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ABSTRACT. We study various regularity properties of minimizers of the Φ –perimeter, where Φ is a
norm. Under suitable assumptions on Φ and on the dimension of the ambient space, we prove that the
boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Haus-
dorff dimension. Moreover, we show the following anisotropic Bernstein-type result: any entire cartesian
minimizer is the subgraph of a monotone function depending only on one variable.
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1. INTRODUCTION

In this paper we are interested in regularity properties of minimizers of the anisotropic perimeter

PΦ(E,Ω) =

∫
Ω∩∂∗E

Φo(νE) dHn,

of E in Ω, and of the related area-type functional

GΦo(v, Ω̂) =

∫
Ω̂

Φo(−Dv, 1).

Here Ω ⊆ Rn+1 is an open set, Φ : Rn+1 → [0,+∞) is a norm (called anisotropy), Φo is its
dual, E ⊂ Rn+1 is a set of locally finite perimeter, ∂∗E is its reduced boundary, νE is the outward
(generalized) unit normal to ∂∗E, and Hn is the n -dimensional Hausdorff measure in Rn+1. On the
other hand, Ω̂ ⊆ Rn, v belongs to the space BVloc(Ω̂) of functions with locally bounded total variation
in Ω̂, and Dv is the distributional derivative of v. When Ω = Ω̂ × R the two functionals coincide
provided E is cartesian, i.e. E is the subgraph sg(v) ⊂ Ω̂ × R of the function v ∈ BVloc(Ω̂) (see
(4.1)).

Anisotropic perimeters appear in many models in material science and phase transitions [21, 37],
in crystal growth [7, 8, 12, 13, 39, 3], and in boundary detection and tracking [15]. Functionals like
GΦo , having linear growth in the gradient, appear quite frequently in calculus of variations [20, 9, 6].
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Bernstein problem.
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The one-homogeneous case is particularly relevant, since it is related to the anisotropic total variation
functional

TVϕ(v, Ω̂) =

∫
Ω̂
ϕo(Dv), (1.1)

a useful functional appearing, for example, in image reconstruction and denoising [34, 16, 17, 5, 28].
Here ϕ : Rn → [0,+∞) is a norm, and its dual ϕo is typically the restriction of Φo on the “horizontal”
Rn.

Minimizers of PΦ have been widely studied [37, 4]; in particular, it is known [10, 2] that if Φ2 is
smooth and uniformly convex, (boundaries of) minimizers are smooth out of a “small” closed singular
set. In contrast to the classical case, where perimeter minimizers are smooth out of a closed set of Haus-
dorff dimension at most n− 7, the behaviour of minimizers of anisotropic perimeters is more irregular:
for instance, there exist singular minimizing cones even for smooth and uniformly convex anisotropies in
R4 [29]. Referring to functionals of the form (1.1), we recall that, if n ≤ 7, Hölder continuity of mini-
mizers for the image denoising functional [34], consisting of the Euclidean total variation TV plus the
usual quadratic fidelity term, has been studied in [14]. In [26] such result is extended to the anisotropic
total variation TVϕ .

One of the remarkable results in the classical theory of minimal surfaces is the classification of en-
tire minimizers of the Euclidean perimeter P : if n ≤ 6 the only entire minimizers are hyperplanes,
while for n = 7 there are nonlinear entire minimizers (see for instance [20, Chapter 17] and refer-
ences therein); in the cartesian case (sometimes called the non parametric case), this is the well-known
Bernstein problem. In the anisotropic setting, to our best knowledge, only a few results are available:
entire minimizers in R2 are classified in [32], and minimizing cones in R3 for crystalline anisotropies
are classified in [38]. In [23, 35] the authors show that if n ≤ 2 and Φ2 is smooth, the only entire
cartesian minimizers are the subgraphs of linear functions (anisotropic Bernstein problem), and the same
result holds up to dimension n ≤ 6 if Φ is close enough to the Euclidean norm [35]. However, the
anisotropic Bernstein problem seems to be still open in dimensions 4 ≤ n ≤ 6, even for smooth and
uniformly convex norms (see [33] for recent results in this direction).

The above discussion shows the difficulty of describing perimeter minimizers in the presence of an
anisotropy; it seems therefore rather natural to look for reasonable assumptions on Φ that allow to sim-
plify the classification problem. A possible requirement, which will be often (but not always) assumed
in the sequel of the paper, is that Φ is cylindrical over ϕ, i.e.

Φ(ξ̂, ξn+1) = max{ϕ(ξ̂), |ξn+1|}, (ξ̂, ξn+1) ∈ Rn+1. (1.2)

Despite its splitted expression, a cylindrical anisotropy is neither smooth nor strictly convex, and this still
makes the above mentioned classification rather complicated. For instance, in Examples 2.7 and 2.9 we
show that there exist singular cones minimizing PΦ in any dimension n ≥ 1. Moreover, while it can
be proved that if horizontal and vertical sections of E are minimizers of Pϕ and P respectively then
E is a minimizer of PΦ (Remark 2.6), in general sections of a minimizer of PΦ need not satisfy this
minimality property (Examples 2.8 and 2.9).

These phenomena lead us to investigate the classification problem under some simplifying assump-
tions on the structure of minimizers. We shall consider two cases: cylindrical minimizers (Definition
3.1), and cartesian minimizers (Definition 4.1), the latter being our main interest. Cylindrical minimiz-
ers of PΦ are studied in Section 3: in particular, in Example 3.6 we classify all cylindrical minimizers
of PΦ when n = 2 and the unit ball BΦ of Φ (sometimes called Wulff shape) is a cube. Cartesian
minimizers are studied in Sections 4, 5 and 6. In Section 4 we investigate the relationships between
cartesian minimizers of PΦ and minimizers of GΦo , provided Φ is partially monotone (Definition 4.4).
In Theorem 4.6 we show that the subgraph of a minimizer of GΦo is also a minimizer of PΦ among all
perturbations not preserving the cartesian structure. In particular, for Φ satisfying (1.2) the subgraph E

of some function u : Ω̂→ R is a cartesian minimizer of PΦ in Ω̂× R if and only if u is a minimizer
of TVϕ.

Sections 5 and 6 contain our main results, valid under the assumptions that

Φ is cylindrical over ϕ and E is cartesian.
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In Theorem 5.8 (see also Corollary 5.12) we prove the following Bernstein-type classification result: if
eiter n ≤ 7 and ϕ is Euclidean, or if n = 2 and ϕo is strictly convex, then any entire cartesian
minimizer of PΦ in Rn+1 (i.e. the subgraph of a minimizer of TVϕ ) is the subgraph of the composition
of a monotone function on R with a linear function on Rn. We notice that this result is sharp: if n = 8,
there are entire cartesian minimizers of P in R9 which cannot be represented as the subgraph of the
composition of a monotone and a linear function (see Remark 5.11).

In view of our assumptions, also the regularity results of Section 6 are concerned with the anisotropic
total variation functional. For our purposes, it is useful to remark that, even if the anisotropy ϕ is smooth
and uniformly convex, in general minimizers of TVϕ are not necessarily continuous. In contrast, we
remark that minimizers of TVϕ with continuous boundary data on bounded domains are continuous,
see [22, 26, 25]. Nevertheless, in Theorems 6.2 and 6.4 we show that, if ϕ2 ∈ C3 is uniformly convex,
then the boundary of the subgraph of a minimizer of TVϕ is locally Lipschitz (that is, locally a Lipschitz
graph) out of a closed singular set with a suitable Hausdorff dimension depending on ϕ . As observed
in Remark 6.3, for ϕ Euclidean these statements are optimal, while the statement is false already in
dimension n = 2 for ϕ the square norm.

2. NOTATION AND PRELIMINARIES

In what follows n ≥ 1 , Ω ⊆ Rn+1 and Ω̂ ⊆ Rn are open sets. BV (Ω) (resp. BVloc(Ω) ) stands
for the space of functions with bounded (resp. locally bounded) variation in Ω [6]. The characteristic
function of a (measurable) set E ⊂ Ω is denoted by χE ; we write E ∈ BV (Ω) (resp. E ∈ BVloc(Ω) )
when χE ∈ BV (Ω) (resp. χE ∈ BVloc(Ω) ). Similar notation holds in Ω̂. P (E,A) denotes the
Euclidean perimeter of the set E in the open set A. Recall that the perimeter of E ∈ BVloc(Ω) does
not change if we change E into another set in the same Lebesgue equivalence class; henceforth we shall
always assume that any set E coincides with its points of density one [6, 19]. The outward generalized
unit normal to the reduced boundary ∂∗E of E ∈ BVloc(Ω) is denoted by νE . We often use the
splitting Rn+1 = {(x, t) : x ∈ Rn, t ∈ R} and write νE = (ν̂E , (νE)t) and en+1 = (0, . . . , 0, 1). If
F ⊆ Rn+1, x ∈ Rn, t ∈ R we let

Ft := {y ∈ Rn : (y, t) ∈ F}, Fx := {s ∈ R : (x, s) ∈ F}. (2.1)

Unless otherwise specified, in the sequel we take m ∈ {n, n+ 1} .
Ac(Ω) is the collection of all open relatively compact subsets of Ω. The sequence {Eh} of subsets of

Rm converges to set E ⊂ Rm in L1
loc(Ω) if χEh → χE as h→ +∞ in L1(A) for any A ∈ Ac(Ω).

Finally, for a function u : Ω̂→ R we let

sg(u) := {(x, t) ∈ Rn+1 : x ∈ Ω̂, u(x) > t}

be the subgraph of u. We recall [20, 27] that

PΦ(sg(u), Â× R) < +∞ ∀Â ∈ Ac(Ω̂). (2.2)

if and only if u ∈ BVloc(Ω̂).

2.1. Norms. A norm on Rm is a convex function Ψ : Rm → [0,+∞) satisfying Ψ(λξ) = |λ|Ψ(ξ)
for all λ > 0 and ξ ∈ Rm, and for which there exists a constant c > 0 such that

c|ξ| ≤ Ψ(ξ), ξ ∈ Rm. (2.3)

We let BΨ := {ξ ∈ Rm : Ψ(ξ) ≤ 1}, which is sometimes called Wulff shape, and Ψo : (Rm)∗ →
[0,+∞) the dual norm of Ψ,

Ψo(ξ∗) = sup{ξ∗ · ξ : ξ ∈ BΨ}, ξ∗ ∈ (Rm)∗,

where (Rm)∗ is the dual of Rm, and · is the Euclidean scalar product. We have

ξ∗ · ξ ≤ Ψo(ξ∗)Ψ(ξ), ξ∗ ∈ (Rm)∗, ξ ∈ Rm, (2.4)

and Ψoo = Ψ. When m = n + 1 we often split ξ ∈ Rn+1 as ξ = (ξ̂, ξn+1) ∈ Rn × R, and employ
the symbol Φ (resp. ϕ ) to denote a norm in Rn+1 (resp. in Rn ). In Rn+1 we frequently exploit the
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restriction Φ|{ξn+1=0}
of Φ to the horizontal hyperplane {ξn+1 = 0}, which is a norm on Rn. Note

that (
Φ|{ξn+1=0}

)o
≤ Φo

|{ξ∗n+1=0}
. (2.5)

Indeed, let

ϕ := Φ|{ξn+1=0}
and φ :=

(
Φo
|{ξ∗n+1=0}

)o
.

Fix ξ̂∗ ∈ Rn and choose ξ̂ ∈ Rn such that ϕ(ξ̂) = Φ(ξ̂, 0) = 1 and ϕo(ξ̂∗) = ξ̂ · ξ̂∗. Thus,

ϕo(ξ̂∗) = (ξ̂, 0) · (ξ̂∗, 0) ≤ Φo(ξ̂∗, 0) = φo(ξ̂∗).

Remark 2.1. Inequality (2.5) may be strict. For α ∈ (0, π/2) consider the symmetric parallelogram
with vertices at (1 ± cotα,±1), (−1 ± cotα,±1), and let Φα be the Minkowski functional of Pα.
Notice that

(Φα)|{ξ2=0}
(ξ1) = |ξ1|

and
(Φo

α)|{ξ∗2=0}
(1) = Φo

α(1, 0) = sup{ξ1 : (ξ1, ξ2) ∈ Pα} = 1 + cotα,

thus (
(Φα)|{ξ2=0}

)o
(1) = 1 < 1 + cotα = (Φo

α)|ξ∗2=0
(1).

In Lemma A.4 we give necessary and sufficient conditions on Φ ensuring that equality in (2.5) holds.

Definition 2.2 (Cylindrical and conical norms). We say that the norm Φ : Rn+1 → [0,+∞) is
cylindrical over ϕ if

Φ(ξ̂, ξn+1) = max{ϕ(ξ̂), |ξn+1|}, (ξ̂, ξn+1) ∈ Rn+1, (2.6)

where ϕ : Rn → [0,+∞) is a norm. We say that Φ : Rn+1 → [0,+∞) is conical over ϕ, if

Φ(ξ) = ϕ(ξ̂) + |ξn+1|, (ξ̂, ξn+1) ∈ Rn+1.

Notice that if Φ is cylindrical over ϕ then Φo is conical over ϕo, and vice-versa.

2.2. Perimeters. Let Ψ : Rm → [0,+∞) be a norm and O ⊆ Rm be an open set. For any E ∈
BVloc(O) and for any A ∈ Ac(O) we define [5] the Ψ -perimeter of E in A as

PΨ(E,A) :=

∫
A

Ψo(DχE) = sup

{
−
∫
E

div η dx : η ∈ C1
c (A,BΨ)

}
.

It is known [5] that

PΨ(E,A) =

∫
A∩∂∗E

Ψo(νE) dHm−1. (2.7)

Definition 2.3 (Minimizer of anisotropic perimeter). We say that E ∈ BVloc(O) is a minimizer of
PΨ by compact perturbations in O (briefly, a minimizer of PΨ in O) if

PΨ(E,A) ≤ PΨ(F,A) (2.8)

for any A ∈ Ac(O) and F ∈ BVloc(O) such that E∆F ⊂⊂ A.

From (2.7) it follows that if E is minimizer of PΨ in O, then so is Rm \ E. If m = 1, then
Φ(ξ) = Φ(1)|ξ|, thus E ⊂ R is a minimizer of PΨ in an open interval I if and only if it is a
minimizer of the Euclidean perimeter, so E is of the form

∅, I, (−∞, λ) ∩ I, (λ,+∞) ∩ I, λ ∈ I. (2.9)

The following example is based on a standard calibration argument1.

1See for instance [1] for some definitions, results and references concerning calibrations.
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Example 2.4 (Half-spaces). Let H ⊂ Rm be a half-space and O ⊆ Rm be open. Then E = H ∩O is
a minimizer of PΨ in O. Indeed, let ζ ∈ Rm be such that Ψ(ζ) = 1 and νH · ζ = Ψo(νH). Consider
F ∈ BVloc(O) with E∆F ⊂⊂ A ⊂⊂ O. Observe that ∂∗(E\F ) can be written as a pairwise disjoint2

union of (Rm \ F ) ∩ ∂E, E ∩ ∂∗F and J := {z ∈ ∂E ∩ ∂∗F : νH(z) = −νF (z)} (see for example
[24, Theorem 16.3]). For the vector field N : Rm → Rm constantly equal to ζ, we have

0 =

∫
E\F

divN dz

=

∫
(Rm\F )∩A∩∂E

νH ·N dHm−1 −
∫
E∩A∩∂∗F

νF ·N dHm−1 +

∫
J∩A

νH ·N dHm−1

=:I− II + III.

(2.10)

Similarly,

0 =

∫
F\E

div(−N) dz

=−
∫

(Rm\E)∩A∩∂∗F
νF ·N dHm−1 +

∫
F∩A∩∂E

νH ·N dHm−1 −
∫
J∩A

νF ·N dHm−1

=:− IV + V −VI.

(2.11)

Adding (2.10)-(2.11) and using νF ·N ≤ Ψo(νF ) we obtain∫
A∩∂E

Ψo(νH) dHm−1 =

∫
A∩∂E

νH ·N dHm−1 = I + III + V

=II + IV + VI =

∫
A∩∂∗F

νF ·N dHm−1 ≤
∫
A∩∂∗F

Ψo(νF ) dHm−1.

The previous argument does not apply to a strip between two parallel planes.

Example 2.5 (Parallel planes). Let n = 2, and let Φ : R3 → [0,+∞) be cylindrical over the
Euclidean norm. Given a < b consider E = {(x, t) ∈ R3 : a < t < b}. Then E is not a minimizer
of PΦ in R3. Indeed, it is sufficient to compare E with the set E \C, obtained from E by removing
a sufficiently large cylinder C = BR × [a, b] homothetic to BΦ, where BR = {x ∈ R2 : |x| < R}.
Then PΦ(E) is reduced by 2πR2 (the sum of the areas of the top and bottom facets of C ), while it is
increased by the lateral area 2π(b−a)R of C. Hence, for R > 0 sufficiently large, (2.8) is not satisfied.
Notice that the horizontal sections of E are either empty or a plane, which both are minimizers of the
Euclidean perimeter in R2.

Remark 2.6. Suppose that Φ : Rn+1 → [0,+∞) is cylindrical over ϕ. Assume that E ∈ BVloc(Ω)
has the following property: for almost every t ∈ R the set Et (horizontal section) is a minimizer of Pϕ
in Ωt and for almost every x ∈ Rn the set Ex (vertical section) is a minimizer of Euclidean perimeter
in Ωx. Then by Remark A.2 we get that E is a minimizer of PΦ in Ω.

Example 2.7. For any l, γ ∈ R we define the cones3 in Rn+1

C
(n)
1 (l, γ) := (−∞, l)× Rn−1 × (γ,+∞), C

(n)
2 (l, γ) := (l,+∞)× Rn−1 × (−∞, γ). (2.12)

From Example 2.4 and Remark 2.6 it follows that the following sets are minimizers of PΦ in Rn+1

provided that Φ satisfies (2.6):

a) C
(n)
1 (l1, γ1) ∪ C(n)

2 (l2, γ2) ⊂ Rn+1, where l1 ≤ l2, γ1 ≥ γ2 (see Figure 1).
b) The union of C(n)

1 (l1, γ) and the rotation of C(n)
2 (l2, γ) around the vertical axis xn+1 of α

radiants (see Figure 2).

2Up to sets of zero Hm−1 -measure.
3A set E ⊆ Rm is a cone if there exists x0 ∈ ∂E such that for any x ∈ E and λ > 0 it holds x0 + λ(x− x0) ∈ E.
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FIGURE 1. C
(2)
1 (0, 0)∪C(2)

2 (l, 0) with l > 0 in Example 2.7(a) and its boundary. The
right picture is a slight rotation of left picture.

FIGURE 2. Union C of C(2)
1 (0, 0) and the (−π/2) -rotation of C(2)

2 (0, 0) in Example
2.7(b). Notice that Ct for t = 0 is not a minimizer of the Euclidean perimeter in R2 ;
however, this does not affect the minimality of C.

In general, a minimizer of PΦ in Ω for a cylindrical Φ, need not satisfy the minimality property of
horizontal sections in Remark 2.6.

Example 2.8 (Strips). Let n = 2, and let Ω̂ = R × (0, γ) ⊂ R2 with γ > 0. Take ϕo(ξ∗1 , ξ
∗
2) =

|ξ∗1 |+ |ξ∗2 |, so that

Pϕ(F̂ , Â) =

∫
Â
|Dx1χF̂ |+

∫
Â
|Dx2χF̂ |, F̂ ∈ BVloc(Ω̂), Â ∈ Ac(Ω̂).

We prove that if l > γ > 0 then the rectangle Ê = (0, l)× (0, γ) is a minimizer of Pϕ in the strip
Ω̂. Let F̂ ∈ BVloc(Ω̂) be such that Ê∆F̂ ⊂⊂ Â ⊂⊂ Ω̂. Let Lx1 stand for the vertical line passing
through (x1, 0). If H1(F̂ ∩ Lx1) = 0 or H1(F̂ ∩ Lx1) = γ for some 0 < x1 < l, then

Pϕ(F̂ , Â) = Pϕ(F̂ , Â ∩ [(−∞, x1)× (0, γ)]) + Pϕ(F̂ , Â ∩ [(x1,+∞)× (0, γ)]).

Hence
Pϕ(F̂ , Â ∩ [(−∞, x1)× (0, γ)]) ≥ Pϕ(Ê, Â ∩ [(−∞, x1)× (0, γ)]),

Pϕ(F̂ , Â ∩ [(x1,+∞)× (0, γ)]) ≥ Pϕ(Ê, Â ∩ [(x1,+∞)× (0, γ)]),

thus Pϕ(F̂ , Â) ≥ Pϕ(Ê, Â). Now assume that 0 < H1(F̂ ∩ Lx1) < γ for all x1 ∈ (0, l). In this
case

∫
Â
|Dx2χF̂ | ≥ 2l. Indeed, since Ê∆F̂ ⊂⊂ Â , each vertical line Lx1 , x1 ∈ (0, l) should cross

∂∗F̂ at least twice. For a similar reason, taking into account the term
∫
Â
|Dx1χF̂ | we may assume that
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Ê ∩ ∂∗F̂ lies on two horizontal parallel lines at distance ε ∈ (0, γ). Then by definition of ϕ -perimeter

Pϕ(F̂ , Â)− Pϕ(Ê, Â) ≥ 2l − 2ε ≥ 2(l − γ) > 0.

This implies that Ê is a minimizer of Pϕ in Ω̂. Notice that every horizontal section of Ê is (0, l),
which is not a minimizer of the perimeter in R.

Now, let Φo(ξ̂∗, ξ∗3) = ϕo(ξ̂∗) + |ξ∗3 |. By Proposition 3.4 (b) below, Ê × R is a minimizer of
PΦ in Ω̂ × R. Since Φ is symmetric with respect to relabelling the coordinate axis, the set E =
(0, l)×R× (0, γ) is also a minimizer of PΦ in R×R× (0, γ). Notice that every horizontal section of
E is a translation of the strip (0, l)× R, which is not a minimizer of Pϕ in R2 according to Example
2.5.

Example 2.9. Let Φo(ξ∗1 , ξ
∗
2) = |ξ∗1 |+ |ξ∗2 |. Given l, γ ∈ R suppose one of the following:

a) l = 0;
b) l ≥ 0 ≥ γ;
c) l ≥ γ > 0.

Then the set E = C
(1)
1 (0, 0) ∪ C(1)

2 (l, γ) is a minimizer of PΦ in R2 even though in case (c) for any
t ∈ (0, γ), the horizontal section Et is not a minimizer of the perimeter in R (see (2.9)).

Indeed, if l ≥ 0 ≥ γ then E satisfies the property in Remark 2.6. If l = 0 and γ > 0, then
R2 \ E is union of two disjoint cones satisfying property stated in Remark 2.6. Thus, in both cases E
is a minimizer of PΦ in R2.

Assume (c). By Remark 2.6 both C1 = (−∞, 0) × (0,+∞) and C2 = (−∞, γ) × (l,+∞) are
minimizers of PΦ in R2 (for brevity we do not write the dependence on l and γ ). Consider arbitrary
F ∈ BVloc(R2) with E∆F ⊂⊂ (−M,M)2, for some M > 0.

FIGURE 3. In case 0 < γ ≤ l, among all sets connecting two components of E the
strip parallel to ξ1 -axis has the “smallest” Φ -perimeter.

If F perturbs the components C1, C2 of E separately, i.e. F = F1 ∪ F2 and there exist disjoint
open sets A1, A2 ⊂ R2 such that Ci∆Fi ⊂ Ai, i = 1, 2, then by minimality of C1, C2 we have

PΦ(F,A1 ∪A2) =PΦ(F1, A1) + PΦ(F2, A2) ≥ PΦ(C1, A1) + PΦ(C2, A2)

=PΦ(E,A1 ∪A2).

On the other hand, it is not difficult to see that among all perturbations of E involving both compone-
nents, the best one is obtained by inserting an horizontal strip as in Figure 3. However, because of
the assumption 0 < γ ≤ l, this perturbation has larger Φ -perimeter than E. Consequently, E is a
minimizer of PΦ in R2.

3. CYLINDRICAL MINIMIZERS

Let Φ be a norm on Rn+1 and Ω = Ω̂× R.

Definition 3.1 (Cylindrical minimizers). We say that a minimizer E ⊆ Ω of PΦ in Ω is cylindrical
over Ê if E = Ê × R, where Ê ⊆ Ω̂.

7



The aim of this section is to characterize cylindrical minimizers of PΦ. The idea here is that the
(Euclidean) normal to the boundary of a cylindrical minimizer is horizontal, and therefore what matters,
in the computation of the anisotropic perimeter, is only the horizontal section of the anisotropy. For this
reason it is natural to introduce the following property, which informally requires the upper (and the
lower) part of the boundary of the Wulff shape to be a generalized graph (hence possibly with vertical
parts) over its projection on the horizontal hyperplane Rn × {0}.

Definition 3.2 (Unit ball as a generalized graph in the vertical direction). We say that the boundary
of the unit ball BΦ of the norm Φ : Rn+1 → [0,+∞) is a generalized graph in the vertical direction if

Φ(ξ̂, ξn+1) ≥ Φ(ξ̂, 0), (ξ̂, ξn+1) ∈ Rn+1. (3.1)

In Lemma A.3 we show that ∂BΦ is a generalized graph in the vertical direction if and only if so is
∂BΦo .

Example 3.3. (a) If Φ(ξ̂,−ξn+1) = Φ(ξ̂, ξn+1) for all (ξ̂, ξn+1) ∈ Rn+1, then ∂BΦ is a general-
ized graph in the vertical direction. Indeed, from convexity

Φ(ξ̂, 0) ≤ Φ

(
ξ̂

2
,
ξn+1

2

)
+ Φ

(
ξ̂

2
,−ξn+1

2

)
= Φ(ξ̂, ξn+1), (ξ̂, ξn+1) ∈ Rn+1.

(b) There exists ∂BΦ which is a generalized graph in the vertical direction, but Φ does not sat-
isfy Φ(ξ̂,−ξn+1) = Φ(ξ̂, ξn+1). Fix some ε ∈ (1/

√
2,
√

2] and consider the (symmetric con-
vex) plane hexagon Kε with vertices at (1, 0), (ε,−ε), (0,−1), (−1, 0), (−ε, ε), (0, 1).
Let Φε : R2 → [0,+∞) be the Minkowski functional of Kε. Then Φε does not satisfy
Φε(ξ1,−ξ2) = Φε(ξ1, ξ2). But ∂BΦε is a generalized graph in the vertical direction. Indeed,
consider the straight line passing through (1, 0) and parallel to ξ2 - axis. This line does not
cross the interior of Kε. Thus Φε(1, ξ2) ≥ 1 = Φε(1, 0). If ξ1 6= 0, then

Φε(ξ1, ξ2) = |ξ1|Φε(1, ξ2/ξ1) ≥ |ξ1|Φε(1, 0) = Φε(ξ1, 0).

If ξ1 = 0, the inequality Φε(ξ1, ξ2) ≥ Φε(ξ1, 0) is obvious.
c) The norm Φ : R2 → [0,+∞), Φ(ξ1, ξ2) =

√
ξ2

1 + ξ1ξ2 + ξ2
2 has a unit ball the boundary of

which is not a generalized graph in the vertical direction, since Φ(2, 0) = 2 >
√

3 = Φ(2,−1).

Proposition 3.4 (Cylindrical minimizers). Let Φ : Rn+1 → [0,+∞) be a norm. Let Ê ∈ BVloc(Ω̂).
The following assertions hold:

(a) if Ê × R is a minimizer of PΦ in Ω̂× R, then Ê is a minimizer of Pφ in Ω̂, where

φ :=

(
Φo
|{ξ∗n+1=0}

)o
.

(b) if ∂BΦ is a generalized graph in the vertical direction and Ê is a minimizer of Pϕ in Ω̂, where
ϕ := Φ|{ξn+1=0}

, then Ê × R is a minimizer of PΦ in Ω̂× R.

Remark 3.5. In general φ 6= ϕ (see Remark 2.1 and Lemma A.4).

Proof. (a) Take Â ∈ Ac(Ω̂), F̂ ∈ BVloc(Ω̂) with Ê∆F̂ ⊂⊂ Â. For any m > 0 set Im := (−m,m),
and define

Fm := [E \ (Rn × Im)] ∪ [F̂ × Im].

Then E∆Fm ⊂⊂ Â× Im+1 ⊂⊂ Ω̂× R and, by minimality,

PΦ(E, Â× Im+1) ≤ PΦ(Fm, Â× Im+1). (3.2)
8



Writing νE = (ν̂E , (νE)t), we have νE = (ν
Ê
, 0) Hn -almost everywhere on ∂∗E. Hence

PΦ

(
E, Â× Im+1

)
=

∫
[Â×Im+1]∩∂∗E

Φo (ν̂E , (νE)t) dHn

=

∫
[Â×Im+1]∩∂∗E

φo(ν
Ê

) dHn = 2(m+ 1)

∫
Â∩∂∗Ê

φo(ν
Ê

) dHn−1

=2(m+ 1)Pφ(Ê, Â).

(3.3)

Similarly, νFm = (ν
F̂
, 0) on (∂∗F̂ ) × Im, νFm = (0,±1) on (Ê∆F̂ ) × {±m} and νFm = (ν

Ê
, 0)

on (∂∗F̂ )× (Im+1 \ Im). As a consequence,

PΦ(Fm, Â× Im+1) =

∫
[Â×Im]∩∂∗Fm

Φo(νFm) dHn +

∫
[Â×{±m}]∩∂∗Fm

Φo(νFm) dHn

+

∫
[Â×(Im+1\Im)]∩∂∗Fm

Φo(νFm) dHn

=2mPφ(F̂ , Â) + 2Φo(0, 1)Hn(Ê∆F̂ ) + 2Pφ(Ê, Â).

(3.4)

From (3.3), (3.4) and (3.2), it follows

Pφ(Ê, Â) ≤ Pφ(F̂ , Â) +
Φo(0, 1)

m
Hn(F̂∆Ê).

Letting m→ +∞ we get Pφ(Ê, Â) ≤ Pφ(F̂ , Â), and assertion (a) follows.

(b) By Lemma A.4, ϕo = Φo
|{ξ∗n+1=0}

. Take F ∈ BVloc(Ω̂ × R), and let Â ∈ Ac(Ω̂) and M > 0

be such that E∆F ⊂⊂ Â× IM , where IM := (−M,M). Then Ê∆Ft ⊂⊂ Â for all t ∈ (−M,M)

and since Ê is a minimizer of Pϕ in Ω̂, using (3.1) and (A.1) we get

PΦ(F, Â× IM ) =

∫
(Â×IM )∩∂∗F

Φo(ν̂F , (νF )t) dHn ≥
∫

(Â×IM )∩∂∗F
Φo(ν̂F , 0) dHn

=

∫ M

−M
Pϕ(Ft, Â) dt ≥

∫ M

−M
Pϕ(Ê, Â) dt = PΦ(E, Â× IM ),

and assertion (b) follows. �

Example 3.6 (Characterization of cylindrical minimizers for a cubic anisotropy). Proposition 3.4
allows us to classify the cylindrical minimizers of PΦ for suitable choices of the dimension and of the
anisotropy. Take n = 2, Ω̂ = R2, and let

BΦ = [−1, 1]3;

in particular, ∂BΦ is a generalized graph in the vertical direction and Bϕ is the square [−1, 1]2 in the
(horizontal) plane. The minimizers of Pϕ are classified as follows [32, Theorems 3.8 (ii) and 3.11 (2)]:
the infinite cross Ĉ = {|x1| > |x2|} and its complement, the subgraphs and epigraphs Ŝ of monotone
functions of one variable, and suitable unions Û of two connected components, each of which is the
subgraph of a monotone function of one variable. Then Proposition 3.4 (b) implies that

Ĉ × R, (R2 \ Ĉ)× R, Ŝ × R, Û × R

are the only cylindrical minimizers of PΦ in R3. The same result holds if Bϕ is a parallelogram
centered at the origin, and ∂BΦ is any generalized graph in the vertical direction such that Bϕ =
BΦ ∩ {ξ3 = 0}.
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4. CARTESIAN MINIMIZERS FOR PARTIALLY MONOTONE NORMS

Let Φ : Rn+1 → [0,+∞) be a norm.

Definition 4.1 (Cartesian minimizers). We call a minimizer E ⊆ Ω = Ω̂ × R a cartesian minimizer
of PΦ in Ω = Ω̂× R if E = sg(u) for some function u : Ω̂→ R.

Let v ∈ BVloc(Ω̂) ; in what follows the symbol
∫
Â

Φo(−Dv, 1) means∫
Â

Φo(−Dv, 1) = sup
{∫

Â

(
v

n∑
j=1

∂ηj
∂xj

+ ηn+1

)
dx :

η = (η1, . . . , ηn+1) ∈ C1
c (Â, BΦ)

}
.

If v ∈W 1,1
loc (Ω̂) we have [6, Theorem 2.91]

PΦ(sg(v), Â× R) =

∫
(Â×R)∩∂sg(v)

Φo(νsg(v)) dHn

=

∫
(Â×R)∩∂sg(v)

Φo(−∇v, 1)
dHn√

1 + |∇v|2
=

∫
Â

Φo(−∇v, 1) dx.

Using the techniques in [18], the previous equality extends to any v ∈ BVloc(Ω̂),

PΦ(sg(v), Â× R) =

∫
(Â×R)∩∂∗sg(v)

Φo(νsg(v)) dHn =

∫
Â

Φo(−Dv, 1). (4.1)

Accordingly, we define the functional GΦo : BVloc(Ω̂)×Ac(Ω̂)→ [0,+∞) as follows:

GΦo(v, Â) :=

∫
Â

Φo(−Dv, 1), v ∈ BVloc(Ω̂), Â ∈ Ac(Ω̂).

Definition 4.2. We say that u ∈ BVloc(Ω̂) is a minimizer of GΦo by compact perturbations in Ω̂

(briefly, a minimizer of GΦo in Ω̂ ), and we write

u ∈MΦo(Ω̂),

if for any Â ∈ Ac(Ω̂) and v ∈ BVloc(Ω̂) with supp (u− v) ⊂⊂ Â one has

GΦo(u, Â) ≤ GΦo(v, Â).

Note that MΦo(Ω̂) 6= ∅ since linear functions on Ω̂ belong4 to MΦo(Ω̂). Observe also that if
u ∈MΦo(Ω̂) then u+ c ∈MΦo(Ω̂) for any c ∈ R.

We shall need the following standard result.

Theorem 4.3 (Compactness). Let Φ : Rn+1 → [0,+∞) be a norm. If uk ∈ MΦo(Ω̂), u ∈ L1
loc(Ω̂)

and uk → u in L1
loc(Ω̂) as k → +∞, then u ∈MΦo(Ω̂).

Proof. The proof is the same as in [31, Theorem 3.4] making use of lower semicontinuity of PΦ, (2.3)
and the inequality Φo(−Dw, 1) ≤ Φo(Dw, 0) + Φo(0, 1). �

The aim of this section is to show the relations between minimizers and cartesian minimizers, under a
special assumption on the norm.

Definition 4.4 (Partially monotone norm). The norm Φ : Rn+1 → [0,+∞) is called partially mono-
tone if given ξ = (ξ̂, ξn+1) ∈ Rn+1 and η = (η̂, ηn+1) ∈ Rn+1 we have

Φ(ξ̂, 0) ≤ Φ(η̂, 0), Φ(0, ξn+1) ≤ Φ(0, ηn+1) =⇒ Φ(ξ) ≤ Φ(η). (4.2)

Partially monotone norms are characterized in Section A.3.

4 If u is linear, then sg(u) is the intersection of a half-space with Ω̂× R, hence sg(u) is a minimizer of PΦ in Ω̂× R
(Example 2.4) and u ∈MΦo(Ω̂) (see Theorem 4.6(a) below).
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Example 4.5. The following norms on Rn+1 are partially monotone: Φ(ξ̂, ξn+1) = max{ϕ(ξ̂), |ξn+1|} ;
Φ(ξ̂, ξn+1) = ([ϕ(ξ̂)]p + |ξn+1|p)1/p, where ϕ : Rn → [0,+∞) is a norm and p ∈ [1,+∞).

Theorem 4.6 (Minimizers and cartesian minimizers). Let Φ : Rn+1 → [0,+∞) be a norm, and
u ∈ BVloc(Ω̂). The following assertions hold:

(a) if sg(u) is a minimizer of PΦ in Ω̂× R, then u is a minimizer of GΦo in Ω̂ ;
(b) if Φ is partially monotone and u is a minimizer of GΦo in Ω̂, then sg(u) is a minimizer of

PΦ in Ω = Ω̂× R.

Proof. (a) Let ψ ∈ C1
c (Ω̂) be such that supp (ψ) ⊂⊂ Â for some Â ∈ Ac(Ω̂). Then there exists H >

0 such that sg(u)∆sg(u+ψ) ⊂⊂ Â× (−H,H). If sg(u) is a minimizer of PΦ, then PΦ(sg(u), Â×
R) ≤ PΦ(sg(u+ ψ), Â× R) and so, by virtue of (4.1),

GΦo(u, Â) ≤ GΦo(u+ ψ, Â). (4.3)

For general ψ ∈ BVloc(Ω̂) inequality (4.3) can be proven by approximation.

(b) Let u be a minimizer of GΦo and F ∈ BVloc(Ω) be such that sg(u)∆F ⊂⊂ A = Â×(−M,M)

with Â ∈ Ac(Ω̂) and M > 0. Then (2.2) yields that

PΦ(F, B̂ × R) < +∞ ∀B̂ ∈ Ac(Ω̂).

We shall closely follow [20, 27], where the argument is done in the Euclidean setting. For simplicity let
ϕo1(·) = Φo(·, 0) and ϕo2(·) = Φo(0, ·). We claim that there exists v ∈ BVloc(Ω̂) with supp (u−v) ⊂⊂
Â such that for any B̂ ∈ Ac(Ω̂)∫

B̂×R
ϕo1(Dxχsg(v)) ≤

∫
B̂×R

ϕo1(DxχF ),

∫
B̂×R

ϕo2(Dtχsg(v))) ≤
∫
B̂×R

ϕo2(DtχF ).

(4.4)

Supposing that the claim is true, from (4.4) and from Lemma A.7 we deduce

PΦ(sg(v), Â× R) =

∫
Â×R

Φo(Dχsg(v)) ≤
∫
Â×R

Φo(DχF ) = PΦ(F, Â× R).

Then by the minimality of u and (4.1) we get

PΦ(sg(u), Â× R) =

∫
Â

Φo(−Du, 1) ≤
∫
Â

Φo(−Dv, 1)

=PΦ(sg(v), Â× R) ≤ PΦ(F, Â× R).

Let us prove our claim. Since sg(u)∆F ⊂⊂ A, we have

lim
t→+∞

χF (x, t) = 0, lim
t→−∞

χF (x, t) = 1 for a.e. x ∈ Ω̂. (4.5)

Then, by [20, Lemma 14.7 and Theorem 14.8] (see also [27, Theorem 2.3]) the function

vh(x) :=

∫ h

−h
χF (x, t)dt− h, x ∈ Ω̂,

belongs to L1
loc(Ω̂) and the sequence {vh} converges pointwise to v ∈ BVloc(Ω̂) as h → +∞. To

show that u− v is compactly supported in Â it is enough to take Â′ ∈ Ac(Ω̂) such that Â′ ⊂⊂ Â and
sg(u)∆F ⊂⊂ Â′× (−M,M), and to observe that since sg(u)∩

(
(Ω̂\ Â′)×R

)
= F ∩

(
(Ω̂\ Â′)×R

)
,

if x ∈ Ω̂ \ Â′, for h sufficiently large we have

vh(x) =

∫ u(x)

−h
χF (x, t)dt− h = u(x).
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Now, define ηh : R→ [0,+∞) as ηh := 1 on [−h, h], ηh := 0 on (−∞,−h− 1]∪ [h+ 1,+∞),
and

ηh(t) :=

{
h+ 1− t if h ≤ t ≤ h+ 1,

h+ 1 + t if − h− 1 ≤ t ≤ −h.

Being 1/2 =
∫ −h
−h−1[h+ 1 + t]dt, we have∣∣∣ ∫

R
ηh(t)χF (x, t)dt− h−1

2
− v(x)

∣∣∣ =
∣∣∣− ∫ −h

−h−1
[h+ 1 + t](1− χF (x, t))dt

+

∫ h+1

h
[h+ 1− t]χF (x, t)dt+ vh(x)− v(x)

∣∣∣
≤
∣∣∣vh(x)− v(x)

∣∣∣+

∫ −h
−h−1

(1− χF (x, t))dt+

∫ h+1

h
χF (x, t)dt.

Hence, from (4.5), for almost every x ∈ Ω̂ we get

lim
h→+∞

∣∣∣ ∫
R
ηh(t)χF (x, t)dt− h− 1

2
− v(x)

∣∣∣ = 0. (4.6)

Let us fix ψ ∈ C1
c (Ω̂) and 1 ≤ j ≤ n. Then, using

∫
Ω̂
Dxjψ(x)dx = 0, the dominated convergence

theorem (see [20, 27] for more details) and (4.6) we find∫
Ω̂×R

ψ(x)DxjχF (x, t) = lim
h→+∞

∫
Ω̂×R

ηh(t)ψ(x)DxjχF (x, t)

=− lim
h→+∞

∫
Ω̂
Dxjψ(x)dx

∫
R
ηh(t)χF (x, t)dt

=− lim
h→+∞

∫
Ω̂
Dxjψ(x)

[∫
R
ηh(t)χF (x, t)dt− h− 1

2

]
dx

=−
∫

Ω̂
v(x)Dxjψ(x)dx.

Hence for any Â ∈ Ac(Ω̂) and η ∈ C1
c (Â;Bϕ1) one has

−
∫
Â
v(x)

n∑
j=1

Dxjη(x)dx =

∫
Â×R

η(x) ·DxχF (x, t) ≤
∫
Â×R

ϕo1(DxχF (x, t)).

Since η is arbitrary, the definition of
∫
Â
ϕo1(Dxv) implies∫

Â
ϕo1(Dxv) ≤

∫
Â×R

ϕo1(DxχF ). (4.7)

Being |DtχF | a counting measure, we have [27]∫
Â×R

ϕo2(DtχF ) = ϕo2(1)

∫
Â×R
|DtχF | ≥ ϕo2(1)|Â|. (4.8)

Moreover, one checks that∫
Â×R

ϕo1(Dxχsg(v)) =

∫
Â
ϕo1(Dxv),

∫
Â×R

ϕo2(Dtχsg(v)) = ϕo2(1) |Â|. (4.9)

Now our claim (4.4) follows from (4.7)-(4.9). �

Corollary 4.7. Let Φo : (Rn+1)∗ → [0,+∞) be a partially monotone norm and u ∈ MΦo(Ω̂). Then
u ∈ L∞loc(Ω̂).

Proof. It follows repeating essentially the same arguments in the proof of [20, Theorem 14.10], using
Theorem 4.6(b) and the density estimates (see for instance [26, Proposition 1.10] for the anisotropic
setting). �
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5. CLASSIFICATION OF CARTESIAN MINIMIZERS FOR CYLINDRICAL NORMS

The aim of this section is to give a rather complete classification of entire cartesian minimizers, sup-
posing the norm Φ cylindrical. As explained in the introduction, this case covers, in particular, the study
of minimizers of the total variation functional. We start with a couple of observations.

Remark 5.1. Suppose that Φ : Rn+1 → [0,+∞) is cylindrical over ϕ. Then

u ∈MΦo(Ω̂) =⇒ λu ∈MΦo(Ω̂) ∀λ ∈ R, (5.1)

since
GΦo(v, Â) =

∫
Â
ϕo(Dv) + |Â|, (v, Â) ∈ BVloc(Ω̂)×Ac(Ω̂).

On the other hand, (5.1) is expected to hold not for all non cylindrical norms Φ. For example, let Φ
be Euclidean, n ≥ 8 and u : Rn → R be a smooth nonlinear solution [11] of the minimal surface

equation div

(
∇u√

1+|∇u|2

)
= 0. Then5 u ∈ MΦo(Rn), but if ∆u|∇u|2 is not identically zero, then

λu /∈ MΦo(Rn) for any λ ∈ R \ {0,±1}. Indeed, otherwise λu solves the minimal surface equation,
hence

0 =λdiv

(
∇u√

1 + λ2|∇u|2

)

=
λ√

1 + λ2|∇u|2

∆u− λ2

1 + λ2|∇u|2
n∑

i,j=1

∇iu · ∇ju∇iju


=

λ√
1 + λ2|∇u|2

(
∆u− λ2∆u

1 + |∇u|2

1 + λ2|∇u|2

)
=
λ(1− λ2)∆u |∇u|2

(1 + λ2|∇u|2)3/2
.

If ∆u|∇u|2 is not identically zero, we get λ(1− λ2) = 0, a contradiction.

Remark 5.2. Suppose that Φ : Rn+1 → [0,+∞) is cylindrical over ϕ. Then

u ∈MΦo(Ω̂) =⇒ max{u, λ}, min{u, λ} ∈ MΦo(Ω̂) ∀λ ∈ R. (5.2)

Indeed, suppose first λ = 0. If {u ≥ 0} ∈ BVloc(Ω̂), then (5.2) can be proven as in [31, Lemma 3.5],
using [6, Theorem 3.84]. In the general case, by the coarea formula there exists a sequence λj ↑ 0 such
that {u ≥ λj} ∈ BVloc(Ω̂). Clearly uj := u−λj ∈MΦo(Ω̂), hence u+

j ∈MΦo(Ω̂). Since u+
j → u+

in L1
loc(Ω̂), Theorem 4.3 implies u+ ∈ MΦo(Ω̂). The case λ 6= 0 is implied by the previous proof

and the identity max{u, λ} = (u − λ)+ + λ. The relation min{u, λ} ∈ MΦo(Ω̂) then follows from
the identity min{u, λ} = −max{−u,−λ} and from Remark 5.1.

Further properties of cartesian minimizers are listed in the following proposition, which in particular
(when ϕ is Euclidean) asserts some properties of minimizers of the total variation functional [17].

Proposition 5.3 (Cartesian minimizers for cylindrical norms). Suppose that Φ : Rn+1 → [0,+∞)
is cylindrical over ϕ. The following assertions hold:

(a) if u ∈MΦo(Ω̂) and λ ∈ R then χ{u>λ}, χ{u≥λ} ∈MΦo(Ω̂) ;
(b) if Ê ⊂ Ω̂ and χ

Ê
∈MΦo(Ω̂) then Ê is a minimizer of Pϕ in Ω̂;

(c) if u ∈MΦo(Ω̂) and λ ∈ R then {u > λ} and {u ≥ λ} are minimizers of Pϕ in Ω̂ ;
(d) if u ∈ BVloc(Ω̂) and for almost every λ ∈ R the sets {u > λ} (resp. {u ≥ λ} ) are minimizers

of Pϕ in Ω̂, then u ∈MΦo(Ω̂) ;
(e) if u ∈MΦo(Ω̂) and f : R→ R is monotone then f ◦ u ∈MΦo(Ω̂) ;
(f) let ζ ∈ Rn, f : R → R be a monotone function, and define u(x) := f(x · ζ) for any x ∈ Ω̂.

Then u ∈MΦo(Ω̂).

5 u is a minimizer of GΦo in Rn, since the Euclidean unit normal (pointing upwards) to graph(u), constantly extended
in the en+1 direction, provides a calibration for graph(u) in the whole of Rn+1.
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FIGURE 4. “Roof” like cone (left) and its section (right) along (∂H1 ∩ ∂H2)⊥.

Clearly, assertion (e) generalizes (5.1) and (5.2). We also anticipate here that the converse of statement
(f) is considered in Theorem 5.8 below.

Proof. The proof of (a) is the same as in [11, Theorem 1] and (b) is immediate. (c) follows from (a) and
(b), while (d) follows from the coarea formula∫

Â
ϕo(Dv) =

∫
R
Pϕ({v > λ}, Â) dλ, v ∈ BV (Â).

Let us prove (e). Without loss of generality assume that f is nondecreasing. Suppose first that f is
Lipschitz and strictly increasing. Set v = f ◦ u, and let λ ∈ R. Since u ∈ MΦo(Ω̂), by (c) it follows
that {u ≥ f−1(λ)} and {u > f−1(λ)} are minimizers of Pϕ in Ω̂, hence {v > λ} are minimizers
of Pϕ in Ω̂. Then (d) implies v ∈MΦo(Ω̂). In the general case, it is sufficient to approximate f with
a sequence of strictly increasing Lipschitz functions, and use Theorem 4.3. (f) follows from (e), since
the linear function u0(x) = x · ζ, x ∈ Ω̂, is a minimizer of GΦo in Ω̂. �

Now, we show that Proposition 5.3(f) implies the minimality of certain cones; the same conclusion
could be obtained by applying Remark 2.6.

Proposition 5.4 (Cones minimizing the anisotropic perimeter). Suppose that Φ : Rn+1 → [0,+∞)
is cylindrical over ϕ. Let H1, H2 ⊂ Rn+1 be two half-spaces, with outer unit normals ν1, ν2 ∈ Sn
respectively. Suppose that

{0} ∈ ∂H1 ∩ ∂H2 ⊂ {t = 0}, (5.3)

and that
(a) ν1 · ν2 ≥ 0, ν2 · en+1 ≥ ν1 · en+1 ≥ 0 ;
(b) arccos(ν1 · ν2) + arccos(ν2 · en+1) = arccos(ν1 · en+1).

Then the cones E := H1 ∩H2 and F := H1 ∪H2 are minimizers of PΦ in Rn+1.

Before proving the proposition, some comments are in order. Our assumptions on H1 and H2 ex-
clude, in particular, that E is a “roof-like” cone (as the one depicted in Figure 4). More specifically, in
case ν1 6= ν2, the inclusion ∂H1 ∩ ∂H2 ⊂ {t = 0} in (5.3) implies that the orthogonal complement to
{t = 0} is contained in the span of the orthogonal complements of ∂Hi, i.e.

en+1 ∈ span(ν1, ν2).

Next, assumption (a) implies that ν1 and ν2 lie “on the same side” with respect to en+1, while
assumption (b) implies that ν2 lies between ν1 and en+1 (a condition not satisfied in Figure 4, and
satisfied in Figure 5). We shall see in Example 5.6 that, if condition (b) is not satisfied, then E and F
need not be minimizers.
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Proof. For i = 1, 2, define

λi :=


√

1− (νi · en+1)2

νi · en+1
= tanαi if νi · en+1 6= 0,

+∞ if νi · en+1 = 0,

see Figure 5, left. By (a) we have λ2 ≤ λ1. Let ν̂ ∈ Sn−1 ⊂ {t = 0} be a unit normal to ∂H1 ∩ ∂H2

which, according to (b), can be chosen so that (ν̂, 0) · νi ≤ 0, i = 1, 2.
If λ2 = +∞, then by conditions (a) and (b) we have H1 = H2 = H, where H is the half-space

whose outer unit normal is −(ν̂, 0). By Example 2.4 it follows that H = E = F is a minimizer of
PΦ.

Assume that λ2 ≤ λ1 < +∞. Define

f(σ) :=

{
λ2σ, σ ≥ 0

λ1σ, σ < 0
, g(σ) :=

{
λ1σ, σ ≥ 0

λ2σ, σ < 0
.

Then E = sg(u), F = sg(v), where u(x) := f(x · ν̂), v(x) := g(x · ν̂), x ∈ Rn. Since f, g
are monotone, by Proposition 5.3(f) we have u, v ∈ MΦo(Rn). Since Φo is partially monotone (recall
Example 4.5), Theorem 4.6(b) yields that E and F are minimizers of PΦ in Rn+1. Now, assume that

FIGURE 5. Sections of cones when λ1 < +∞ and λ1 = +∞.

0 ≤ λ2 < λ1 = +∞. Then ν1 = −(ν̂, 0). We prove that F is a minimizer of PΦ in Rn+1 (the proof
for E being similar). It is enough to show minimality of F inside every strip Sm = Rn × (−m,m),
m > 0. Define h : R→ R as h(σ) := mχ(0,+∞)(σ) if λ2 = 0 and

h(σ) :=


−m if σ < −m

λ2
,

λ2σ if − m
λ2
≤ σ < 0,

m if σ ≥ 0

if λ2 > 0. Let w(x) := h(x · ν̂), x ∈ Rn. As before, the subgraph sg(w) of w is a minimizer of PΦ

in Rn+1. Since sg(w) ∩ Sm = F ∩ Sm, it follows that F is a minimizer of PΦ in Sm. �

Remark 5.5. It is not difficult to see that in Proposition 5.4 the assumption ∂H1 ∩ ∂H2 ⊂ {t = 0}
is in general not necessary. Indeed, assume n = 2, Φo(ξ∗1 , ξ

∗
2 , ξ
∗
3) = |ξ∗1 | + |ξ∗2 | + |ξ∗3 | and Hi,

i = 1, 2 are half-spaces with outer unit normals ν1 = (1
2 ,

1√
2
, 1

2), ν2 = ( 1√
10
, 2√

5
, 1√

10
) respectively.

Then both H1 ∩ H2 and H1 ∪ H2 are minimizers of PΦ in R3. Indeed, for the Euclidean isometry
U(x, t) := (x1, t, x2), one sees that UH1 and UH2 satisfy the assumptions of Proposition 5.4, hence
UH1 ∩ UH2 and UH1 ∪ UH2 are minimizers of PΦ. Since Φ ◦ U = Φ, the thesis follows.

Example 5.6 (Non minimal cones). Let n = 1, Φo(ξ∗1 , ξ
∗
2) = |ξ∗1 | + |ξ∗2 | and H1 and H2 be half-

planes of R2 with outer unit normals ν1, ν2 ∈ S1 such that

(a) ∂H1 ∩ ∂H2 = {0};
(b) ν1 · ν2 ≥ 0, ν2 · e2 ≥ ν1 · e2 ≥ 0, and if ν2 · e2 = 1 then 0 < ν1 · e2 < 1;
(d) arccos(ν1 · ν2) = arccos(ν1 · e2) + arccos(e2 · ν2).

15



Then the cones E := H1 ∩ H2 and F := H1 ∪ H2 are not minimizers of PΦ. Let us prove the
assertion for E, the statement for F being similar. The lines ∂H1, ∂H2 and {t = −1} compose a
nondegenerate triangle T ⊂ E with sides a1, a2, b > 0, b the horizontal side. For any A ∈ Ac(R2)
with T ⊂⊂ A we have

PΦ(E,A)− PΦ(E \ T,A) = a1Φo(ν1) + a2Φo(ν2)− bΦo(e2) ≥ a1 + a2 − b > 0,

since Φo(ν) ≥ 1 for all ν ∈ S1. Hence, E is not a minimizer of PΦ.

We shall need the following relevant result (see for instance [20, Theorem 17.3] and references
therein).

Theorem 5.7. Let Ê be a minimizer of the Euclidean perimeter in Rn. Then either n ≥ 8 or ∂Ê is a
hyperplane.

Our classification result of minimizers of GΦo reads as follows:

Theorem 5.8 (Entire cartesian minimizers). Suppose that Φ : Rn+1 → [0,+∞) is cylindrical over
ϕ. Assume one of the two following alternatives:

(a) 1 ≤ n ≤ 7 and ϕ is Euclidean;
(b) n = 2 and ϕo is strictly convex.

If u is a minimizer of GΦo in Rn then there exists ζ ∈ Sn−1 and a monotone function f : R → R
such that

u(x) = f(x · ζ), x ∈ Rn. (5.4)

Remark 5.9. If ϕ is a noneuclidean smooth and uniformly convex norm, the conclusion of Theorem
5.8 under assumption (a) does not necessarily hold. For example, if n = 4 and K is the cone over the
Clifford torus [29] – a minimizer of Pϕ in R4 for some uniformly convex smooth norm ϕ – then by
Proposition 5.3(d), u = χK is a minimizer of GΦo in R4 which cannot be represented as in (5.4). We
don’t know if there are counterexamples also for n = 3 .

Proof. Let u ∈MΦo(Rn). By Corollary 4.7, u ∈ L∞loc(Rn). Let

c0 := ess inf
x∈Rn

u(x) ∈ [−∞,+∞), c1 := ess sup
x∈Rn

u(x) ∈ (−∞,+∞].

If c0 = c1, then u ≡ c0 a.e. on Rn. In this case ζ ∈ Sn−1 can be chosen arbitrarily and f ≡ c0.
Assume that −∞ ≤ c0 < c1 ≤ +∞. Given λ ∈ R, Proposition 5.3(c) implies that {u > λ} is a

minimizer of Pϕ in Rn. We claim that either ∂∗{u > λ} is a hyperplane or ∂∗{u > λ} = ∅. Indeed,
if n = 1 the claim is trivial. If n = 2 and ϕ strictly convex, the claim follows from [32, Theorem
3.11]. When 3 ≤ n ≤ 7 and ϕ is Euclidean, the claim is implied by Theorem 5.7. Hence for any
λ ∈ (c0, c1) there exist ζλ ∈ Sn−1 and aλ ∈ R such that

{u > λ} = {x ∈ Rn : x · ζλ < aλ}. (5.5)

In addition, these hyperplanes cannot intersect transversely, hence there exists ζ ∈ Sn−1 such that
ζλ = ζ for all λ ∈ (c0, c1). Since the function λ ∈ (c0, c1) 7→ aλ is monotone, it remains to construct
the function f. We may assume that λ 7→ aλ is nonincreasing, the nondecreasing case being similar.
Extend aλ to R \ [c0, c1] setting aλ := +∞ for λ < c0 if c0 ∈ R, and aλ := −∞ for λ > c1 if
c1 ∈ R. Then, we define

f(σ) := sup {λ : σ < aλ} , σ ∈ R,
which is nonincreasing. Note that f is real valued. Indeed, if f(σ) = −∞ for some σ ∈ R, then
σ ≥ aλ for all λ ∈ R which is impossible since aλ → +∞ as λ→ −∞. Similarly, f(σ) < +∞ for
any σ ∈ R.

Set v(x) := f(x · ζ). By construction, we have {v > λ} = {u > λ} for a.e. λ ∈ R. It is easy to
check that if w ∈ L1

loc(Rn) then for a.e. x ∈ Rn one has

w(x) =

∫ +∞

0
χ{w>λ}(x)dλ+

∫ 0

−∞
(1− χ{w>λ}(x))dλ,

hence u = v almost everywhere on Rn. �
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Remark 5.10. It seems not easy to generalize Theorem 5.8 to noneuclidean ϕ (for some n ∈ {3, . . . , 7} )6,
since our argument was based on Theorem 5.7.

Remark 5.11. Assumption (a) of Theorem 5.8 is optimal in the sense that if n ≥ 8 there exist mini-
mizers of GΦo on Rn which cannot be written as in (5.4). Indeed, let C ⊂ R8 be the Simons cone
minimizing the Euclidean perimeter [11, Theorem A]. By Proposition 5.3(d) u = χC ∈ MΦo(Rn),
however u does not admit the representation (5.4).

From Theorem 5.8 and Proposition 5.3 (f) we deduce the following result.

Corollary 5.12 (Composition of linear and monotone functions). Under the assumptions of Theorem
5.8, u is a minimizer of GΦo in Rn if and only if there exists ζ ∈ Sn−1 and a monotone function
f : R→ R such that u(x) = f(x · ζ) for any x ∈ Rn.

6. LIPSCHITZ REGULARITY OF CARTESIAN MINIMIZERS FOR CYLINDRICAL NORMS

We recall from [31, Theorem 3.12] that if n = 2 and if ∂Bϕ either does not contain segments,
or it is locally a graph in a neighborhood of its segments, then the graph of a minimizer of GΦo in
R2 is locally Lipschitz. On the other hand, an example in [31, Sect. 4] shows that such a regularity
result cannot be expected for a general anisotropy. More precisely, for Φo cylindrical as in (2.6) with
ϕo(ξ̂∗) = |ξ∗1 |+ |ξ∗2 |, that example exhibits a function u ∈ MΦo(R2) such that the set of points where
the boundary of sg(u) is not locally the graph of a Lipschitz function has positive H2 -measure. We
look for sufficient conditions on ϕ which exclude such pathological example.

Let us start with a regularity property of cartesian minimizers of GΦo for cylindrical norms over the
Euclidean norm, namely for

Φ(ξ̂, ξn+1) = max(|ξ̂|, |ξn+1|),
which is exactly the case of the total variation functional.

We need the following regularity result, a special case of [36, Theorem 1].

Theorem 6.1. Let {Êh} be a sequence of minimizers of the Euclidean perimeter in Ω̂ locally converg-
ing to a set Ê in Ω̂, and let xh ∈ ∂Êh be such that lim

h→+∞
xh = x ∈ ∂∗Ê. Then there exists h ∈ N

such that xh ∈ ∂∗Êh for any h ∈ N, h ≥ h, and lim
h→+∞

ν
Êh

(xh) = ν
Ê

(x).

Theorem 6.2 (Local Lipschitz regularity). Suppose that u ∈ BVloc(Ω̂) is a minimizer of the total
variation functional

TV (v, Ω̂) :=

∫
Ω̂
|Dv|, v ∈ BVloc(Ω̂).

Then there exists a closed set Σ(u) ⊆ ∂sg(u) of Hausdorff dimension at most n− 7 , with Σ(u) = ∅ if
n ≤ 7, such that ∂sg(u) \ Σ(u) is locally Lipschitz.

Proof. By Proposition 5.3(c) the sets {u > λ} and {u ≥ λ} are minimizers of the Euclidean perimeter
in Ω̂ for every λ ∈ R. Let λ ∈ R be such that ∂{u > λ} (resp. {u ≥ λ} ) is nonempty. From
classical regularity results (see for instance [20, Theorem 11.8] and references therein) it follows that
∂{u > λ} (resp. ∂{u ≥ λ} ) is of class C∞ out of a closed set Σ>

λ (u) (resp. Σ≥λ (u) ) of Hausdorff
dimension at most n− 8. Define

Σ(u) := {(x, λ) ∈ ∂sg(u) : x ∈ Σ>
λ (u) or x ∈ Σ≥λ (u)},

so that Σ(u) has dimension at most n− 7. From Theorem 6.1 it follows that Σ(u) is closed.
Fix

(x, λ) ∈ ∂sg(u) \ Σ(u). (6.1)
One of the following three (not necessarily mutually exclusive) cases holds:

a) x ∈ int({u = λ}) ;
b) x ∈ ∂{u > λ};
c) x ∈ ∂{u ≥ λ}.

6 If ϕ is C∞ -uniformly convex norm and n = 3, then {u ≥ λ} is smooth [2, Theorem II.7].
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In case a) u is locally constant around x, thus, the assertion is immediate.
Assume b). We prove that there exists rx > 0 such that ∂{u > µ} is a graph in direction ν{u>λ}(x)

for every µ ∈ R such that ∂{u > µ} ∩ Brx(x) 6= ∅. Indeed, otherwise there would exist ε > 0
and an infinitesimal sequence (rh) ⊂ (0,+∞), and sequences (µh) ⊂ R, (xh) with xh ∈ ∂∗{u >
µh} ∩Brh(x) and

|ν{u>λ}(x)− ν{u>µh}(xh)| ≥ ε ∀h ∈ N. (6.2)
By Corollary 4.7 u is locally bounded, thus (µh) is bounded and we can extract a (not relabelled)
subsequence converging to some λ ∈ R. There is no loss of generality in assuming (µh) nondecreasing.
Then {u > µh} → {u ≥ λ} in L1

loc(Ω̂) as h→ +∞. By (6.1) we have x ∈ ∂∗{u ≥ λ}, hence from
Theorem 6.1 it follows

ν{u>µh}(xh)→ ν{u≥λ}(x) as h→ +∞. (6.3)

Clearly, either {u ≥ λ} ⊆ {u > λ} or {u ≥ λ} ⊇ {u > λ}. Since

x ∈ ∂∗{u > λ} ∩ ∂∗{u ≥ λ}

and ∂{u ≥ λ} and ∂{u > λ} are smooth around x, necessarily

ν{u>λ}(x) = ν{u≥λ}(x).

But then from (6.2) and (6.3) we get

ε ≤ |ν{u>µh}(xh)− ν{u>λ}(x)| → 0 as h→ +∞,
a contradiction.

Thus, for every x ∈ ∂∗{u > λ} there exist rx > 0 and ε ∈ (0, 1) such that for any µ ∈ (λ −
rx, λ+ rx) and y ∈ ∂∗{u > µ} ∩Brx(x) one has

ν{u>λ}(x) · ν{u>µ}(y) ≥ ε.
Notice that for any (y, µ) ∈ ∂∗sg(u) \ Σ(u) one has that

either νsg(u)(y, µ) =
(ν{u>µ}(x), σ)
√

1 + σ2
for some σ ≥ 0, or νsg(u)(y, µ) = en+1.

We want to prove that there exist ρ > 0, η ∈ Sn and c ∈ (0, 1) such that Hn -every (y, µ) ∈
∂ sg(u) ∩Bρ(x, λ) there holds

η · νsg(u)(y, µ) ≥ c, (6.4)
so that [31, Lemma 3.10] implies that ∂ sg(u) ∩ Bρ(x, λ) is a Lipschitz graph in the direction η with
Lipschitz constant L =

√
1/c2 − 1.

Set
ρ = rx, η =

1√
2

(ν{u>λ}(x), 1).

Then for any (y, µ) ∈ ∂∗sg(u) ∩Bρ(x, λ) we have

νsg(u)(y, µ) · η =
1√
2
, (6.5)

if νsg(u)(y, µ) = en+1, and

νsg(u)(y, µ) · η =
ν{u>µ}(y) · ν{u>λ}(x) + s

√
2
√

1 + s2
≥ ε+ s√

2
√

1 + s2
≥ ε√

2
, (6.6)

if y ∈ ∂{u > s} (here we use a+s√
1+s2

≥ a for any a ∈ (0, 1) and s ≥ 0 ). Formulas (6.5) and (6.6)

imply (6.4) with c = ε/
√

2.
Finally, case c) can be treated as case b).

�

Remark 6.3. The assertion of Theorem 6.2 cannot be improved: if n ≥ 8, there exists a minimizer u
of GΦo such that the points where ∂sg(u) is not locally Lipschitz have positive (n − 7) -dimensional
Hausdorff measure. For the Simons cone in R8 (and with the Euclidean norm), the graph of u = χC
cannot be represented as the graph of a Lipschitz function in a neighborhood of the origin.
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Theorem 6.2 can be generalized as follows.

Theorem 6.4. Suppose that Φ : Rn+1 → [0,+∞) is cylindrical over ϕ with

ϕ2 ∈ C3(Rn) is uniformly convex.

If u is a minimizer of GΦo in Ω̂, then ∂sg(u) \ Σ(u) is locally Lipschitz, where Σ(u) ⊆ ∂sg(u) is a
closed set of Hausdorff dimension at most n− 2 if n > 3, and Σ(u) = ∅ if n = 2, 3.

Proof. The proof is the same as in Theorem 6.2, using [2, Theorems II.7] in place of [20], and [30,
Theorem 4.5] in place of [36]. �

Remark 6.5. In [31] it is proven that if n = 2, Bϕ is not a quadrilateral, and u is a minimizer of GΦo

in Ω̂, then the graph of u is locally Lipschitz around any point of ∂sg(u).

Remark 6.6. Using the regularity result in [2, Theorem II.8], under the assumption that ϕ is uniformly
convex, smooth and sufficiently close to the Euclidean norm, one can improve Theorem 6.4 by showing
that Σ(u) has Hausdorff dimension at most n− 5.

APPENDIX A.

A.1. A Fubini-type theorem.

Proposition A.1. Let E ∈ BVloc(Ω). Then for any A ∈ Ac(Ω)∫
A∩∂∗E

Φo(ν̂E , 0)dHn =

∫
R
dt

∫
At∩∂∗Et

Φo(νEt , 0)dHn−1, (A.1)

∫
A∩∂∗E

Φo(0, (νE)t)dHn =

∫
Rn
dx

∫
Ax∩∂∗Ex

Φo(0, 1)dH0. (A.2)

where Et and Ex are defined as (2.1), νEt is a outer unit normal to ∂∗Et and νEx is a outer unit
normal to ∂∗Ex.

Proof. Let us prove (A.1). Notice that by [24, Theorem 18.11] for a.e. t ∈ R

Hn−1(∂∗Et∆(∂∗E)t) = 0, ν̂E 6= 0, νEt =
ν̂E
|ν̂E |

.

We can use the coarea formula [6, Theorem 2.93] with the function f : Rn+1 → R, f(x, t) = t.
Then ∇f = en+1 and its orthogonal projection ∇Ef on the approximate tangent space to ∂∗E is
∇Ef = en+1 − (en+1 · νE)νE . Thus,∫

R
dt

∫
At∩∂∗Et

Φo(νEt , 0)dHn−1 =

∫
R
dt

∫
(A∩∂∗E)∩{f=t}

Φo(νEt , 0)dHn−1

=

∫
A∩∂∗E

Φo(νEt , 0)|en+1 − (en+1 · νE)νE | dHn−1 =

∫
A∩∂∗E

Φo(νEt , 0)
√

1− |(νE)t|2 dHn−1

=

∫
A∩∂∗E

Φo(νEt , 0)|ν̂E | dHn−1 =

∫
A∩∂∗E

Φo(ν̂E , 0) dHn−1.

Now, (A.2) follows from (2.7) and [27, Theorem 3.3]:∫
A∩∂∗E

Φo(0, (νE)t)dHn =Φo(0, 1)

∫
A∩∂∗E

|(νE)t|dHn = Φo(0, 1)

∫
A
|DtχE |

=Φo(0, 1)

∫
Rn
dx

∫
Ax∩∂∗Ex

dH0.

�
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Remark A.2. Let Φ : Rn+1 → [0,+∞) be a norm. For notational simplicity set ϕ1 := Φ|{ξn+1=0}
,

ϕ2 := Φ|{ξ̂=0}
. For f ∈ BVloc(Ω) and A ∈ Ac(Ω) we define∫
A
ϕo1(Dxf) = sup

{∫
A
f(x, t)

n∑
i=1

∂ηi(x, t)

∂xi
dxdt : η ∈ C1

c (A;Bϕ1)
}
,

∫
A
ϕo2(Dtf) = sup

{∫
A
f(x, s)Dtη(x, s) dxds : η ∈ C1

c (A), ϕ2(η) ≤ 1
}
.

With this notation (A.1) and (A.2) can be rewritten respectively as7∫
A
ϕo1(DxχE) =

∫
R
dt

∫
At

ϕo1(DxχEt),∫
A
ϕo2(DtχE) =

∫
Rn
dx

∫
Ax

ϕo2(DtχEx).

A.2. Norms with generalized graph property.

Lemma A.3. ∂BΦ is a generalized graph in the vertical direction if and only if ∂BΦo is a generalized
graph in the vertical direction.

Proof. Suppose that ∂BΦ is a generalized graph in the vertical direction. Let ξ∗ = (ξ̂∗, 0) ∈ Rn+1,

and take ξ = (ξ̂, ξn+1) ∈ Rn+1 such that Φ(ξ) = 1 and

ξ̂ · ξ̂∗ = Φo(ξ̂∗, 0) = (ξ̂, ξn+1) · (ξ̂∗, 0). (A.3)

Since ∂BΦ is a generalized graph in the vertical direction, we have Φ(ξ̂, 0) ≤ Φ(ξ) = 1. Thus, by
(2.4) and (A.3) we get Φo(ξ̂∗, 0) ≤ Φo(ξ̂∗, ξ∗n+1), hence ∂BΦo is a generalized graph in the vertical
direction. The converse conclusion follows then from the equality Φoo = Φ. �

Lemma A.4. Equality holds in (2.5) if and only if ∂BΦ is a generalized graph in the vertical direction.

Proof. Set ϕ := Φ|{ξn+1}
. Assume that ∂BΦ is a generalized graph in the vertical direction. Let

(ξ̂∗, 0) ∈ Rn+1 and take ξ = (ξ̂, ξn+1) ∈ Rn+1 such that Φ(ξ) = 1 and (A.3) holds. By our
assumption on ∂BΦ it follows that ϕ(ξ̂) = Φ(ξ̂, 0) ≤ Φ(ξ̂, ξn+1) = 1, hence by (2.4)

Φo(ξ̂∗, 0) ≤ ϕo(ξ̂∗)ϕ(ξ̂) ≤ ϕo(ξ̂∗).

This and (2.5) imply ϕo(ξ̂∗) = Φo(ξ̂∗, 0), i.e.
(

Φ|{ξn+1=0}

)o
= Φo

|{ξ∗n+1=0}
.

Now assume that equality in (2.5) holds. Take any ξ = (ξ̂, ξn+1) ∈ Rn+1 and select ξ̂∗ ∈ Rn such
that ϕo(ξ̂∗) = Φo(ξ̂∗, 0) = 1 and ϕ(ξ̂) = ξ̂ · ξ̂∗. Then by (2.4)

Φ(ξ̂, 0) =ϕ(ξ̂) = ξ̂ · ξ̂∗ = (ξ̂, ξn+1) · (ξ̂∗, 0) ≤ Φ(ξ̂, ξn+1).

�

A.3. Partially monotone norms.

Proposition A.5 (Characterization of partially monotone norms). The norm Φ : Rn+1 → [0,+∞)
is partially monotone if and only if there exists a positively one-homogeneous convex function ω :
[0,+∞)× [0,+∞)→ [0,+∞) satisfying

ω(1, 0), ω(0, 1) > 0, ω(s1, s2) ≤ ω(t1, t2), 0 ≤ si ≤ ti, i = 1, 2, (A.4)

such that
Φ(ξ̂, ξn+1) = ω(ϕ(ξ̂), |ξn+1|), (A.5)

7Following [27, Theorem 3.3] one can prove a more general statement, namely, if f ∈ BVloc(A), then∫
A

ϕo1(Dxf) =

∫
R
dt

∫
At

ϕo1(Dx(f
∣∣
At

)),

∫
A

ϕo2(Dtf) =

∫
Rn

dx

∫
Ax

ϕo2(Dt(f
∣∣
Ax

)).
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where ϕ = Φ|{ξn+1=0}
.

Proof. Concerning the “if” part, one checks that the function Φ defined as (A.5) is a partially monotone
norm on Rn+1. Now, let us prove the “only if” part. Choose any η̂ ∈ Rn with ϕ(η̂) = 1 and define
the function ω : [0,+∞) × [0,+∞) → [0,+∞) as ω(s, t) := Φ(sη̂, t) for s, t ≥ 0. Since Φ is
convex and positively one-homogeneous, so is ω. Moreover, the relations Φ(η̂, 0) = 1, Φ(0, 1) > 0
and partial monotonicity of Φ imply that ω satisfies (A.4). Now it remains to prove (A.5). Comparing
ξ = (ξ̂, ξn+1) ∈ Rn+1 with η = (ϕ(ξ̂)η̂, |ξn+1|) ∈ Rn+1 in (4.2) and using the relation Φ(0, ξn+1) =
Φ(0, |ξn+1|) and partial monotonicity, we find

Φ(ξ̂, ξn+1) = Φ(ϕ(ξ̂)η̂, |ξn+1|) = ω(ϕ(ξ̂), |ξn+1|).

�

Notice that for Φ as in (A.5) we have

Φo(ξ̂∗, ξ∗n+1) = ωo(ϕo(ξ̂∗), |ξ∗n+1|), (A.6)

where ωo : [0,+∞)× [0,+∞)→ [0,+∞) is defined as

ωo(s∗1, s
∗
2) = sup{s1s

∗
1 + s2s

∗
2 : s1, s2 ∈ [0,+∞), ω(s1, s2) ≤ 1}, s∗1, s∗2 ∈ [0,+∞). (A.7)

Indeed, take any ξ∗ = (ξ̂∗, ξ∗n+1) ∈ (Rn+1)∗. Let ξ = (ξ̂, ξn+1) ∈ Rn+1 be such that Φ(ξ) =

ω(ϕ(ξ̂), |ξn+1|) ≤ 1 and ξ · ξ∗ = Φo(ξ∗). Then using (2.4) twice we get

Φo(ξ∗) =ξ̂ · ξ̂∗ + ξn+1 · ξ∗n+1 ≤ ϕ(ξ̂)ϕo(ξ̂∗) + |ξn+1| · |ξ∗n+1|

≤ω(ϕ(ξ̂), |ξn+1|)ωo(ϕo(ξ̂∗), |ξ∗n+1|) ≤ ωo(ϕo(ξ̂∗), |ξ∗n+1|).
(A.8)

On the other hand, for any ξ∗ ∈ (Rn+1)∗ there exist ξ̂ ∈ Rn such that ϕ(ξ̂) ≤ 1 and

ξ̂ · ξ̂∗ = ϕo(ξ̂∗).

Moreover, by definition of ωo one can find (s1, s2) ∈ [0,+∞)× [0,+∞) such that ω(s1, s2) ≤ 1 and
ωo(ϕo(ξ̂∗), |ξ∗n+1|) = s1ϕ

o(ξ̂∗) + s2|ξ∗n+1|. Using (A.4) for (s1ϕ(ξ̂), s2 sign(ξ∗n+1)) and (s1, s2) one
has

Φ(s1ξ̂, s2 sign(ξ∗n+1)) = ω(s1ϕ(ξ̂), s2| sign(ξn+1)|) ≤ ω(s1, s2) ≤ 1.

Thus,

ωo(ϕo(ξ̂∗), |ξ∗n+1|) =s1ϕ
o(ξ̂∗) + s2|ξ∗n+1| = (s1ξ̂) · ξ̂∗ + (s2 sign(ξ∗n+1)) · ξ∗n+1

≤Φ(s1ξ̂, s2 sign(ξ∗n+1))Φo(ξ̂∗, ξ∗n+1) ≤ Φo(ξ̂∗, ξ∗n+1).
(A.9)

From (A.8)-(A.9) we get (A.6).

Remark A.6. The norm Φ : Rn+1 → [0,+∞) is partially monotone if and only if Φo is partially
monotone.

We give the proof of the following lemma which is used in the proof Theorem 4.6.

Lemma A.7. Suppose that Φ : Rn+1 → [0,+∞) is a partially monotone norm, E,F ∈ BVloc(Ω̂×R)

such that for every Â ∈ Ac(Ω̂)∫
Â×R

Φo(DxχE , 0) ≤
∫
Â×R

Φo(DxχF , 0),

∫
Â×R

Φo(0, DtχE) ≤
∫
Â×R

Φo(0, DtχF ). (A.10)

Then for any Â ∈ Ac(Ω̂) we have∫
Â×R

Φo(DxχE , DtχE) ≤
∫
Â×R

Φo(DxχF , DtχF ). (A.11)
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Proof. We may assume that
∫
Â×R Φo(DxχF , DtχF ) < +∞. Then

∫
Â×R Φo(DxχE , DtχE) < +∞.

Indeed, since all norms in Rn+1 are comparable, there exists c, C > 0 such that

cΦo(ξ) ≤ Φo(ξ̂, 0) + Φo(0, ξn+1) ≤ CΦo(ξ), ξ ∈ Rn+1,

thus

c

∫
Â×R

Φo(DxχE , DtχE) ≤
∫
Â×R

Φo(DxχE , 0) +

∫
Â×R

Φo(0, DtχE)

≤
∫
Â×R

Φo(DxχF , 0) +

∫
Â×R

Φo(0, DtχF ) ≤ C
∫
Â×R

Φo(DxχF , DtχF ).

By definition of Φ -perimeter and Proposition A.5, for any ε > 0 there exists η ∈ Cc(Â × R;BΦ)
such that Φ(η) = ω(ϕ(η̂), |ηn+1|) ≤ 1 and∫

Â×R
Φo(DχE)− ε < −

∫
Â×R

div ηdx =

∫
Â×R

η ·DχE . (A.12)

Then from (A.10), (A.5), (A.7) and (A.6) we get∫
Â×R

η ·DχE =

∫
Â×R

 n∑
j=1

ηj ·DxjχE + ηn+1DtχE


≤
∫
Â×R

(ϕ(η̂) dϕo(DxχE) + |ηn+1| d|DtχE |) ≤
∫
Â×R

(ϕ(η̂) dϕo(DxχF ) + |ηn+1| d|DtχF |)

≤
∫
Â×R

ω(ϕ(η̂), |ηn+1|) dωo(ϕo(DxχF ), |DtχF |) ≤
∫
Â×R

ωo(ϕo(DxχF ), |DtχF |))

=

∫
Â×R

Φo(DχF ).

This inequality, (A.12) and arbitrariness of ε yield (A.11).
�
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