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Abstract. We consider the following class of equations with exponential nonlinearities on a compact

surface M :

−∆u = ρ1

(
h1 eu´
M h1 eu

−
1

|M |

)
− ρ2

(
h2 e−u´
M h2 e−u

−
1

|M |

)
,

which is associated to the mean field equation of the equilibrium turbulence with arbitrarily signed

vortices. Here h1, h2 are smooth positive functions and ρ1, ρ2 are two positive parameters.

We start by proving a concentration phenomena for the above equation, which leads to a-priori bound

for the solutions of this problem provided ρi /∈ 8πN, i = 1, 2.

Then we study the blow up behavior when ρ1 crosses 8π and ρ2 /∈ 8πN. By performing a suitable
decomposition of the above equation and using the shadow system that was introduced for the SU(3)

Toda system, we can compute the Leray-Schauder topological degree for ρ1 ∈ (0, 8π) ∪ (8π, 16π) and

ρ2 /∈ 8πN.
As a byproduct our argument, we give new existence results when the underlying manifold is a sphere

and a new proof for some known existence result.

1. Introduction

In this paper we are concerned with a mean field equation of the followin type

−∆u = ρ1

(
h1 e

u´
M
h1 eu

− 1

|M |

)
− ρ2

(
h2 e

−u´
M
h2 e−u

− 1

|M |

)
on M, (1.1)

where ∆ is the Laplace-Beltrami operator, ρ1, ρ2 are two positive parameters, h1, h2 are smooth positive
functions and M is a compact orientable surface without boundary. Throughout the paper, for the sake
of simplicity we normalize the total volume of M so that |M | = 1.

Equation (1.1) plays an important role in mathematical physics, as it arises as a mean field equation of
the equilibrium turbulence with arbitrarily signed vortices, see Joyce and Montgomery [29] and Pointin
and Lundgren [45]. In this model the vortices are made of positive and negative intensities with the same
value; here u is associated with the stream function of the fluid while ρ1/ρ2 corresponds to the ratio of the
numbers of the signed vortices. See, for instance, [16, 37, 39, 40, 43] and the references therein. When the
nonlinear term e−u in (1.1) is replaced by e−γu with γ > 0, the equation (1.1) describes a more general
type of equation which arises in the context of the statistical mechanics description of 2D-turbulence. For
the recent developments of such equation, we refer the readers to [44, 47, 48] and the references therein.
Moreover, let us point out that equation (1.1) has some connections with geometry; in fact, the case
ρ1 = ρ2 turns out to be useful in the construction of constant mean curvature surfaces as explained in
[52, 53].

The goal of this paper is to compute the Leray-Schauder degree of (1.1). To describe the main features
of the problem we will first focus on the one-parameter case (when ρ2 = 0) of (1.1), i.e. the standard
mean field equation. For future purposes, let us consider a generalization of it, in which singular sources
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appear on the right-hand side of (1.1), namely

−∆u = ρ

(
h eu´
M
h eu

− 1

)
− 4π

∑
q∈S

αq(δq − 1), (1.2)

where S is a finite set of points in M and αq ≥ 0 for all q ∈ S. Roughly speaking, in the blow up analysis
of problem (1.1) when one component of (eu, e−u) blows up and the other one stays bounded, equation
(1.1) resembles the one with singular sources (1.2).

Equation (1.2) has a close relation with geometry as it rules the change of Gaussian curvature under
conformal deformation of the underlying metric. Indeed, when aq = 0 for all q ∈ S, setting g̃ = e2vg one
gets

∆g̃ = e−2v∆g, −∆gv = Kg̃e
2v −Kg,

where Kg and Kg̃ are the Gaussian curvatures of (M, g) and of (M, g̃) respectively. More in general, when
aq 6= 0 for some q ∈ S, the new metric will have a conic singularity at the point q. Equation (1.2) also
appears in mathematical physics in the description of the abelian or non-abelian Chern-Simons gauge
field theory; we refer the interested reader to [9, 20, 21, 31, 42]. There is an extensive literature on (1.2)
in the past decades, see [2, 6, 7, 10, 11, 19, 12, 13, 14, 15, 18, 33, 35, 38, 41, 50, 51].

One of the main difficulties in attacking this kind of problems is due to the lack of compactness; indeed,
the solutions of (1.2) might blow up. This phenomena was treated in [6, 5, 8, 32, 34] where the authors
proved a quantization result. More precisely, if we have blow up at a regular point xR ∈ M \ S for a
sequence (un)n of solutions to (1.2), it holds

lim
r→0

lim
n→+∞

ρ

´
Br(xR)

h eun´
M
h eun

= 8π.

On the other hand, if blow up occurs at a singular point xS ∈ S with weight 4πα then one has

lim
r→0

lim
n→+∞

ρ

´
Br(xS)

h eun´
M
h eun

= 8π(1 + α).

Let us introduce the set Σ of the critical parameters and it plays a crucial role for this class of equations:

Σ : =

{
8Nπ + Σq∈A8π(1 + αq) : A ⊆ S, N ∈ N ∪ {0}

}
\ {0}

=
{

8akπ : k = 1, 2, 3, . . .
}
,

(1.3)

where ak will be defined in (1.4). By some further analysis, see for example [6, 4, 8, 34], from the above
quantization result it follows that the set of solutions to (1.2) is uniformly bounded in C2,β for any fixed
β ∈ (0, 1) provided that ρ /∈ Σ. Thus, the Leray-Schauder degree dρ of (1.2) is well-defined for ρ /∈ Σ.
It was first pointed out in [32] that this degree should depend only on the topology of M for the case
without singularities and that d(ρ) = 1 for ρ < 8π. Moreover, by the homotopic invariance of the degree,
we have that it is a constant in each interval (8akπ, 8ak+1π), where a0 = 0. Finally, in [13]-[15], Chen
and Lin derived the topological degree counting formula, see Theorem A.

The numbers ak are combinations of the elements of the set Σ and they can be expressed through the
following generating function Ξ0 :

Ξ0(x) =
(
1 + x+ x2 + x3 + · · ·

)−χ(M)+|S|
Πq∈S(1− x1+αq )

=1 + c1x
a1 + c2x

a2 + · · ·+ ckx
ak + · · · , (1.4)

where χ(M) denotes the Euler characteristic of M. Moreover, it would be helpful to define a modified
generating function:

Ξ1(x) =
(
1 + x+ x2 + x3 + · · ·

)−χ(M)+1+|S|
Πq∈S(1− x1+αq )

=1 + c̃1x
ã1 + c̃2x

ã2 + · · ·+ c̃kx
ãk + · · · .

(1.5)

It is easy to see that

(1 + x+ x2 + x3 · · · )−χ(M)+1 = 1 + b1x+ b2x
2 + · · ·+ bkx

k + · · · .
where

bk =

(
k − χ(M)

k

)
, (1.6)
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and (
k − χ(M)

k

)
=

{
(k−χ(M))···(1−χ(M))

k! if k ≥ 1,
1 if k = 0.

With these ingredients one can express the Leray-Schauder degree for (1.2) as stated in the following
result.
Theorem A. ([15]) Let dρ be the Leray-Schauder degree for (1.2), ak and c̃k be defined in (1.4) and
(1.5), respectively. Suppose 8akπ < ρ < 8ak+1π. Then

dρ = c̃k,

where dρ = 1 for k = 0.

Remark 1. It is not difficult to see that when αq = 0 for any q ∈ S the above formula can cover the
degree counting formula for the regular case obtained in [13] and it holds dρ = bk. On the other hand,
an interesting case is when αq ∈ N for any q ∈ S. In this situation the set Σ in (1.3) has the form
Σ = {8nπ : n ∈ N} and the generating function Ξ1 in (1.5) can be expressed as

Ξ1(x) =
(
1 + x+ x2 + x3 + · · ·

)−χ(M)+1
Πq∈S

(
1 + x+ · · ·+ xαq

)
.

By direct computations, when |S| = 1 and αq = 2 we can get the explicit representation of Ξ1 as follows

Ξ1(x) = 1 + (b1 + 1)x+ (b2 + b1 + 1)x2 + · · ·+ (bk + bk−1 + bk−2)xk + · · ·

and it will appear in Theorem 1.6 and Theorem 1.7.

Concerning the mean field equation (1.1) there are fewer result regarding blow up analysis. However,
one still expects an analogous quantization property to hold. This was indeed proved in [28] for the
case h1 = h2 = h by exploiting the geometric interpretation of equation (1.1) and a quantization result
concerning harmonic maps; recently, in [27] the authors generalized this result for any choice of the two
positive functions h1, h2. For a blow up point p and a sequence (un)n of solutions to (1.1) it holds

lim
r→0

lim
n→+∞

ρ1

´
Br(p)

h eun´
M
h eun

∈ 8πN,

lim
r→0

lim
n→+∞

ρ2

´
Br(p)

h e−un´
M
h e−un

∈ 8πN.

Let us point out that the case of multiples of 8π indeed occurs, see [22, 23].

On the other hand, the topological degree theory for equation (1.1) is still not developed. Indeed,
the existence result to (1.1) relies mainly on variational techniques and Morse theory, see for example
[3, 24, 25]. The only result regarding the topological degree was obtained in [26] where the author
proved that the degree is always odd provided the two parameters are comparable, namely ρ1, ρ2 ∈
(8kπ, 8(k + 1)π), k ∈ N.

The aim of this paper is to study the blow up behavior of (1.1) in the first non-trivial case, namely
when ρ1 crosses 8π and ρ2 /∈ 8πN. Then, exploiting this analysis we will provide the first degree formula
for this class of equations. It is easy to see that equation (1.1) is invariant by adding constant to the
solutions. Therefore, we assume that

´
M
u = 0 and throughout the paper we will always work in the

following space:

H̊1 =

{
u ∈ H1(M) :

ˆ
M

u = 0

}
.

The first step in this program is to understand under which conditions the blow up phenomena occur. We
point out that the following result can be obtained by suitably modifying the argument in [6, 4, 8, 34];
however, it was never proved in full details. We provide here an alternative proof, see Section 2, which is
based on a concentration property of the blowing up solutions and which is interesting by itself.
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Theorem 1.1. Suppose hi are positive smooth functions and ρi /∈ 8πN, i = 1, 2. Then, there exists a
positive constant C such that for any solution of equation (1.1), there holds:

|u(x)| ≤ C ∀x ∈M.

It follows that the topological degree dSG of equation (1.1) is well-defined for ρi /∈ 8πN, i = 1, 2. Observing
that by deforming the equation one gets dSG = dρ2 for ρ1 < 8π and ρ2 /∈ 8πN, where dρ2 denotes the
degree associated to equation (1.2) with S = ∅. Moreover, dρ2 is known by Theorem A; therefore, our
goal in this paper is to compute the degree dSG for ρ1 ∈ (8π, 16π). By the homotopic invariance, we
can get the degree is a constant in each interval (8kπ, 8(k + 1)π), k ∈ N. Then our work is reduced to
calculate the difference between the degree for ρ1 ∈ (0, 8π) and ρ1 ∈ (8π, 16π) provided ρ2 is fixed. This
jump might be not zero due to the contribution by the degree of the bubbling solutions for ρ1 crosses
8π, ρ2 /∈ 8πN, see the proof of Theorem 1.7 for more details.

For n ∈ N we let

dSG(n) = dSG for ρ1 ∈ (8nπ, 8(n+ 1)π), ρ2 /∈ 8πN (1.7)

we have the following formula:

dSG(n+ 1) = dSG(n) +
{

degree of the blow up solutions for ρ1 crosses 8(n+ 1)π
}
.

In order to compute the jump of the degree we start by decomposing u such that u = v1 − v2, where
v1, v2 satisfy 

∆v1 + ρ1

(
h1e

v1−v2´
M
h1ev1−v2

− 1

)
= 0,

´
M
v1 = 0,

∆v2 + ρ2

(
h2e

v2−v1´
M
h2ev2−v1

− 1

)
= 0,

´
M
v2 = 0.

(1.8)

Concerning the equation (1.1) and the system (1.8), we have the following result, see Section 2.

Theorem 1.2. Let dSG denote the topological degree for the equation (1.1). Then, the topological degree
ds of the system (1.8) is well defined and we have

dSG = ds .

As a consequence of Theorem 1.2, we can rewrite the problem (1.1) in an equivalent way in terms of
the above system (1.8) such that the their degree are coincide. Then we focus on the problem (1.8) and
calculate the degree jump when ρ1 crosses 8π. Specifically, we need to compute the topological degree
of the bubbling solution of (1.8) when ρ1 crosses 8π, ρ2 /∈ 8πN. Let us now introduce the Green function
G(x, p):

−∆G(x, p) = δp − 1 in M, with

ˆ
M

G(x, p) = 0.

We will denote R(x, p) as the regular part of the Green function G(x, p). Then, we have the following
result, see Section 3.

Theorem 1.3. Let (v1k, v2k) be a sequence of solutions to (1.8) with (ρ1k, ρ2k) → (8π, ρ2), and assume
max
M

(v1k, v2k)→∞. Then, it holds:

(i) For some p ∈M we have

ρ1k
h1e

v1k−v2k´
M
h1ev1k−v2k

→ 8πδp . (1.9)

(ii) v2k → w in C2,α(M): moreover the couple (p, w) satisfies
∆w + ρ2

(
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

− 1

)
= 0,

∇
(

log(h1e
−w)(x) + 4πR(x, x)

)
|x=p

= 0.
(1.10)
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The system (1.10) is called the shadow system of (1.8). Similar systems were obtained in [36] and [17].
We say (p, w) is a non-degenerate solution of (1.10) if the linearized system in (p, w) admits only trivial
solution. By using the transversality theorem, we will prove in Section 3 that we can always choose
two positive functions h1, h2 such that the solutions of (1.10) are non-degenerate. Since the topological
degree is independent of h1, h2, we may assume that all the solutions of (1.10) are non-degenerate and this
non-degenerate property is necessary in our approach. On the contrary, for any non-degenerate solution
(p, w) of (1.10) we can construct a sequence of bubbling solutions (v1k, v2,k) of (1.8) with ρ1k → 8π,
ρ2 /∈ 8πN such that (1.10) holds and v2k → w.

We will see that for a sequence of bubbling solutions which blows up a point p, the rate of |ρ1k − 8π|
plays a crucial role in all the arguments (see for example Theorem 1.5) and it is related to the following
quantity:

l(p) = ∆ log h1(p)− ρ2 + 8π − 2K(p), (1.11)

where K(p) is the Gaussian curvature at p.

Theorem 1.4. Let (p, w) be a non-degenerate solution of (1.8), ρ2 /∈ 8πN and suppose l(p) 6= 0, where
l(p) is given in (1.11). Then, there exists a sequence of bubbling solutions (v1k, v2k) to (1.8) with ρ1k → 8π
such that (i) and (ii) of Theorem 1.3 hold true.

Roughly speaking, the proof of the above result will follow by considering the solutions of (1.8) in the
set of the bubbling solutions satisfying (i) and (ii) of Theorem 1.3 and showing that the associated degree
is not zero. More precisely, we will get the conclusion of Theorem 1.4 once we prove Theorem 1.5, see
Sections 4, 5 and 6.

Due to the presence of this kind of solutions, we need to compute the topological degree of (1.8)
contributed by these bubbling solutions. In particular we will see it is enough to consider the bubbling
solutions contained in the subset Sρ1(p, w)×Sρ2(p, w), see (4.15) and (4.16) in Section 4 for the definition
of Sρi(p, w), i = 1, 2. Let dT (p, w) denote the degree contributed by the solutions (v1k, v2k) ∈ Sρ1(p, w)×
Sρ2(p, w) and dS(p, w) denote the degree of the shadow system (1.10) contributed by the Morse index
of (p, w). Then we have the following result (see Section 6 for the argument concerning the following
results).

Theorem 1.5. Let ρ2 /∈ 8πN and suppose that (p, w) is a non-degenerate solution of (1.10) and l(p) 6= 0,
where l(p) is given in (1.11). Let dT (p, w) and dS(p, w) be defined as above. Then

dT (p, w) = −sgn(ρ1 − 8π) dS(p, w).

Once we get Theorem 1.5, it is natural for us to consider the degree of the shadow system. The idea of
solving this problem is to decouple the system (1.10) and then we use Theorem A to get the degree of
the first equation in (1.10). The explicit result is stated in the following:

Theorem 1.6. Assume ρ2 /∈ 8πN. Then the set of solutions (p, w) for (1.10) is pre-compact in the space

M × H̊1(M). Let dS denote the topological degree for (1.10). Then

dS = χ(M)
(
bk + bk−1 + bk−2

)
, ρ2 ∈ (8kπ, 8(k + 1)π), (1.12)

where b−1 = b−2 = 0.

Finally, by using the Theorems 1.5, 1.6 and the fact that dSG = dρ2 for ρ1 < 8π, which is given in
Theorem A (see also Remark 1), we can derive the following main result of the paper:

Theorem 1.7. Let dSG denote the topological degree for (1.1), then

dSG =

{
bk, ρ1 ∈ (0, 8π),
bk − χ(M)

(
bk + bk−1 + bk−2

)
, ρ1 ∈ (8π, 16π),

ρ2 ∈ (8kπ, 8(k + 1)π),

where b−1 = b−2 = 0.

It is easy to see that when χ(M) ≤ 0 we can get bk > 0 and then dSG > 0. Therefore we can prove the
following existence result in [3].

Corollary 1.8. Let ρ1 ∈ (0, 8π) ∪ (8π, 16π), ρ2 /∈ 8πN and suppose χ(M) ≤ 0. Then dSG > 0 and the
equation (1.1) has a solution.
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When M is a sphere, we can get dSG = −1 for ρ1, ρ2 ∈ (8π, 16π) by direct computations. This result
confirms the fact of the degree is odd stated in [26] and gives a new proof for the following existence
result in [24].

Corollary 1.9. Let ρ1, ρ2 ∈ (8π, 16π) and suppose M is a sphere. Then dSG = −1 and the equation
(1.1) has a solution.

Compared with the Toda system, see [36], we have dSG = 0 for ρ1 ∈ (8π, 16π), ρ2 ∈ (16π, 24π) and we
can not deduce the existence of solutions to (1.1). Furthermore, we can get a new existence result when
the underlying manifold is a sphere when ρ1 ∈ (8π, 16π), ρ2 ∈ (24π, 32π).

Theorem 1.10. Let ρ1 ∈ (8π, 16π), ρ2 ∈ (24π, 32π) and suppose M is a sphere. Then dSG = 2 and the
equation (1.1) admits solutions.

The paper is organized as follows. In Section 2 we will prove the a-priori bound of the solutions to
equation (1.1) and we will establish the degree equivalency of problems (1.1) and (1.8). In Section 3
we will study the blow up phenomena for ρ1k → 8π, ρ2 /∈ 8πN and we will derive the shadow system
(1.10). In Section 4 we describe the set of all the possible bubbling solutions of the equation (1.8). In
Section 5 we use the description of the bubbling solutions obtained in Section 4 to get the leading terms
of the projections associated to the degree problem. In Section 6 we give the proofs for Theorems 1.4-1.7.
Finally, in the Appendix we present some useful estimates.

2. The concentration phenomenon and the equivalent formulation

In this section we will start by giving the proof of the a-priori bounds of the solutions to equation (1.1),
see Theorem 1.1. The main ingredient will be the concentration phenomena of Lemma 2.2. Then we will
prove Theorem 1.2, namely that the two problems (1.1) and (1.8) are equivalent for what concerns the
degree theory.

In order to prove Theorem 1.1 we need the following preparations. For a sequence of bubbling solution
uk of (1.1), we set

uk,1 = uk − log

ˆ
M

h1e
uk ,

uk,2 = −uk − log

ˆ
M

h2e
−uk .

Then, we have
−∆uk,1 = ρ1

(
h1 e

uk,1 − 1
)
− ρ2

(
h2 e

−uk,2 − 1
)

on M.

The blow up sets for uk,1 and uk,2 are given by

Si =

{
p ∈M : ∃{xk} ⊂M, xk → p, lim

k
uk,i(xk)→ +∞

}
, i = 1, 2, (2.1)

and we define S = S1 ∪S2. By using the Jensen’s inequality and recalling that we are working in H̊1

we have

uk = uk,1 +

ˆ
M

h1e
uk ≥ uk,1 + Ce

´
M
uk ≥ uk,1 + C

and similarly for uk,2. Therefore, we deduce that if p is a blow up point of uk,1 or uk,2, then p is also a
blow up point of uk or −uk respectively. For any p ∈ S, we finally define the local mass by

σp,i = lim
δ→0

lim
k→+∞

1

2π

ˆ
Bδ(p)

ρihie
uk,i , (2.2)

which will play a crucial role in proving Theorem 1.1. We start by observing that from the result in [27]
we have σp,i ≥ 4 for some i = {1, 2} for any p ∈ S. A consequence is that |S| < +∞, namely that the
blow up points S ⊂M form a finite set. Moreover, we can prove the following result.
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Lemma 2.1. Suppose p ∈ Si for some i ∈ {1, 2}. Then σp,i > 0.

Proof. We prove the lemma by contradiction. Without loss of generality we assume p ∈ S2 and σp,2 = 0.
We start by proving that

|uk(x)| ≤ C, in K ⊂⊂M \S, (2.3)

for some C > 0 depending on the set K. Indeed, let M1 = ∪p∈SBr0(p) with r0 such that K ⊂⊂M \M1.
Using the Green’s representation we have

uk(x) =

ˆ
M

G(x, z)
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
=

ˆ
M1

G(x, z)
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
+

ˆ
M\M1

G(x, z)
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
,

Since G(x, z) is bounded for z ∈M1 and x ∈ K, it is not difficult to prove thatˆ
M1

G(x, z)
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
= O(1).

On the other hand, in M \M1 uk,i are bounded above by some constant which depends on r0, thus it is
possible to deduce thatˆ

M\M1

G(x, z)
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
= O(1).

This proves the claim. We point out that by the same argument one gets that uk has bounded oscillation
in any compact subset of M \S. This fact will be then used in the proof of Theorem 1.1.

Now, by assumption σ2p = 0: therefore, we can take r0 such thatˆ
Br0 (p)

ρ2h2e
uk,2 ≤ π (2.4)

for all k. and r0 ≤ 1
2d(p,S \ {p}). On ∂Br0(p), by (2.3)

|uk| ≤ C on ∂Br0(p). (2.5)

Let û1k satisfy the following equation{
∆û1k = ρ1

(
h1e

uk´
M
h1e

uk
− 1
)

in Br0(p),

û1k = uk on ∂Br0(p).
(2.6)

We set û1k = û2k + û3k, where û2k and û3k satisfy{
∆û2k = ρ1

h1e
uk´

M
h1e

uk
in Br0(p), û2k = uk on ∂Br0(p),

∆û3k = −ρ1 in Br0(p), û3k = 0 on ∂Br0(p).
(2.7)

Exploiting the maximum principle we directly get û2k ≤ max∂Br0 (p) uk ≤ C by (2.5) in Br0(p). Moreover,

clearly |û3k| ≤ C by elliptic estimates. We conclude that

û1k ≤ C in Br0(p). (2.8)

We write now −uk = ũ1k + ũ2k + û1k, where ũ1k and ũ2k satisfy{
∆ũ1k = −ρ2

h2e
−uk´

M
h2e
−uk in Br0(p), ũ1k = 0 on ∂Br0(p),

∆ũ2k = ρ2 in Br0(p), ũ2k = 0 on ∂Br0(p).
(2.9)

As before we have |ũ2k| ≤ C in Br0(p). Letting gk = ũ2k + û1k, the first equation in (2.9) can be written
as

∆ũ1k + ρ2
h2e

gk´
M
h2e−uk

eũ1k = 0 in Br0(p), ũ1k = 0 on ∂Br0(p). (2.10)

By Jensen’s inequality and recalling that we are working in H̊1 we observe that
´
M
h2e
−uk ≥ Ce

´
M
−uk ≥

C > 0. Finally, setting Vk = ρ2
h2e

gk´
M
h2e
−uk , we have Vk ≤ C in Br0(p), for some C depending on r0.

Moreover, using (2.4) we get ˆ
Br0 (p)

Vke
ũ1k ≤ π.



8 ALEKS JEVNIKAR, JUNCHENG WEI, AND WEN YANG

It follows that by [8, Corollary 3] we have |ũ1k| ≤ C and hence

−uk = ũ1k + ũ2k + û1k ≤ C in Br0(p).

We conclude that uk,2 = −uk −
´
M
he−uk ≤ C in Br0(p), which contradicts the fact that uk,2 blows up

at p. The proof is completed. �

The crucial property of the blowing up sequences to (1.1), which will be used in the proof of Theorem 1.1,
is stated in the next lemma.

Lemma 2.2. Suppose uk,1, uk,2 both blow up at p ∈M and let

(σp,1, σp,2) =
(
2m(m+ 1), 2m(m− 1)

)
.

Then

uk,1 → −∞ in Br0(p) \ {p},
where r0 is small enough such that Br0(p) ∩ (S \ {p}) = ∅.

Proof. Suppose by contradiction the claim is not true; it follows that uk,1 > −C on ∂Br0(p), for some
C. Without loss of generality, we assume m = 2. The proof of the cases m ≥ 3 are similar. Let
f1k = ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1) and zk be the solution of{

−∆zk = f1k in Br0(p),
zk = −C on ∂Br0(p).

(2.11)

Clearly by Lemma 2.1 we have f1k → f1 uniformly in any compact set of Br0(p) \ {p}. Moreover, by
assumption we get ˆ

Br0 (p)

f1k = 16π + o(1) as r0 → 0. (2.12)

By the maximum principle we observe that uk,1 ≥ zk in Br0(p). It follows thatˆ
Br0 (p)

ezk ≤
ˆ
Br0 (p)

euk,1 <∞. (2.13)

On the other hand, since the regular part of the Green function is bounded, by the Green’s representation
formula we have

zk(x) = −
ˆ
Br0 (p)

1

2π
ln |x− y|

(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
+O(1). (2.14)

For any x ∈ Br0(p) \ {p} we let r = 1
2dist(x, p) and we split the above integral in the following way:

zk(x) =−
ˆ
Br0 (p)

1

2π
ln |x− y|

(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
+O(1)

=−
ˆ
Br0 (p)∩Br(x)

1

2π
ln |x− y|

(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
−
ˆ
Br0 (p)\Br(x)

1

2π
ln |x− y|

(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
+O(1).

By the assumption uk,i are uniformly bounded above in Br(x), i = 1, 2; it follows that∣∣∣ˆ
Br0 (p)∩Br(x)

ln |x− y|
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)∣∣∣ ≤ C,
for some C > 0 depending only on x. For y ∈ Br0(p) \ Br(x), recalling (2.12), it is not difficult to see
that ˆ

Br0 (p)\Br(x)

ln |x− y|
(
ρ1(h1e

uk,1 − 1)− ρ2(h2e
uk,2 − 1)

)
= (16π + o(1)) ln |x− p|+O(1).

Therefore, we get that zk(x) is uniformly bounded by some constant that depends on x only. Thus, we
have zk → z in C2

loc(Br0(p) \ {p}), where z satisfies{
−∆z = f1 in Br0(p) \ {p},
z = −C on ∂Br0(p).
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Then, for any ϕ ∈ C∞0 (Br0(p)), by standard arguments and using (2.12) one gets

lim
k→+∞

ˆ
Br0 (p)

ϕ(−∆zk) = lim
k→+∞

ˆ
Br0 (p)

(ϕ(x)− ϕ(p))(−∆zk) + ϕ(p)

ˆ
Br0 (p)

f1 + 16π

=

ˆ
Br0 (p)

ϕ(x)f1 + 16πϕ(p).

Thus, −∆z = f1 + 16πδp in Br0(p). Therefore, we have z(x) ≥ 8 log 1
|x−p| +O(1) as x→ p and we deduceˆ

Br0 (p)

ez =∞,

a contradiction to (2.13). The proof is concluded. �

By using these lemmas we are now in position to prove the bound of the solution to equation (1.1) in
Theorem 1.1.

Proof of Theorem 1.1. We can write (1.1) as

−∆uk = ρ1

(
h1 e

uk,1 − 1
)
− ρ2

(
h2 e

−uk,2 − 1
)

on M.

Thus, by elliptic estimates it is enough for us to prove that uk,i are uniformly bounded above. Suppose
this is not true.

At first, we claim that S1 6= ∅. If not, uk,1 is uniformly bounded above while uk,2 blows up. Letting

h̃2k = h2e
−u1k we write uk = u1k − u2k, where u1k and u2k satisfies{

∆u1k + ρ1(h1e
uk,1 − 1) = 0,

´
M
u1k = 0,

∆u2k + ρ2

(
h̃2ke

u2k´
M
h̃2ke

u2k
− 1
)

= 0,
´
M
u2k = 0.

By the Lp estimate, u1k is bounded in W 2,p for any p > 1 and hence we deduce that u1k is bounded
in C1,α for any α ∈ (0, 1). After eventually passing to a subsequence, u1k converges to û1 in C1,α. We

conclude that h̃2k → h2e
−û1 in C1,α. By the fact that uk,2 blows up, also u2k blows up. Therefore, we

are in position to applying the result in [34] and get ρ2 ∈ 8πN, which contradicts our assumption. Thus
S1 6= ∅. Similarly, S2 6= ∅.

By similar arguments one can show that S1 ∩S2 6= ∅. In fact, suppose S1 ∩S2 = ∅. Let p ∈ S2, and

take r0 small enough such that Br0(p)∩(S\{p}) = ∅. Letting ĥ2k = h2e
u3k we decompose uk,2 = u3k+u4k

such that u3k and u4k satisfy{
∆u3k − ρ1(heuk,1 − 1) = 0 in Br0(p), u3k = 0 on ∂Br0(p),

∆u4k + ρ2(ĥ2ke
u4k − 1) = 0 in Br0(p), u4k = uk,2 on ∂Br0(p).

(2.15)

By construction uk,1 is uniformly bounded from above in Br0(p), hence ĥ2k converges to some function
in C1,α(Br0(p)). On the other hand, u4k blows up at p and by the result in [32] we get∣∣∣∣∣∣∣∣∣u4k − log

 eu4k(p(k))(
1 + ρ2ĥ2k(p(k))eu4k(p(k))

8 |x− p(k)|2
)2


∣∣∣∣∣∣∣∣∣ ≤ C in Br0(p), (2.16)

where u4k

(
p(k)

)
= maxBr0 (p) u4k. From (2.16) and by the definition of ĥ we have

u4k → −∞ in Br0(p) \ {p},
ρ2h2e

uk,2 → 8πδp in Br0(p).
(2.17)

As a consequence, we have

ρ2 = lim
k→∞

ˆ
M

ρ2h2e
uk,2 = 8π|S2|, (2.18)

a contradiction to our assumption ρ2 /∈ 8πN, so S1 ∩S2 6= ∅.
Let p ∈ S1 ∩S2, and σp,i, i = 1, 2 be the local masses. Applying the result in [27] we deduce

(σp,1, σp,2) =
(
2m(m− 1), 2m(m+ 1)

)
or

(
2m(m+ 1), 2m(m− 1)

)
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for some integer m > 0. By Lemma 2.1 we have m ≥ 2. Suppose for example that σp,1 = 2m(m + 1)
and σp,2 = 2m(m− 1). Applying Lemma 2.2 we have that uk,1 concentrates, i.e. uk,1 → −∞ uniformly
in any compact set of Br0(p) \ {p}. Since uk,1 has bounded oscillation outside the blow up set, see the
argument after (2.3), it follows uk,1 → −∞ uniformly in any compact set of M \S1. Reasoning as before
we get

ρ1h1e
uk,1 → αq

∑
q∈S1\{p}

δq + 4πm(m+ 1)δp with αq = 8nπ for some integer n, (2.19)

which implies ρ1 ∈ 8πN and thus we get a contradiction. Following exactly the same process we can also
get a contradiction if (σp,1, σp,2) =

(
2m(m−1), 2m(m+1)

)
. This concludes the proof of the Theorem 1.1.

�

The second part of this section is concerned with the proof of Theorem 1.2, that is the equivalence of
the topological degree between the equation (1.1) and the system∆v1 + ρ1

(
h1e

v1−v2´
M
h1ev1−v2

− 1
)

= 0,
´
M
v1 = 0,

∆v2 + ρ2

(
h2e

v2−v1´
M
h2ev2−v1

− 1
)

= 0,
´
M
v2 = 0,

(2.20)

where u = v1 − v2.

Proof of Theorem 1.2. By Theorem 1.1 we have that the degree dSG is well defined for ρ1, ρ2 /∈ 8πN. As
we discussed in the introduction, we decompose u = v1 − v2, where v1, v2 satisfy (2.20).

It is easy to see that such decomposition is unique, i.e. for a given solution u to (1.1) we can find a
unique solution (v1, v2) to (2.20) such that u = v1 − v2. On the other hand, if (v1, v2) is a solution to
(2.20), u = v1 − v2 is automatically a solution to (1.1).

Consider now a solution (v1, v2) to (2.20). We start by observing that since v1−v2 is a solution to (1.1),
it is bounded for ρi /∈ 8πN, i = 1, 2, see Theorem 1.1. Moreover, notice that

´
M
ev1−v2 ≥ C > 0 by Jensen’s

inequality. Therefore, by elliptic estimates we get also v1, v2 are bounded provided ρi /∈ 8πN, i = 1, 2. It
follows that the topological degree ds of the system (2.20) is well defined in this range of parameters.

Next, we prove that the Morse index of a solution u to (1.1) is exactly the same as the Morse index of
the corresponding solution (v1, v2) to (2.20). We consider the linearized equation of (1.1) at u,

L(φ) =∆φ+ ρ1
h1e

u´
M
h1eu

φ− ρ1
h1e

u

(
´
M
h1eu)2

ˆ
M

h1e
uφ

+ ρ2
h2e
−u´

M
h2e−u

φ− ρ2
h2e
−u

(
´
M
h2e−u)2

ˆ
M

h2e
−uφ.

If φ is an eigenfunction of the linearized operator of L with negative eigenvalue λ, i.e.

L(φ) + λφ = 0 with λ < 0, (2.21)

we decompose φ as φ = φ1 − φ2, where φ1 and φ2 satisfy

∆φ1 + ρ1
h1e

u´
M
h1eu

(φ1 − φ2)− ρ1
h1e

u

(
´
M
h1eu)2

ˆ
M

h1e
u(φ1 − φ2) + λφ1 = 0,

∆φ2 + ρ2
h2e
−u´

M
h2e−u

(φ2 − φ1)− ρ2
h2e
−u

(
´
M
h2e−u)2

ˆ
M

h2e
−u(φ2 − φ1) + λφ2 = 0. (2.22)

In the following, we claim there is a map between φ and such (φ1, φ2) and this map is one to one. Indeed,
for any function φ and parameter λ negative, we consider the following system:

(∆ + λ)φ1 + ρ1
h1e

u´
M
h1eu

φ− ρ1
h1e

u

(
´
M
h1eu)2

ˆ
M

h1e
uφ = 0,

(∆ + λ)φ2 − ρ2
h2e
−u´

M
h2e−u

φ+ ρ2
h2e
−u

(
´
M
h2e−u)2

ˆ
M

h2e
−uφ = 0. (2.23)

For fixed φ and λ negative, we can always solve (2.23) and get a unique solution (φ1, φ2). While for any
solution (φ1, φ2) of (2.23) and λ negative, φ = φ1 − φ2 is automatically a solution of (2.21). Hence, we
prove the claim.
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On the other hand, we can see that (2.22) is nothing but the linearized equation of (2.20) at (v1, v2).
Therefore, the Morse index of the solution u to (1.1) is same as the Morse index of the solution (v1, v2) to
(2.20). According to the definition of the topological degree and since the decomposition for u is unique,
we can conclude that the topological degree of these two equations are the same.

�

3. shadow system

The first goal of this section is to provide a proof of Theorem 1.3 by studying the blow up phenomena
for ρ1k → 8π, ρ2k → ρ2 with ρ2 /∈ 8πN. In the second part of the section we will prove that it is possible
to choose h1, h2 such that the associated shadow system is non-degenerate.

Proof of Theorem 1.3. Let ρ2 /∈ 8πN and (ρ1k, ρ2k)→ (8π, ρ2). Consider a sequence of solutions (v1k, v2k)
to (1.8) such that maxM (v1k, v2k)→ +∞.

We claim that v2k converges to some function w in C1,α(M) (passing to a subsequence if necessary)
and that v1k blows up at only one point.

Indeed, we have that uk = v1k − v2k is a solution of (1.1). Then, from the proof of Theorem 1.1,
−uk = v2k − v1k is uniformly bounded above: by using Jensen’s inequality and the classical elliptic
estimates, from the second equation in (1.8) we conclude v2k is uniformly bounded in C1,α and hence
the first part of the claim is proved. As a consequence we deduce that maxM v1k → +∞. Furthermore,
noticing that ρ1 → 8π, v1k blows up at only one point, say p ∈M.

We write the first equation in (1.8) as

∆v1k + ρ1k

(
h̃1ke

v1k´
M
h̃1kev1k

− 1

)
= 0, (3.1)

where h̃1k = h1e
−v2k . We define v̂1k = v1k − log

´
M
hke

v1k . Due to the C1,α convergence of h̃1k, we can
apply the following result of Li [32]:∣∣∣∣∣∣∣v̂1k − log

eλk(
1 + ρ1kh̃1k(p(k))eλk

8 |x− p(k)|2
)2

∣∣∣∣∣∣∣ < c for |x− p(k)| < r0, (3.2)

where λk = v̂1k(p(k)) = maxx∈Br0 (p) v̂1k. It follows that

v̂1k → −∞ in M \ {p} and ρ1k
h1e

v1k−v2k´
M
h1ev1k−v2k

→ 8πδp, (3.3)

This conclude the first part of Theorem 1.1. Moreover, in this setting the authors in [12] proved that

∇
(

log(h1e
−w) + 4πR(x, x)

)
|x=p= 0, (3.4)

which gives the second equation in (1.10).

Reasoning as in Lemma 2.4 in [36], one can use the following property in [12]:∣∣∣∣∣∣∣∇v̂1k −∇

log
eλk(

1 + ρ1kh̃1k(p(k))eλk

8 |x− p(k)|2
)2


∣∣∣∣∣∣∣ < c for |x− p(k)| < r0

and get v2k → w in C2,α(M). From this convergence we are in position to apply a result in [32], which
asserts that

v1k → 8πG(x, p) in C2,α(M \ {p}).
The above convergence jointly with v2k → w in C2,α(M) yields that w satisfies the following equation:

∆w + ρ2

(
h ew−8πG(x,p)´
M
h ew−8πG(x,p)

− 1

)
= 0. (3.5)

This proves the first equation in (1.10). Therefore, we finish the proof of Theorem 1.2.
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�

The second part of this section is devoted in showing the non-degeneracy of the shadow system (1.10),
see Proposition 3.2. This will be carried out by applying the well-known transversality theorem, which
can be found [1, 46] and the references therein. Although we can suitably adapt the argument in [36],
for the sake of completeness we give the details here.

First, we give some notations. Let H, B and E be Banach manifolds with H and E separable. Let
F : H×B → E be a Ck map. We say y ∈ E is a regular value if every point x ∈ F−1(y) is a regular point;
x ∈ H×B is a regular point of F if DxF : Tx(H×B)→ TF (x)E is onto. We say a set A is a residual set
in B if A is a countable intersection of open dense sets in B, which implies in particular that A is dense
in B (B is a Banach space), see [30].

Theorem 3.1 ([1, 46]). Let H, B, E be as above and let F : H× B → E be a Ck map. If 0 is a regular
value of F and Fb = F (·, b) is a Fredholm map of index less than k, then the set{

b ∈ B : 0 is a regular value of Fb

}
is residual in B. In particular, the above set is dense in B.

With this in hand we can now prove the following result, which will be used crucially in the sequel
when we construct approximate blow up solutions to (1.8).

Proposition 3.2. There exist h1, h2 positive smooth functions such that the solutions to the shadow
system (1.10) are non-degenerate.

Proof. Following the notations in Theorem 3.1, we denote

H = W̊ 2,p(M)×M, B = C2,α(M)× C2,α(M), E = R2 × W̊ 0,p(M),

where

W̊ 2,p(M) :=

{
f ∈W 2,p |

ˆ
M

f = 0

}
, W̊ 0,p(M) :=

{
f ∈ Lp |

ˆ
M

f = 0

}
.

We consider the map

T (w, p, h1, h2) =

 ∆w + ρ2

(
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p) − 1

)
∇ log

(
h1e
−w + 4πR(x, x)

)
(p)

 . (3.6)

Clearly, T is C1. In order to apply Theorem 3.1: we have to prove that

(i) T (·, ·, h1, h2) is a Fredholm map of index 0,
(ii) 0 is a regular value of T.

We start by proving (i). We have

T ′w,p(w, p, h1, h2)[φ, ν] =

[
T0(w, p, h1, h2)[φ, ν]
T1(w, p, h1, h2)[φ, ν]

]
, (3.7)

where

T0(w, p, h1, h2)[φ, ν] = ∆φ+ ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

φ

− ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)φ

− 8πρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

∇G(x, p) · ν

+ 8πρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)∇G(x, p) · ν,

T1(w, p, h1, h2)[φ, ν] =∇2
x

(
log h1e

−w + 4πR(x, x)
)
|x=p ·ν −∇φ(p).
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The idea now is to decompose the map in the following way:

T ′w,p[φ, ν] =

[
T01

T11

]
[φ, ν] +

[
T02

T12

]
[φ, ν], (3.8)

where

T11 = 0, T12 = T1,

T01(w, p, h1, h2)[φ, ν] =∆φ+ ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

φ

− ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)φ,

and

T02(w, p, h1, h2)[φ, ν] =− 8πρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

∇G(x, p)ν

+ 8πρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)∇G(x, p)ν.

Let T1 =

[
T01

T11

]
and T2 =

[
T02

T12

]
. In this way we notice that T1 is a symmetric operator; it follows

that T1 is a Fredholm operator of index 0. Combining the Sobolev inequality and the fact that R2 is a
finite Euclidean space, it is possible to show that T2 is a compact operator. Therefore, by the operator
theory, see for example [30], we get T1 +T2 is also a Fredholm linear operator with index 0. We conclude
that T is a Fredholm map with index 0 and (i) is proved.

We are left with the proof of (ii), i.e. that 0 is a regular value. One gets

T ′h1
(w, p, h1, h2)[H1] =

[
0

∇H1

h1
(p)− ∇h1

(h1)2H1(p)

]
,

and

T ′h2
(w, p, h1, h2)[H2]

=

[
ρ2

H2e
w−8πG(x,p)´

M
h2ew−8πG(x,p) − ρ2

h2e
w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

´
M
H2e

w−8πG(x,p)

0

]
.

By choosing ν = 0 and H1 such that ∇H1

h1
(p)− ∇h1

(h1)2H1(p) = ∇φ we obtain

T ′w,p(w, p, h1, h2)[φ, ν] + T ′h1
(w, p, h1, h2)[H1]

=

[
∆φ+ ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)φ− ρ2

h2e
w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

´
M
h2e

w−8πG(x,p)φ

0

]
,

which is a symmetric operator and hence a Fredholm operator of index 0. For this choice of ν and H1,
we claim that[

f
0

]
⊂
(
T ′w,p(w, p, h1, h2)[φ, ν] + T ′h1

(w, p, h1, h2)[H1]
)

+ T ′h2
(w, p, h1, h2)[H2],

for all f ∈ W̊ 0,p. One can observe that it is enough to prove that only φ = 0 can satisfy

φ ∈ Ker

{
∆ ·+ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

· −ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)·

}
and 〈

φ, ρ2
H2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

− ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

H2e
w−8πG(x,p)

〉
= 0,

for all H2 ∈ C2,α(M). The latter property can be rewritten as〈
φ, ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

H2

h2
− ρ2

h2e
w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)H2

h2

〉
= 0.
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We set now

L = ∆ ·+ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

· −ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p) · .

Since φ ∈ Ker(L) we have that
ˆ
M

L(φ) ·H2 = 0, ∀H2 ∈W 0,p(M). (3.9)

On the other hand C2,α(M) is dense in W 0,p(M) and〈
φ, ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

H2 − ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

h2e
w−8πG(x,p)H2

〉
= 0,

therefore, we get ˆ
M

∆φ ·H2 = 0, ∀ H2 ∈W 0,p(M). (3.10)

It follows that

∆φ = 0 in M,

ˆ
M

φ = 0, (3.11)

which yields φ ≡ 0. Thus the claim holds true.

On the other hand, one can find two functions H1,1 and H1,2 such that

∇H1,1

h1
(p)− ∇h1

(h1)2
H1,1(p) = (1, 0),

and
∇H1,2

h1
(p)− ∇h1

(h1)2
H1,2(p) = (0, 1).

Then it is not difficult to see that [
0
c

]
⊂ DT (w, p, h1, h2)[φ, ν],

for all c ∈ R2. This concludes the proof that the differential map is onto. Hence we get (ii), i.e. that 0 is
a regular point of T.

Applying Theorem 3.1 we have that{
(h1, h2) ∈ B : 0 is a regular value of T (·, ·, h1, h2)

}
is residual in B. Since T (w, p, h1, h2) is a Fredholm map of index 0 for fixed h1, h2, we have{

(h1, h2) ∈ B : the solution (w, p) of T (·, ·, h1, h2) = 0 is non-degenerate
}

is residual in B. In particular, it is dense in B. Thus, we can choose h1, h2 > 0 such that the solution of
(1.10) is non-degenerate. �

Remark 2. Recall that

l(p) = ∆ log h1(p)− ρ2 + 8π − 2K(p)

plays a crucial role in the arguments. A consequence of Theorem 3.2 is that we can always choose h1 and
h2 to make both the solutions to the shadow system (1.10) non-degenerate and l(p) 6= 0.
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4. The set of blowing up solutions

The aim of this section is to describe the set of all possible bubbling solutions of (1.8): in particular,
we shall prove that they are contained in the set Sρ1(p, w) × Sρ2(p, w) when ρ1 → 8π, ρ2 /∈ 8πN, where
the definition of Sρi(p, w), i = 1, 2 is given in (4.15) and (4.16). The latter description will be used to
calculate the topological degree of (1.8). For the sake of simplicity we assume M has a flat metric near
a neighborhood of each blow up point (for the general description, see for example [13]).

The strategy is the following: observing that the first equation in (1.8) can be written as

∆v1k + ρ1k

(
h̃ke

v1k´
M
h̃kev1k

− 1

)
= 0,

where

h̃k = h1e
−v2k .

Since h̃k → h in C2,α(M), see Section 3, all the estimates in [12, 13] can be applied in this framework.
To this end we recall now all the tools introduced in [12, 13], which are now based on a non-degenerate
solution (p, w) of (1.10).

Let (p, w) be a non-degenerate solution of (1.10) and set

h = h1e
−w. (4.1)

We notice that

∇x
(

log h+ 4πR(x, x)
)
|x=p= ∇x

(
log h(x) + 8πR(x, p)

)
|x=p= 0. (4.2)

For a point q such that |q − p| � 1 and λ� 1, we introduce

U(x) = log

 eλ(
1 + ρ1h(q)

8 eλ|x− q|2
)2

 . (4.3)

It is known that U(x) satisfies

∆U(x) + ρ1h(q) eU = 0 in R2, U(q) = max
R2

U(x) = λ. (4.4)

Following the argument in [12, 13] we define

H(x) = exp

{
log

h(x)

h(q)
+ 8πR(x, q)− 8πR(q, q)

}
− 1, (4.5)

and

s = λ+ 2 log

(
ρ1h(q)

8

)
+ 8πR(q, q) + 2

∆H(q)

ρ1h(q)

λ2

eλ
. (4.6)

Remark 3. We point out that in case we do not have flat metric around the blow up points, the function
H in (4.5) should be modified using a conformal function φ which in particular it satisfies ∆φ = −2Keφ.
Keeping this in mind, in the following arguments one gets ∆H(q) = l(q)C.

Furthermore, let σ0(t) be a cut-off function:

σ0(t) =

{
1 if |t| < r0,
0 if |t| ≥ 2r0.

(4.7)

Set σ(x) = σ0(|x− q|) and

J(x) =

{ (
H(x)−∇H(q) · (x− q)

)
σ(x), x ∈ B2r0(q),

0, x /∈ B2r0(q).

Finally, let η(x) such that {
∆η + ρ1h(q) eU

(
η + J(x)

)
= 0 on R2,

η(q) = 0, ∇η(q) = 0.
(4.8)

The existence of the above function η was proved in [13]. Furthermore, the following result holds true.
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Lemma 4.1. ([13]) Let R =
√

ρ1h(q)
8 eλ. For h ∈ C2,α(M) and large λ there exists a solution η satisfying

(4.8) and the following:

(i) η(x) = −8∆H(q)

ρ1h(q)
e−λ

(
log
(
R|x− q|+ 2

))2

+O(λe−λ) on B2r0(q),

(ii) η, ∇xη, ∂qη, ∂λη, ∇x∂qη, ∇x∂λη = O(λ2e−λ) on B2r0(q).

The blowing up solutions will be very well approximated by the following functions vq,λ,a, see Proposi-
tion 4.2 below:

vq(x) =
(
U(x) + η(x) + 8π

(
R(x, q)−R(q, q)

)
+ s
)
σ(x) + 8πG(x, q)

(
1− σ(x)

)
,

vq = 1
|M |
´
M
vq,

vq,λ,a = a(vq − vq).

(4.9)

We notice that vq(x) depends on q and λ. We will show that the error term in the approximation belongs
to following sets:

O
(1)
q,λ =

{
φ ∈ H̊1(M)

∣∣∣ ˆ
M

∇φ · ∇vq =

ˆ
M

∇φ · ∇∂qvq =

ˆ
M

∇φ · ∇∂λvq = 0

}
, (4.10)

and

O
(2)
q,λ =

{
ψ ∈W 2,p(M)

∣∣∣ ˆ ψ = 0

}
, p > 2. (4.11)

The idea will be then to consider the following decomposition

H̊1 = O
(1)
q,λ

⊕{
linear subspace spanned by vq, ∂λvq and ∂qvq

}
.

For future references, for any (q, λ) we define

t = λ+ 8πR(q, q) + 2 log
ρ1h(q)

8
+

2∆H(q)

ρ1h(q)
λ2e−λ − vq = s− vq. (4.12)

The last construction is concerned with ρ1 6= 8π. For a non-degenerate solution (p, w) of (1.10) we
define λ(ρ1) such that

ρ1 − 8π =
2
(
∆ log h(p) + 8π − 2K(p)

)
h(p)

λ(ρ1) e−λ(ρ1), (4.13)

where K(p) is the Gaussian curvature in p. By (1.10) we have e−8πG(x,p) |x=p= 0 and ∆w(p) = ρ2.
Therefore

∆ log h(p) + 8π − 2K(p) =∆ log h1(p)− ρ2 + 8π − 2K(p). (4.14)

We stress that to be λ(ρ1) well-defined one has to require

∆ log h1(p)− ρ2 + 8π − 2K(p) 6= 0.

Let c1 be a positive constant, which will be chosen later. Recall the definitions of O
(1)
q,λ, O

(2)
q,λ in (4.10)

and (4.11), respectively. For ρ1 6= 8π we set

Sρ1(p, w) =
{
v1 = vq,λ,a + φ

∣∣∣ |q − p| ≤ c1λ(ρ1) e−λ(ρ1),

|λ− λ(ρ1)| ≤ c1λ(ρ1)−1, |a− 1| ≤ c1λ(ρ1)−
1
2 e−λ(ρ1),

φ ∈ O(1)
q,λ and ‖φ‖H1(M) ≤ c1λ(ρ1) e−λ(ρ1)

}
, (4.15)

and

Sρ2(p, w) =
{
v2 = w + ψ

∣∣∣ ψ ∈ O(2)
q,λ and ‖ψ‖∗ ≤ c1λ(ρ1) e−λ(ρ1)

}
, (4.16)

where ‖ψ‖∗ = ‖ψ‖W 2,p(M).
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The goal is to prove that for a sequence of bubbling solutions (v1k, v2k) of (1.8), ρ1k → 8π, ρ2 /∈ 8πN,
we have

(v1k, v2k) ∈ Sρ1k(p, w)× Sρ2(p, w).

More precisely:

Proposition 4.2. Let (v1k, v2k) be a sequence of blow up solutions of (1.8) for ρ1k → 8π, ρ2 /∈ 8πN: in
particular v1k blows up at p, weakly converges to 8πG(x, p) and v2k → w in C2,α(M). Suppose (p, w) is
a non-degenerate solution of (1.10) and

∆ log h1(p)− ρ2 + 8π − 2K(p) 6= 0. (4.17)

Then, there exist q∗k, λ∗k, a
∗
k, φ

∗
k, ψ

∗
k such that

v1k = vq∗k,λ∗k,a∗k + φ∗k, v2k = w + ψ∗k, (4.18)

and (v1k, v2k) ∈ Sρ1k(p, w)× Sρ2(p, w).

Proof. Recall that v1k and v2k satisfy ∆v1k + ρ1k

(
h1e

v1k−v2k´
M
h1e

v1k−v2k − 1
)

= 0,

∆v2k + ρ2

(
h2e

v2k−v1k´
M
h2e

v2k−v1k − 1
)

= 0.
(4.19)

We write the first equation of the above system as

∆v1k + ρ1k

(
h̃ke

v1k´
M
h̃kev1k

− 1

)
= 0, (4.20)

where

h̃k = h1e
−v2k = he−ψk and ψk = v2k − w. (4.21)

We recall now the following fact: since h̃k → h in C2,α(M), see Section 3, all the estimates in [12, 13] can
be applied in this framework. This will lead to the approximation of v1k. In the second step we use the
latter approximation jointly with the non-degeneracy of the shadow system (1.10) to get the estimate of
the error term in the approximation of v2k and in turn of the error of v1k.

We follow the arguments in [12, 13]. All the details can be found in these papers. Let q̃k be the
maximal point of ṽ1k near p, where

ṽ1k = v1k − log

ˆ
M

h̃k e
v1k .

As in page 13 of [12] we let

λk = ṽ1k(q̃k)− log

ˆ
M

h̃k e
v1k .

Around q̃k we set

Ũk(x) = log
eλk(

1 + ρ1kh̃k(qk)
8 eλk |x− qk|2

)2 .

where qk is chosen such that

∇Ũk(q̃k) = ∇ log h̃k(q̃k).

It is easy to check that |qk− q̃k| = O(e−λk). Then the error terms of the approximation inside and outside
Br0(qk) are given by

η̃k(x) = ṽ1k − Ũk(y)−
(
8πR(x, qk)− 8πR(qk, qk)

)
, in Br0(qk), (4.22)

ξk(x) = v1k(x)− 8πG(x, qk) = ṽ1k(x)− 8πG(x, qk)− ¯̃v1k, in M \Br0(qk). (4.23)

By the Lemma 5.3 in [12] we have

ξk(x) = O(λke
−λk) for x ∈M \Br0(qk). (4.24)

By a straightforward computation, see page 20 in [12], the error term η̃k satisfies

∆η̃k + ρ1k h̃k(qk) eŨkH̃k(x, η̃k) = 0, (4.25)
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where (see also (4.29))

H̃k(x, t) = exp

{
log

h̃k(x)

h̃k(qk)
+ 8π

(
R(x, qk)−R(qk, qk)

)
+ t

}
− 1

=Hk(x) + t+O(|t|2),

and

Hk(x) = exp

{
log

h̃k(x)

h̃k(qk)
+ 8πR(x, qk)− 8πR(qk, qk)

}
− 1.

Except for the higher-order terms, equation (4.25) resembles the one in (4.8). By Theorem 1.4 in [12]
one has

η̃k(x) = − 8

ρ1k h̃k(qk)
∆Hk(qk) e−λk

(
log(Rk|x− qk|+ 2)

)2
+O(λk e

−λk), (4.26)

for x ∈ B2r0(qk), where Rk =

√
ρ1kh̃k(qk)

8 eλk .

Moreover, from [12, Theorem 1.1, Theorem 1.4 and Lemma 5.4], we have the following estimates:

ρ1k − 8π =
2
(
∆ log h̃k(qk) + 8π − 2K(qk)

)
h̃k(qk)

λke
−λk +O(e−λk), (4.27)

ṽ1k + λk + 2 log
ρ1kh̃k(qk)

8
+ 8πR(qk, qk) +

2∆Hk(qk)

ρ1kh̃k(qk)
λ2
k e
−λk = O(λk e

−λk), (4.28)

and

|∇Hk(qk)| = O(λk e
−λk). (4.29)

With these preparations, we now let ηk be defined as in (4.8) and vqk,λk,ak be defined as in (4.9) with
q = qk, λ = λk, a = ak = 1 and h replaced by hk. We start by observing that from Lemma 4.1 and (4.26)
we deduce

ηk(x) = η̃k +O(λke
−λk) for x ∈ B2r0(qk). (4.30)

For x ∈ Br0(qk), recalling the definition of s in (4.6):

vqk,λk,ak = Ũk(x) + ηk(x) +
(
8πR(x, qk)− 8πR(qk, qk)

)
+ λk + 2 log

ρ1kh̃k(qk)

8

+ 8πR(qk, qk) +
2∆Hk(qk)

ρ1kh̃k(qk)
λ2
ke
−λk − vqk ,

where vqk stands for the average of vqk . From [13, Lemma 2.2 and Lemma 2.3], we have

vqk − 8πG(x, qk) = O(λk e
−λk) in M \Br0(qk),

vqk = O(λk e
−λk).

(4.31)

By (4.22), (4.28), (4.30) and (4.31), we have

v1k − vqk,λk,ak = ṽ1k + log

ˆ
M

h̃ke
v1k − vqk,λk,ak

= ṽ1k − Ũk −
(
8πR(x, x)− 8πR(x, qk)

)
− ηk(x) +O(λk e

−λk)

= η̃k(x)− ηk(x) +O(λk e
−λk) = O(λk e

−λk) (4.32)

for x ∈ Br0(qk). For x ∈M \Br0(qk), by (4.23) and (4.31) we get

v1k − vqk,λk,ak = v1k − 8πG(x, qk)− (vqk − 8πG(x, qk)) + vqk = O(λk e
−λk).

Thus, we conclude that

v1k = vqk,λk,ak + φk, where ‖φk‖L∞(M) < c̃λk e
−λk , (4.33)

where c̃ is independent of ψk.
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Next, to get the estimate of the error ψk we evaluate it on the linearized operator of the first equation
in the shadow system (1.10). By using v2k = w + ψk and the second equation of (4.19) we get

L(ψk) = I1 + I2 + I3, (4.34)

where

L(ψk) = ∆ψk + ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

ψk

− ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

(h2e
w−8πG(x,p)ψk)

− 8πρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

(
∇G(x, p)(qk − p)

)
+ 8πρ2

h2e
w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

(
h2e

w−8πG(x,p)(∇G(x, p)(qk − p))
)
,

I1 =− ρ2
h2e

w+ψk−v1k´
M
h2ew+ψk−v1k

+ ρ2
h2e

w+ψk−8πG(x,qk)´
M
h2ew+ψk−8πG(x,qk)

,

I2 =ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

− ρ2
h2e

w+ψk−8πG(x,p)´
M
h2ew+ψk−8πG(x,p)

+ ρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

ψk

− ρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

(h2e
w−8πG(x,p)ψk),

and

I3 =− ρ2
h2e

w+ψk−8πG(x,qk)´
M
h2ew+ψk−8πG(x,qk)

+ ρ2
h2e

w+ψk−8πG(x,p)´
M
h2ew+ψk−8πG(x,p)

− 8πρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

(∇G(x, p)(qk − p))

+ 8πρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

(
h2e

w−8πG(x,p)(∇G(x, p)(qk − p))
)
.

Reasoning as in [36] and decomposing the domain into Br0(qk) and M \Br0(qk), it is not difficult to show
that I1 = O(λk e

−λk) and I2 = O(‖ψk‖2∗). Concerning I3, we divide it into three parts: I3 = I31 +I32 +I33,
where

I31 = − ρ2
h2e

w+ψk−8πG(x,qk)´
M
h2ew+ψk−8πG(x,qk)

+ ρ2
h2e

w+ψk−8πG(x,p)´
M
h2ew+ψk−8πG(x,p)

− 8πρ2
h2e

w+ψk−8πG(x,p)´
M
h2ew+ψk−8πG(x,p)

(
∇G(x, p)(qk − p)

)
+ 8πρ2

h2e
w+ψk−8πG(x,p)

(
´
M
h2ew+ψk−8πG(x,p))2

ˆ
M

(
h2e

w+ψk−8πG(x,p)(∇G(x, p)(qk − p))
)
,

I32 = 8πρ2
h2e

w−8πG(x,p)

(
´
M
h2ew−8πG(x,p))2

ˆ
M

(
h2e

w−8πG(x,p)(∇G(x, p)(qk − p))
)

− 8πρ2
h2e

w+ψk−8πG(x,p)

(
´
M
h2ew+ψk−8πG(x,p))2

ˆ
M

(
h2e

w+ψk−8πG(x,p)(∇G(x, p)(qk − p))
)
,
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and

I33 = 8πρ2
h2e

w+ψk−8πG(x,p)´
M
h2ew+ψk−8πG(x,p)

(
∇G(x, p)(qk − p)

)
− 8πρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

(
∇G(x, p)(qk − p)

)
.

It is not difficult to see

I31 = O(|qk − p|2), I32 = O(1)‖ψ‖∗|qk − p|, I33 = O(1)‖ψ‖∗|qk − p|.
In conclusion we have the estimate

L(ψk) = o(1)‖ψk‖∗ +O
(
‖ψk‖2∗ + λke

−λk
)

+O(|p− qk|2). (4.35)

Now, to get the estimate of the error |p − qk| we evaluate it on the linearized operator of the second
equation in the shadow system (1.10). By the definition of Hk (see below (4.25)) and (4.29), we have

∇Hk(qk) = ∇ log h(qk)−∇ψk(qk) + 8π∇R(qk, qk) = O(λke
−λk). (4.36)

By (4.2) and (4.36), using Taylor’s expansion we have

∇2
(

log h(p) + 8πR(p, p)
)
(qk − p)−∇ψk(p)

= ∇ log h(qk)−∇ψk(qk) + 8π∇R(qk, qk)−
(
∇ log h(p) + 8π∇R(p, p)

)
+∇ψk(qk)−∇ψk(p) +O(|p− qk|2)

= ∇Hk(qk)−∇H(p) +O
(
|p− qk|γ‖ψk‖∗

)
+O(|p− qk|2), (4.37)

= O(λke
−λk) +O

(
|p− qk|γ‖ψk‖∗

)
+O(|p− qk|2), (4.38)

where γ depends on p. In the last step we used ∇H(p) = 0.

Using the estimates (4.35)-(4.37) and the non-degeneracy of (p, w), we obtain

‖ψk‖∗ + |p− qk| ≤ C
(
λke
−λk + o(1)‖ψk‖∗ + ‖ψk‖2∗ + |p− qk|2

)
, (4.39)

where C is a constant independent of k and ψk. Therefore, we have

‖ψk‖∗ = O(λke
−λk), |p− qk| = O(λke

−λk). (4.40)

By the above estimates, recalling now (4.13), (4.21) and (4.27) we deduce

λk − λ(ρ1k) = O(λ(ρ1k)−1), h̃k = h+O(λ(ρ1k) e−λ(ρ1k)), |qk − p| = O(λ(ρ1k) e−λ(ρ1k)) (4.41)

and

v2k − w = O(λ(ρ1k) e−λ(ρ1k)). (4.42)

We replace h̃k by h in the definition of vq and we denote the new function still by vq. By the second
estimate in (4.40) we have

vqk − vq = O(λ(ρ1k) e−λ(ρ1k)).

We set

vq,λ,a = vq − vq. (4.43)

By (4.33) and (4.43) it follows

v1k − vq,λ,a = O(λ(ρ1k) e−λ(ρ1k)). (4.44)

Finally, once we get the existence of vq,λ,a with the above property, by [13, Lemma 3.2] one can deduce
that there exists a unique triplet (q∗k, λ

∗
k, a
∗
k) that satisfy the condition in the definition (4.15) of Sρ1k(p, w)

and φ∗ ∈ O(1)
q∗k,λ

∗
k

such that

v1k = vq∗k,λ∗k,a∗k + φ∗k . (4.45)

Therefore, we conclude

(v1k, v2k) ∈ Sρ1k(p, w)× Sρ2(p, w).

�
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From the latter result we are able to characterize the blow up situation.

Theorem 4.3. Suppose h1, h2 are two positive C2,α function on M such that

(a) Any solution (p, w) of (1.10) is non-degenerate.
(b) ∆ log h1(p)− ρ2 + 8π − 2K(p) 6= 0.

Then, there exist ε0 > 0 and C > 0 such that for any solution of (1.8) with ρ1 ∈ (8π − ε0, 8π + ε0), ρ2 /∈
8πN, we have the following alternative: either

(i) |v1|, |v2| ≤ C, ∀x ∈M ,
or

(ii) (v1, v2) ∈ Sρ1(p, w)× Sρ2(p, w) for some solution (p, w) of (1.10).

Remark 4. As we have pointed out in the Introduction, for a sequence of solutions bubbling around a
point p, the rate of |ρ1k − 8π| is related to

l(p) = ∆ log h1(p)− ρ2 + 8π − 2K(p).

More precisely, as observed in [13] (see also [15, 36]) we get that

sgn(ρ1k − 8π) = sgn(l(p)),

see for example (4.27) (and (4.41)). We will see how this fact plays a role in the proof of Theorem 1.7
(see also Theorem 1.5).

5. Analysis of the nonlinear operator

Our final goal is to compute the degree of the following nonlinear operator:(
v1

v2

)
= (−∆)−1

 ρ1

(
h1e

v1−v2´
M
h1ev1−v2

− 1
)

ρ2

(
h2e

v2−v1´
M
h2ev2−v1

− 1
)
 .

In this section we will analyze the latter operator in the space Sρ1(p, w)× Sρ2(p, w). Set

T (v1, v2) =

(
T1(v1, v2)
T2(v1, v2)

)
= ∆−1

 ρ1

(
h1e

v1−v2´
M
h1ev1−v2

− 1
)

ρ2

(
h2e

v2−v1´
M
h2ev2−v1

− 1
)
 . (5.1)

We know that the degree can be calculated by considering the contributions of the blowing up solutions
as ρ1 → 8π. We have proved in Proposition 4.2 that all the blowing up solutions are contained in the set
Sρ1(p, w)×Sρ2(p, w), see the definitions (4.15) and (4.16). Furthermore, we will actually prove that such
bubbling solutions do exist. The latter result is a byproduct of the degree formula of the operator (5.1)
(i.e. Theorem 1.5), see also the discussion in the Introduction.

We shall study the operator (5.1) in the space Sρ1(p, w)×Sρ2(p, w). Any v1 in Sρ1(p, w) is represented
by (q, λ, a, φ) while any v2 in Sρ2(p, w) is represented by (w,ψ). Therefore, the nonlinear operator v1 +
T1(v1, v2) can be expressed according to this representation. In this way we will be able to get the
leading terms of the latter operator in the set Sρ1(p, w) × Sρ2(p, w). On the other hand, the operator
v2 + T2(v1, v2) has a simpler for and it will be studied in the next section. We will see that this will lead
to count the degree on a finite-dimensional space (at least for what concerns v1 + T1(v1, v2)).

We start by analyzing the term ρ1h1e
v1−v2 . Let v1 = vq,λ,a + φ ∈ Sρ1(p, w) and y = x− q. Recalling

the definitions (4.3), (4.5), (4.6), (4.9), (4.12) and that t = s− vq, for x ∈ Br0(q) we get

vq,λ,a(x) + log
h(x)

h(q)
=U + t+H(x) + η + (a− 1)(U + s) +O

(
|a− 1|(|y|+ |η|+ |vq|)

)
.

It follows that in Br0(q), by Taylor we have

ρ1h1e
v1−v2−φ+ψ = ρ1h(q) eU+t

[
1 + (a− 1)(U + s) + η +H(x) + (a− 1)O(|y|) +O(β̃2)

]
, (5.2)
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where

β̃ = λ|a− 1|+ |η|+ |H(x)|+ |vq|.

Therefore, letting ϕ = φ− ψ we have in Br0(q)

ρ1h1e
v1−v2 = (1 + ϕ)ρ1h e

vq,λ,a + (eϕ − 1− ϕ)ρ1h e
vq,λ,a

= ρ1h(q) eU+t
[
1 + (a− 1)(U + s) + η +H(x) + (a− 1)O(|y|) + ϕ

]
+ Ẽ, (5.3)

where

Ẽ =
(
eϕ − 1− ϕ

)
ρ1h e

vq,λ,a + ρ1h(q) eU+tO(ϕ2 + β̃2). (5.4)

Using the latter expression for ρ1h1e
v1−v2 we are in position to obtain the following estimate for

´
M
ρ1h1e

v1−v2 .

Lemma 5.1. Let v1 = vq,λ,a + φ ∈ Sρ1(p, w) and v2 = w + ψ ∈ Sρ2(p, w). Then as ρ1 → 8π, ρ2 /∈ 8πN,
we haveˆ

M

ρ1h1e
v1−v2 = 8πet(1− ψ(q)) +

16π

ρ1h(q)
∆H(q)

λ

eλ
et + 16πλ(a− 1)et +O

(
|a− 1|eλ + 1

)
. (5.5)

Proof. The proof of Lemma 5.1 is by direct computations, we refer the readers to [13, Lemma 4.1] and
[36, Lemma 4.3] for details. �

By Lemma 5.1 and noting that λ = t+O(1), see (4.12), we get´
M
ρ1h1e

v1−v2

et
= 8π − 8πψ(q) +

16π

ρ1h(q)
∆H(q)λ e−λ + 16πλ(a− 1)

+O(|a− 1|) +O(e−λ). (5.6)

It is not difficult to see that et´
M
h1ev1−v2

− 1 should be small. Indeed, we have

et´
M
h1ev1−v2

− 1 =
1

e−t
´
M
ρ1h1ev1−v2

(
ρ1 −

´
M
ρ1h1e

v1−v2

et

)
= θ +O(|a− 1|) +O(e−λ), (5.7)

where θ is defined by

θ =
1

8π

[
(ρ1 − 8π)− 16π

ρ1h(q)
∆H(q)λ e−λ + 8πψ(q)− 16πλ(a− 1)

]
. (5.8)

Let

β =

∣∣∣∣ et´
M
h1ev1−v2

− 1

∣∣∣∣+ β̃, (5.9)

and

E = (eϕ − 1− ϕ)
ρ1h1e

v1−v2´
M
h1ev1−v2

+ ρ1h(q) eU
(
O(ϕ2) +O(β2)

)
. (5.10)

Consider now et´
M
h1ev1−v2

= 1 +
(

et´
M
h1ev1−v2

− 1
)

. Then, in Br0(q) we have by (5.3)

ρ1h1e
v1−v2´

M
h1ev1−v2

= (1 + ϕ)
ρ1he

vq,λ,a´
M
h1ev1−v2

+ (eϕ − 1− ϕ)
ρ1he

vq,λ,a´
M
h1ev1−v2

= ρ1h(q) eU
[
1 +

(
et´

M
h1ev1−v2

− 1

)
+ (a− 1)(U + s)

+ (a− 1)O(|y|) + η +H + ϕ+O(β2)

]
+ E. (5.11)
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Thus, in Br0(q) we get

∆
(
v1 + T1(v1, v2)

)
= ∆v1 +

ρ1h1e
v1−v2´

M
h1ev1−v2

− ρ1

= a(∆U + ∆η) + ∆φ+ 8πa+
ρ1h1e

v1−v2´
M
h1ev1−v2

− ρ1

= ∆φ− aρ1h(q) eU
[
1 + η +H −∇yH · y

]
+ 8π − ρ1 + 8π(a− 1) +

ρ1h1e
v1−v2´

M
h1ev1−v2

= ∆φ+ (8π − ρ1) + 8π(a− 1) + ρ1h(q) eU
[
(a− 1)(U + s− 1) + (a− 1)O(|y|)+

+ y · ∇H +

(
et´

M
h1ev1−v2

− 1

)
+ ϕ

]
+ E. (5.12)

Since vq − vq − 8πG(x, q) is small in B2r0(q) \Br0(q), see [13, Lemma 2.2], we just write

∆
(
v1 + T1(v1, v2)

)
= ∆φ+ a∆(vq − 8πG(x, q)) + 8π − ρ1 + 8π(a− 1)

+
ρ1h´

M
h1ev1−v2

ea(vq−vq−8πG(x,q))+8πaG(x,q)+ϕ. (5.13)

On M \B2r0(q) we have instead

∆
(
v1 + T1(v1, v2)

)
= ∆φ+ 8π − ρ1 + 8π(a− 1) +

ρ1h´
M
h1ev1−v2

e8πaG(x,q)+ϕ−avq . (5.14)

From the representation given in (5.12)-(5.14) it is possible to get the leading terms of the operator
v1 + T1(v1, v2) in the set Sρ1(p, w)× Sρ2(p, w). Recall that we are considering the decomposition

H̊1 = O
(1)
q,λ

⊕{
linear subspace spanned by vq, ∂λvq and ∂qvq

}
. (5.15)

Proposition 5.2. Let v1 = vq,λ,a + φ ∈ Sρ1(p, w), v2 = w+ψ ∈ Sρ2(p, w). Then as ρ1 → 8π, ρ2 /∈ 8πN,
we have

(1)

〈∇(v1 + T1(v1, v2)),∇φ1〉 = B(φ, φ1) +O(λ e−λ)‖φ1‖H1
0 (M), (5.16)

where

B(φ, φ1) :=

ˆ
M

∇φ · ∇φ1 −
ˆ
Br0 (q)

ρ1h(q) eUφφ1,

is a positive symmetric, bilinear form satisfying B(φ, φ) ≥ c0‖φ‖2H1(M) for some constant c0 > 0.

(2)

〈∇(v1 + T1(v1, v2)),∇∂qvq〉 =− 8π∇H(q) + 8π∇ψ(q)

+O

(
λ|a− 1|+

∣∣∣ et´
M
h1ev1−v2

− 1− ψ(q)
∣∣∣+ λe−λ

)
, (5.17)

(3)

〈∇(v1 + T1(v1, v2)),∇∂λvq〉 =− 16π(a− 1)
(
λ− 1 + log

ρ1h(q)

8
+ 4πR(q, q)

)
− 8π(θ − ψ(q))

+O
(
|a− 1|+ λ2e−

3
2λ
)

(5.18)

(4)

〈∇(v1 + T1(v1, v2)),∇vq〉 =
(

2λ− 2 + 8πR(q, q) + 2 log
ρ1h(q)

8

)
× 〈∇(v1 + T1(v1, v2)),∇∂λvq〉+ 16π(a− 1)λ

+O(1)‖φ‖H1(M) +O(λ e−λ), (5.19)
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We can prove Proposition 5.2 by straightforward computations following the argument in [13, 36] and
the sketch of the process is given in the Appendix.

We point out that being B(φ, φ1) positive definite will be crucially used in the degree analysis. Roughly
speaking, we can deduce that the part concerning φ does not affect the sign of the total degree.

6. Proof of the main Theorems 1.5-1.7

In this section we shall prove the main Theorems 1.5-1.7 and Theorem 1.4. We are concerned with the
topological degree of the operators vi + Ti(v1, v2), i = 1, 2. The strategy will be the following: we just
note that due to the decomposition (5.15), v1 = vq,λ,a+φ, v2 = w+ψ is a solution of v1 +T1(v1, v2) = 0,
if and only if all the left-hand sides of (5.16)-(5.19) vanish.

In order to solve the system (5.16)-(5.19) and v2 + T2(v1, v2) = 0, the first step is to deform the
operators vi + Ti(v1, v2), i = 1, 2, to simpler operators vi + T 0

i (v1, v2). Recall the definition of B(φ, φ1)
in Proposition 5.2. We define the operators I + T t

i , t ∈ [0, 1], i = 1, 2, through the following relations:

〈∇(v1 + T t
1(v1, v2)),∇φ1〉 = t〈∇(v1 + T1(v1, v2)),∇φ1〉+ (1− t)B(φ, φ1) for φ1 ∈ O(1)

q,λ, (6.1)

〈∇(v1 + T t
1(v1, v2)),∇∂qvq〉 = t〈∇(v1 + T1(v1, v2)),∇∂qvq〉+ (1− t)

(
− 8π∇H(q) + 8π∇ψ(q)

)
, (6.2)

〈∇(v1 + T t
1(v1, v2)),∇∂λvq〉 = t〈∇(v1 + T1(v1, v2)),∇∂λvq〉 − 8π(1− t)

[
2(a− 1)λ+ (θ − ψ(q))

]
, (6.3)

〈∇(v1 + T t
1(v1, v2)),∇vq〉 = t

[(
2λ+O(1)

)
〈∇(v1 + T t

1(v1, v2)),∇∂λvq〉

+O(1)‖φ‖H1 +O(λe−λ)
]

+ 16π(a− 1)λ, (6.4)

while for the second component

v2 + T t
2(v1, v2) = t(v2 + T2(v1, v2)) + (1− t)

(
w + ψ − ρ2(−∆)−1

(
h2e

w+ψ−8πG(x,q)´
M
h2ew+ψ−8πG(x,q)

− 1

))
, (6.5)

where the coefficients O(1) in (6.4) are those terms in (5.19) so that T 1
1 (v1, v2) = T1(v1, v2). We clearly

have
vi + Ti(v1, v2) = vi + T 1

i (v1, v2), i = 1, 2.

During the deformation from T 1
i to T 0

i , i = 1, 2, we have the following result, which will be then used in
the analysis of the associated degree.

Lemma 6.1. Assume ρ1−8π 6= 0, ρ2 /∈ 8πN and let (p, w) be a non-degenerate solution of (1.10). Then,
there exists ε1 > 0 such that

(
v1 + T t

1(v1, v2), v2 + T t
2(v1, v2)

)
6= 0 for (v1, v2) ∈ ∂

(
Sρ1(p, w)× Sρ2(p, w)

)
and t ∈ [0, 1] if |ρ1 − 8π| < ε1 and ρ2 is fixed.

Proof. One should take (v1, v2) ∈ S̄ρ1(p, w)×S̄ρ2(p, w), where S̄ρi(p, w) stands for the closure of Sρi(p, w),
i = 1, 2, such that (

v1 + T t
1(v1, v2), v2 + T t

2(v1, v2)
)

= 0, for some t ∈ [0, 1].

The goal is then to prove that (v1, v2) /∈ ∂
(
Sρ1(p, w)×Sρ2(p, w)

)
. The strategy is to use the estimates in

the decomposition (5.16)-(5.19), while for what concerns the estimates for the second component v2 one
should exploit also the non-degeneracy of (p, w) to (1.10).

Anyway, the proof of Lemma 6.1 is quite standard now and we will skip the details: similar arguments
can be found in [13, Lemma 4.3], [15, Lemma 4.1] and [36, Lemma 5.1]. �

The goal is to compute the following degree:

dT (p, w) = deg
((
v1 + T1(v1, v2), v2 + T2(v1, v2)

)
;Sρ1(p, w)× Sρ2(p, w), 0

)
. (6.6)

As we have pointed out, we want to reduce this computation to a finite-dimensional problem (at least
for v1 + T1(v1, v2)). In order to do this we set

S∗1 (p, w) =
{

(q, λ, a) : vq,λ,a + φ ∈ Sρ1(p, w), φ ∈ O(1)
q,λ

}
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and define the map Φp = (Φp,1,Φp,2,Φp,3,Φp,4) by

Φp,1 =
1

8π
〈∇(v1 + T 0

1 (v1, v2)),∇∂qvq〉,

Φp,2 = 〈∇(v1 + T 0
1 (v1, v2)),∇∂λvq〉,

Φp,3 = 〈∇(v1 + T 0
1 (v1, v2)),∇vq〉,

Φp,4 = v2 + T 0
2 (v1, v2).

We notice that due to the decomposition (5.15) and by the fact that B(φ, φ1) is positive definite, the
projection in the φ direction does not change the sign of the total degree. Moreover, by Lemma 6.1 and
the invariance of the degree we have

deg
((
v1+T1(v1, v2), v2 + T2(v1, v2)

)
;Sρ1(p, w)× Sρ2(p, w), 0

)
= deg

(
Φp;S

∗
1 (p, w)× Sρ2(p, w), 0

)
. (6.7)

We are now able to compute the right-hand side of (6.7) and prove Theorem 1.5.

Proof of Theorem 1.5. We have here to compute the degree dT (p, w) in (6.6) and prove that is relates to
the degree dS(p, w) of the shadow system (1.10) contributed by the Morse index of (p, w). To do this we
compute the right-hand side of (6.7).

We start by noting that

Φp,2 = −
(
ρ1 − 8π − 16π

∆H(q)

ρ1h(q)
λ e−λ

)
(6.8)

and

∂Φp,1
∂λ

=
∂Φp,1
∂a

=
∂Φp,2
∂a

=
∂Φp,3
∂ψ

=
∂Φp,3
∂q

=
∂Φp,4
∂a

=
∂Φp,4
∂λ

= 0, (6.9)

It is easy to see that Φp,1 = 0, Φp,3 = 0 and Φp,4 = 0 if and only if

q = p, a = 1, ψ = 0, (6.10)

and Φp,2 = 0 if and only if

ρ1 − 8π =
16π

ρ1h(q)
∆H(q)λ e−λ. (6.11)

One can show that if |ρ1 − 8π| is taken sufficiently small, equation (6.11) possesses a unique solution
λ = λ1(ρ1). Hence, (p, λ1(ρ1), a, 0) is the only solution of Φp = 0, where a = 1. To obtain the degree of
Φp at (p, λ1(ρ1), a, 0) we have to get the number of negative eigenvalues of the following matrix:

M =



∂Φp,1
∂q

∂Φp,1
∂λ

∂Φp,1
∂a

∂Φp,1
∂ψ

∂Φp,2
∂q

∂Φp,2
∂λ

∂Φp,2
∂a

∂Φp,2
∂ψ

∂Φp,3
∂q

∂Φp,3
∂λ

∂Φp,3
∂a

∂Φp,3
∂ψ

∂Φp,4
∂q

∂Φp,4
∂λ

∂Φp,4
∂a

∂Φp,4
∂ψ


.

We point out that µM is an eigenvalue of M if there exist ν ∈ R2, λ, a ∈ R and Ψ such that

M


ν
a
λ
Ψ

 = µM


ν
a
λ

(−∆)−1Ψ

 .
We set N(T ) as the number of the negative eigenvalues (with multiplicity) of the matrix T . Let

M1 =

 ∂Φp,1
∂p

∂Φp,1
∂ψ

∂Φp,4
∂p

∂Φp,4
∂ψ

 and M2 =

[ ∂Φp,2
∂λ

∂Φp,2
∂a

∂Φp,3
∂λ

∂Φp,3
∂a

]
.

By using (6.9) we conclude that

N(M) = N(M1) +N(M2),
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or equivalently

sgn
(

det(M)
)

= sgn
(

det(M1)
)

sgn
(

det(M2)
)

= sgn
(

det(M1)
)

sgn
(∂Φp,2

∂λ

)
sgn
(∂Φp,3

∂a

)
.

Therefore,

deg
(

Φp;S
∗
1 (p, w)×Sρ2(p, w), 0

)
= (−1)N(M1) sgn

(∂Φp,2
∂λ

)
sgn
(∂Φp,3

∂a

)
. (6.12)

First, by its definition it is easy to see that

sgn
(∂Φp,3

∂a

)
= 1.

To compute
∂Φp,2
∂λ , recall that we are considering q = p. We have

∂Φp,2
∂λ

= − 16π

ρ1h(p)
∆H(p)λ e−λ +O(e−λ).

Thus, by (6.11) we deduce

∂Φp,2
∂λ

= −(ρ1 − 8π) +O(e−λ).

Up to now we got from (6.12)

deg
(

Φp;S
∗
1 (p, w)×Sρ2(p, w), 0

)
= −sgn(ρ1 − 8π) (−1)N(M1).

It remains to compute N(M1). One has
∂Φp,1
∂ψ [Ψ] = ∇Ψ(p) and

∂Φp,4
∂ψ

[Ψ] = Ψ− (−∆)−1

((
ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

)
Ψ− ρ2

h2e
w−8πG(x,p)( ´

M
h2ew−8πG(x,p)

)2 ˆ
M

(
h2e

w−8πG(x,p)Ψ
))

.

Therefore, we deduce

M1

(
ν
Ψ

)
=
[∂(Φp,1,Φp,4)

∂(p, ψ)

](
ν
Ψ

)
=

(
−∇2H(p) · ν +∇Ψ(p)

−I0

)
, (6.13)

where

I0 =−Ψ + (−∆)−1

(
ρ2

h2e
w−8πG(x,p)´

M
h2ew−8πG(x,p)

Ψ− ρ2
h2e

w−8πG(x,p)( ´
M
h2ew−8πG(x,p)

)2 ˆ
M

(
h2e

w−8πG(x,p)Ψ
)

− 8πρ2
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

(
∇G(x, p) · ν

)
+ 8πρ2

h2e
w−8πG(x,p)( ´

M
h2ew−8πG(x,p)

)2 ˆ
M

[
h2e

w−8πG(x,p)
(
∇G(x, p) · ν

)])
.

We observe that (6.13) coincides with the eigenvalue problem of the linearized equation of (1.10) around
the solution (p, w). Thus, we get that N(M1) is exactly the number of the negative eigenvalues of the
linearized equation of (1.10), namely (−1)N(M1) = dS(p, w), the degree of the shadow system (1.10)
contributed by the solution (p, w). Therefore, we conclude that

dT (p, w) = −sgn(ρ1 − 8π) dS(p, w).

This concludes the proof of the Theorem 1.5.

�

As a consequence, we can state the following:

Proof of Theorem 1.4. Theorem 1.4 follows from the Theorem 1.5, see also the discussion in the Intro-
duction and at the beginning of the Section 5.

�
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The next step is to compute the total degree of the shadow system (1.10). The strategy will be to
decouple the system (1.10) and then to use Theorem A to get the degree of the first equation in (1.10).
In order to decouple the system and to simplify the problem we introduce the following deformation:

(St)


∆w + ρ2

(
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p) − 1

)
= 0,

∇
(

log(h1e
−w·(1−t)) + 4πR(x, x)

)
|x=p

= 0,
t ∈ [0, 1]. (6.14)

Clearly, we are starting from the system defined in (1.8) and we end up with a decoupled system. During
the deformation from (S1) to (S0) we have the following result, which will be then used in the degree
analysis.

Lemma 6.2. Let ρ2 /∈ 8πN. Then there exists a uniform constant Cρ2 such that for all solutions to
(6.14) we have |w|L∞(M) < Cρ2 .

Proof. Since ρ2 /∈ 8πN, by classic results concerning the blow up analysis of equation (1.2), see [6], any
solution of

∆w + ρ2

(
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p)

− 1

)
= 0 (6.15)

is uniformly bounded above. The proof of the lemma follows then by using classical elliptic estimates. �

Proof of Theorem 1.6. Since the topological degree is independent of h1 and h2, by the Theorem 3.2 we
can always choose h1 and h2 such that the solutions to the shadow system (1.10) are non-degenerate.

Let dsy denote the Leray-Schauder degree for (1.10). By Lemma 6.2 and the invariance of the degree,
we have just to compute the topological degree of (6.14) when t = 1, namely ∆w + ρ2

(
h2e

w−8πG(x,p)´
M
h2ew−8πG(x,p) − 1

)
= 0,

∇
(

log h1 + 4πR(x, x)
)
|x=p

= 0.
(6.16)

Since this is a decoupled system, the topological degree is given by the product of the degree of first
equation and the degree contributed by the second equation. By the Poincare-Hopf Theorem, the degree
of the second equation is simply χ(M), i.e. the Euler characteristic of M . On the other hand, using
Theorem A with |S| = 1 and αq = 2 (see also Remark 1), the topological degree for the first equation is
bk + bk−1 + bk−2, where bk is given (1.6). Therefore,

dsy = χ(M)
(
bk + bk−1 + bk−2

)
. (6.17)

This concludes the proof of Theorem 1.6.

�

Finally, we are now in position to prove the main Theorem 1.7.

Proof of Theorem 1.7. Theorem 1.7 is a consequence of Theorems 1.5, 1.6, 4.3 and Theorem A.
Firs of all, in order to apply these results, since the topological degree is independent of h1 and h2, by

Remark 2 we can always choose h1 and h2 such that both the solutions to the shadow system (1.10) are
non-degenerate and l(p) 6= 0, where l(p) is given in (1.11).

Using the notation introduced in (1.7) we have to prove that

dSG(2) = bk − χ(M)
(
bk + bk−1 + bk−2

)
.

As discussed in the Introduction, we know that

dSG(2) = dSG(1) +
{

degree of the blow up solutions for ρ1 crosses 8π
}
.

Since the degree of the bounded solutions stays constant when ρ1 crosses 8π, the degree jump is due to
the blow up solutions for ρ1 = 8π in the following way:

dSG(1)− d− = dSG(2)− d+, (6.18)

where d−, d+ stands for the degree contributed by the bubbling solutions when ρ1 → 8π− and ρ1 →
8π+ respectively. By Theorem 4.3 we know that all the blow up solutions are contained in the set
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Sρ1(p, w)× Sρ2(p, w) for some solution (p, w) of (1.10) such that l(p) 6= 0. Moreover, the degree of each
of these blow up solutions is given by Theorem 1.5. Furthermore, by Remark 4 we know that

sgn(ρ1 − 8π) = sgn(l(p)).

Therefore, from (6.18) we deduce

dSG(1)−
∑
l(p)<0

dS(p, w) = dSG(2) +
∑
l(p)>0

dS(p, w),

hence the jump is given by

dSG(2)− dSG(1) = −
∑
l(p)6=0

dS(p, w) = −dS ,

where dS is the total degree of the shadow system (1.10). By Theorem 1.6 we get

dSG(2)− dSG(1) = χ(M)
(
bk + bk−1 + bk−2

)
,

where bk is defined in (1.6). Since by Theorem A dSG(1) = bk, the proof of Theorem 1.7 is concluded.

�

7. Appendix: proof of Proposition 5.2

In this section we will give the proof of Proposition 5.2 which is based on the decomposition of
∆
(
v1 + T1(v1, v2)

)
in (5.12)-(5.14). We follow here [13, 36]. Let

v :=

´
Br0 (0)

eλ

(1+eλ|y|2)2
v(y) dy´

R2
eλ

(1+eλ|y|2)2
dy

=
1

π

ˆ
Br0 (0)

eλ

(1 + eλ|y|2)2
v(y) dy.

We start by pointing out the following Poincare-type inequality:ˆ
Br0 (0)

eλ

(1 + eλ|y|2)2
φ2(y) dy ≤ c

(
‖φ‖2H1(Br0 (0)) + φ

2)
, (7.1)

for some constant c = c(r0) independent of λ.

Concerning the part which contains E, see (5.10) we let ε2 > 0 be small, which will be chosen later.
Write

E = E+ + E−,

with

E+ =

{
E if |ϕ| ≥ ε2,
0 if |ϕ| < ε2,

and E− =

{
0 if |ϕ| ≥ ε2,
E if |ϕ| < ε2.

As λ→∞, we have

E+ = O(e|ϕ|+λ)

and

E− = ρ1h(q) eU (O(ϕ2) +O(β2)).

Recall now v1 ∈ Sρ1(p, w) (see (4.15)) is in the form v1 = vq,λ,a + φ, φ ∈ O(1)
q,λ (see (4.10)). We have

the following result.

Lemma 7.1. ([13]) Let U(x) and σ be defined as in (4.3) and (4.7), respectively. Assume φ ∈ O
(1)
q,λ.

Then there is a constant c and ε > 0 such that for large λ it holdsˆ
Br0 (q)

eUφdy = O(λ2e−λ‖φ‖H1), (7.2)

and ˆ
M

(
|∇φ|2 − ρ1h(q) eUσ(x)φ2

)
≥ c
ˆ
M

|∇φ|2. (7.3)
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Proof of Proposition 5.2. The proof is based on the proof of [13, Lemma 4.2] and [36, Lemma 4.4] and we

shall sketch the process here. We start with part (1). Let φ ∈ O(1)
q,λ and ψ ∈ O(2)

q,λ. Recall v1 = vq,λ,a + φ,

φ ∈ O(1)
q,λ and v2 = w + ψ, ψ ∈ O(2)

q,λ. In order to get the estimates we consider

〈∇
(
v1 + T1(v1, v2)

)
,∇φ1〉 = −〈∆

(
v1 + T1(v1, v2)

)
, φ1〉.

Recall the decomposition of ∆
(
v1 + T1(v1, v2)

)
in (5.12)-(5.14). We write

〈∇
(
v1 + T1(v1, v2)

)
,∇φ1〉 =

ˆ
∇φ · ∇φ1 −

ˆ
Br0 (q)

ρ1h(p) eUφφ1 + remainder terms

:=B(φ, φ1) + remainder terms. (7.4)

Clearly, B is a symmetric bilinear form in O
(1)
q,λ and by the second part of the Lemma 7.1, B(φ, φ) ≥

c0‖φ‖2H1(M) for some c0 > 0. For the remainder terms, recalling that
´
M
φ = 0 and by the first part of

the Lemma 7.1 we deduce ˆ
M

(
8π(a− 1) + (8π − ρ1)

)
φ1 = 0,

∣∣∣ˆ
Br0 (q)

ρ1h(p)eUφ1

∣∣∣ = O(λ2e−λ)‖φ1‖H1(M). (7.5)

Still by using Lemma 7.1 and by (5.7) we conclude that the term concerned with et´
M
h1ev1−v2

− 1 is small.

Using |∇H(q)| ≤ Cλe−λ for v1 ∈ Sρ1(p, w) we obtainˆ
Br0 (q)

∇H · (x− q)ρ1h(q) eUφ1 = O(λ e−λ)‖φ1‖H1(M). (7.6)

By Lemma 7.1, we haveˆ
Br0 (q)

ρ1h(q) eU (a− 1)(U + s− 1)φ1 = O(|a− 1|)‖φ1‖H1(M) = O(λ e−λ)‖φ1‖H1(M). (7.7)

For E+ and E− we obtain

ˆ
Br0 (q)

|E+φ1| ≤

(ˆ
Br0 (p)

|E+|2
) 1

2
(ˆ

Br0 (q)

φ2
1

) 1
2

= O(λ e−λ)‖φ1‖H1(M), (7.8)

and ˆ
Br0 (q)

|E−φ1| ≤
ˆ
Br0 (q)

ρ1h(q) eU (O(ϕ2) +O(β2))φ1

= O(ε2)(‖φ‖H1(M) + λ e−λ)‖φ1‖H1(M) +O

(
λ3

e2λ

)
‖φ1‖H1(M), (7.9)

provided ε2 is small.
For the term which involves ψ, we have∣∣∣ˆ

Br0 (q)

ρ1h(q) eUφ1ψ
∣∣∣ =

∣∣∣ ˆ
Br0 (q)

ρ1h(q) eUφ1(ψ − ψ(q))
∣∣∣+
∣∣∣ˆ
Br0 (q)

ρ1h(q) eUφ1ψ(q)
∣∣∣

= O(λ e−λ)‖φ1‖H1(M). (7.10)

We consider now the terms in M \Br0(q). By [13, Lemma 2.2] we getˆ
B2r0

(q)\Br0 (q)

∆(vq − 8πG(x, q))φ1 = O

(
λ

eλ

)
‖φ1‖H1(M). (7.11)

For the nonlinear term in ∆T1(v1, v2) on M \Br0(q) we have

ˆ
M\Br0 (q)

|eϕφ1| = O

(ˆ
|ϕ|≥ε2

|eϕφ1|+
ˆ
|ϕ|≤ε2

|eε2φ1|

)
= O(1)‖φ1‖H1(M).
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Because
´
M
h1e

v1−v2 ∼ eλ, we deduce
ˆ
M\Br0 (q)

ρ1h1e
v1−v2´

M
h1ev1−v2

|φ1| = O(e−λ)

ˆ
M\Br0 (q)

eϕ|φ1| = O(e−λ)‖φ1‖H1(M). (7.12)

It is easy to see that the remaining parts in M \Br0(q) are small.
Combining (7.4)-(7.12), we get

〈∇(v1 + T1(v1, v2)),∇φ1〉 = 〈∇φ,∇φ1〉 −
ˆ
Br0 (q)

ρ1h(q)eUφφ1 +O(λ e−λ)‖φ1‖H1(M).

We prove now part (3). First, we note that by the definition of vq, see (4.9), and by Lemma 4.1:

∂λvq =

(
2−

ρ1h(q)
4 eλ|x− q|2

1 + ρ1h(q)
8 eλ|x− q|2

+ ∂λ

[
η +

2∆H(q)

ρ1h(q)
λ2e−λ

])
σ = (1 + ∂λU)σ +O(λ2e−λ). (7.13)

Since φ ∈ O(1)
q,λ, we have

´
M
∇φ · ∇∂λvq = 0. It is not difficult to get

ˆ
Br0 (q)

∂λvq =

ˆ
Br0 (q)

(1 + ∂λU) +O(λ2e−λ) = O(λ2e−λ). (7.14)

Then (
8π(a− 1) + 8π − ρ1

)ˆ
Br0 (q)

∂λvq = O(λ3e−2λ). (7.15)

Again by (7.13), we have ˆ
Br0 (q)

ρ1h(q) eU∂λvq = 8π +O(λ2e−λ) (7.16)

and ˆ
Br0 (q)

ρ1h(q) eU
[
−2 log

(
1 +

ρ1h(q)

8
eλ|x− q|2

)]
∂λvq = −8π +O

(
λ2

eλ

)
. (7.17)

Combining (7.16) and (7.17) we deduceˆ
Br0 (q)

ρ1h(q) eU (U + s− 1)∂λvq = 16πλ− 16π + 16π log
ρ1h(q)

8
+ 64π2R(q, q) +O(λ e−λ). (7.18)

Using a scaling argument it is possible to show thatˆ
Br0 (q)

|a− 1|ρ1h(q) eUO(|x− q|)∂λvq = O(e−
1
2λ)|a− 1| = O(λ e−

3
2λ). (7.19)

and ˆ
Br0 (q)

ρ1h(q) eU∇H(q) · (x− q)∂λvq = O

(
λ2

eλ

)ˆ
Br0 (q)

eU |x− q| = O(λ2e−
3
2λ), (7.20)

where we have used that ∇H(q) · (x− q) is an odd function.
Next, we estimate the term φ∂λvq and ψ∂λvq. By notice that

0 =

ˆ
M

∇φ · ∇∂λvq =−
ˆ
M

φ∆(∂λvq) = ρ1h(q)

ˆ
Br0 (q)

eUφ∂λU +O(λ e−λ‖φ‖H1(M)). (7.21)

Hence, by Lemma 7.1 and (7.21), we haveˆ
Br0 (q)

ρ1h(q)eUφ∂λvq = O(λ2e−λ)‖φ‖H1(M) = O(λ3e−2λ), (7.22)

and ˆ
Br0 (q)

ρ1h(q) eUψ∂λvq = 8πψ(q) +O(λe−
3
2λ). (7.23)
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By (7.13), Lemma 7.1 and the Moser-Trudinger inequality,ˆ
Br0 (q)

|E+∂λvq| ≤ O(e−2λ) and

ˆ
Br0 (q)

|E−∂λvq| = O(λ3e−2λ). (7.24)

Consider now M \Br0(q) and observe that by definition ∂λvq = 0 on M \B2r0(q). On the other hand
in Br0(q) \Br0(q) we have the following estimates:

ev1−v2 = O(eφ),
ρ1h1e

v1−v2´
M
h1ev1−v2

= O(e−λ) eφ, ∂λvq = O

(
λ2

eλ

)
.

By the Moser-Trudinger inequality,ˆ
M\Br0(q)

ρ1h1e
v1−v2´

M
h1ev1−v2

∂λvq = O(λ3e−2λ). (7.25)

By [13, Lemma 2.2] and ∂λvq = O(λ2e−λ), we haveˆ
B2r0

(q)\Br0 (q)

∆(vq − vq − 8πG(x, q)) · ∂λvq = O(λ3e−2λ). (7.26)

It is easy to see that the remaining parts in M \Br0(q) are small.

Combining (7.13) to (7.26), we obtain

〈∇(v1 + T1(v1, v2)),∇∂λvq〉 =− (a− 1)
(

16πλ− 16π + 16π log
ρ1h(q)

4
+ 64π2R(q, q)

)
− 8π

( et´
M
h1ev1−v2

− 1
)

+ 8πψ(q) +O(λe−
3
2λ). (7.27)

This proves part (3).

We consider now part (4). We start by observing that

〈∇(v1 + T1(v1, v2)),∇vq〉 = 〈∇(v1 + T1(v1, v2)),∇(vq − vq)〉 = −〈∆(v1 + T1(v1, v2)), (vq − vq)〉.
Note that ˆ

M

[
8π(a− 1) + 8π − 2ρ1

]
(vq − vq) = 0 and

ˆ
M

∇φ · ∇(vq − vq) = 0.

On Br0(p) we have

vq − vq = 2λ− 2 log(1 +
ρ1h(q)

8
eλ|x− q|2) + 8πR(q, q) +O(|y|) + 2 log

ρ1h(q)

8
+O

(
λ2

eλ

)
. (7.28)

We use (7.28) to compute
´
M
ρ1h e

U (U + s− 1)(vq − vq). After a scaling argument one can show thatˆ
Br0 (q)

ρ1h(q) eU log

(
1 +

ρ1h(q)

8
eλ|x− q|2

)
= 8π +O

(
λ

eλ

)
, (7.29)

ˆ
Br0 (q)

ρ1h(q)eU
[

log(1 +
ρ1h(q)

8
eλ|x− q|2)

]2
= 16π +O

(
λ2

eλ

)
, (7.30)

and ˆ
Br0 (q)

ρ1h e
U

[
log

(
1 +

ρ1h(q)

4
eλ|x− q|2

)]
O(|x− q|) = O(e−

1
2λ). (7.31)

Therefore, by (7.29)-(7.31),ˆ
Br0 (q)

ρ1h e
U (U + s− 1)(vq − vq) =

[
256π2R(q, q) + 64π log

ρ1h(q)

8
− 16π

]
λ+ 32πλ2 − 64πλ+O(1).

(7.32)

Similarly, we haveˆ
Br0 (q)

ρ1h(q) eU (vq − vq) = 16πλ− 16π + 64π2R(q, q) + 16π log
ρ1h(q)

4
+O(e−

1
2λ), (7.33)
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and ˆ
Br0 (q)

ρ1h(q) eUO(|x− q|)(vq − vq) = O(λe−
1
2λ). (7.34)

We have ∇H(q) = O(λ e−λ). By (7.28) and by the fact that ∇H(q) ·(x−q) is an odd function, we deduceˆ
Br0 (q)

ρ1h(q) eU∇H(q) · (x− q)(vq − vq) = O(λ2e−2λ). (7.35)

By Lemma 7.1 we getˆ
Br0 (q)

ρ1h(q) eUϕ(vq − vq) =

ˆ
Br0 (q)

ρ1h(q) eUφ

[
λ+ s− 2 log

(
1 +

ρ1h(q)

8
eλ|x− q|2

)
+O(|x− q|)

]
−
ˆ
Br0 (q)

ρ1h(q) eUψ

[
λ+ s− 2 log

(
1 +

ρ1h(q)

8
eλ|x− q|2

)
+O(|x− q|)

]
= O(1)‖φ‖H1(M) + o(1)‖ψ‖∗ − 16πλψ(q). (7.36)

Similarly as in the proof of part (3), we have
´
Br0 (q)

E(vq − vq) = O(λ4e−2λ). Since vq = O(1) on

M \Br0(q), by [13, Lemma 2.2],ˆ
B2r0

(q)\Br0 (q)

∆(vq − 8πG(x, q))(vq − vq) = O(λ e−λ). (7.37)

We focus now on the integral outside Br0(q). We have (
´
M
h1e

v1−v2)−1 = O(e−λ) andˆ
B2r0 (q)\Br0 (q)

ρ1h1´
M
h1 ev1−v2

ev1−v2(vq − vq) =

ˆ
B2r0 (q)\Br0 (q)

O(e−λ) eφ−ψ = O(e−λ). (7.38)

Similarly we can prove ˆ
M\B2r0

(q)

ρ1h1´
M
h1ev1−v2

ev1−v2(vq − vq) = O(e−λ). (7.39)

It is easy to see that the remaining parts in M \Br0(q) are small.

By (7.32)-(7.39), we have

〈∇(v1 + T1(v1, v2),∇(vq − vq)〉

= (2λ− 2 + 8πR(q, q) + 2 log
ρ1h(q)

8
)〈∇(v1 + T1(v1, v2)),∇∂λvq〉

+ 16π(a− 1)λ+O(1)‖φ‖H1(M) + o(1)‖ψ‖∗ +O(λ e−λ). (7.40)

We conclude now with the proof of part (2). We observe that

〈∇(v1 + T1(v1, v2)),∇∂qvq〉 = 〈∇∂q(v1 + T1(v1, v2)),∇(vq − vq)〉.

Since φ ∈ O(1)
q,λ we get 〈∇φ,∇∂q(vq − vq)〉 = 0. Moreover, using

´
M

(vq − vq) = 0 we obtainˆ
M

(8π(a− 1) + 8π − 2ρ1)∂q(vq − vq) = 0.

For x ∈ Br0(q), by [13, Lemma 2.1] one has

∂qvq =−∇xU +
∂qh(q)

h(q)
∂λU + ∂q

(
2 log h(q) +

2∆H(q)

ρ1h(q)

λ2

eλ

)
+ 8π∂qR(x, q) |x=q +O(|x− q|) +O(λ2e−λ). (7.41)

Since ∇xU is symmetric with respect to q in Br0(q),ˆ
Br0 (q)

ρ1h(q) eU (U + s− 1)∇xU =

ˆ
Br0 (q)

ρ1h(q) eUO(|x− q|+ λ2e−λ)∇xU = O(1). (7.42)

Hence, noting the fact that ∂λU is bounded, we deduceˆ
Br0 (q)

ρ1h(q)(U + s− 1)∂q(vq − vq) = O(λ). (7.43)
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For the other terms in (5.12), it is possible to get the following estimates:ˆ
Br0 (q)

ρ1h(q) eU∂q(vq − vq) = O(1), (7.44)

ˆ
Br0 (q)

ρ1h(q) eUO(|x− q|)∂q(vq − vq) = O(1), (7.45)

ˆ
Br0 (q)

ρ1h(q) eU∇H(q) · (x− q)∇xU = (−8π +O(λ e−λ))∇H(q), (7.46)

and, using ∇H(q) = O(λe−λ),ˆ
Br0 (q)

ρ1h(q) eU∇H(q) · (x− q)∂q(vq − vq) = 8π∇H(q) +O(λe−
3
2λ). (7.47)

For the term which involves φ, we haveˆ
Br0 (q)

ρ1h(q) eUφ∂q(vq − vq) =

ˆ
Br0 (q)

ρ1h(q) eUφ∂qU +

ˆ
Br0 (q)

ρ1h(q) eUφ

(
O

(
λ2

eλ

)
+O(|x− q|)

)
.

(7.48)

Using 〈∇φ,∇∂q(vq − vq)〉 = 0 one gets

0 =

ˆ
M

∇φ∇∂qvq = −
ˆ
M

φ∆(∂qvq)

=

ˆ
Br0 (q)

ρ1h(q) eU∂qUφ+ ∂q log h(q)

ˆ
Br0 (q)

ρ1h(q) eUφ+O(λ2e−λ)‖φ‖H1(M).

By (7.2) and the above equality, we haveˆ
Br0 (q)

2ρ1h(q) eU∂qUφ = O(λ2e−λ)‖φ‖H1(Ω).

On the other hand, for the terms concerning et´
M
h1ev1−v2

− 1 and ψ, we obtain

ˆ
Br0 (q)

ρ1h(q) eU
(

et´
M
h1ev1−v2

− 1− ψ
)
∂q(vq − vq) = −8π∇ψ(q) +O

(
et´

M
h1ev1−v2

− 1− ψ(q)

)
,

where we used ˆ
Br0 (q)

ρ1h(q) eU∇ψ(q)(x− q)∇yU = (8π +O(e−λ))∇ψ(q)

and (7.44). We can see that ∂q(vq − vq) = O(e
1
2λ). Hence, as in the proof of part (3) we haveˆ

Br0 (q)

E∂λq (vq − vq) = O(λ3e−
3
2λ).

We consider now M \Br0(q). In this case ∂q(vq − vq) = O(1). Hence by [13, Lemma 2.2] we getˆ
B2r0 (q)\Br0 (q)

∆(vq − 8πG(x, q)) · ∂q(vq − vq) = O(λ e−λ).

Since
´
M
h1e

v1−v2 = O(e−λ), it is not difficult to see that the integral of the products of ∂qvq and the

nonlinear terms in (5.13) and (5.14) are of order O(e−λ).

The estimates above imply

〈∇(v1 + T1(v1, v2)),∇∂q(vq − vq)〉

=− 8π∇H(q) + 8π∇ψ(q) +O

(
λ|a− 1|+

∣∣∣∣ et´
M
h1ev1−v2

− 1− ψ(q)

∣∣∣∣+
λ

eλ

)
. (7.49)

This concludes the proof of part (2) and of the proposition.

�
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