δi)t) , c3 exp ((γ − δi)t) , c4 exp ((γ − δi)t)]Tr, (2.33)

where the superscript Tr denotes the transpose of a matrix. Since y(t) ∈ B(0, L) for all t ∈ [0, T ],

|[c1 exp ((−γ − δi)t) , c2 exp ((−γ + δi)t) , c3 exp ((γ − δi)t) , c4 exp ((γ − δi)t)]|2 ≤ ||P−1||2|y(t)|2

≤ L2||P−1||2,

where ||P−1|| is the operator norm of P−1. In particular,

|c1|2 ≤ L2||P−1||2 exp (2γt) , |c2|2 ≤ L2||P−1||2 exp (2γt) , (2.34)

|c3|2 ≤ L2||P−1||2 exp (−2γt) , |c4|2 ≤ L2||P−1||2 exp (−2γt) , (2.35)

for all t ∈ [0, T ]. Setting t = 0 and t = T in the first and second row respectively we obtain bounds
on the constants c1, ..., c4,

|c1| ≤ L||P−1||, |c2| ≤ L||P−1||, (2.36)

|c3| ≤ L||P−1|| exp (−γT ) , |c4| ≤ L||P−1|| exp (−γT ) . (2.37)

Using the resulting bounds in (2.33) yields

exp (λT ) |y(t)|2 ≤ exp (λT ) ||P ||2
(
|c1|2 exp (−2γt) + |c2|2 exp (−2γt) + |c3|2 exp (2γt) + |c4|2 exp (2γt)

)
≤ 4L2||P ||2||P−1||2,

provided
λT − 2γt ≤ 0 and λT − 2γT + 2γt ≤ 0.

Both of these conditions are satisfied as long as

t ∈
[
λT

2γ
, T − λT

2γ

]
=: [t1, t2].

Hence for t ∈ [t1, t2],
|y(t)|2 ≤ 4L2||P ||2||P−1||2 exp (−λT ) .

In particular, if T is sufficiently large (depending only on γ, δ, and V2), there exists a compact set
E such that y(t) ∈ E ⊂ V2 for all t ∈ [t1, t2]. Since h−1 is C1 and h(0) = 0, by the Mean Value
Theorem,

|x(t)| = |h−1(y(t))| ≤ sup
s∈E
|∇h−1(s)||y(t)| ≤ Cγ,δ exp (−λT/2) (2.38)

for all t ∈ [t1, t2], where Cγ,δ := L sups∈E |∇h−1(s)|||P ||||P−1||.

For a given open interval I and a subinterval (y1, y2) ⊂ I we define

M :=
{
w ∈ H2((y1, y2)) : w(y1) = 0, w(y2) = 0

}
. (2.39)
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Proposition 2.7. Let ε0 > 0 and let ŵε be a global minimizer of Eε(·; (y1, y2)) on M satisfying

Eε(ŵε; (y1, y2)) ≤M, (2.40)

for all ε < ε0. Then ŵε solves the Euler–Lagrange equation

2ε4ŵ(iv)
ε + 2qε2ŵ′′ε +W ′(ŵε) = 0, (2.41)

with additional natural boundary conditions ŵ′′ε (y1) = ŵ′′ε (y2) = 0, and for all ε < ε0 satisfies the
estimates

dist(ŵε((y1 + y2)/2), {±1}) ≤ CM exp

(
−dγ

2ε

)
, (2.42)

|ŵ(m)
ε ((y1 + y2)/2)| ≤ CM exp

(
−dγ

2ε

)
, m = 1, . . . 3, (2.43)

where d := y2 − y1 and CM > 0 is a positive constant dependent only on M, q and the potential W .

ỹ1 ỹ2y1 y2

ŵε

g

1

−1

1− δ

Figure 2: The contradiction argument.

Proof. Fix δ > 0 to be chosen later. We first observe that, due to the upper bound (2.40) and
Lemma 2.4, there exists c = c(δ,M) > 0 and points ỹ1 ∈ (y1, y1 + cε) and ỹ2 ∈ (y2 − cε, y2) such
that

dist(ŵε(ỹ1), {±1}) < δ, |εŵ′ε(ỹ1)| < δ, (2.44)

dist(ŵε(ỹ2), {±1}) < δ, |εŵ′ε(ỹ2)| < δ. (2.45)

In addition, we claim that since ŵε is a minimizer, at ỹ1 and ỹ2 its value is near the same well of
W , i.e., we may assume without loss of generality that

|ŵε(ỹ1)− 1| < δ, |ŵε(ỹ2)− 1| < δ. (2.46)

As a matter of fact, if this was not the case and for example

|ŵε(ỹ1)− 1| < δ, |ŵε(ỹ2) + 1| < δ. (2.47)
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then consider

g(x) :=


ŵε(x), y1 ≤ x ≤ ỹ1,

φ(x), ỹ1 ≤ x ≤ ỹ2,

−ŵε(x), ỹ2 ≤ x ≤ y2,

where
φ(x) := 1 + (ŵε(ỹ1)− 1)ϕ0(x− ỹ1) + ŵ′ε(ỹ1)ϕ1(x− ỹ1)

+ (−ŵε(ỹ2)− 1)ϕ0(ỹ2 − x) + ŵ′ε(ỹ2)ϕ1(ỹ2 − x),
(2.48)

and ϕ0, ϕ1 satisfy
ϕj ∈ C∞ (R) , ϕj(x) = 0 for all x ≥ (y2 − y1)/2,

ϕ0(0) = 1, ϕ′0(0) = 0, ϕ1(0) = 0, ϕ′1(0) = 1.

It is easy to see that
φ(ỹ1) = ŵε(ỹ1), φ′(ỹ1) = ŵ′ε(ỹ1),

φ(ỹ2) = −ŵε(ỹ2), φ′(ỹ2) = −ŵ′ε(ỹ2),

and consequently g ∈ H2((y1, y2)). Obtaining φ′ from (2.48) and using (2.47), we get

||φ′||2L∞(ỹ1,ỹ2) ≤ c(||ϕ
′
0||2L∞(R) + ||ϕ′1||2L∞(R))δ

2,

where c > 0 is a constant and we notice that∫ ỹ2

ỹ1

|φ′|2dx ≤ c(y2 − y1)(||ϕ′0||2L∞(R) + ||ϕ′1||2L∞(R))δ
2.

Similarly, an analogous bound for φ′′ can be derived. Additionally, using Taylor’s formula for W
and the facts that W (±1) = W ′(±1) = 0 and W ∈ C2(R), it follows that

Eε(φ; (ỹ1, ỹ2)) ≤ ξ1δ2, (2.49)

where ξ1 only depends on y1 and y2, which do not depend on δ, while interpolation inequality of
Corollary 2.3 yields for δ sufficiently small

Eε(ŵε; (ỹ1, ỹ2)) =

∫ ỹ2

ỹ1

(
1

ε
W (ŵε)− qε|ŵ′ε|2 + ε3|ŵ′′ε |2

)
dx ≥ σ

∫ ỹ2

ỹ1

(
1

ε
W (ŵε) + ε|ŵ′ε|2

)
dx

≥ σ
∫ ỹ2

ỹ1

√
W (ŵε)ŵ

′
εdx = σ

∫ ŵε(ỹ2)

ŵε(ỹ1)

√
W (s)ds ≥ σ

∫ 1
2

− 1
2

√
W (s)ds =: σξ2 > 0.

In turn, from (2.49), possibly choosing δ even smaller we get a contradiction with the fact that ŵε
is a minimizer.

Since ŵε is a minimizer of Eε(·; (y1, y2)), it follows from standard arguments that it satisfies the
Euler–Lagrange equation (2.41). We change variables z = x−y1

ε and define v̂(z) := ŵε(x). Observe
that

Eε(ŵε; (y1, y2)) = E(v̂; (0, d/ε)) (2.50)

and the rescaled minimizer v̂ satisfies the Euler–Lagrange equation

2v̂(iv) + 2qv̂′′ +W ′(v̂) = 0, v̂′′(0) = v̂′′(d/ε) = 0. (2.51)

We now apply Lemma 2.5 on the interval
(
ỹ1−y1
ε , ỹ2−y1ε

)
with

α0 := ŵε(ỹ1) = v̂

(
ỹ1 − y1

ε

)
, α1 := εŵ′ε(ỹ1) = v̂′

(
ỹ1 − y1

ε

)
, (2.52)
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β0 := ŵε(ỹ2) = v̂

(
ỹ2 − y1

ε

)
, β1 := εŵ′ε(ỹ2) = v̂′

(
ỹ2 − y1

ε

)
. (2.53)

The resulting minimizer agrees with v̂ on this interval and given R > 0, for δ sufficiently small the
bounds (2.44) and (2.45) imply that

χ := [v̂ − 1, v̂′, v̂′′, v̂′′′] ∈ B(0, R).

Using the notation χ = [χ1, χ2, χ3, χ4], we rewrite (2.51) in the system form

χ′ = F (χ) (2.54)

where

F (χ) =


χ2

χ3

χ4

− 1
2W

′(χ1)− qχ2


and the Jacobian of F at 0 is given by

DF (0) =


0 1 0 0
0 0 1 0
0 0 0 1

− 1
2W

′′(1) 0 −q 0

 .
The eigenvalues of DF (0) are the roots of the characteristic polynomial

2r4 + 2qr2 +W ′′(1) = 0.

In particular,

r2 =
−2q ±

√
4q2 − 8W ′′(1)

4
,

and since q > 0 is small, the expression under the square root is negative. We write
r2 =

−2q +
√

4q2 − 8W ′′(1)

4
,

r2 =
−2q −

√
4q2 − 8W ′′(1)

4

and let r1, r2 be the roots of the first equation, r3, r4 those of the second one. We recall that

√
a+ ib = ±(γ + iδ),

for

γ =

√
a+
√
a2 + b2

2
, δ = sgn(b)

√
−a+

√
a2 + b2

2
.

In the case of r1, we write

r1 =

(
−q

2
+ i

√
2W ′′(1)− q2

2

)1/2

,

and a simple calculation shows that

γ =
1

2

(
−q +

√
2W ′′(1)

)1/2

, δ =
1

2

(
q +

√
2W ′′(1)

)1/2

. (2.55)
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Similarly, one can show that 
r1 = γ + iδ,

r2 = −r1,

r3 = γ − iδ,
r4 = −r3,

(2.56)

Applying Lemma 2.6 on the interval
(
c, y2−y1−cεε

)
⊂
(
ỹ1−y1
ε , ỹ2−y1ε

)
yields∣∣∣∣ϕ(y2 − y1

2ε

)∣∣∣∣ ≤ C(γ, δ) exp

(
−γ y2 − y1 − 2cε

2ε

)
≤ C(γ, δ) exp

(
γc− γ d

2ε

)
(2.57)

and (2.42), (2.43) follow from definition of ϕ and the fact that

ŵ

(
y1 + y2

2

)
= v̂

(
y2 − y1

2ε

)
. (2.58)

Proof of Theorem 1.1. Without loss of generality we can assume that N(v) ≥ 2 and define

Mk := {w ∈ H2((xk, xk+1)) : w(xk) = 0, w(xk+1) = 0}. (2.59)

We define ŵk ∈ H2((xk, xk+1)), for 1 ≤ k ≤ N , to be the minimizer of Eε(·, (xk, xk+1)) over Mk.
We also let ŵ0 := ŵN . In turn, ŵk solves the Euler–Lagrange equation (2.41) with

ŵk(xk) = ŵk(xk+1) = 0.

Define dk := xk+1 − xk for k = 1, . . . , N(v) and

I−k (xk) :=

(
xk −

dk−1

2
, xk

)
and I+

k (xk) :=

(
xk, xk +

dk
2

)
.

1

x1 ≡ x4 x2 x3

ŵ3 ≡ ŵ0 ŵ1 ŵ2 ŵ3

I−1 (x1) I+
1 (x1) I+

3 (x3) I−4 (x4) ≡ I−1 (x1)

x3 + d3/2

Figure 3: ŵk and I±k

From the minimality of ŵk, we have

Eε(w;T) =

N(v)∑
k=1

Eε(w; (xk, xk+1)) ≥
N(v)∑
k=1

Eε(ŵk; (xk, xk+1))

=

N(v)∑
k=1

Eε(ŵk−1; I−k (xk)) + Eε(ŵk; I+
k (xk)),

(2.60)
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where in the last equality we have used the fact that xN+1 := x1. To complete the proof, it remains
to show that

Eε(ŵk−1; I−k (xk)) ≥ m1

2
− C exp

(
−dk−1γ

ε

)
(2.61)

and

Eε(ŵk; I+
k (xk)) ≥ m1

2
− C exp

(
−dkγ

ε

)
. (2.62)

We will only prove (2.62), the proof of the first inequality being analogous. Applying the change of
variables z := x−xk

ε gives

Eε(ŵk; I+
k (xk)) =

∫
1
ε I

+
k (0)

(
W (ŵk(xk + εz))− εq|ŵ′k(xk + εz)|2 + ε3|ŵ′′k(xk + εz)|2

)
εdz

=

∫
1
ε I

+
k (0)

(
W (v̂k(z))− q|v̂′k(z)|2 + |v̂′′k (z)|2

)
dz = E

(
v̂k;

1

ε
I+
k (0)

)
,

where E(·; ·) is the rescaled functional defined in (2.7) and

v̂k(z) := ŵk(x) on each
1

ε
I+
k (0).

In addition, we notice that v̂k(0) = ŵk(xk) = 0 for 1 ≤ k ≤ N and Proposition 2.7, together with
the change of variables we performed, gives

|v̂k(dk/2ε)− sk| = |ŵk((xk + xk+1)/2)− sk| ≤ Cf exp

(
−dkγ

2ε

)
(2.63)

and

|v̂′k(dk/2ε)| = |ŵ′k((xk + xk+1)/2)| ≤ Cf exp

(
−dkγ

2ε

)
, (2.64)

where sk is equal to either 1 or −1. We claim that

E

(
v̂k;

1

ε
Iε,+k (0)

)
≥ m1

2
− E

(
ηk;R+

)
(2.65)

where
ηk(x) := sk + (v̂k(dk/2ε)− sk) exp (−γx) cos(δx)

+
v̂′k(dk/2ε) + γ(v̂k(dk/2ε)− sk)

δ
exp(−γx) sin(δx).

(2.66)

Indeed, let θ+
ε ∈ H2

loc(R+) be the function that coincides with v̂k on 1
εI
ε,+
k (0) and η+

k := ηk(·−dk/2ε)
on R+\ 1

εI
ε,+
k (0). Then,

E(θ+
ε ;R+) ≥ m1/2,

and in turn (2.65) follows. We now want to find an upper bound for E(ηk;R+), for ε small enough.
The bounds (2.63), (2.64) and the definition of ηk imply that there exists a constant C > 0 such
that

|ηk(x)− s+|+ |η′k(x)|+ |η′′k (x)| ≤ C exp

(
−dkγ

2ε

)
exp(−γx) for all x > 0 (2.67)

and consequently

E(ηk;R+) =

∫ ∞
0

W (ηk)− q|η′k|2 + |η′′k |2dx

=

∫ ∞
0

W ′′(s+)

2
(ηk − s+)2 − q|η′k|2 + |η′′k |2 +O((ηk − s+)3)dx

≤ C exp

(
−dkγ

ε

)∫ ∞
0

exp(−2γx)dx ≤ C exp

(
−dkγ

ε

)
.
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3 Slow Motion Dynamics: Proof of Theorem 1.3

Proof of Theorem 1.3. Fix 0 < δ < min{1, d/8}. We recall that by definition of Eε

Eε(u
ε(·, t);T) =

∫
T

(
1

ε
W (uε)− εq|uεx|2 + ε3|uεxx|2

)
dx.

Integrating by parts and using the regularity of the solution uε and equation (1.2) gives

d

dt
Eε(u

ε(·, t);T) =

∫
T

(
1

ε
W ′(uε)uεt − 2εquεxu

ε
xt + 2ε3uεxxu

ε
xxt

)
dx

=

∫
T

(
1

ε
W ′(uε)uεt + 2εquxxu

ε
t + 2ε3uεxxxxu

ε
t

)
dx

= −
∫
T
|uεt |2dx.

It follows that for every T > 0,

Eε(u0,ε;T)− Eε(uε(·, T );T) =
1

ε

∫ T

0

∫
T
|uεt |2dxdt. (3.1)

Suppose there exists Tε such that ∫ Tε

0

∫
T
|uεt |dxdt ≤ δ (3.2)

Then, ∫
T
|u0,ε − uε(·, Tε)|dx =

∫
T

∣∣∣∣∣
∫ Tε

0

uεtdt

∣∣∣∣∣ dx ≤
∫
T

∫ Tε

0

|uεt |dtdx ≤ δ (3.3)

and using (1.18) and the triangle inequality

||uε(·, Tε)− v||L1(T) ≤ 2δ. (3.4)

We claim that uε(·, Tε) has at least Nε zeros, {xεk}
Nε
k=1 that satisfy mink |xεk+1 − xεk| ≥ d− 4δ.

Indeed, consider xk, the k–th jump point of v. Since the distance between jump points of v is at
least d and δ ≤ d/8, we know that v is constant on (xk−2δ, xk) and on (xk, xk+2δ) and may assume
without loss of generality that its value is equal to 1 on (xk − 2δ, xk) and to −1 on (xk, xk + 2δ). It
follows from (3.4) that uε(·, Tε) must take a positive value somewhere on (xk−2δ, xk) and a negative
value on (xk, xk + 2δ). Hence, there exists a zero xεk ∈ (xk − 2δ, xk + 2δ) of uε(·, Tε).

Applying Hölder inequality, (1.18), (3.1), and Theorem 1.1 yields

1

Tε

(∫ Tε

0

∫
T
|uεt |dxdt

)2

≤
∫ Tε

0

∫
T
|uεt |2dxdt

= ε (Eε(u0,ε;T)− Eε(uε(·, Tε);T))

≤ ε

(
E0(v;T) +

1

h(ε)
−m1Nε + C

Nε∑
k=1

exp

(
−

(xεk+1 − xεk)γ

ε

))

≤ ε
(
E0(v;T) +

1

h(ε)
− E0(v;T) + Cexp

(
− (d− 4δ)γ

ε

))
= ε

(
1

h(ε)
+ Cexp

(
− (d− 4δ)γ

ε

))
(3.5)
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and as a consequence,

Tε ≥
1

Cε

[
1

h(ε)
+ exp (−(d− 4δ)γ/ε)

]−1
(∫ Tε

0

∫
T
|uεt |dxdt

)2

. (3.6)

Following the ideas of [22], we prove the existence of Tε as in (3.2) by dividing the analysis into two
cases: first assume that ∫ ∞

0

∫
T
|uεt |dxdt > δ.

Since by (3.1) with T replaced by any S > 0,∫ S

0

∫
T
|uεt |2dxdt ≤ εEε(u0,ε;T) <∞

we can choose Tε such that ∫ Tε

0

∫
T
|uεt |dxdt = δ, (3.7)

and thanks to (3.7), equation (3.6) gives

Tε ≥
δ2

Cε
[

1
h(ε) + exp (−(d− 4δ)γ/ε)

] ≥ δ2

2Cε
min{h(ε), exp((d− 4δ)γ/ε)} =: Λε.

In turn, (3.2) is satisfied and (3.5) yields∫ Λε

0

∫
T
|uεt |2dxdt ≤ Cε

[
1

h(ε)
+ exp (−(d− 4δ)γ/ε)

]
. (3.8)

On the other hand, if ∫ ∞
0

∫
T
|uεt |dxdt ≤ δ,

then (3.2) holds true for all T > 0 and again (3.8) follows. To conclude the proof note that for ε
sufficiently small

sε := δ2 min {h(ε), exp((d− 4δ)γ/ε)} ≤ Λε

and Hölder’s inequality together with (3.8) yield

sup
0≤t≤sε

∫
T
|uε(x, t)− u0,ε(x)|dx ≤

∫ sε

0

∫
T
|uεt |dxdt

≤
(

min

{
h(ε), exp

(
(d− 4δ)γ

ε

)}∫ sε

0

∫
T
|uεt |2dxdt

)1/2

≤ C
(

min

{
h(ε), exp

(
(d− 4δ)γ

ε

)}
εδ2

[
1

h(ε)
+ exp

(
− (d− 4δ)γ

ε

)])1/2

≤ C
√
εδ.

Letting ε→ 0+ gives (1.20).
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4 Existence of Solutions Via Minimizing Movements

We now turn to the existence and regularity of solutions for (1.2) in the more general case of an
open, bounded domain Ω ⊂ Rd. We notice that the same proof carries over in the case of the
one–dimensional torus Ω = T, that is, when we deal with periodic Dirichlet boundary conditions,
which is the framework in which we have analyzed slow motion of solutions of (1.2).

Theorem 4.1. Let Ω ⊂ Rd, d ≤ 3, be an open bounded set with C2 boundary, let u0 ∈ H2(Ω) and
the real valued function z 7→W (z) be a double–well potential satisfying hypotheses (2.1)–(2.4). Then
for every T > 0 there exists a weak solution uε ∈ L∞((0, T );H2(Ω)) in the sense of (4.25), with
uεt ∈ L2((0, T );L2(Ω)) of{

ut = − 1
εW
′(u)− 2εq∆u− 2ε3∆2u in Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
(4.1)

such that ∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx+

∫ t

0

∫
Ω

1

ε
W ′(u(x, s))dxds.

Moreover, the following estimates hold∫ T

0

∫
Ω

|ut(x, t)|2dxdt ≤Mεσ
−1,∫

Ω

|∇u(x, t)|2dx ≤ 3Mεσ
−1,∫

Ω

|∇2u(x, t)|2dx ≤ 3Mεσ
−1,

for L1 a.e. t ∈ (0, T ), where σ ∈ (0, 1) and

Mε := 2

∫
Ω

(
1

ε
W (u0) + ε|∇u0|2 + ε3|∇2u0|2

)
dx. (4.2)

Proof. Step 1. For ` ∈ N we set τ := T/` and subdivide the interval (0, T ) into ` subintervals of
length τ ,

τ0 := 0 < τ1 < . . . < τ` := T,

where τn := nτ for n = 1, . . . , `. For every n = 1, . . . , `, we let un ∈ H2(Ω) be a solution of the
minimization problem

min
v∈H2(Ω)

Jε,n(v; Ω),

where

Jε,n(v; Ω) :=

∫
Ω

(
1

ε
W (v)− εq|∇v|2 + ε3|∇2v|2

)
dx+

1

2τ

∫
Ω

(v − un−1)2dx

= Eε(v; Ω) +
1

2τ

∫
Ω

(v − un−1)2dx.

In order to prove the existence of un, we begin by showing that Jn is non–negative and coercive in
H2(Ω). We fix q∗ > 0 such that the interpolation inequality Lemma 2.1 holds in Ω, namely

kε2

∫
Ω

|∇u|2dx ≤
∫

Ω

[
W (u) + ε4|∇2u|2

]
dx, −∞ < k ≤ q∗,
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and we let σ ∈ (0, 1) be such that (q + σ)/(1− σ) < q∗, so that we can write

W (u)− q2ε2|∇u|2 + ε4|∇2u|2 = (1− σ)

(
W (u)− q + σ

1− σ
ε2|∇u|2 + ε4|∇2u|2

)
+ σ(W (u) + ε2|∇u|2 + ε4|∇2u|2),

(4.3)

and in turn Jε,n is non–negative. Then by (2.4), and using the fact that cW ≤ 1, we obtain

Eε(u; Ω) ≥ σcW
∫

Ω

(
(|u| − 1)2 + ε2|∇u|2 + ε4|∇2u|2

)
dx. (4.4)

The above chain of inequalities implies that

Jε,n(u; Ω) = Eε(u; Ω) +
1

2τ

∫
Ω

(v − un−1)2dx→∞ as ||u||H2(Ω) →∞,

and hence Jε is coercive in H2(Ω).
We now let mn := inf

v∈H2(Ω)
Jε,n(v; Ω), and consider a minimizing sequence {vk} ⊂ H2(Ω) satisfy-

ing

mn ≤ Jε,n(vk; Ω) ≤ mn +
1

k
,

so that
lim
k→∞

Jε,n(vk; Ω) = mn.

It follows from (4.4) that {vk} is bounded in H2(Ω), and hence there exist a subsequence of {vk}
(not relabeled) and some un ∈ H2(Ω) such that

vk → un in L2(Ω),

vk → un pointwise a.e. in Ω,

∇vk → ∇un in L2(Ω),

∇2vk ⇀ ∇2un in L2(Ω).

We claim that the above convergences imply that Jε,n(un; Ω) = mn. Indeed, by Fatou’s Lemma and
lower semicontinuity of L2 norm with respect to weak convergence, we have

mn = lim inf
k→∞

Jε,n(vk; Ω) ≥ Jn(un) ≥ mn.

It follows that for all w ∈ H2(Ω) and all t ∈ R,

Jε,n(un; Ω) ≤ Jε,n(un + tw; Ω),

and hence the real valued function ω(t) := Jε,n(un + tw; Ω) has a minimum at t = 0, so that
ω′(0) = 0. Standard arguments show that for every w ∈ H2(Ω),

0 =

∫
Ω

(
1

ε
W ′(un)w − 2εq∇un · ∇w + 2ε3∇2un · ∇2w

)
+

1

τ

∫
Ω

(un − un−1)w,

(4.5)

where W ′(un)w is well–defined by the embedding of H2(Ω) into L∞(Ω) for d ≤ 3, and ∇2un ·∇2w =∑
i,j

∂2un
∂xi∂xj

∂2w
∂xi∂xj

is the Fröbenius inner product. In particular, this shows that un is a weak solution

of the equation

−1

ε
W ′(un)− 2εq∆un − 2ε3∆2un =

1

τ
(un − un−1) in Ω.
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Since Ω has finite measure, choosing w = 1 in (4.5) gives

0 =

∫
Ω

1

ε
W ′(un)dx+

1

τ

∫
Ω

(un − un−1)dx.

Step 2: Apriori bounds. For x ∈ Ω and t ∈ (τn−1, τn], n = 1, . . . , `, we define

uτ (x, t) := un(x) + (t− τn)
un(x)− un−1(x)

τ
. (4.6)

The goal of this step is to find apriori bounds on uτ .
Since Jε,n(un; Ω) = mn, it follows that Jε,n(un; Ω) ≤ Jε,n(un−1; Ω), which implies

1

2τ

∫
Ω

(un − un−1)2dx ≤
∫

Ω

(
1

ε
(W (un−1)−W (un))− εq(|∇un−1|2 − |∇un|2)

)
dx

+

∫
Ω

ε3(|∇2un−1|2 − |∇2un|2)dx.

Summing over n = 1, . . . , `, we get

1

2τ

∑̀
n=1

∫
Ω

(un − un−1)2dx ≤
∫

Ω

(
1

ε
(W (u0)−W (u`))− εq(|∇u0|2 − |∇u`|2)

)
dx

+

∫
Ω

ε3(|∇2u0|2 − |∇2u`|2)dx.

(4.7)

By the interpolation inequality in Lemma 2.1,∫
Ω

(
1

ε
W (u`)− εq|∇u`|2 + ε3|∇2u`|2

)
dx ≥ σ

∫
Ω

(
1

ε
W (u`) + ε|∇u`|2 + ε3|∇2u`|2

)
dx,

where σ ∈ (0, 1) was chosen above. Thus, the previous inequalities imply

1

2τ

∑̀
n=1

∫
Ω

(un − un−1)2 dx+ σ

∫
Ω

(
1

ε
W (u`) + ε|∇u`|2 + ε3|∇2u`|2

)
dx

≤
∫

Ω

(
1

ε
W (u0) + ε|∇u0|2 + ε3|∇2u0|2

)
dx =

Mε

2
,

(4.8)

see (4.2). By (4.6), for every x ∈ Ω and t ∈ (τn−1, τn],

uτt (x, t) =
un(x)− un−1(x)

τ
,

∇uτ (x, t) = ∇un(x) + (t− τn)
∇un(x)−∇un−1(x)

τ
,

∇2uτ (x, t) = ∇2un(x) + (t− τn)
∇2un(x)−∇2un−1(x)

τ
,

(4.9)

so that by (4.8) we have

1

2

∫
ΩT

(uτt (x, t))
2
dxdt+ σ

∫
Ω

(
1

ε
W (u`) + ε|∇u`|2 + ε3|∇2u`|2

)
dx ≤ Mε

2
(4.10)

which implies ∫
ΩT

(uτt (x, t))
2
dxdt ≤Mε, (4.11)
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for every τ > 0. Since uτ is absolutely continuous, for every 0 ≤ t1 < t2 ≤ T ,∫
Ω

(uτ (x, t2)− uτ (x, t1))
2
dx =

∫
Ω

(∫ t2

t1

uτt (x, t)dt

)2

dx

≤ (t2 − t1)

∫
ΩT

(uτt (x, t))
2
dxdt

≤Mε(t2 − t1).

(4.12)

Taking t1 = 0 and noticing that uτ (x, 0) = u0(x), we get∫
Ω

(uτ (x, t)− u0)
2
dx ≤Mεt (4.13)

for every τ > 0 and all t ∈ (0, T ). In turn, by convexity of the function z 7→ z2,∫
Ω

(uτ (x, t))
2
dx ≤ 2Mεt+ 2

∫
Ω

u2
0(x)dx (4.14)

for every τ > 0 and all t ∈ (0, T ).
Moreover, by (4.9), for x ∈ Ω and t ∈ (τn−1, τn],

|∇uτ (x, t)| ≤ 2|∇un(x)|+ |∇un−1(x)|,
|∇2uτ (x, t)| ≤ 2|∇2un(x)|+ |∇2un−1(x)|,

and by (4.8) and arbitrariness of ` we get∫
Ω

|∇uτ (x, t)|2dx ≤ 3Mε

σ
,

∫
Ω

|∇2uτ (x, t)|2dx ≤ 3Mε

σ
. (4.15)

Step 3: Convergence as τ → 0+. In the previous step we have shown that {uτ} is bounded in
L2((0, T );H2(Ω)) and {uτt } is bounded in L2((0, T );L2(Ω)). Since these spaces are reflexive, there
exist a subsequence of {uτ} (not relabeled) and u such that uτ ⇀ u in L2((0, T );H2(Ω)) and in
H1((0, T );L2(Ω)). Using the fact that the embeddings H2(Ω) ↪→ H1(Ω) and H1(Ω) ↪→ L2(Ω) are
compact, it follows by the compactness theorem of Aubin and Lions (see e.g. [3]) and a diagonal
argument, that, up to a further subsequence, uτ → u in L2((0, T );L2(Ω)). In turn, for L1 a.e.
t ∈ (0, T ) we have that uτ (·, t)→ u(·, t) in L2(Ω). We are now ready to let `→∞, or equivalently,
τ → 0+ in (4.11), (4.13), (4.15), and deduce the corresponding apriori bounds.

Step 4: u is a weak solution of the Swift–Hohenberg equation.
We let x ∈ Ω and t ∈ (τn−1, τn), n = 1, . . . , `, and define

ũτ (x, t) := un(x). (4.16)

We claim that ũτ ⇀ u in L2((0, T );H2(Ω)) as τ → 0+.
Given t ∈ (0, T ], we find n such that t ∈ (τn−1, τn] and we notice that

ũτ (x, t)− uτ (x, t) = un(x)− uτ (x, t) = uτ (x, τn)− uτ (x, t).

By (4.12), ∫
Ω

|ũτ (x, t)− uτ (x, t)|2dx =

∫
Ω

|uτ (x, τn−1)− uτ (x, t)|2dx

≤Mε(t− τn−1) ≤Mετ → 0,

(4.17)
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as τ → 0+. This shows that ũτ (·, t) − uτ (·, t) → 0 in L2(Ω) as τ → 0+. Moreover, given φ ∈
L2(Ω× (0, T )), we have∫

ΩT

ũτ (x, t)φ(x, t)dxdt =

∫
ΩT

(ũτ (x, t)− uτ (x, t))φ(x, t)dxdt

+

∫
ΩT

uτ (x, t)φ(x, t)dxdt.

(4.18)

By Hölder’s inequality and (4.17), the first integral on the right-hand side of (4.18) converges to
zero. Using the fact that uτ ⇀ u in L2((0, T );H2(Ω)) in the second integral, we deduce that ũτ ⇀ u
in L2((0, T );L2(Ω)).
Moreover, by (4.15) and the fact that ũτ (x, t) = uτ (x, τn) for t ∈ (τn−1, τn],∫

Ω

|∇ũτ (x, t)|2dx ≤ 3Mε

σ
,

∫
Ω

|∇2ũτ (x, t)|2dx ≤ 3Mε

σ
, (4.19)

for all τ > 0 and all t ∈ (0, T ). Hence, up to a subsequence, ũτ ⇀ u in L2((0, T );H2(Ω)). Further-
more, by (4.5), for every w ∈ L2((0, T );H2(Ω)),

0 =

∫
Ω

(
1

ε
W ′(ũτ (x, t))w − 2εq∇ũτ (x, t) · ∇w + 2ε3∇2ũτ (x, t) · ∇2w

)
dx

+

∫
Ω

uτt (x, t)w dx.

Integrating in time over (t1, t2) gives

0 =

∫ t2

t1

∫
Ω

(
1

ε
W ′(ũτ (x, t))w − 2εq∇ũτ (x, t) · ∇w + 2ε3∇2ũτ (x, t) · ∇2w

)
dxdt

+

∫ t2

t1

∫
Ω

uτtw dxdt.

We note that from (4.8) we have∫
Ω

(un − u0)2 dx =

∫
Ω

(un − un−1 + un−1 − . . .+ u1 − u0)2 dx

≤ `
∑̀
k=1

∫
Ω

(uk − uk−1)2 dx ≤ `τMε = TMε

where we have used the convexity of the function z 7→ z2 and the fact that τ = T/`, and this implies∫
Ω

|un|2 dx ≤ C (4.20)

for some constant C > 0. Moreover, arguing as in (4.7), it follows that∫
Ω

(
1

ε
W (un)− εq|∇un|2 + ε3|∇2u`|2

)
dx ≤

∫
Ω

(
1

ε
W (u0)− εq|∇u0|2 + ε3|∇2u0|2

)
dx ≤ Mε

2

for all n ∈ {0, . . . , `}, and in turn, by the interpolation inequality in Lemma 2.1,∫
Ω

|∇un|2dx ≤ C and

∫
Ω

|∇2un|2dx ≤ C (4.21)
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for some constant C > 0 and for all n ∈ {0, . . . , `}. Using (4.20), (4.21) and the Sobolev embedding
theorem, we have

||un||L∞(Ω) ≤ C||un||H2(Ω) ≤ C, (4.22)

where C > 0 changes from side to side. By the Mean Value Theorem, (4.22), and the fact that W
is C2, we deduce∫

Ω

(W ′(ũτ (x, t))−W ′(u(x, t)))wdx ≤ max
−C?≤ξ≤C?

|W ′′(ξ)|
∫

Ω

|ũ(x, t)− u(x, t)||w|dx

≤ C
∫

Ω

|ũ(x, t)− u(x, t)||w|dx.
(4.23)

Letting τ → 0+ and using the facts that ũτ ⇀ u in L2((0, T );H2(Ω)), uτ ⇀ u in H1((0, T );L2(Ω))
we get

0 =

∫ t2

t1

∫
Ω

(
1

ε
W ′(u(x, t))w − 2εq∇u(x, t) · ∇w + 2ε3∇2u(x, t) · ∇2w

)
dxdt

+

∫ t2

t1

∫
Ω

ut(x, t)w dxdt.

(4.24)

In particular, let {wk} ⊂ H2(Ω) be dense. Using the fact that u(·, t) ∈ H2(Ω) and ∂u
∂t ∈ L

2(Ω)
for L1 a.e. t ∈ (0, T ), by the arbitrariness of t1 and t2, we find that

0 =

∫
Ω

(
1

ε
W ′(u(x, t))wk − 2εq∇u(x, t) · ∇wk + 2ε3∇2u(x, t) · ∇2wk

)
dx

+

∫
Ω

ut(x, t)wk dx

for L1 a.e. t ∈ (0, T ), where the measure–zero set depends on k. Since {wk} is countable, we can
find a set E ⊂ (0, T ) with L1(E) = 0 such that the previous equality holds for all t ∈ (0, T ) \E and
all k.

Since u(·, t) ∈ H2(Ω), then u(·, t) ∈ L∞(Ω) and, again by Mean Value Theorem and the fact that
W is C2, it follows that W ′(u(·, t)) ∈ L2(Ω). This, together with the density of {wk} in H2(Ω), and
the fact that ut ∈ L2(Ω) for t ∈ (0, T ) \ E, implies that

0 =

∫
Ω

(
1

ε
W ′(u(x, t))w − 2εq∇u(x, t) · ∇w + 2ε3∇2u(x, t) · ∇2w

)
dx

+

∫
Ω

ut(x, t)w dx

(4.25)

for all t ∈ (0, T ) \ E and all w ∈ H2(Ω). Hence u is a weak solution of equation (4.1) and since Ω
has finite measure, taking w = 1 leads to

0 =

∫
Ω

1

ε
W ′(u(x, t))dx+

∫
Ω

ut(x, t) dx, (4.26)

which implies ∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx+

∫ t

0

∫
Ω

1

ε
W ′(u(x, s))dxds.
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5 Appendix

5.1 Smooth Linearization Near the Hyperbolic Fixed Point

In the proof of Lemma 2.6 we use the fact that in a sufficiently small neighborhood of the fixed point
x0 of the system (2.29), F admits a C1 linearization. This variant of the classical Hartman–Grobman
Theorem is based on the concept of Q–smoothness of the Jacobian matrix DF (x0) introduced in
[34]. Following [34], we define

γ(λ;m) := λ−
4∑
i=1

miri, for λ ∈ C, mi ∈ N0, (5.1)

where ri are the eigenvalues in (2.56).

Definition 5.1. A matrix A is said to satisfy the Sternberg condition of order N , N ≥ 2, if

γ(λ;m) 6= 0, for all λ ∈ Σ(A), and for all m such that 2 ≤ |m| ≤ N, (5.2)

where |m| :=
∑
mi. We will say that A satisfies the strong Sternberg condition of order N , if A

satisfies (5.2) and
Reγ(λ;m) 6= 0, (5.3)

for all λ ∈ Σ(A) and all m such that |m| = N .

Definition 5.2. Let Σ+(A) and Σ−(A) be the set of eigenvalues of A having positive and negative
real part respectively. A is said to be strictly hyperbolic if

Σ+(A) 6= ∅, Σ−(A) 6= ∅.

The spectral spread of A is defined by

ρj :=
max{|Reλ| : λ ∈ Σj(A)}
min{|Reλ| : λ ∈ Σj(A)}

,

for j = ±.

Definition 5.3. Let Q ∈ N and A be hyperbolic. The Q–smoothness of A is the largest integer
K ≥ 0 such that

(i) Q−Kρ− ≥ 0, if Σ+(A) = ∅;

(ii) Q−Kρ+ ≥ 0, if Σ−(A) = ∅;

(iii) there exist M,N ∈ N with Q = M +N and M −Kρ+ ≥ 0, N −Kρ− ≥ 0, when A is strictly
hyperbolic.

The following theorem is proved in [34] (Theorem 1, page 4).

Theorem 5.4. Let X be a finite dimensional Banach space. Let Q ≥ 2 be an integer. Assume G
is of class C3Q on U ⊂ X with 0 ∈ U , where DpG(0) = 0 for p = 0, 1. Let A be strictly hyperbolic
and assume it satisfies the strong Sternberg condition of order Q. Then

x′ = Ax+G(x) (5.4)

admits a CK–linearization, where K is the Q–smoothness of A. In other words, there exists a
CK–diffeomorphism between solutions of (5.4) and solutions of its linear part.

26



In fact, as remarked in [34], in the case of A strictly hyperbolic it suffices to assume that G is
of class CQ+max(M,N)+K . In the remainder, we show that under the assumptions of Lemma 2.6,
the matrix DF (0) satisfies the strong Sternberg condition of order N = 2 and the 2-smoothness of
DF (0) is K = 1.

Lemma 5.5. Consider the ordinary differential equation

x′ = F (x), (5.5)

where F is a C4 mapping R4 → R4 satisfying F (0) = 0. Assume the linearization DF (0) has
four eigenvalues ±γ ± δi, where γ ≥ λ > 0. Then, the matrix DF (0) satisfies the strong Sternberg
condition of order N = 2. Moreover, the Q–smoothness of DF (0) is K = 1, and (2.29) admits a
C1–linearization around the hyperbolic fixed point 0.

Proof. We write (5.5) as
x′ = DF (0)x+G, (5.6)

where G(x) := F (x)−DF (0)x is of class C4, G(0) = F (0) = 0, DG(0) = DF (0)−DF (0) = 0 and
show that (5.2) and (5.3) hold, for N = 2. Recalling (5.1), we have

γ(r1;m) = (1−m1)r1 −m2r2 −m3r3 −m4r4, (5.7)

where |m| =
∑4
i=1mi = 2 and r1 := γ + δi, r2 := γ − δi, r3 := −γ + δi, r4 := −γ − δi are the

eigenvalues of DF (0). Assume, for the sake of contradiction, that Reγ(r1;m) = 0 with |m| = 2.
Setting the real part of (5.7) to 0 and recalling |m| = 2, we have{

1−m1 −m2 +m3 +m4 = 0,

m1 +m2 +m3 +m4 = 2,
(5.8)

Adding the two equations and dividing by two, one has

m3 +m4 = 1/2, (5.9)

a contradiction since m3 and m4 are integers. A similar argument for any λ ∈ Σ(Df(0)) shows that
(5.3) and (5.2) hold for the matrix Df(0), and N = 2.

It remains to show that the 2-smoothness of DF (0) is K = 1. Since |Reλ| = γ, for all λ ∈
Σ(Df(0)), then the spectral radius of Df(0) is ρi = 1, for i = ±. Being Df(0) is strictly hyperbolic,
we are in case (iii) of Definition 5.3 and Q = 2 implies M = N = 1. In turn, the largest integer K
that satisfies {

M −Kρ+ = 1−K ≥ 0,

N −Kρ− = 1−K ≥ 0,
(5.10)

is K = 1, which is then the 2–smoothness of Df(0). We now apply Theorem 5.4 with Q = 2 and
A = DF (0) to conclude that (5.6) admits a C1–linearization.
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