BREZIS-BOURGAIN-MIRONESCU FORMULA FOR MAGNETIC OPERATORS

MARCO SQUASSINA AND BRUNO VOLZONE

Abstract

We prove a Brezis-Bourgain-Mironescu type formula for a class of nonlocal magnetic spaces, which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.

1. Introduction

Let $s \in(0,1)$ and $N>2 s$. If $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a smooth function, the nonlocal operator

$$
(-\Delta)_{A}^{s} u(x)=c(N, s) \lim _{\varepsilon \searrow 0} \int_{B_{\varepsilon}^{c}(x)} \frac{u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)}{|x-y|^{N+2 s}} d y, \quad x \in \mathbb{R}^{N},
$$

has been recently introduced in [6], where the ground state solutions of $(-\Delta)_{A}^{s} u+u=|u|^{p-2} u$ in the three dimensional setting have been obtained via concentration compactness arguments. If $A=0$, then the above operator is consistent with the usual notion of fractional Laplacian. The motivations that led to its introduction are carefully described in [6] and rely essentially on the Lévy-Khintchine formula for the generator of a general Lévy process. We point out that the normalization constant $c(N, s)$ satisfies

$$
\lim _{s \neq 1} \frac{c(N, s)}{1-s}=\frac{4 N \Gamma(N / 2)}{2 \pi^{N / 2}},
$$

where Γ denotes the Gamma function. For the sake of completeness, we recall that different definitions of nonlocal magnetic operator are viable, see e.g. [8,9]. All these notions aim to extend the well-know definition of the magnetic Schrödinger operator

$$
(\nabla-\mathrm{i} A(x))^{2} u=-\Delta u+2 \mathrm{i} A(x) \cdot \nabla u+|A(x)|^{2} u+\mathrm{i} u \operatorname{div} A(x),
$$

namely the differential of the energy functional

$$
\mathcal{E}_{A}(u)=\int_{\mathbb{R}^{N}}|\nabla u-\mathrm{i} A(x) u|^{2} d x,
$$

for which we refer the reader to $[1,2,11]$ and the included references. In order to corroborate the justification for the introduction of $(-\Delta)_{A}^{s}$, in this note we prove that a well-known formula due to Brezis, Bourgain and Mironescu (see [3,4,10]) for the limit of the Gagliardo semi-norm of $H^{s}(\Omega)$ as $s \nearrow 1$ extends to the magnetic setting. As a consequence, in a suitable sense, from the nonlocal to the local regime, it holds

$$
(-\Delta)_{A}^{s} u \leadsto(\nabla-\mathrm{i} A(x))^{2} u, \quad \text { for } s \nearrow 1 .
$$

Precisely, we have the following
Theorem 1.1 (Magnetic Brezis-Bourgain-Mironescu). Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with Lipschitz boundary and $A \in C^{2}\left(\mathbb{R}^{N}\right)$. Then, for every $u \in H_{A}^{1}(\Omega)$, we have

$$
\lim _{s>1}(1-s) \int_{\Omega} \int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y=K_{N} \int_{\Omega}|\nabla u-\mathrm{i} A(x) u|^{2} d x,
$$

[^0]where
\[

$$
\begin{equation*}
K_{N}=\frac{1}{2} \int_{\mathbb{S}^{N-1}}|\omega \cdot \mathbf{e}|^{2} d \mathcal{H}^{N-1}(\omega) \tag{1.1}
\end{equation*}
$$

\]

being \mathbb{S}^{N-1} the unit sphere and \mathbf{e} any unit vector in \mathbb{R}^{N}.
As a variant of Theorem 1.1, if $H_{0, A}^{1}(\Omega)$ denotes the closure of $C_{c}^{\infty}(\Omega)$ in $H_{A}^{1}(\Omega)$, there holds
Theorem 1.2. Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with Lipschitz boundary and $A \in C^{2}\left(\mathbb{R}^{N}\right)$. Then, for every $u \in H_{0, A}^{1}(\Omega)$, we have

$$
\lim _{s \nearrow 1}(1-s) \int_{\mathbb{R}^{2 N}} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y=K_{N} \int_{\Omega}|\nabla u-\mathrm{i} A(x) u|^{2} d x
$$

Notations. Let $\Omega \subset \mathbb{R}^{N}$ be an open set. We denote by $L^{2}(\Omega, \mathbb{C})$ the Lebesgue space of complex valued functions with summable square. For $s \in(0,1)$, the magnetic Gagliardo semi-norm is

$$
[u]_{H_{A}^{s}(\Omega)}:=\sqrt{\int_{\Omega} \int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y}
$$

We denote by $H_{A}^{s}(\Omega)$ the space of functions $u \in L^{2}(\Omega, \mathbb{C})$ such that $[u]_{H_{A}^{s}(\Omega)}<\infty$ endowed with

$$
\|u\|_{H_{A}^{s}(\Omega)}:=\sqrt{\|u\|_{L^{2}(\Omega)}^{2}+[u]_{H_{A}^{s}(\Omega)}^{2}}
$$

We also consider

$$
[u]_{H_{A}^{1}(\Omega)}:=\sqrt{\int_{\Omega}|\nabla u-\mathrm{i} A(x) u|^{2} d x}
$$

and define $H_{A}^{1}(\Omega)$ as the space of functions $u \in L^{2}(\Omega, \mathbb{C})$ such that $[u]_{H_{A}^{1}(\Omega)}<\infty$ endowed with

$$
\|u\|_{H_{A}^{1}(\Omega)}:=\sqrt{\|u\|_{L^{2}(\Omega)}^{2}+[u]_{H_{A}^{1}(\Omega)}^{2}}
$$

We denote by $B\left(x_{0}, R\right)$ the ball in \mathbb{R}^{N} of center x_{0} and radius $R>0$. For any set $E \subset \mathbb{R}^{N}$ we will denote by E^{c} the complement of E. For $A, B \subset \mathbb{R}^{N}$ open and bounded, $A \Subset B$ means $\bar{A} \subset B$.

2. Preliminary Results

We start with the following Lemma.
Lemma 2.1. Assume that $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is locally bounded. Then, for any compact $V \subset \mathbb{R}^{N}$ with $\Omega \Subset V$, there exists $C=C(A, V)>0$ such that

$$
\int_{\mathbb{R}^{N}}\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} d y \leq C|h|^{2}\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}
$$

for all $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ such that $u=0$ on V^{c} and any $h \in \mathbb{R}^{N}$ with $|h| \leq 1$.
Proof. Assume first that $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $u=0$ on V^{c}. Fix $y, h \in \mathbb{R}^{N}$ and define

$$
\varphi(t):=e^{\mathrm{i}(1-t) h \cdot A\left(y+\frac{h}{2}\right)} u(y+t h), \quad t \in[0,1]
$$

Then we have

$$
u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)=\varphi(1)-\varphi(0)=\int_{0}^{1} \varphi^{\prime}(t) d t
$$

and since

$$
\varphi^{\prime}(t)=e^{\mathrm{i}(1-t) h \cdot A\left(y+\frac{h}{2}\right)} h \cdot\left(\nabla_{y} u(y+t h)-\mathrm{i} A\left(y+\frac{h}{2}\right) u(y+t h)\right)
$$

by Hölder inequality we get

$$
\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} \leq|h|^{2} \int_{0}^{1}\left|\nabla_{y} u(y+t h)-\mathrm{i} A\left(y+\frac{h}{2}\right) u(y+t h)\right|^{2} d t
$$

Therefore, integrating with respect to y over \mathbb{R}^{N} and using Fubini's Theorem, we get

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} d y & \leq|h|^{2} \int_{0}^{1} d t \int_{\mathbb{R}^{N}}\left|\nabla_{y} u(y+t h)-\mathrm{i} A\left(y+\frac{h}{2}\right) u(y+t h)\right|^{2} d y \\
& =|h|^{2} \int_{0}^{1} d t \int_{\mathbb{R}^{N}}\left|\nabla_{z} u(z)-\mathrm{i} A\left(z+\frac{1-2 t}{2} h\right) u(z)\right|^{2} d z \\
& \leq 2|h|^{2} \int_{\mathbb{R}^{N}}\left|\nabla_{z} u(z)-\mathrm{i} A(z) u(z)\right|^{2} d z \\
& +2|h|^{2} \int_{V}\left|A\left(z+\frac{1-2 t}{2} h\right)-A(z)\right|^{2}|u(z)|^{2} d z
\end{aligned}
$$

Then, since A is bounded on the set V, we have for some constant $C>0$

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} d y & \leq C|h|^{2}\left(\int_{\mathbb{R}^{N}}\left|\nabla_{z} u(z)-\mathrm{i} A(z) u(z)\right|^{2} d z+\int_{\mathbb{R}^{N}}|u(z)|^{2} d z\right) \\
& =C|h|^{2}\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}
\end{aligned}
$$

When dealing with a general u we can argue by a density argument.
Lemma 2.2. Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with Lipschitz boundary, $V \subset \mathbb{R}^{N}$ a compact set with $\Omega \Subset V$ and $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ locally bounded. Then there exists $C(\Omega, V, A)>0$ such that for any $u \in H_{A}^{1}(\Omega)$ there exists $E u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ such that $E u=u$ in $\Omega, E u=0$ in V^{c} and

$$
\|E u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \leq C(\Omega, V, A)\|u\|_{H_{A}^{1}(\Omega)}
$$

Proof. Observe that, for any bounded set $W \subset \mathbb{R}^{N}$ there exist $C_{1}(A, W), C_{2}(A, W)>0$ with

$$
C_{1}(A, W)\|u\|_{H^{1}(W)} \leq\|u\|_{H_{A}^{1}(W)} \leq C_{2}(A, W)\|u\|_{H^{1}(W)}, \quad \text { for any } u \in H^{1}(W)
$$

This follows easily, via simple computations, by the definition of the norm of $H_{A}^{1}(W)$ and in view of the local boundedness assumption on the potential A, see [1, Lemma 2.3] for further details. Now, by the standard extension property for $H^{1}(\Omega)$ (see e.g. [7, Theorem 1, p.254]) there exists $C(\Omega, V)>0$ such that for any $u \in H^{1}(\Omega)$ there exists a function $E u \in H^{1}\left(\mathbb{R}^{N}\right)$ such that $E u=u$ in $\Omega, E u=0$ in V^{c} and $\|E u\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leq C(\Omega, V)\|u\|_{H^{1}(\Omega)}$. Then, for any $u \in H_{A}^{1}(\Omega)$, we get

$$
\begin{aligned}
\|E u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} & =\|E u\|_{H_{A}^{1}(V)} \leq C_{2}(A, V)\|E u\|_{H^{1}(V)}=C_{2}(A, V)\|E u\|_{H^{1}\left(\mathbb{R}^{N}\right)} \\
& \leq C(\Omega, V) C_{2}(A, V)\|u\|_{H^{1}(\Omega)} \leq C(\Omega, V) C_{2}(A, V) C_{1}^{-1}(A, \Omega)\|u\|_{H_{A}^{1}(\Omega)},
\end{aligned}
$$

which concludes the proof.
We can now prove the following result:
Lemma 2.3. Let $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be locally bounded. Let $u \in H_{A}^{1}(\Omega)$ and $\rho \in L^{1}\left(\mathbb{R}^{N}\right)$ with $\rho \geq 0$. Then

$$
\int_{\Omega} \int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho(x-y) d x d y \leq C\|\rho\|_{L^{1}}\|u\|_{H_{A}^{1}(\Omega)}^{2}
$$

where C depends only on Ω and A.
Proof. Let $V \subset \mathbb{R}^{N}$ be a fixed compact set with $\Omega \Subset V$. Given $u \in H_{A}^{1}(\Omega)$, by Lemma 2.2 , there exists a function $\tilde{u} \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ with $\tilde{u}=u$ on Ω and $\tilde{u}=0$ on V^{c}. By Lemma 2.1 and 2.2,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\tilde{u}(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} \tilde{u}(y)\right|^{2} d y \leq C|h|^{2}\|\tilde{u}\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2} \leq C|h|^{2}\|u\|_{H_{A}^{1}(\Omega)}^{2} \tag{2.1}
\end{equation*}
$$

for some positive constant C depending on Ω and A. Then, in light of (2.1), we get

$$
\begin{aligned}
\int_{\Omega} \int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho(x-y) d x d y & \leq \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \rho(h) \frac{\left|\tilde{u}(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} \tilde{u}(y)\right|^{2}}{|h|^{2}} d y d h \\
& =\int_{\mathbb{R}^{N}} \frac{\rho(h)}{|h|^{2}}\left(\int_{\mathbb{R}^{N}}\left|\tilde{u}(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} \tilde{u}(y)\right|^{2} d y\right) d h \\
& \leq C\|\rho\|_{L^{1}}\|u\|_{H_{A}^{1}(\Omega)}^{2}
\end{aligned}
$$

which concludes the proof.
Lemma 2.4. Let $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be locally bounded and let $u \in H_{0, A}^{1}(\Omega)$. Then, we have

$$
(1-s) \int_{\mathbb{R}^{2 N}} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y \leq C\|u\|_{H_{A}^{1}(\Omega)}^{2}
$$

where C depends only on Ω and A.
Proof. Given $u \in C_{c}^{\infty}(\Omega)$, by Lemma 2.1 we have

$$
\int_{\mathbb{R}^{N}}\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} d y \leq C|h|^{2}\|u\|_{H_{A}^{1}(\Omega)}^{2}
$$

for some $C>0$ depending on Ω and A and all $h \in \mathbb{R}^{N}$ with $|h| \leq 1$. Then, we get

$$
\begin{aligned}
& (1-s) \int_{\mathbb{R}^{2 N}} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y \leq(1-s) \int_{\mathbb{R}^{2 N}} \frac{\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2}}{|h|^{N+2 s}} d y d h \\
& =(1-s) \int_{\{|h| \leq 1\}} \frac{1}{|h|^{N+2 s}}\left(\int_{\mathbb{R}^{N}}\left|u(y+h)-e^{\mathrm{i} h \cdot A\left(y+\frac{h}{2}\right)} u(y)\right|^{2} d y\right) d h \\
& +4(1-s) \int_{\{|h| \geq 1\}} \frac{1}{|h|^{N+2 s}} d h\|u\|_{L^{2}(\Omega)}^{2} \\
& \leq(1-s) \int_{\{|h| \leq 1\}} \frac{1}{|h|^{N+2 s-2}} d h\|u\|_{H_{A}^{1}(\Omega)}^{2}+C\|u\|_{L^{2}}^{2} \leq C\|u\|_{H_{A}^{1}(\Omega)}^{2} .
\end{aligned}
$$

The assertion then follows by a density argument.
Assuming now that $A \in C^{2}\left(\mathbb{R}^{N}\right)$, we are able to give the following result.
Theorem 2.5. Assume that $A \in C^{2}\left(\mathbb{R}^{N}\right)$. Let $u \in H_{A}^{1}(\Omega)$ and consider a sequence $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ of nonnegative radial functions in $L^{1}\left(\mathbb{R}^{N}\right)$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \rho_{n}(r) r^{N-1} d x=1 \tag{2.2}
\end{equation*}
$$

and such that, for every $\delta>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\delta}^{\infty} \rho_{n}(r) r^{N-1} d r=\lim _{n \rightarrow \infty} \int_{0}^{\delta} \rho_{n}(r) r^{N} d r=\lim _{n \rightarrow \infty} \int_{0}^{\delta} \rho_{n}(r) r^{N+1} d r=0 \tag{2.3}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d x d y=2 K_{N} \int_{\Omega}|\nabla u-\mathrm{i} A(x) u|^{2} d x \tag{2.4}
\end{equation*}
$$

being K_{N} the constant introduced in (1.1).
Proof. We follow the main lines of the proof in [3]. Setting

$$
F_{n}^{u}(x, y):=\frac{u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)}{|x-y|} \rho_{n}^{1 / 2}(x-y), \quad x, y \in \Omega, n \in \mathbb{N}
$$

by virtue of Lemma 2.3, for all $u, v \in H_{A}^{1}(\Omega)$, recalling (2.2) we have

$$
\left|\left\|F_{n}^{u}\right\|_{L^{2}(\Omega \times \Omega)}-\left\|F_{n}^{v}\right\|_{L^{2}(\Omega \times \Omega)}\right| \leq\left\|F_{n}^{u}-F_{n}^{v}\right\|_{L^{2}(\Omega \times \Omega)} \leq C\|u-v\|_{H_{A}^{1}(\Omega)}
$$

for some $C>0$ depending on Ω and A. This allows to prove (2.4) for $u \in C^{2}(\bar{\Omega})$. If we set

$$
\varphi(y):=e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)
$$

since

$$
\nabla_{y} \varphi(y)=e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)}\left(\nabla_{y} u(y)-\mathrm{i} A\left(\frac{x+y}{2}\right) u(y)+\frac{\mathrm{i}}{2} u(y)(x-y) \cdot \nabla_{y} A\left(\frac{x+y}{2}\right)\right)
$$

if $x \in \Omega$, a second order Taylor expansion gives (since $u, A \in C^{2}$, then $\nabla_{y}^{2} \varphi$ is bounded on $\bar{\Omega}$)

$$
u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)=\varphi(x)-\varphi(y)=(\nabla u(x)-\mathrm{i} A(x) u(x)) \cdot(x-y)+\mathcal{O}\left(|x-y|^{2}\right)
$$

Hence, for any fixed $x \in \Omega$,

$$
\begin{equation*}
\frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|}{|x-y|}=\left|(\nabla u(x)-\mathrm{i} A(x) u(x)) \cdot \frac{x-y}{|x-y|}\right|+\mathcal{O}(|x-y|) . \tag{2.5}
\end{equation*}
$$

Fix $x \in \Omega$. If we set $R_{x}:=\operatorname{dist}(x, \partial \Omega)$, integrating with respect to y, we have

$$
\begin{align*}
\int_{\Omega} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d y & =\int_{B\left(x, R_{x}\right)} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d y \\
& +\int_{\Omega \backslash B\left(x, R_{x}\right)} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d y \tag{2.6}
\end{align*}
$$

The second integral goes to zero by the first limit of conditions (2.3), since

$$
\lim _{n \rightarrow \infty} \int_{\Omega \backslash B\left(x, R_{x}\right)} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d y \leq C \lim _{n \rightarrow \infty} \int_{B^{c}\left(0, R_{x}\right)} \rho_{n}(z) d z=0
$$

Now, in light of (2.5), following [3] we compute

$$
\begin{aligned}
\int_{B\left(x, R_{x}\right)} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{2}} \rho_{n}(x-y) d y & =Q_{N}|\nabla u(x)-\mathrm{i} A(x) u(x)|^{2} \int_{0}^{R_{x}} r^{N-1} \rho_{n}(r) d r \\
& +\mathcal{O}\left(\int_{0}^{R_{x}} r^{N} \rho_{n}(r) d r\right)+\mathcal{O}\left(\int_{0}^{R_{x}} r^{N+1} \rho_{n}(r) d r\right)
\end{aligned}
$$

where we have set

$$
Q_{N}=\int_{\mathbb{S}^{N-1}}|\omega \cdot \mathbf{e}|^{2} d \mathcal{H}^{N-1}(\omega)
$$

being $\mathbf{e} \in \mathbb{R}^{N}$ a unit vector. Letting $n \rightarrow \infty$ in (2.6), the result follows by dominated convergence.

3. Proofs of Theorem 1.1 and 1.2

3.1. Proof of Theorem 1.1. If $r_{\Omega}:=\operatorname{diam}(\Omega)$, we consider a radial cut-off $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \psi(x)=\psi_{0}(|x|)$ with $\psi_{0}(t)=1$ for $t<r_{\Omega}$ and $\psi_{0}(t)=0$ for $t>2 r_{\Omega}$. Then, by construction, $\psi_{0}(|x-y|)=1$, for every $x, y \in \Omega$. Furthermore, let $\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset(0,1)$ be a sequence with $s_{n} \nearrow 1$ as $n \rightarrow \infty$ and consider the sequence of radial functions in $L^{1}\left(\mathbb{R}^{N}\right)$

$$
\begin{equation*}
\rho_{n}(|x|)=\frac{2\left(1-s_{n}\right)}{|x|^{N+2 s_{n}-2}} \psi_{0}(|x|), \quad x \in \mathbb{R}^{N}, n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

Notice that (2.2) holds, since

$$
\lim _{n \rightarrow \infty} \int_{0}^{r_{\Omega}} \rho_{n}(r) r^{N-1} d r=\lim _{n \rightarrow \infty} 2\left(1-s_{n}\right) \int_{0}^{r_{\Omega}} \frac{1}{r^{2 s_{n}-1}} d r=\lim _{n \rightarrow \infty} r_{\Omega}^{2-2 s_{n}}=1
$$

and

$$
\lim _{n \rightarrow \infty} \int_{r_{\Omega}}^{2 r_{\Omega}} \rho_{n}(r) r^{N-1} d r=\lim _{n \rightarrow \infty} 2\left(1-s_{n}\right) \int_{r_{\Omega}}^{2 r_{\Omega}} \frac{\psi_{0}(r)}{t^{2 s_{n}-1}} d r=0
$$

In a similar fashion, for any $\delta>0$, there holds

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{\delta}^{\infty} \rho_{n}(r) r^{N-1} d r \leq \lim _{n \rightarrow \infty} 2\left(1-s_{n}\right) \int_{\delta}^{2 r_{\Omega}} \frac{1}{t^{2 s_{n}-1}} d t=0 \\
\lim _{n \rightarrow \infty} \int_{0}^{\delta} \rho_{n}(r) r^{N} d r \leq \lim _{n \rightarrow \infty} 2\left(1-s_{n}\right) \int_{0}^{\delta} \frac{1}{t^{2 s_{n}-2}} d t=0 \\
\lim _{n \rightarrow \infty} \int_{0}^{\delta} \rho_{n}(r) r^{N+1} d r \leq \lim _{n \rightarrow \infty} 2\left(1-s_{n}\right) \int_{0}^{\delta} \frac{1}{t^{2 s_{n}-3}} d t=0
\end{gathered}
$$

Then Theorem 1.1 follows directly from Theorem 2.5 using ρ_{n} as defined in (3.1).
3.2. Proof of Theorem 1.2. In light of Theorem 1.1 and since $u=0$ on Ω^{c}, we have

$$
\lim _{s \nearrow 1}(1-s) \int_{\mathbb{R}^{2 N}} \frac{\left|u(x)-e^{\mathrm{i}(x-y) \cdot A\left(\frac{x+y}{2}\right)} u(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y=K_{N} \int_{\Omega}|\nabla u-\mathrm{i} A(x) u|^{2} d x+\lim _{s \nearrow 1} R_{s}
$$

where we have set

$$
R_{s}:=2(1-s) \int_{\Omega} \int_{\mathbb{R}^{N} \backslash \Omega} \frac{|u(x)|^{2}}{|x-y|^{N+2 s}} d x d y
$$

On the other hand, arguing as in the proof of [5, Proposition 2.8], we get $R_{s} \rightarrow 0$ as $s \nearrow 1$ when $u \in C_{c}^{\infty}(\Omega)$ and, on account of Lemma 2.4, for general function in $H_{0, A}^{1}(\Omega)$ by a density argument.

References

[1] G. Arioli, A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal. 170 (2003), 277-295. 1, 3
[2] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883. 1
[3] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday (eds. J. L. Menaldi, E. Rofman and A. Sulem), IOS Press, Amsterdam, 2001, 439-455. 1, 4, 5
[4] J. Bourgain, H. Brezis, P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s \uparrow 1$ and applications, J. Anal. Math. 87 (2002), 77-101. 1
[5] L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst. A 36 (2016), 1813-1845. 6
[6] P. d'Avenia, M. Squassina, Ground states for fractional magnetic operators, preprint, http://arxiv.org/abs/1601. 042301
[7] L.C. Evans, Partial Differential Equations: Second Edition Graduate Series in Mathematics, AMS, 2010. 3
[8] R.L. Frank, E.H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), 925-950. 1
[9] T. Ichinose, Magnetic relativistic Schrödinger operators and imaginary-time path integrals, Mathematical physics, spectral theory and stochastic analysis, 247-297, Oper. Theory Adv. Appl. 232, Birkhäuser/Springer Basel AG, Basel, 2013. 1
[10] V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), 230-238. 1
[11] M. Reed, B. Simon, Methods of modern mathematical physics, I, Functional analysis, Academic Press, Inc., New York, 19801

[^1]
[^0]: 2010 Mathematics Subject Classification. 49A50, 26A33, 82D99.
 Key words and phrases. Fractional spaces, magnetic Sobolev spaces, Brezis-Bourgain-Mironescu limit.
 The research of the authors was partially supported by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (INdAM).

[^1]: (Marco Squassina) Dipartimento di Informatica
 Università degli Studi di Verona
 Strada Le Grazie 15, I-37134 Verona, Italy
 E-mail address: marco.squassina@univr.it
 (Bruno Volzone) Dipartimento di Ingegneria
 Università di Napoli Parthenope
 Centro Direzionale Isola C/4 80143 Napoli, Italy
 E-mail address: bruno.volzone@uniparthenope.it

