BREZIS-BOURGAIN-MIRONESCU FORMULA
FOR MAGNETIC OPERATORS

MARCO SQUASSINA AND BRUNO VOLZONE

ABSTRACT. We prove a Brezis-Bourgain-Mironescu type formula for a class of nonlocal magnetic spaces,
which builds a bridge between a fractional magnetic operator recently introduced and the classical theory.

1. INTRODUCTION
Let s € (0,1) and N > 2s. If A: RY — R is a smooth function, the nonlocal operator

u(z) — @A)

y) N
o= gV dy, xeR™,

—A)u(z) = ¢(N, s) li
(~A)3u(e) = Vo) iy [

has been recently introduced in [6], where the ground state solutions of (—=A)%u + u = |[u[P~2u in the
three dimensional setting have been obtained via concentration compactness arguments. If A = 0, then
the above operator is consistent with the usual notion of fractional Laplacian. The motivations that led
to its introduction are carefully described in [6] and rely essentially on the Lévy-Khintchine formula for
the generator of a general Lévy process. We point out that the normalization constant ¢(N, s) satisfies
lim ¢(N, s) _ 4NT'(N/2)
s/1 1—3s 27TN/2 ’
where I' denotes the Gamma function. For the sake of completeness, we recall that different definitions
of nonlocal magnetic operator are viable, see e.g. [8,9]. All these notions aim to extend the well-know
definition of the magnetic Schrodinger operator

(V- iA(x))Zu = —Au+ 2iA(2) - Vu + |A(2)|?u + iudivA(z),

namely the differential of the energy functional
Ealu) = / |Vu — iA(z)u|*dx,
RN

for which we refer the reader to [1,2,11] and the included references. In order to corroborate the justification

for the introduction of (—A)%, in this note we prove that a well-known formula due to Brezis, Bourgain

and Mironescu (see [3,4,10]) for the limit of the Gagliardo semi-norm of H*(Q2) as s 1 extends to the

magnetic setting. As a consequence, in a suitable sense, from the nonlocal to the local regime, it holds
(=A)5u~ (V- iA(x))Qu, for s /1.

Precisely, we have the following

Theorem 1.1 (Magnetic Brezis-Bourgain-Mironescu). Let Q C RY be an open bounded set with Lipschitz
boundary and A € C*(RYN). Then, for every u € H4(Q), we have

. z+y
) |U(LC) _ el(itfy)'A( 2 )U(y)P / ) 5
lim(1—s dedy = K Vu —iA(x)u|*dz,
A e v f, WA

2010 Mathematics Subject Classification. 49A50, 26A33, 82D99.

Key words and phrases. Fractional spaces, magnetic Sobolev spaces, Brezis-Bourgain-Mironescu limit.

The research of the authors was partially supported by Gruppo Nazionale per I’Analisi Matematica, la Probabilita e le
loro Applicazioni (INdAM).

1



2 M. SQUASSINA AND B. VOLZONE

where

1
(1.1) Ky=1 /SN_1 lw - e2dHN 1 (w),

being SN~ the unit sphere and e any unit vector in RN .
As a variant of Theorem 1.1, if Hj ,(£2) denotes the closure of C2°(€2) in H}(f2), there holds

Theorem 1.2. Let Q C RY be an open bounded set with Lipschitz boundary and A € C*(RN). Then, for
every u € H&A(Q), we have

: Tty
_ u(z) — AT )y (y) 2 / , 5
lim(1 — dedy = K Vu—iA dzx.
S1/‘1( s) /RZN PESYREEE xdy N Q| u —iA(x)u|*dz

Notations. Let @ € RY be an open set. We denote by L?(£2,C) the Lebesgue space of complex valued
functions with summable square. For s € (0,1), the magnetic Gagliardo semi-norm is

zty
Ju(z) — @ ACF ) u(y) 2
HS(Q) "= \/// |x—y|N+29 dxdy.

We denote by H3(9) the space of functions u € L*(2,C) such that [u]pgs ) < oo endowed with

hullzs @ = |/l ) + W3 )

[l \// IV — iA(z)ul?de,

and define Hy(Q2) as the space of functions u € L*(Q, C) such that [u] 1 () < 0o endowed with

We also consider

lullzr ey = /Tl + 3 -

We denote by B(xo, R) the ball in R of center ¢ and radius R > 0. For any set £ C RY we will denote
by E°¢ the complement of E. For A, B C RY open and bounded, A € B means A C B.

2. PRELIMINARY RESULTS
We start with the following Lemma.

Lemma 2.1. Assume that A : RN — RY is locally bounded. Then, for any compact V.C RN with Q € V,
there exists C = C(A,V) > 0 such that

[t ) A Dty < Ol
for all uw € HY(RYN) such that u=0 on V¢ and any h € RY with |h| < 1.
Proof. Assume first that u € C$°(RY) with u = 0 on V°. Fix y,h € RY and define

o(t) == ei(lft)h'A(y+%)u(y +th), telo,1].

Then we have L

uly + ) = A0 uly) = (1) - 9(0) = [ St
and since ’

o'(t) = ei(l_t)h'A(y+%) h- (Vyu(y +th) — iA(y + g)u(y + th)),

by Holder inequality we get

. \ L h 2
lu(y + h) — em A+ )y ()2 < |h|2/ ‘Vyu(y Fth) —iA (y + 5>u(y + th)‘ dt.
0
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Therefore, integrating with respect to y over RY and using Fubini’s Theorem, we get
ih-A(y+2 ! h 2
[ty = A Dy < [ e [ |9ty ) ia(y+ 5 )uty+ )] dy
RN 0 RN 2
5 1 . 1 -2t 2
= |h| dt ‘Vzu(z) - 1A<z + 7h)u(z)‘ dz
0 RN 2

< o[hP? /RN V.u(z) — iA (2) u(z) [2dz

+2|n? /V ‘A(z + 1 ;2th) - A(z)‘2|u(z)|2dz.

Then, since A is bounded on the set V', we have for some constant C' > 0

/ luly + h) — A0+ () 2dy < C|hf2 (/ |Vzu(z)—iA(z)u(z)\2dz+/ |u(z)2dz)
RN RN RN
= Ol [lullp, @y

When dealing with a general u we can argue by a density argument. O

Lemma 2.2. Let Q C RN be an open bounded set with Lipschitz boundary, V. C RN a compact set with
Q eV and A:RYN — RV locally bounded. Then there exists C(2,V, A) > 0 such that for any u € H4(Q)
there exists Eu € HY(RYN) such that Eu = in Q, Fu =0 in V¢ and

[ Eull gy vy < C(Q2,V, A)|lullm o-
Proof. Observe that, for any bounded set W C R there exist C1(A4, W), C2(A, W) > 0 with
Cr(AW)|[ull g wy < Nlull gy owy < Co(AW)[[ullgrgwy,  for any w e HY (W).

This follows easily, via simple computations, by the definition of the norm of H} (W) and in view of the
local boundedness assumption on the potential A, see [1, Lemma 2.3] for further details. Now, by the
standard extension property for H'(Q) (see e.g. [7, Theorem 1, p.254]) there exists C'(Q, V) > 0 such that
for any u € H'(2) there exists a function Eu € H'(RY) such that Fu = v in Q, Fu = 0 in V¢ and
| Eullgr@yy < C(V)|Jul g1 (). Then, for any u € H)(Q), we get

||EU||H;(RN) = ”EUHH};(V) < C'2(147V)||EU||H1(V) = Cy(A, V)||EU||H1(1RN)

< C(Q,V)Co(A, V)lull 10y < C(Q,V)Co (A, V)CTH (A, D)l i 0

which concludes the proof. (I

We can now prove the following result:

Lemma 2.3. Let A: RN — RY be locally bounded. Let u € H4(Q) and p € L*(RY) with p > 0. Then

_ 1(at—y)A(IT+y) 2
u(z) —e u(y
[ = W — ) dady < Clollus i, o

where C' depends only on Q and A.

Proof. Let V.C RY be a fixed compact set with Q € V. Given u € H}(f2), by Lemma 2.2, there exists a
function @ € HY(RY) with @ =u on Q and @ = 0 on V¢, By Lemma 2.1 and 2.2,

(2.1) / Naty + n) = A0 Dagy) Py < CIRPlaly gy < CIAP lulli o).
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for some positive constant C' depending on © and A. Then, in light of (2.1), we get

ju(z) — @A Duy)p ja(y + ) — " AL+ g(y) 2
I o pa—yydody< [ [ pin) e dydh

RN
= /RN T,i@(/}RN [y + ) — " A0 E)a(y) Py ) d

< Cllpll 2 ||u||§1}4(9),
which concludes the proof. O

Lemma 2.4. Let A: RN — RY be locally bounded and let u € H&’A(Q). Then, we have

u(x —ei(w_y)'A(Izy)u 2
o [ )

RS

2
dzdy < Cllully (o)
where C' depends only on Q2 and A.

Proof. Given u € C°(2), by Lemma 2.1 we have

ih- h
/R luty + h) = AT u(y) Pdy < OfRP [l o).

for some C' > 0 depending on 2 and A and all h € R with |h| < 1. Then, we get

a-a [, e T;__Zziz)“(y)'z dady < (1) [ e _|he|i1:jz(sy+;)u(y)|2dydh
—0 /{|h<1} s ([ ) = 40+ gy Py an
w0 [ el
<(1-s) /{ - Tzl + Cllul s < Cllulfy oy
The assertion then follows by a density argument. (I

Assuming now that A € C?(RY), we are able to give the following result.

Theorem 2.5. Assume that A € C*(RN). Letu € H}(2) and consider a sequence {pn},cy of nonnegative
radial functions in L*(R™) with

o0

(2.2) lim pn(r)rN "tz =1,
n— oo 0
and such that, for every § > 0,
0o 0 §

(2.3) lim pn(r)rN"tdr = lim pn(r)rNdr = lim pn(r)rNTldr = 0.
Then, we have

_ plle—y)-A(23Y) 2
(2.4) lim / fulw) — e 5 uw)l pn(x —y)dedy = ZKN/ |Vu —iA(2)u|? do

n—oo o Ja |z =yl Q

being K the constant introduced in (1.1).

Proof. We follow the main lines of the proof in [3]. Setting
_ olla—y)A(=E)
e |~y T ey, mye@neN,
x—y

by virtue of Lemma 2.3, for all u,v € H4(Q), recalling (2.2) we have

Fi(x,y) =

IF L2 xe) = [ER 2 @xey| < IEY = FYllzzxa) < Cllu = vllg ),
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for some C' > 0 depending on 2 and A. This allows to prove (2.4) for u € C?(Q). If we set

zty

ply) = @A )y y),

since

V,ely) = ol@—y)-A(2EY) (Vyu(y) — 1A<$ -2|- y>u(y) + %u(y)(g; —y)- VyA<x —2F y))

if z € Q, a second order Taylor expansion gives (since u, A € C?, then V2 is bounded on )

Y

zTTYy

u(@) — AT u(y) = p(x) - ply) = (Vu(z) - iA(@)u(@)) - (v - ) + O(|z - yf2).
Hence, for any fixed x € €,
i Tty
+ O(|lx — y))-
|z -y |z —y| \ )
Fix € Q. If we set R, := dist(x,0Q), integrating with respect to y, we have

€T —

(2.5) = ‘(Vu(a:) —iA(z)u(x)) -

. x4y : zty
fu(a) — DA Du(y) 2 / () — VAT Du(y) 2
(T —y)dy = n(x—y)d
/Q P pnlx —y)dy o) P pnlx —y)dy
i zty
ju(z) = VAT u(y) 2
2.6 Wz — ) dy.
(2.6) + /Q\B(%Rm) P pn(z —y)dy
The second integral goes to zero by the first limit of conditions (2.3), since
_ 1(.L—y)A($) 2
lim [uz) —e 5 ()| pn(z—y)dy < C lim pn(z)dz = 0.
n=0 JO\B(z,R.) |z -y n=0 JBe(0,R,)

Now, in light of (2.5), following [3] we compute

i(x—y) A( LY
/ Ju(z) — @ ACE )y (y)?
B(z,Rz) |z —y[?

R,
pul — ) dy = Qu|Vu(z) — iA(x)u(z)? / N (r)dr

+0 </Rw ern(r)dr> + 0O (/Rw rNHpn(?")dT) ,
0 0

Qx = / lw - e[2dHY 1 (w),
SN-1

being e € RV a unit vector. Letting n — oo in (2.6), the result follows by dominated convergence. (|

where we have set

3. PROOFS OF THEOREM 1.1 AND 1.2

3.1. Proof of Theorem 1.1. If rg := diam({2), we consider a radial cut-off » € C2°(RY), ¥(z) = o (|z])
with ¢o(t) = 1 for t < rq and ¥g(t) = 0 for t > 2rg. Then, by construction, ¢(Jz — y|) = 1, for every
x,y € Q. Furthermore, let {s,}nen C (0,1) be a sequence with s, 1 as n — oo and consider the
sequence of radial functions in L!(RY)

2(1 - sp)

(3.1) pu(|z]) = W%(M)v zeRY, neN

Notice that (2.2) holds, since

rQ rQ 1
lim Pn(T)TN_ldr = lim 2(1 —s,) ——dr = lim T?{QS" =1,
n—oo J n—o00 0 résn— n—o00

and

2ro 2rq
. N—=1q.__ 1 o (T) _
nleréo pn(r)r " Hdr = nhﬁrrolo 2(1 — sp) /r t%n_ldr =0.

O Q
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a similar fashion, for any ¢ > 0, there holds

[e%s) 2rq 1
lim pn(r)rN"tdr < lim 2(1 — sn)/ ——dt =0,
s

n—oo [s n—o00 t2sn—1

s s
1
lim pn(r)rNdr < lim 2(1 — sn)/ ——dt =0,
0

n—oo [q n—00 t23"_2

) )
1

n—oo 0 n— oo

Then Theorem 1.1 follows directly from Theorem 2.5 using p,, as defined in (3.1). O

3.2. Proof of Theorem 1.2. In light of Theorem 1.1 and since © = 0 on Q°¢, we have

_ i(z—y) A( ) 2
lim (1 — s)/ [ulz) u(w) daxdy = KN/ |Vu — iA(z)u|*dz + lim R,
R2N | Q 5,71

s 1 T — y|N+2S
where we have set u(z)?
Ry :=2(1—5s) / / ——————dxdy.
RV\Q Iaj - yIN“g
On the other hand, arguing as in the proof of [5, Proposition 2.8], we get Ry — 0 as s ' 1 when u € C2°(9)
and, on account of Lemma 2.4, for general function in H& 4(€) by a density argument. O
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