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MARCO SQUASSINA AND BRUNO VOLZONE

Abstract. We prove a Brezis-Bourgain-Mironescu type formula for a class of nonlocal magnetic spaces,
which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.

1. Introduction

Let s ∈ (0, 1) and N > 2s. If A : RN → RN is a smooth function, the nonlocal operator

(−∆)sAu(x) = c(N, s) lim
ε↘0

∫
Bc

ε(x)

u(x)− ei(x−y)·A( x+y
2 )u(y)

|x− y|N+2s
dy, x ∈ RN ,

has been recently introduced in [6], where the ground state solutions of (−∆)sAu + u = |u|p−2u in the
three dimensional setting have been obtained via concentration compactness arguments. If A = 0, then
the above operator is consistent with the usual notion of fractional Laplacian. The motivations that led
to its introduction are carefully described in [6] and rely essentially on the Lévy-Khintchine formula for
the generator of a general Lévy process. We point out that the normalization constant c(N, s) satisfies

lim
s↗1

c(N, s)

1− s
=

4NΓ(N/2)

2πN/2
,

where Γ denotes the Gamma function. For the sake of completeness, we recall that different definitions
of nonlocal magnetic operator are viable, see e.g. [8, 9]. All these notions aim to extend the well-know
definition of the magnetic Schrödinger operator(

∇− iA(x)
)2
u = −∆u+ 2iA(x) · ∇u+ |A(x)|2u+ iudivA(x),

namely the differential of the energy functional

EA(u) =

∫
RN

|∇u− iA(x)u|2dx,

for which we refer the reader to [1,2,11] and the included references. In order to corroborate the justification
for the introduction of (−∆)sA, in this note we prove that a well-known formula due to Brezis, Bourgain
and Mironescu (see [3, 4, 10]) for the limit of the Gagliardo semi-norm of Hs(Ω) as s ↗ 1 extends to the
magnetic setting. As a consequence, in a suitable sense, from the nonlocal to the local regime, it holds

(−∆)sAu ;
(
∇− iA(x)

)2
u, for s↗ 1.

Precisely, we have the following

Theorem 1.1 (Magnetic Brezis-Bourgain-Mironescu). Let Ω ⊂ RN be an open bounded set with Lipschitz
boundary and A ∈ C2(RN ). Then, for every u ∈ H1

A(Ω), we have

lim
s↗1

(1− s)
∫

Ω

∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy = KN

∫
Ω

|∇u− iA(x)u|2dx,
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where

(1.1) KN =
1

2

∫
SN−1

|ω · e|2dHN−1(ω),

being SN−1 the unit sphere and e any unit vector in RN .

As a variant of Theorem 1.1, if H1
0,A(Ω) denotes the closure of C∞c (Ω) in H1

A(Ω), there holds

Theorem 1.2. Let Ω ⊂ RN be an open bounded set with Lipschitz boundary and A ∈ C2(RN ). Then, for
every u ∈ H1

0,A(Ω), we have

lim
s↗1

(1− s)
∫
R2N

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy = KN

∫
Ω

|∇u− iA(x)u|2dx.

Notations. Let Ω ⊂ RN be an open set. We denote by L2(Ω,C) the Lebesgue space of complex valued
functions with summable square. For s ∈ (0, 1), the magnetic Gagliardo semi-norm is

[u]Hs
A(Ω) :=

√∫
Ω

∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy.

We denote by Hs
A(Ω) the space of functions u ∈ L2(Ω,C) such that [u]Hs

A(Ω) <∞ endowed with

‖u‖Hs
A(Ω) :=

√
‖u‖2L2(Ω) + [u]2Hs

A(Ω).

We also consider

[u]H1
A(Ω) :=

√∫
Ω

|∇u− iA(x)u|2dx,

and define H1
A(Ω) as the space of functions u ∈ L2(Ω,C) such that [u]H1

A(Ω) <∞ endowed with

‖u‖H1
A(Ω) :=

√
‖u‖2L2(Ω) + [u]2

H1
A(Ω)

.

We denote by B(x0, R) the ball in RN of center x0 and radius R > 0. For any set E ⊂ RN we will denote
by Ec the complement of E. For A,B ⊂ RN open and bounded, A b B means Ā ⊂ B.

2. Preliminary results

We start with the following Lemma.

Lemma 2.1. Assume that A : RN → RN is locally bounded. Then, for any compact V ⊂ RN with Ω b V ,
there exists C = C(A, V ) > 0 such that∫

RN

|u(y + h)− eih·A(y+ h
2 )u(y)|2dy ≤ C|h|2‖u‖2H1

A(RN ),

for all u ∈ H1
A(RN ) such that u = 0 on V c and any h ∈ RN with |h| ≤ 1.

Proof. Assume first that u ∈ C∞0 (RN ) with u = 0 on V c. Fix y, h ∈ RN and define

ϕ(t) := ei(1−t)h·A(y+ h
2 )u(y + th), t ∈ [0, 1].

Then we have

u(y + h)− eih·A(y+ h
2 )u(y) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t)dt,

and since

ϕ′(t) = ei(1−t)h·A
(
y+ h

2

)
h ·
(
∇yu(y + th)− iA

(
y +

h

2

)
u(y + th)

)
,

by Hölder inequality we get

|u(y + h)− eih·A(y+ h
2 )u(y)|2 ≤ |h|2

∫ 1

0

∣∣∣∇yu(y + th)− iA
(
y +

h

2

)
u(y + th)

∣∣∣2dt.
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Therefore, integrating with respect to y over RN and using Fubini’s Theorem, we get∫
RN

|u(y + h)− eih·A(y+ h
2 )u(y)|2dy ≤ |h|2

∫ 1

0

dt

∫
RN

∣∣∣∇yu(y + th)− iA
(
y +

h

2

)
u(y + th)

∣∣∣2dy
= |h|2

∫ 1

0

dt

∫
RN

∣∣∣∇zu(z)− iA
(
z +

1− 2t

2
h
)
u(z)

∣∣∣2dz
≤ 2|h|2

∫
RN

|∇zu(z)− iA (z)u(z)|2dz

+ 2|h|2
∫
V

∣∣∣A(z +
1− 2t

2
h
)
−A(z)

∣∣∣2|u(z)|2dz.

Then, since A is bounded on the set V , we have for some constant C > 0∫
RN

|u(y + h)− eih·A(y+ h
2 )u(y)|2dy ≤ C|h|2

(∫
RN

|∇zu(z)− iA (z)u(z)|2dz +

∫
RN

|u(z)|2dz
)

= C|h|2‖u‖2H1
A(RN ).

When dealing with a general u we can argue by a density argument. �

Lemma 2.2. Let Ω ⊂ RN be an open bounded set with Lipschitz boundary, V ⊂ RN a compact set with
Ω b V and A : RN → RN locally bounded. Then there exists C(Ω, V, A) > 0 such that for any u ∈ H1

A(Ω)
there exists Eu ∈ H1

A(RN ) such that Eu = u in Ω, Eu = 0 in V c and

‖Eu‖H1
A(RN ) ≤ C(Ω, V, A)‖u‖H1

A(Ω).

Proof. Observe that, for any bounded set W ⊂ RN there exist C1(A,W ), C2(A,W ) > 0 with

C1(A,W )‖u‖H1(W ) ≤ ‖u‖H1
A(W ) ≤ C2(A,W )‖u‖H1(W ), for any u ∈ H1(W ).

This follows easily, via simple computations, by the definition of the norm of H1
A(W ) and in view of the

local boundedness assumption on the potential A, see [1, Lemma 2.3] for further details. Now, by the
standard extension property for H1(Ω) (see e.g. [7, Theorem 1, p.254]) there exists C(Ω, V ) > 0 such that
for any u ∈ H1(Ω) there exists a function Eu ∈ H1(RN ) such that Eu = u in Ω, Eu = 0 in V c and
‖Eu‖H1(RN ) ≤ C(Ω, V )‖u‖H1(Ω). Then, for any u ∈ H1

A(Ω), we get

‖Eu‖H1
A(RN ) = ‖Eu‖H1

A(V ) ≤ C2(A, V )‖Eu‖H1(V ) = C2(A, V )‖Eu‖H1(RN )

≤ C(Ω, V )C2(A, V )‖u‖H1(Ω) ≤ C(Ω, V )C2(A, V )C−1
1 (A,Ω)‖u‖H1

A(Ω),

which concludes the proof. �

We can now prove the following result:

Lemma 2.3. Let A : RN → RN be locally bounded. Let u ∈ H1
A(Ω) and ρ ∈ L1(RN ) with ρ ≥ 0. Then∫

Ω

∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρ(x− y) dxdy ≤ C‖ρ‖L1‖u‖2H1

A(Ω)

where C depends only on Ω and A.

Proof. Let V ⊂ RN be a fixed compact set with Ω b V . Given u ∈ H1
A(Ω), by Lemma 2.2, there exists a

function ũ ∈ H1
A(RN ) with ũ = u on Ω and ũ = 0 on V c. By Lemma 2.1 and 2.2,

(2.1)

∫
RN

|ũ(y + h)− eih·A(y+ h
2 )ũ(y)|2dy ≤ C|h|2‖ũ‖2H1

A(RN ) ≤ C|h|
2‖u‖2H1

A(Ω),
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for some positive constant C depending on Ω and A. Then, in light of (2.1), we get∫
Ω

∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρ(x− y) dxdy ≤

∫
RN

∫
RN

ρ(h)
|ũ(y + h)− eih·A(y+ h

2 )ũ(y)|2

|h|2
dydh

=

∫
RN

ρ(h)

|h|2
(∫

RN

|ũ(y + h)− eih·A(y+ h
2 )ũ(y)|2dy

)
dh

≤ C‖ρ‖L1‖u‖2H1
A(Ω),

which concludes the proof. �

Lemma 2.4. Let A : RN → RN be locally bounded and let u ∈ H1
0,A(Ω). Then, we have

(1− s)
∫
R2N

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy ≤ C‖u‖2H1

A(Ω)

where C depends only on Ω and A.

Proof. Given u ∈ C∞c (Ω), by Lemma 2.1 we have∫
RN

|u(y + h)− eih·A(y+ h
2 )u(y)|2dy ≤ C|h|2‖u‖2H1

A(Ω),

for some C > 0 depending on Ω and A and all h ∈ RN with |h| ≤ 1. Then, we get

(1− s)
∫
R2N

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy ≤ (1− s)

∫
R2N

|u(y + h)− eih·A(y+ h
2 )u(y)|2

|h|N+2s
dydh

= (1− s)
∫
{|h|≤1}

1

|h|N+2s

(∫
RN

|u(y + h)− eih·A(y+ h
2 )u(y)|2dy

)
dh

+ 4(1− s)
∫
{|h|≥1}

1

|h|N+2s
dh‖u‖2L2(Ω)

≤ (1− s)
∫
{|h|≤1}

1

|h|N+2s−2
dh‖u‖2H1

A(Ω) + C‖u‖2L2 ≤ C‖u‖2H1
A(Ω).

The assertion then follows by a density argument. �

Assuming now that A ∈ C2(RN ), we are able to give the following result.

Theorem 2.5. Assume that A ∈ C2(RN ). Let u ∈ H1
A(Ω) and consider a sequence {ρn}n∈N of nonnegative

radial functions in L1(RN ) with

(2.2) lim
n→∞

∫ ∞
0

ρn(r)rN−1dx = 1,

and such that, for every δ > 0,

(2.3) lim
n→∞

∫ ∞
δ

ρn(r)rN−1dr = lim
n→∞

∫ δ

0

ρn(r)rNdr = lim
n→∞

∫ δ

0

ρn(r)rN+1dr = 0.

Then, we have

(2.4) lim
n→∞

∫
Ω

∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dxdy = 2KN

∫
Ω

|∇u− iA(x)u|2 dx

being KN the constant introduced in (1.1).

Proof. We follow the main lines of the proof in [3]. Setting

Fun (x, y) :=
u(x)− ei(x−y)·A( x+y

2 )u(y)

|x− y|
ρ1/2
n (x− y), x, y ∈ Ω, n ∈ N,

by virtue of Lemma 2.3, for all u, v ∈ H1
A(Ω), recalling (2.2) we have∣∣‖Fun ‖L2(Ω×Ω) − ‖F vn‖L2(Ω×Ω)

∣∣ ≤ ‖Fun − F vn‖L2(Ω×Ω) ≤ C‖u− v‖H1
A(Ω),
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for some C > 0 depending on Ω and A. This allows to prove (2.4) for u ∈ C2(Ω̄). If we set

ϕ(y) := ei(x−y)·A( x+y
2 )u(y),

since

∇yϕ(y) = ei(x−y)·A( x+y
2 )
(
∇yu(y)− iA

(x+ y

2

)
u(y) +

i

2
u(y)(x− y) · ∇yA

(x+ y

2

))
,

if x ∈ Ω, a second order Taylor expansion gives (since u,A ∈ C2, then ∇2
yϕ is bounded on Ω̄)

u(x)− ei(x−y)·A( x+y
2 )u(y) = ϕ(x)− ϕ(y) = (∇u(x)− iA(x)u(x)) · (x− y) +O(|x− y|2).

Hence, for any fixed x ∈ Ω,

(2.5)

∣∣u(x)− ei(x−y)·A( x+y
2 )u(y)

∣∣
|x− y|

=

∣∣∣∣(∇u(x)− iA(x)u(x)) · x− y
|x− y|

∣∣∣∣+O(|x− y|).

Fix x ∈ Ω. If we set Rx := dist(x, ∂Ω), integrating with respect to y, we have∫
Ω

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dy =

∫
B(x,Rx)

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dy

+

∫
Ω\B(x,Rx)

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dy.(2.6)

The second integral goes to zero by the first limit of conditions (2.3), since

lim
n→∞

∫
Ω\B(x,Rx)

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dy ≤ C lim

n→∞

∫
Bc(0,Rx)

ρn(z)dz = 0.

Now, in light of (2.5), following [3] we compute∫
B(x,Rx)

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|2
ρn(x− y) dy = QN |∇u(x)− iA(x)u(x)|2

∫ Rx

0

rN−1ρn(r)dr

+O

(∫ Rx

0

rNρn(r)dr

)
+O

(∫ Rx

0

rN+1ρn(r)dr

)
,

where we have set

QN =

∫
SN−1

|ω · e|2dHN−1(ω),

being e ∈ RN a unit vector. Letting n→∞ in (2.6), the result follows by dominated convergence. �

3. Proofs of Theorem 1.1 and 1.2

3.1. Proof of Theorem 1.1. If rΩ := diam(Ω), we consider a radial cut-off ψ ∈ C∞c (RN ), ψ(x) = ψ0(|x|)
with ψ0(t) = 1 for t < rΩ and ψ0(t) = 0 for t > 2rΩ. Then, by construction, ψ0(|x − y|) = 1, for every
x, y ∈ Ω. Furthermore, let {sn}n∈N ⊂ (0, 1) be a sequence with sn ↗ 1 as n → ∞ and consider the
sequence of radial functions in L1(RN )

(3.1) ρn(|x|) =
2(1− sn)

|x|N+2sn−2
ψ0(|x|), x ∈ RN , n ∈ N.

Notice that (2.2) holds, since

lim
n→∞

∫ rΩ

0

ρn(r)rN−1dr = lim
n→∞

2(1− sn)

∫ rΩ

0

1

r2sn−1
dr = lim

n→∞
r2−2sn
Ω = 1,

and

lim
n→∞

∫ 2rΩ

rΩ

ρn(r)rN−1dr = lim
n→∞

2(1− sn)

∫ 2rΩ

rΩ

ψ0(r)

t2sn−1
dr = 0.
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In a similar fashion, for any δ > 0, there holds

lim
n→∞

∫ ∞
δ

ρn(r)rN−1dr ≤ lim
n→∞

2(1− sn)

∫ 2rΩ

δ

1

t2sn−1
dt = 0,

lim
n→∞

∫ δ

0

ρn(r)rNdr ≤ lim
n→∞

2(1− sn)

∫ δ

0

1

t2sn−2
dt = 0,

lim
n→∞

∫ δ

0

ρn(r)rN+1dr ≤ lim
n→∞

2(1− sn)

∫ δ

0

1

t2sn−3
dt = 0.

Then Theorem 1.1 follows directly from Theorem 2.5 using ρn as defined in (3.1). �

3.2. Proof of Theorem 1.2. In light of Theorem 1.1 and since u = 0 on Ωc, we have

lim
s↗1

(1− s)
∫
R2N

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy = KN

∫
Ω

|∇u− iA(x)u|2dx+ lim
s↗1

Rs,

where we have set

Rs := 2(1− s)
∫

Ω

∫
RN\Ω

|u(x)|2

|x− y|N+2s
dxdy.

On the other hand, arguing as in the proof of [5, Proposition 2.8], we get Rs → 0 as s↗ 1 when u ∈ C∞c (Ω)
and, on account of Lemma 2.4, for general function in H1

0,A(Ω) by a density argument. �
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