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Abstract. In the Landau-de Gennes theory, a nematic liquid crystal is described by a tensor
order parameter, Q, which, at each point of the region Ω occupied by the system, is a symmetric,
traceless 3× 3 matrix. The free-energy density ψ of nematic liquid crystals is expanded into powers
of the components Qij of Q and Qij,k of its gradient ∇Q, and can be decomposed in the sum
ψ = ψB +ψE of the bulk part ψB(Q) and the elastic part ψE(Q,∇Q). A most common expression
for ψE is given by the four-constant approximation ψE(Q,∇Q) = L1Qij,jQik,k + L2Qik,jQij,k +
L3Qij,kQij,k +L4QlkQij,lQij,k [1, 26, 27]. For general Q-tensors, it was shown that, if L4 6= 0, the
corresponding free-energy functional is unbounded from below [1, 2]. On the other hand, if L4 = 0
and L1, L2, and L3 satisfy appropriate conditions, the elastic part of the energy functional is bounded
and coercive [8, 21]. In the constrained theory in which Q has position independent eigenvalues, only
the elastic energy has to be considered, since the bulk energy is constant. For constrained uniaxial
systems, it is known that if L4 6= 0, the elastic density ψE reduces to the classical Oseen–Frank
density and relations among L1, L2, L3, and L4 can be obtained so that the energy is coercive
[3, 11, 21]. In this paper we address the question of coercivity for constrained biaxial systems.
Conditions on L1, L2, L3, and L4 guaranteeing coercivity of the energy, and hence existence of
minimizers, are established. In particular, we shall obtain the constrained biaxial counterpart of
the classical Ericksen conditions for the constrained uniaxial case. For the proof, after deriving a
Cartesian representation for ψE in terms of the three orthonormal eigenvector fields of Q, we use
the identification of the order parameter space with the eightfold quotient of S3 ∼= Sp(1) by the
quaternion group H and the description, in this model, of the condition for the frame indifference of
Landau–de Gennes energy densities as given in [29].
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1. Introduction. This paper continues our investigation on the properties of the
Landau–de Gennes elastic free-energy for constrained biaxial nematic systems started
in [29]. The principal aim of this paper is to discuss the question of coercivity for the
most common four-elastic-constant form of the Landau–de Gennes elastic free-energy
[1, 2, 18, 27] and the corresponding energy minimization problem.

Let us begin by recalling some facts about the Landau–de Gennes theory to better
illustrate our results and put them in perspective. In the Landau–de Gennes theory
[9, 17, 27], the orientational properties of a nematic liquid crystal occupying a region
Ω ⊂ R3 are described by a tensor order parameter Q , the so-called Q-tensor, which is
a rank-two, symmetric, traceless tensor. This means that Q(x) defines a symmetric,
traceless 3 × 3 matrix, at each point x ∈ Ω. The tensor Q contains information
about the degree of order and the deviation from isotropy of the liquid crystal at a
point in Ω. More specifically, the eigenvectors of Q give the directions of preferred
orientation of the molecules, while the eigenvalues give the degree of order about these
directions. The state of a nematic liquid crystal is said to be (1) isotropic when Q
has three equal eigenvalues (and hence, zero), i.e., when Q vanishes identically, (2)
uniaxial when Q has two nonzero equal eigenvalues, and (3) biaxial when Q has
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three distinct eigenvalues. The terms uniaxial and biaxial refer to the shape and the
symmetry of the molecules of the system. Either the molecules are uniaxial, in which
case there is an axis of rotational symmetry, or biaxial, in which case there are no axis
of complete rotational symmetry; in the latter case, however, two perpendicular axes
can be defined for each of which there is a reflection symmetry. For an explanation
of the molecular arrangement corresponding to a nematic system, we refer to [6, 27].

In a general biaxial state, the tensor order parameter Q can be written in the
form

(1.1) Q = S1

(
n⊗ n− 1

3
I
)

+ S2

(
m⊗m− 1

3
I
)
,

where S1, S2 : Ω→ R are scalar order parameters and the triad (n , m , ` = n×m) is
a field of orthonormal eigenvectors of Q corresponding, respectively, to the eigenvalues

(1.2) λ1 =
2S1 − S2

3
, λ2 =

2S2 − S1

3
, λ3 = −S1 + S2

3
.

Equivalently, Q = λ1n⊗ n + λ2m⊗m + λ3`⊗ ` . Notice that a different numbering
of the eigenvalues would lead to different S1 and S2. In the following, we may and
do assume that λ1 ≤ λ2 ≤ λ3 and λ1, λ2, λ3 ∈ (− 1

3 ,
2
3 ) (cf. [2, 23]). In the isotropic

phase, clearly S1 = S2 = 0. In the uniaxial phase, either S1 = 0 , S2 6= 0, or S1 6= 0 ,
S2 = 0, or S1 = S2, so that Q takes the form

(1.3) Q = s
(
r⊗ r− 1

3
I
)
, s : Ω→ R, r : Ω→ S2.

According to the above decomposition, a tensor order parameter Q has five degrees
of freedom, two of them specify the degree of order, while the remaining three are the
angles needed to specify the principal directions.

The Landau–de Gennes free-energy functionals are nonlinear integral functionals
of the components of Q and of its gradient ∇Q , subject to certain invariance and
symmetry principles. In general, any density Ψ = Ψ(Q,∇Q) for the Landau–de
Gennes integral functionals is required to satisfy the condition of frame indifference
which amounts to

(1.4) Ψ(Q,∇Q) = Ψ(MQMT ,D∗), ∀M = (M i
j) ∈ SO(3) ,

where D∗ denotes a third order tensor, such that D∗ijk = M i
lM

j
mM

k
pQlm,p, and Qij,k

denotes ∂Qij/∂xk =: ∂kQij (cf. [1]). Here and below, the summation convention
over repeated indices is assumed. Additional conditions expressing specific physical
symmetries of the material can be required on densities, depending on the cases.

A commonly used expression for the Landau–de Gennes free energy of a nematic
liquid crystal is [9, 27, 31]

(1.5) F [Q] :=

∫
Ω

[ψB(Q) + ψE(Q,∇Q)] dx ,

where ψB(Q) = fB(tr(Q2),det(Q)) is a function of the principal invariants of Q
that accounts for the bulk free-energy density and

(1.6) ψE(Q,∇Q) = L1I1 + L2I2 + L3I3 + L4I4



ON THE LANDAU–DE GENNES ELASTIC ENERGY 3

is the elastic free-energy density. The Li are material constants and the elastic invari-
ants Ii are given by

(1.7) I1 = Qij,jQik,k , I2 = Qik,jQij,k , I3 = Qij,kQij,k , I4 = QlkQij,lQij,k .

Observe that I1 − I2 = (QijQik,k),j − (QijQik,j),k is a null Lagrangian.

For general Q-tensors, the presence of the cubic term I4 is responsible for the
energy F [Q] being unbounded from below [1, 2]. On the other hand, it is known that,
if L4 = 0, the elastic part of the energy,

FE [Q] :=

∫
Ω

ψE(Q,∇Q) dx ,

is bounded from below and coercive if the elastic constants L1, L2, and L3 satisfy
[8, 21]

L3 > 0 , −L3 < L2 < 2L3 , L1 > −
3

5
L3 −

1

10
L2 .

In many applications, the scalar order parameters S1 , S2 of Q can be regarded
as independent of position, i.e., independent of x ∈ Ω, and only the vectors n and
m are allowed to vary in space [16, 21, 22]. It then suffices to consider the so-
called constrained Landau–de Gennes theory of nematic liquid crystals in which Q
has constant scalar order parameters, and hence constant eigenvalues [1, 3]. In the
constrained theory, the bulk part of the energy is constant and so only the elastic
free energy is to be considered. For the question of defects in the framework of the
constrained theory, we refer to [1, 6, 7, 27] and the literature therein.

One motivation for considering the four-elastic-constant expression (1.6) is that,
in the constrained uniaxial case in which Q has a constant scalar order parameter and
the order parameter space identifies with the projective plane RP 2, then ψE(Q,∇Q)
reduces to the classical Oseen-Frank density [13, 30, 35],

w(r,∇r) = K1(div r)2+K2(r·curl r)2+K3|r×curl r|2+(K2+K4)
[
tr[(∇r)2]−(div r)2

]
,

where the Ki are elastic constants. This is achieved (cf. [3, 5, 27]) by formally
calculating the energy density (1.6) in terms of r and ∇r and by then choosing the
Li and the Ki, i = 1, 2, 3, 4, so that

ψE(Q,∇Q) = w(r,∇r).

In particular, relations among L1, L2, L3, and L4 can be determined so that the
corresponding energy is coercive [3, 11, 21, 34]. Note that, although the elastic energies
can be taken to be the same in the two theories, the result of the energy minimization
might be different [3]. (See [3, 28] for the related problems of line field orientability
and map lifting in the Sobolev setting.)

In the constrained theory of biaxial nematics, the order parameter space is the
set Q(λ1, λ2, λ3) of all constrained biaxial Q-tensors of the form (1.1) with distinct
constant eigenvalues λ1, λ2, λ3. Any element Q ∈ Q(λ1, λ2, λ3) can be written in the
form Q = GAGT , for some G ∈ SO(3), where A = diag(λ1, λ2, λ3) is the diagonal
matrix of the eigenvalues. Thus, Q(λ1, λ2, λ3) coincides with the orbit of A with
respect to the SO(3)-action by conjugation on the five-dimensional space of Q-tensors,
and can be identified with the homogeneous space SO(3)/D2, where D2 is the abelian
four-element dihedral group (cf. [25, 27]). Using the identification of the unit 3-sphere
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S3 with Sp(1), the Lie group of unit quaternions, and the 2:1 universal covering map
Φ : S3 → SO(3), the order parameter space of constrained biaxial nematics is then
diffeomorphic to the homogeneous manifold S3/H, where H = {±1,±i,±j,±k} is
the non-abelian eight-element quaternion group. In this model, a configuration of a
biaxial nematic liquid crystal is described by a map from Ω to S3/H.

2. Description of results. The purpose of this paper is to discuss the question
of coercivity of FE [Q] , subject to suitable boundary conditions, for the case of con-
strained biaxial systems (also called “hard biaxial” systems [22]). We will find explicit
conditions on the elastic constant L1, L2, L3, and L4, under which the energy FE [Q],
and hence F [Q], is coercive. This is the content of Theorems 6.2, 6.3, 6.5, and 6.7.

The main points in our discussion are the following:

• Compute Cartesian expressions for the elastic invariants I1, I2, I3, and I4.
• Use the Cartesian expressions for I1, I2, I3, and I4 and the identification of
Q(λ1, λ2, λ3) with S3/H to express the energy density ψE(Q,∇Q) in terms
of maps q : Ω→ S3 and their derivatives, so that

ψE(Q(q(x)),∇Q(q(x))) = fE(q(x),∇q(x)) ∀x ∈ Ω ,

for a suitably constructed energy density model fE(q,∇q) satisfying the re-
quired invariance conditions.

• Use the frame indifference to determine necessary and sufficient conditions on
the elastic constants Li for the (pointwise) expression of the energy density
model fE(q,∇q) to be a positive definite quadratic function of ∇q.

• Apply the above results to the question of coercivity for the energy functional
FE [Q].

• Apply the above results to the question of existence of minimizers for the
energy functional FE [Q].

We will now address each of these issues in more detail.

2.1. Cartesian expressions. For a constrained biaxial Q of the form (1.1),
with distinct constant eigenvalues λ1, λ2, λ3 , we derive Cartesian expressions for the
elastic invariants I1, I2, I3 , and I4 in terms of the gradient, the divergence, and
the curl of the orthonormal eigenvector fields (n, m, `) associated with Q . More
precisely, in Propositions 4.3, 4.5, and 4.2 we compute, respectively,

I1(Q,∇Q) = S1(S1 − S2)
(
(div n)2 + |n× curl n|2

)
+ S2(S2 − S1)

(
(div m)2 + |m× curl m|2

)
+ S1S2

(
(div `)2 + |`× curl `|2

)
,

I2(Q,∇Q) = S1(S1 − S2)
(
tr[(∇n)2] + |n× curl n|2

)
+ S2(S2 − S1)

(
tr[(∇m)2] + |m× curl m|2

)
+ S1S2

(
tr[(∇`)2] + |`× curl `|2

)
,

I3(Q,∇Q) = 2S1(S1 − S2)|∇n|2 + 2S2(S2 − S1)|∇m|2 + 2S1S2|∇`|2 ,
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and in Theorem 5.1, we compute

I4(Q,∇Q) = 3−1 S1(2S1 − S2)(S2 − S1)
(
tr[(∇n)2] + (n · curl n)2

)
+ 3−1 S1(S1 − S2)(4S1 − 5S2) |n× curl n|2

+ 3−1 S2(2S2 − S1)(S1 − S2)
(
tr[(∇m)2] + (m · curl m)2

)
+ 3−1 S2(S2 − S1)(S1 + 4S2) |m× curl m|2

+ 3−1 S1S2(S1 + S2)
(
tr[(∇`)2] + (` · curl `)2

)
+ 3−1 S1S2(S2 − 5S1) |`× curl `|2

+ 2S1S2(S1 − S2) [(m · curl n)2 + (` · curl m)2 + (n · curl `)2] ,

so that ψE(Q,∇Q) = f̃(n,m,n,∇n,∇m,∇`). The important fact about these new
Cartesian expressions for I1, I2, I3, I4 is that, unlike those computed for instance in
[29], they are written, up to a divergence term (cf. (4.3)), using only the twelve
independent quadratic first order invariants

|n× curl n|2 , |m× curl m|2 , |`× curl `|2 ,
(div n)2 , (div m)2 , (div `)2 ,

(n · curl n)2 , (m · curl m)2 , (` · curl `)2 ,
(m · curl n)2 , (` · curl m)2 , (n · curl `)2 ,

which appear in the expansion up to second order of the elastic free-energy density of
a constrained biaxial system [16, 22, 32]. Actually, the above expression for I3 was
already given in [29].

2.2. Energy density model. Using the identification of the order parameter
space Q(λ1, λ2, λ3) of a constrained biaxial system with the homogeneous space S3/H,
to any unit quaternion q ∈ S3 there corresponds a tensor order parameter Q(q) :=
G(q)AG(q)T , where A = diag(λ1, λ2, λ3) and G(q) = Φ(q) is the orthogonal matrix
having n(q), m(q), and `(q) as column vectors, being Φ : S3 → SO(3) the universal
covering map of SO(3) (cf. Section 3, Equation (3.1)). This, together with the
Cartesian expressions above, allows us to express ψE(Q,∇Q) in terms of maps q :
Ω → S3 and their derivatives. Namely, there exists a function fE : S3 ×M4×3 →
[0,+∞], such that

ψE(Q(q(x)),∇Q(q(x))) = fE(q(x),∇q(x)) ∀x ∈ Ω.

In [29], we identified the conditions on fE , so that: (1) fE is independent of arbitrary
superposed rigid rotations (frame indifference condition); (2) fE is well defined on the
class of configuration maps Ω→ S3/H (residual symmetry condition). Condition (2)
is a specific physical symmetry of the material that corresponds to the “head-to-tail”
symmetry in the uniaxial case. As for condition (1), fE is said to satisfy the frame
invariance condition if, for any q ∈ S3 ∼= Sp(1),

(2.1) fE(w,H) = fE(qw,L(q)HΦ(q)T ) ∀ (w,H) ∈ S3 ×M4×3,

where L(q) is the (orthogonal) matrix of the R-linear map w 7→ qw on the algebra
of quaternions H, relative to {1, i, j, k}. This invariance condition is indeed equivalent
to the frame indifference condition (1.4) in the sense of Q-tensors [29]. Therefore,
the function fE(q,∇q) may be interpreted as the elastic energy density model for
the configuration maps q : Ω → S3/H of a constrained biaxial nematic system, and
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the corresponding energy functional is well defined, for instance, on Sobolev maps
q : Ω→ S3/H.

In principle, using the Cartesian expression for ψE and the above identifications,
we could explicitly compute fE arguing as in [29], where we computed f3 such that
I3(Q(q),∇Q(q)) = f3(q,∇q). However, for our purposes, such computations are not
needed.

2.3. Coercivity conditions. In Theorems 6.2 and 6.5, for any given map q :
Ω → S3 , we determine necessary and sufficient conditions on the elastic constants
Li for the (pointwise) expression of the energy density model fE(q,∇q) to be a
positive definite quadratic function of ∇q. Actually, we find necessary and sufficient
conditions on the Li under which the function fE satisfies fE(q,H) > 0 , for any
given q ∈ S3 and all 4× 3 matrices H 6= 0 such that HT q = 0. This is achieved by
first studying the positivity of the form fE(p0, ·) at a fixed pole p0 ∈ S3 and by then
exploiting the frame invariance condition (2.1) and Lemma 3.6 to prove the positivity
for any q ∈ S3.

Note that the positivity of fE(q,∇q) holds true also for maps in W 1,2(Ω,S3/H)
by the lifting result of Bethuel–Chiron [4, Theorem 1], which asserts that if Ω is
bounded and simply connected, then for every w ∈W 1,2(Ω,S3/H) , there exists a w̃ ∈
W 1,2(Ω,S3) , unique up to the action of an element of π1(S3/H) = H, such that Π ◦
w̃ = w a.e. in Ω, where Π : S3 → S3/H is the canonical projection, and |∇w| = |∇w̃|
a.e. in Ω. In particular, for each Sobolev map q ∈W 1,2(Ω,S3/H) , the corresponding
map Ω 3 x 7→ Q(q(x)) belongs to the Sobolev class W 1,2(Ω,Q(λ1, λ2, λ3)).

Notice that the diffeomorphism Q(λ1, λ2, λ3) ∼= S3/H establishes a bijective cor-
respondence between W 1,2(Ω,Q(λ1, λ2, λ3)) and W 1,2(Ω,S3/H); see, for example,
[29] for details. Moreover, using the Nash–Moser isometric embedding of the Rieman-
nian homogeneous manifold S3/H ∼= Q(λ1, λ2, λ3) into some Euclidean space RN ,
the elements Q of W 1,2(Ω,Q(λ1, λ2, λ3)) are identified with the Sobolev functions
w in W 1,2(Ω,RN ) , such that w(x) ∈ S3/H , for a.e. x ∈ Ω.

2.4. Coercivity of the energy functional. As a consequence of the previous
discussion, we have the following.

Theorem A. For a constrained biaxial nematic system, let ψE(Q,∇Q) be of the
form (1.6), for constants L1, L2, L3, L4 ∈ R. Then, there exists ν > 0 such that

ψE(Q,∇Q) ≥ ν|∇Q|2, for all Q ∈W 1,2(Ω,Q(λ1, λ2, λ3)),

if and only if the constants L1, L2, L3 , and L4 satisfy the conditions established in
Theorem 6.5.

The necessary and sufficient conditions of Theorem 6.5 can be interpreted as the
constrained biaxial counterpart of the classical Ericksen inequalities [11, 34] for the
constrained uniaxial case, see (6.2) below, which can be rewritten in terms of the
coefficients Li as

2L1 + L2 + 2L3 >
2

3
L4s , L1 + L2 + 2L3 +

4

3
L4s > 0 , 2L3 −

2

3
L4s > |L2| .

Assume now that the admissible Q for the functional F [Q] satisfy Dirichlet
boundary conditions given as follows [9, 12, 20]. Let Ω ⊂ R3 be a bounded and
simply connected domain with smooth boundary ∂Ω. For a smooth function ϕ :
Ω ∪ ∂Ω→ Q(λ1, λ2, λ3) , we define the class W 1,2

ϕ of admissible tensor fields by

W 1,2
ϕ :=

{
Q ∈W 1,2(Ω,Q(λ1, λ2, λ3)) : Q|∂Ω = ϕ|∂Ω

}
,
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where equality is understood in the sense of traces. Therefore, for each Q ∈W 1,2
ϕ , the

contribution to the energy of a divergence term is a real constant cϕ, only depending
on ϕ.

In Theorems 6.3 and 6.7, we find sufficient conditions on the Li under which
there exists a positive constant ν > 0 , such that

(2.2) ψE(Q(q),∇Q(q)) = fE(q,∇q) ≥ ν |∇q|2 + divergence term.

As a consequence, we have the following.

Theorem B. For a constrained biaxial nematic system, let F [Q] be of the form
(1.5), and let ψE(Q,∇Q) be of the form (1.6), for some constants L1, L2, L3, L4 ∈ R.
Then, there exists ν > 0 such that

FE [Q] ≥ ν
∫

Ω

|∇Q|2 dx+ cϕ , for all Q ∈W 1,2
ϕ ,

provided that L1, L2, L3, L4 satisfy the conditions established in Theorem 6.7.

The sufficient conditions of Theorem 6.7 for the constrained biaxial case, can be
seen as the counterpart of the analogous conditions for the constrained uniaxial case;
cf., e.g., [15, Section 5.1], which in terms of the coefficients Li read

L1 + L2 + 2L3 >
2

3
L4s , L1 + L2 + 2L3 +

4

3
L4s > 0 , 2L3 −

2

3
L4s > 0 .

2.5. Existence of minimizers. Now, since in the constrained theory the bulk
part of the free-energy is constant,∫

Ω

ψB(Q) dx = cB , for all Q ∈W 1,2(Ω,Q(λ1, λ2, λ3)) ,

if the Li satisfy the inequalities established in Theorem 6.5, there exist constants
K > ν > 0 such that for all Q ∈W 1,2(Ω,Q(λ1, λ2, λ3))

cB + ν

∫
Ω

|∇Q|2 dx ≤ F [Q] ≤ cB +K

∫
Ω

|∇Q|2 dx .

In a similar way, if the Li satisfy the inequalities established in Theorem 6.7,
there exist constants K > ν > 0 such that

cB + cϕ + ν

∫
Ω

|∇Q|2 dx ≤ F [Q] ≤ cB + cϕ +K

∫
Ω

|∇Q|2 dx , for all Q ∈W 1,2
ϕ .

Next, arguing as in [8, Section 4], it follows that the functional F [Q] is convex
in ∇Q (and continuous in the strong W 1,2-topology) and hence weakly sequentially
lower semicontinuous in W 1,2. Moreover, both classes W 1,2(Ω,Q(λ1, λ2, λ3)) and
W 1,2
ϕ are nonempty and closed under sequential weak convergence. Therefore, by

compactness of the target manifold Q(λ1, λ2, λ3), existence of minimizers for F [Q]
is guaranteed by the direct method of the calculus of variations (see, for instance, [14,
Chapter I]). We can thus state the following existence results.

Theorem I. Let Ω ⊂ R3 be a bounded, simply connected domain with smooth
boundary ∂Ω. Let the elastic constants L1, L2, L3, and L4 satisfy the inequalities
established in Theorem 6.5. Then, the functional F [Q] attains a minimum on the
class W 1,2(Ω,Q(λ1, λ2, λ3)) .
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Theorem II. Let Ω ⊂ R3 be a bounded, simply connected domain with smooth
boundary ∂Ω. Let the elastic constants L1, L2, L3, and L4 satisfy the inequalities
established in Theorem 6.7. Let ϕ : Ω ∪ ∂Ω → Q(λ1, λ2, λ3) be smooth. Then, the
functional F [Q] attains a minimum on the class W 1,2

ϕ .

There are several interesting open questions still to be investigated. A first prob-
lem would be that of finding the necessary and sufficient conditions in Theorem B.
Another interesting question would be that of determining the precise inequalities
which guarantee coercivity under the so-called partial Dirichlet boundary conditions
or the physically relevant conical anchoring conditions proposed in [1].

This paper is organized as follows. Section 3 fixes notation and recalls some
background material, mainly taken from [29]. Section 4 computes explicit Cartesian
representations for I1, I2, I3. Section 5 does the same for I4. Section 6 obtains
conditions on L1, L2, L3, and L4, under which the energy F [Q] is coercive.

3. Preliminaries and notation. In this section, we fix the notation and briefly
recall some background material and results to be used in the sections that follow.
The reader is referred to [29] for additional details.

3.1. Quaternions and rotations. Let H be the real noncommutative algebra
of quaternions, with the standard basis {1, i, j, k}, where multiplication is determined
by the rules i2 = j2 = k2 = ijk = −1. If q ∈ H, we write

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R.

The real and imaginary parts of q are q0 and q1i+q2j+q3k, respectively. The conjugate
of q is q̄ = q0−q1i−q2j−q3k and the norm |q| is defined by |q|2 = qq̄ = q̄q = q2

0+q2
1+q2

2+
q2
3 . The multiplicative inverse of any nonzero quaternion is q−1 = q̄/|q|2. As a vector

space, H is identified with R4 via the usual isomorphism, q = q0 + q1i+ q2j+ q3k←→
(q0, q1, q2, q3)T , which in turn induces an isomorphism between the subspace of pure
quaternions span{i, j, k} and R3. In view of this isomorphism, the elements 1, i, j, k
of H will be identified with the elements of the canonical basis e0, e1, e2, e3 of R4,
respectively. We will also use the decomposition H = R⊕R3 = span{1}⊕ span{i, j, k}
into the real and imaginary parts, and write (q0,q) for q = (q0, q1, q2, q3)T .

There is a diffeomorphism between the unit 3-sphere S3 ⊂ R4 and the group
Sp(1) = {q ∈ H | |q| = 1} of unit quaternions. Let q ∈ Sp(1) and let Cq : H → H be
the R-linear transformation defined by Cq(w) = qwq̄, for all w ∈ H. The map Cq is
an isometry, |Cq(w)| = |w| , and preserves the decomposition H = R ⊕ R3 into real
and imaginary parts. It can then be interpreted as a rotation of R3.

Let M(q) be the 4×4 matrix that represents the linear transformation Cq : H→
H with respect to the standard basis {1, i, j, k}. Since |Cq(w)| = |w| , for all w ∈ H,
M(q) must be an orthogonal matrix, that is, M(q) ∈ O(4). The continuity of the
determinant and the connectedness of S3 imply that the determinant of M(q) is
positive, so that M(q) ∈ SO(4). The first column of M(q) is the vector representing
the quaternion q1q̄ = qq̄ = 1 , that is, e0. The fact that M(q) belongs to SO(4)
now forces M(q) to be of the form M(q) =

(
1 0
0 Φ(q)

)
, where Φ(q) is an element of

the special orthogonal group SO(3). The map Φ : S3 ∼= Sp(1) → SO(3), q 7→ Φ(q),
is a homomorphism of groups which is surjective and has kernel {±1} (see [10] for
more details). In particular, two matrices Φ(p) and Φ(q) represent the same rotation
if and only if p = ±q. The rotation matrix corresponding to the unit quaternion
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q = q0 + q1i + q2j + q3k is given explicitly by

(3.1) Φ(q) = G(q0,q) :=q2
0 + q2

1 − (q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − (q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − (q2
1 + q2

2)

 .

Remark 3.1. In this paper, we think of vectors as column vectors. If n,m ∈ R3,
the tensor product n ⊗ m is the matrix nmT , so that if n = (n1,n2,n3)T and
m = (m1,m2,m3)T , then (n⊗m)ij = nimj . We denote by n ·m the scalar product
and by n×m the vector product of n,m.

3.2. Models for constrained biaxial systems. In the constrained Landau–
de Gennes theory [3, 24, 25, 22], the scalar order parameters S1 and S2 are required
to be constant, so that the structure of the liquid crystal at each point x ∈ Ω only
depends on the value of the orthonormal vectors n, m at x. In particular, the
eigenvalues in (1.2) are constant. In the constrained uniaxial case, according to (1.3),
any tensor order parameter Q has two degrees of freedom given by r ∈ S2. Actually,
if r is replaced by −r in (1.3), Q remains the same, and can then be identified with
the pair {r,−r} , r ∈ S2, which in turn determines a point in the projective plane
RP 2. In the constrained biaxial case, Q has instead three degrees of freedom.

Let Q(λ1, λ2, λ3) be the set of all constrained biaxial Q-tensors of the form (1.1)
with distinct constant eigenvalues λ1, λ2, λ3. Any element Q ∈ Q(λ1, λ2, λ3) can be
written in the form Q = GAGT , for some G ∈ SO(3), where A = diag(λ1, λ2, λ3)
is the diagonal matrix of the eigenvalues. Therefore, Q(λ1, λ2, λ3) coincides with the
orbit of A with respect to the SO(3)-action by conjugation on the space of Q-tensors,
and can be identified with the homogeneous space SO(3)/D2, where D2 is the abelian
four-element dihedral group [7, 25, 29]. Using the identification of S3 with the Lie
group of unit quaternions, Sp(1), and the 2:1 covering map Φ : S3 → SO(3), the order
parameter space Q(λ1, λ2, λ3) of constrained biaxial nematics is then diffeomorphic
to the homogeneous manifold S3/H, where H = {±1,±i,±j,±k} is the non-abelian
eight-element quaternion group [29]. To each Q ∈ Q(λ1, λ2, λ3) there corresponds
a set of eight elements q ∈ S3, a right coset of H in S3 ∼= Sp(1). In this model,
a configuration of a biaxial nematic liquid crystal is described by a map from Ω to
S3/H, as opposed to the constrained uniaxial case where the order parameter space
is RP2.

Remark 3.2. From (1.2) and the specific ordering λ1 < λ2 < λ3 of the eigenval-
ues in the representation (1.1), it follows that S1 < S2 < 0. Moreover, according to
the analysis in the proof of Proposition 1 in [24], one can indeed conclude that either

(3.2)
S1

2
≤ S2 < 0, or S2 ≤

S1

2
< 0 .

In fact, using the notation from [24], condition λ1 < λ2 < λ3 yields that R−2 and R+
3

are the only admissible regions.

3.3. Frame indifference. In the framework of Q-tensor theory, two observers
see the same free-energy density ψ(Q,∇Q). This amounts to the requirement that

(3.3) ψ(Q,∇Q) = ψ(MQMT ,D∗) ∀M ∈ SO(3) ,
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where D∗ijk := M i
lM

j
mM

k
pQlm,p; cf., e.g., [1]. Here and in the following, the symbol

“,k” denotes the partial derivative “ ∂
∂xk

=: ∂k” in the kth canonical direction w.r.t.

x ∈ Ω, so that Qij,k = ∂
∂xk

Qij = ∂kQij .

In the constrained uniaxial case, condition (3.3) is equivalent to the well known
frame invariance

(3.4) w(r, H) = w(Rr, RHRT ) ∀ r ∈ S2 , H ∈M3×3 , R ∈ SO(3)

that is satisfied by an energy density in the Oseen-Frank theory of uniaxial nematic
liquid crystals [15, 19].

Remark 3.3. The elastic free-energy densities I1, I2, I3, I4 as given in (1.7) sat-
isfy condition (3.3) for the full orthogonal group O(3). This is a material symmetry
reflecting the lack of chirality of the molecules constituting nematic liquid crystals (cf.
[1]).

In the above model for constrained biaxial systems, the Landau–de Gennes elas-
tic free-energy density ψE(Q,∇Q) is expressed as a density on maps q : Ω → S3,
depending on q and its first derivatives. In [29], we identified the conditions on a
generic energy density f : S3 ×M4×3 → [0,+∞), in order that:

(1) f is independent of arbitrary superposed rigid rotations (frame indifference
condition);

(2) f is well defined on the class of configuration maps Ω → S3/H (residual
symmetry condition).

As for condition (1), we have the following.

Definition 3.4. An energy density f : S3×M4×3 → [0,+∞) satisfies the frame
invariance condition if, for any q ∈ S3 ,

(3.5) f(w,H) = f(qw,L(q)HΦ(q)T ) ∀ (w,H) ∈ S3 ×M4×3 ,

where L(q) denotes the orthogonal matrix representing the real linear map on H
defined by w 7→ q w , with respect to the standard basis {1, i, j, k}, and Φ : S3 → SO(3)
is the 2:1 group homomorphism given in (3.1).

The frame invariance and the frame indifference conditions are related as follows.

Theorem 3.5 (see [29]). For constrained biaxial nematics, the frame invariance
condition (3.5) is equivalent to the frame invariance (3.3) in the sense of Q-tensors.

As a consequence, we have the following useful result.

Lemma 3.6. If the condition (3.5) holds and if f(q0, H) ≥ 0 for a given q0 ∈ S3

and all H ∈ M4×3 such that HT q0 = 0, then f(q,H) ≥ 0 for any q ∈ S3 and all
H ∈M4×3 such that HT q = 0.

Proof. For any q ∈ S3, there exists p ∈ S3 ∼= Sp(1) such that q = pq0. Let
H ∈ M4×3 such that HT q = 0. Since the conjugate p̄ = p−1 ∈ Sp(1), by (3.5), we
have

f(q,H) = f(p̄q, L(p̄)HΦ(p̄)T ) = f(q0, L(p̄)HΦ(p̄)T ),

where L(p̄)HΦ(p̄)T satisfies
(
L(p̄)HΦ(p̄)T

)T
q0 = 0. In fact,(

L(p̄)HΦ(p̄)T
)T
q0 =

(
L(p)THΦ(p̄)T

)T
q0 = Φ(p̄)HTL(p)q0

= Φ(p̄)HT pq0 = Φ(p̄)HT q = 0.
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Therefore, f(q,H) = f(q0, L(p̄)HΦ(p̄)T ) ≥ 0, as claimed. 2

Condition (2) has to do with a specific physical symmetry of the material associ-
ated with the group H. It corresponds to the “head-to-tail” symmetry in the uniaxial
case. In order to deal with a functional defined on maps taking values in the coset
space S3/H , we also introduced the following symmetry condition.

Definition 3.7. An energy density f : S3 ×M4×3 → [0,+∞) is said to satisfy
the residual symmetry property if, for any q ∈ H , one has

(3.6) f(w,H) = f(qw, L(q)H) ∀ (w ,H) ∈ S3 ×M4×3 .

The above symmetry property is the counterpart of the property

w(r, H) = w(−r,−H) ∀ r ∈ S2 , H ∈M3×3 ,

satisfied by the energy density of uniaxial nematic liquid crystals in the sense of
Oseen–Frank [15, 19].

Remark 3.8. Conditions (3.5) and (3.6) are necessary for a map f : S3×M4×3 →
[0,+∞) representing an energy density for constrained biaxial nematic states.

4. Cartesian representations for the first three invariants. We first collect
collect some useful formulas.

For a smooth unit vector field r = (r1, r2, r3)T : R3 → S2 , let the 3 × 3 matrix
∇r = (ri,j), i, j = 1, 2, 3, denote the gradient of r, div r = tr(∇r) = ri,i the divergence
of r, and curl r = (r3,2− r2,3, r1,3− r3,1, r2,1− r1,2)T the curl of r. Using riri,j = 0 ,
it follows that

(4.1)
| curl r|2 = (r · curl r)2 + |r× curl r|2 ,
|∇r|2 = tr[(∇r)2] + | curl r|2 ,
|∇r|2 = tr[(∇r)2] + (r · curl r)2 + |r× curl r|2 ,

where |∇r|2 = ri,jri,j , tr[(∇r)2] = rk,jrj,k , r× curl r = −(∇r)r, and

(4.2) |r× curl r|2 = ri,krkri,lrl .

Remark 4.1. We recall that the term

(4.3)
[
tr[(∇r)2]− (div r)2

]
= div[(∇r)r− (div r)r]

is a divergence term.

In the constrained biaxial case, we have (1.1), where S1 6= S2 are nonzero con-
stants and n, m ∈ S2 satisfy n ·m = 0 and depend on the position x ∈ Ω. Using
the completeness property of the eigenvectors,

(4.4) n⊗ n + m⊗m + `⊗ ` = I , ` := n×m ∈ S2 ,

we have that

(4.5) Q = λ1n⊗ n + λ2m⊗m + λ3`⊗ ` ,

with λ1, λ2, λ3 as in (1.2), and hence

Qij = λ1ninj + λ2mimj + λ3`i`j ,
Qij,k = λ1(ninj,k + ni,knj) + λ2(mimj,k + mi,kmj) + λ3(`i`j,k + `i,k`j) .
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Property (4.4) yields that, for each i, j, k ,

(4.6) ninj,k + njni,k + mimj,k + mjmi,k + `i`j,k + `j`i,k = 0 .

Moreover, for r, s ∈ {n,m, `}, it follows from the orthonormality of n, m, and ` that

(4.7) risi,j = (risi),j − siri,j = −siri,j .

4.1. The term I3. In [29], we explicitly computed the third elastic invariant

I3(Q,∇Q) := Qij,kQij,k .

For our purposes, in what follows we shall denote

(4.8) Λ1 := (2λ2
1 + λ2λ3) , Λ2 := (2λ2

2 + λ3λ1) , Λ3 := (2λ2
3 + λ1λ2) .

The invariant I3 has the following expression.

Proposition 4.2 (see [29]). Under the previous hypotheses, we have

I3(Q,∇Q) = 2Λ1|∇n|2 + 2Λ2|∇m|2 + 2Λ3|∇`|2 .

4.2. The term I1. We now focus our attention on the first elastic invariant

I1(Q,∇Q) := Qij,jQik,k .

Proposition 4.3. Under the previous hypotheses, we have

I1(Q,∇Q) = Λ1

(
(div n)2 + |n× curl n|2

)
+Λ2

(
(div m)2 + |m× curl m|2

)
+Λ3

(
(div `)2 + |`× curl `|2

)
.

Proof. We first decompose I1 = I11 + I12 + I13 + I14 + I15 + I16 according to the
coefficients λiλj . Using rα,α = div r, we have

I11 = λ2
1((div n)ni + ni,jnj)((div n)ni + ni,knk)

I12 = λ2
2((div m)mi + mi,jmj)((div m)mi + mi,kmk)

I13 = λ2
3((div `)`i + `i,j`j)((div `)`i + `i,k`k)

I14 = λ1λ2[((div n)ni + ni,jnj)((div m)mi + mi,kmk)
+((div n)ni + ni,knk)((div m)mi + mi,jmj)]

I15 = λ2λ3[((div m)mi + mi,jmj)((div `)`i + `i,k`k)
+((div m)mi + mi,kmk)((div `)`i + `i,j`j)]

I16 = λ3λ1[((div `)`i + `i,j`j)((div n)ni + ni,knk)
+((div `)`i + `i,k`k)((div n)ni + ni,jnj)] .

Since rβrβ,α = 0, by (4.2), we get

I11 = λ2
1((div n)2 + njnkni,jni,k) = λ2

1((div n)2 + |n× curl n|2)

and similarly

I12 = λ2
2((div m)2 + |m× curl m|2) , I13 = λ2

3((div `)2 + |`× curl `|2) .
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The other three terms read

I14 = 2λ1λ2[(div n)nimi,kmk + (div m)mini,jnj + njni,jmkmi,k]
I15 = 2λ2λ3[(div m)mi`i,k`k + (div `)`imi,jmj + mjmi,j`k`i,k]
I16 = 2λ3λ1[(div `)`ini,knk + (div n)ni`i,j`j + `j`i,jnkni,k] .

Now denote
anm := nimi,kmk amn := mini,jnj
aml := mi`i,k`k alm := `imi,jmj

aln := `ini,knk anl := ni`i,j`j

and
bnm := njni,jmkmi,k = mjmi,jnkni,k =: bmn
bml := mjmi,j`k`i,k = `j`i,jmkmi,k =: blm
bln := `j`i,jnkni,k = njni,j`k`i,k =: bnl

so that the above terms become

I14 = 2λ1λ2[(div n) anm + (div m) amn + bnm]
I15 = 2λ2λ3[(div m) aml + (div `) alm + bml ]
I16 = 2λ3λ1[(div `) aln + (div n) anl + bln] .

Using (4.6), with k = j in the term mjmi,k, we compute, for example, anm =
−div n− anl , so that

(4.9) anm + anl = −div n , aml + amn = − div m , aln + alm = −div ` .

With the same strategy, we compute

bnm = njni,jmkmi,k

= −njni,jnkni,k − (div m) mi njni,j − (div `) `i njni,j − njni,j`k`i,k,

which, on account of (4.2), reads

bnm = −|n× curl n|2 − (div m) amn − (div `) aln − bnl .

In a similar way, we get

bml = −|m× curl m|2 − (div `) alm − (div n) anm − bmn ,
bln = −|`× curl `|2 − (div n) anl − (div m) aml − blm .

Therefore, denoting

X := bnm = bmn , Y := bml = blm , Z := bln = bnl ,

we obtain the system

(4.10)


X + Z = α

X + Y = β

Y + Z = γ

where
α := −|n× curl n|2 − (div m) amn − (div `) aln
β := −|m× curl m|2 − (div `) alm − (div n) anm
γ := −|`× curl `|2 − (div n) anl − (div m) aml
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which has the solution

(4.11) X =
1

2
(α+ β − γ) , Y =

1

2
(β + γ − α) , Z =

1

2
(γ + α− β) .

By replacing the expressions for α, β, γ, and using the third formula from (4.9),
we obtain

bnm = 1
2

[
−|n× curl n|2 − |m× curl m|2 + |`× curl `|2

+(div `)2 + (div n)(anl − anm) + (div m)(aml − amn )
]

and hence, by the first two formulas in (4.9), we get

(div n) anm + (div m) amn + bnm =
1

2

(
−|n× curl n|2 − |m× curl m|2

+|`× curl `|2 + (div `)2 − (div n)2 − (div m)2
)
,

that gives

I14 = λ1λ2

(
|`×curl `|2 +(div `)2−|n×curl n|2−(div n)2−|m×curl m|2−(div m)2

)
.

In a similar way, we obtain

I15 = λ2λ3

(
|n× curl n|2 + (div n)2 − |m× curl m|2
−(div m)2 − |`× curl `|2 − (div `)2

)
,

I16 = λ3λ1

(
|m× curl m|2 + (div m)2 − |`× curl `|2
−(div `)2 − |n× curl n|2 − (div n)2

)
.

Adding the six terms I1h, and using that λ1 + λ2 + λ3 = 0, the formula for I1 is
readily proved. 2

Remark 4.4. The above invariants anm, a
m
n , a

m
l , a

l
m, a

l
n, a

n
l are related to the lin-

ear first order invariants Dij , i, j = 1, 2, 3 , introduced in [32]. According to [32],
where the oriented frame is (`,m,n) instead of (n,m, `) , so that the role of ` and
n is interchanged, we obtain the following vector expressions for the invariants,

(4.12)

anm = D23 := mαnβmβ,α = −` · curl m
aml = D31 := `αmβ`β,α = −n · curl `
aln = D12 := nα`βnβ,α = −m · curl n
amn = −D13 := −nαnβmβ,α = ` · curl n
alm = −D21 := −mαmβ`β,α = n · curl m
anl = −D32 := −`α`βnβ,α = m · curl `.

In particular, the first of (4.9) reduces to the well-known identity div n = div(m× `)
= ` · curl m−m · curl ` .

4.3. The term I2. Similarly, we now deal with the second elastic invariant

I2(Q,∇Q) := Qik,jQij,k .

Proposition 4.5. Under the previous hypotheses, we have

I2(Q,∇Q) = Λ1

(
tr[(∇n)2] + |n× curl n|2

)
+Λ2

(
tr[(∇m)2] + |m× curl m|2

)
+Λ3

(
tr[(∇`)2] + |`× curl `|2

)
.
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Proof. As before, we decompose I2 = I21 + I22 + I23 + I24 + I25 + I26. Using
that (n,m, `) is an orthonormal frame, so that rβrβ,α = 0 , for r ∈ {n,m, `}, and
recalling the formulas

rk,jrj,k = tr[(∇r)2] , rlrkri,lri,k = |r× curl r|2,

we get

I21 = λ2
1(tr[(∇n)2] + |n× curl n|2)

I22 = λ2
2(tr[(∇m)2] + |m× curl m|2)

I23 = λ2
3(tr[(∇`)2] + |`× curl `|2)

I24 = 2λ1λ2[nimjnk,jmi,k + nkmini,jmj,k + nkmjni,jmi,k]
I25 = 2λ2λ3[mi`jmk,j`i,k + mk`imi,j`j,k + mk`jmi,j`i,k]
I26 = 2λ3λ1[`inj`k,jni,k + `kni`i,jnj,k + `knj`i,jni,k] .

We now denote

cnm := nimjnk,jmi,k cmn := nkmini,jmj,k

cml := mi`jmk,j`i,k clm := mk`imi,j`j,k
cln := `inj`k,jni,k cnl := `kni`i,jnj,k

and also
dnm := nkmjni,jmi,k = mknjmi,jni,k =: dmn
dml := mk`jmi,j`i,k = `kmj`i,jmi,k =: dlm
dln := `knj`i,jni,k = nk`jni,j`i,k =: dnl ,

so that the above terms become

I24 = 2λ1λ2[cnm + cmn + dnm]
I25 = 2λ1λ2[cml + clm + dml ]
I26 = 2λ1λ2[cln + cnl + dln] .

Using (4.6) to replace the term mjmi,k , we compute, for example, cnm = −nk,jnj,k−
cnl , and readily obtain

(4.13) cnm + cnl = −tr[(∇n)2] , cml + cmn = −tr[(∇m)2] , cln + clm = −tr[(∇`)2] .

With the same strategy, we compute

dnm = nkmjni,jmi,k = −nknjni,jni,k − nkni,jmimj,k − nk`ini,j`j,k − nkni,j`j`i,k

that reads
dnm = −|n× curl n|2 − cmn − cln − dnl .

In a similar way, we compute

dml = −|m× curl m|2 − clm − cnm − dmn , dln = −|`× curl `|2 − cnl − cml − dlm .

Therefore, denoting

X := dnm = dmn , Y := dml = dlm , Z := dln = dnl ,

we find again the system (4.10), where this time

α := −|n× curl n|2 − cmn − cln ,
β := −|m× curl m|2 − clm − cnm ,
γ := −|`× curl `|2 − cnl − cml .
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By replacing the above expressions for α, β, γ in the solution (4.11) of the system,
we obtain, for example,

dnm =
1

2

[
tr[(∇`)2]+(cnl −cnm)+(cml −cmn )−|n×curl n|2−|m×curl m|2 + |`×curl `|2

]
and hence, by the first two formulas in (4.13),

[cnm + cmn + dnm] =
1

2

(
(tr[(∇`)2] + |`× curl `|2)− (tr[(∇n)2] + |n× curl n|2)

−(tr[(∇m)2] + |m× curl m|2)
)
,

which gives

I24 = λ1λ2

(
(tr[(∇`)2] + |`× curl `|2)− (tr[(∇n)2] + |n× curl n|2)

−(tr[(∇m)2] + |m× curl m|2)
)
.

In a similar way, we get

I25 = λ2λ3

(
(tr[(∇n)2] + |n× curl n|2)− (tr[(∇m)2] + |m× curl m|2)

−(tr[(∇`)2] + |`× curl `|2)
)
,

I26 = λ3λ1

(
(tr[(∇m)2] + |m× curl m|2)− (tr[(∇`)2] + |`× curl `|2)

−(tr[(∇n)2] + |n× curl n|2)
)
.

Adding the six terms I2h and using that λ1 + λ2 + λ3 = 0, we obtain the required
formula for I2. 2

Remark 4.6. In the uniaxial case, taking for example λ1 = λ2, by (1.2) we get
S1 = S2 and hence the representation (1.3) holds with s := −S1 and r = `, where
` is the eigenvector corresponding to λ3. In this case we have λ1 = λ2 = −s/3 and
λ3 = 2s/3. Moreover, the coefficients Λi defined in (4.8) satisfy Λ1 = 0, Λ2 = 0, and
Λ3 = s2. By Propositions 4.3, 4.5, and 4.2 we thus recover the well-known formulas
for the first three elastic invariants in the uniaxial case:

I1 = s2
(
(div r)2 + |r× curl r|2

)
, I2 = s2

(
tr[(∇r)2] + |r× curl r|2

)
,

I3 = 2s2
(
tr[(∇r)2] + (r · curl r)2 + |r× curl r|2

)
.

In the biaxial case, recalling the formulas (1.2) we deduce that the coefficients Λi
in (4.8) satisfy

(4.14) Λ1 = S1(S1 − S2) , Λ2 = S2(S2 − S1) , Λ3 = S1S2 .

Therefore, the formulas from Propositions 4.3, 4.5, and 4.2 read, equivalently,

I1(Q,∇Q) = S1(S1 − S2)
(
(div n)2 + |n× curl n|2

)
+S2(S2 − S1)

(
(div m)2 + |m× curl m|2

)
+S1S2

(
(div `)2 + |`× curl `|2

)
,

I2(Q,∇Q) = S1(S1 − S2)
(
tr[(∇n)2] + |n× curl n|2

)
+S2(S2 − S1)

(
tr[(∇m)2] + |m× curl m|2

)
+S1S2

(
tr[(∇`)2] + |`× curl `|2

)
,

I3(Q,∇Q) = 2S1(S1 − S2)|∇n|2 + 2S2(S2 − S1)|∇m|2 + 2S1S2|∇`|2 .
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5. Cartesian representation for the fourth invariant. In this section we
focus on the fourth elastic invariant

I4 = QlkQij,lQij,k .

According to [16, 32, 33], the following twelve independent quadratic first order in-
variants,

N := |n× curl n|2 , M := |m× curl m|2 , L := |`× curl `|2,

(5.1)
(div n)2 , (div m)2 , (div `)2 ,

(n · curl n)2 , (m · curl m)2 , (` · curl `)2 ,
(m · curl n)2 , (` · curl m)2 , (n · curl `)2 ,

are needed to describe, up to a divergence term, the expansion to second order of the
elastic free energy density of a constrained biaxial nematic system.

For simplicity, let us denote Λr
s := (s · curl r)2. From Equations (4.12), we get

(5.2)
Λn

m = nαnγ`β`δnβ,αnδ,γ Λn
` = nαnβnγnδmβ,αmδ,γ

Λm
` = mαmγnβnδmβ,αmδ,γ Λm

n = mαmβmγmδ`β,α`δ,γ
Λ`

n = `α`γmβmδ`β,α`δ,γ Λ`
m = `α`β`γ`δnβ,αnδ,γ .

From the above formulas, one recovers, in particular, the following relations (see, for
instance, [32]):

(5.3) N = Λn
m + Λn

` , M = Λm
` + Λm

n , L = Λ`
n + Λ`

m .

We have the following.

Theorem 5.1. According to the previous notation, we have:

I4 = 3−1 S1(2S1 − S2)(S2 − S1) |∇n|2 + 2S1(S2 − S1)2 N
+3−1 S2(2S2 − S1)(S1 − S2) |∇m|2 + 2S2

2(S2 − S1) M
+3−1 S1S2(S1 + S2) |∇`|2 − 2S2

1S2 L
+2S1S2(S1 − S2) [Λn

m + Λm
` + Λ`

n] .

Remark 5.2. In the uniaxial case, taking for instance λ1 = λ2 as in Remark 4.6,
we get

(5.4) I4 = 2s3
(
|`× curl `|2 − 1

3
|∇`|2

)
,

and hence, by using the third equation in (4.1), we recover the known formula for the
uniaxial case:

I4 = 2s3
(2

3
|r× curl r|2 − 1

3
tr[(∇r)2]− 1

3
(r · curl r)2

)
.

In the biaxial case, by applying the third identity in (4.1) to r ∈ {n,m, `}, I4
takes the equivalent form

I4 = 3−1 S1(2S1 − S2)(S2 − S1)
(
tr[(∇n)2] + (n · curl n)2

)
+ 3−1 S1(S1 − S2)(4S1 − 5S2) |n× curl n|2

+ 3−1 S2(2S2 − S1)(S1 − S2)
(
tr[(∇m)2] + (m · curl m)2

)
+ 3−1 S2(S2 − S1)(S1 + 4S2) |m× curl m|2

+ 3−1 S1S2(S1 + S2)
(
tr[(∇`)2] + (` · curl `)2

)
+ 3−1 S1S2(S2 − 5S1) |`× curl `|2

+ 2S1S2(S1 − S2) [Λn
m + Λm

` + Λ`
n] .

(5.5)
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Proof of Theorem 5.1. Using that

Qlk = λ1nlnk + λ2mlmk + λ3`l`k ,
Qij,l = λ1(ninj,l + ni,lnj) + λ2(mimj,l + mi,lmj) + λ3(`i`j,l + `i,l`j) ,
Qij,k = λ1(ninj,k + ni,knj) + λ2(mimj,k + mi,kmj) + λ3(`i`j,k + `i,k`j) ,

we first write as before the formula

I4 = α1 λ
3
1 + α2 λ

3
2 + α3 λ

3
3 + α123 λ1λ2λ3 + α12λ

2
1λ2

+ α23λ
2
2λ3 + α31λ

2
3λ1 + α21λ

2
2λ1 + α32λ

2
3λ2 + α13λ

2
1λ3 .

(5.6)

The first coefficients are

(5.7) α1 = 2N , α2 = 2M , α3 = 2L .

In fact, we have, for example,

α1 = nlnk (ninj,l + ni,lnj)(ninj,k + ni,knj) = 2nlnknj,lnj,k = 2N,

where the last identity follows from (4.2), with r = n. Next, we write the fourth term
as

(5.8) α123 = 4(Bn +Bm +Bl),

where we have set

(5.9)
Bn := nlnkmimj,l`j`i,k ,
Bm := mlmk`i`j,lnjni,k ,
Bl := `l`kninj,lmjmi,k .

The other terms can be written as follows:

Lemma 5.3. According to the notation (5.2), we have

α12 = 2Ωnm − 4Λn
` α21 = 2Ωmn − 4Λm

`

α23 = 2Ωml − 4Λm
n α32 = 2Ωlm − 4Λ`

n

α31 = 2Ωln − 4Λ`
m α13 = 2Ωnl − 4Λn

m

where the coefficients Ωrs are

(5.10)
Ωnm := mlmknj,lnj,k Ωmn := nlnkmj,lmj,k

Ωml := `l`kmj,lmj,k Ωlm := mlmk`j,l`j,k
Ωln := nlnk`j,l`j,k Ωnl := `l`knj,lnj,k .

Moreover, on account of (5.9), we have

Ωnm = Λm
` −Bm Ωmn = Λn

` −Bn
Ωml = Λ`

n −Bl Ωlm = Λm
n −Bm

Ωln = Λn
m −Bn Ωnl = Λ`

m −Bl .

Proof. We first write

α12 = 4Anm + 2Ωnm α21 = 4Amn + 2Ωmn
α23 = 4Aml + 2Ωml α32 = 4Alm + 2Ωlm
α31 = 4Aln + 2Ωln α13 = 4Anl + 2Ωnl
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where we have set

Anm := nlnkninj,lmjmi,k , Amn := mlmkmimj,lnjni,k
Aml := mlmkmimj,l`j`i,k Alm := `l`k`i`j,lmjmi,k

Aln := `l`k`i`j,lnjni,k Anl := nlnkninj,l`j`i,k .

Using that mjnj,l = −mj,lnj , we have

Anm = −nlnkninjmj,lmi,k = −Λn
`

on account of (5.2). By cyclic permutations of the letters n,m, and l, we also obtain

Aml = −Λm
n , Aln = −Λ`

m .

Using that mini,k = −nimi,k , on account of (5.2) we also have

Amn = −mlmkninjmj,lmi,k = −Λm
`

and again by cyclic permutations

Alm = −Λ`
n , Anl = −Λn

m .

Moreover, multiplying by nini = 1 and by (4.6), we have

Ωnm = mlmknj,lni(ninj,k) = −mlmkmjmi,kninj,l−mlmkninj,l`j`i,k = −Amn −Bm

on account of (5.9), and correspondingly

Ωml = −Alm −Bl , Ωln = −Anl −Bn .

Similarly, multiplying by mimi = 1 and by (4.6), we have

Ωmn = nlnkmj,lmi(mimj,k) = −nlnknjni,kmimj,l−nlnkmimj,l`j`i,k = −Anm−Bn,

and hence also
Ωlm = −Aml −Bm , Ωnl = −Aln −Bl .

The above relations readily follow. 2

Next, we claim that

(5.11) Ωnm + Ωnl = N −N , Ωml + Ωmn = M −M , Ωln + Ωlm = L− L,

where
N := |∇n|2 , M := |∇m|2 , L := |∇`|2 .

In fact, by using (4.4) and (5.10), we have, on account of (4.2),

Ωnm = (δlk − nlnk − `l`k)nj,lnj,k
= nj,knj,k − nlnknj,lnj,k − `l`knj,lnj,k
= N −N− Ωnl ,

where δlk denotes the Kronecker tensor. The other equations are proved similarly.

We are now able to compute the terms Bn, Bm, and Bl in (5.9).
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Lemma 5.4. We have

Bn = 2−1(N −M − L) + M + L− Λm
` − Λ`

m,

Bm = 2−1(M − L−N) + L + N− Λ`
n − Λn

` ,

Bl = 2−1(L−N −M) + N + M− Λn
m − Λm

n .

Proof. By the previous lemma, we know that

(5.12)
Λn
` − Ωmn = Bn = Λn

m − Ωln
Λm

n − Ωlm = Bm = Λm
` − Ωnm

Λ`
m − Ωnl = Bl = Λ`

n − Ωml .

By summation, we thus have

2(Bn +Bm +Bl) = Λ− Ω,

where we have set
Λ := Λn

` + Λn
m + Λm

n + Λm
` + Λ`

m + Λ`
n

and
Ω := Ωnm + Ωnl + Ωml + Ωmn + Ωln + Ωlm .

By (5.3), we know that
Λ = N + M + L,

whereas by (5.11)
Ω = N +M + L− (N + M + L),

which implies

(5.13) Bn +Bm +Bl = (N + M + L)− 1

2
(N +M + L) .

From (5.12), we also have

Bm +Bl = Λm
` − Ωnm + Λ`

m − Ωnl
Bl +Bn = Λ`

n − Ωml + Λn
` − Ωmn

Bn +Bm = Λn
m − Ωln + Λm

n − Ωlm

and hence, by (5.11),

Bm +Bl = Λm
` + Λ`

m −N + N
Bl +Bn = Λ`

n + Λn
` −M + M

Bn +Bm = Λn
m + Λm

n − L+ L .

The claimed formulas follow by subtracting each of the above lines from (5.13). 2

Now, by (5.8) and (5.13), we obtain

(5.14) a123 = 4(N + M + L)− 2(N +M + L) .

Moreover, by Lemmas 5.3 and 5.4, on account of the relations (5.3) we find

(5.15)



a12 = (N −M + L) + 2(Λ− 2N− L)

a23 = (M − L+N) + 2(Λ− 2M−N)

a31 = (L−N +M) + 2(Λ− 2L−M)

a21 = (M + L−N) + 2(N−M−Λ)

a32 = (L+N −M) + 2(M− L−Λ)

a13 = (N +M − L) + 2(L−N−Λ)
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where, for simplicity, we have denoted

Λ := Λn
m + Λm

` + Λ`
n .

In fact, as for the first expression, we have

α12 = (N −M + L) + 2(Λm
` + Λ`

n − Λn
` −N− L)

and by (5.3) we replace −Λn
` = −N + Λn

m. As for the fourth expression, we have
instead

α21 = (M + L−N) + 2(Λn
` + Λ`

m − Λm
` −M− L)

and this time we replace Λn
` = N− Λn

m and Λ`
m = L− Λ`

n . The other identities in
(5.15) follow by similar computations.

By (5.6), (5.7), (5.14), and (5.15), the elastic functional I4 on Q takes the form

I4 = λ3
1 2N + λ3

2 2M + λ3
3 2L

+λ1λ2λ3 [4(N + M + L)− 2(N +M + L)]
+λ2

1λ2 [(N −M + L) + 2(Λ− 2N− L)]
+λ2

2λ3 [(M − L+N) + 2(Λ− 2M−N)]
+λ2

3λ1 [(L−N +M) + 2(Λ− 2L−M)]
+λ2

2λ1 [(M + L−N) + 2(N−M−Λ)]
+λ2

3λ2 [(L+N −M) + 2(M− L−Λ)]
+λ2

1λ3 [(N +M − L) + 2(L−N−Λ)] .

Writing the above formula as

I4 = cN N + cM M + cL L + cN N + cM M + cL L+ cΛ Λ,

we now compute the coefficients of the terms Λ,N,M,L, N,M,L. We have

cΛ = 2(λ1 − λ2)(2λ2
1 + 2λ2

2 + 5λ1λ2)

which, by the relations (1.2), and using that λ1 + λ2 + λ3 = 0 , can be expressed in
terms of S1, S2 as

cΛ = 2S1S2(S1 − S2) .

Moreover, we similarly have

cN = 2 (2λ3
1 + λ3

2 − 3λ2
1λ2) = 2S1(S2 − S1)2

cM = 2 (2λ3
2 + λ3

3 − 3λ2
2λ3) = 2S2

2(S2 − S1)
cL = 2 (2λ3

3 + λ3
1 − 3λ2

3λ1) = −2S2
1S2 .

Finally, we get:

cN = λ1(−2λ2
1 + λ2

2 + λ1λ2) = 3−1 S1(2S1 − S2)(S2 − S1)
cM = λ2(−2λ2

2 + λ2
3 + λ2λ3) = 3−1 S2(2S2 − S1)(S1 − S2)

cL = λ3(−2λ2
3 + λ2

1 + λ3λ1) = 3−1 (S1 + S2)S1S2,

which completes the proof of Theorem 5.1. 2
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6. Coercivity conditions. Let ψE(Q,∇Q) = L1I1 + L2I2 + L3I3 + L4I4 be
the elastic free-energy density of a biaxial nematic liquid crystal considered in (1.6),
where the Li are material constants and the Ii are the elastic invariants (1.7).

Davis and Gartland [8] proved that, if L4 = 0 and

(6.1) L3 > 0 , −L3 < L2 < 2L3 , L1 > −
3

5
L3 −

1

10
L2 ,

compare [21], the energy functional FE [Q] :=
∫

Ω
ψE(Q,∇Q) dx , defined on general

Q-tensors, is sequentially weakly lower semicontinuous in W 1,2, provided that the
domain Ω has smooth boundary. In fact, if (6.1) holds, there exist two positive
constants K > µ > 0 , such that

K |∇Q|2 ≥ L1I1 + L2I2 + L3I3 ≥ µ |∇Q|2 .

In the constrained case, one expects that coercivity holds true for suitable ranges
of the Li , even in the case L4 6= 0. This is indeed what happens in the uniaxial case.
It is well known, in fact, that the general form of the Oseen–Frank energy cannot be
recovered when L4 = 0. Let us first recall the computation for the coercivity property
in the constrained uniaxial case [3, 11, 21, 15, 34].

6.1. The uniaxial case. According to Remarks 4.6 and 5.2, if λ1 = λ2 the
density ψE(Q,∇Q) reduces to the Oseen–Frank energy density w(r,∇r) of nematic
liquid crystals:

w(r,∇r) : = K1(div r)2 +K2(r · curl r)2

+K3|r× curl r|2 + (K2 +K4)
[
tr[(∇r)2]− (div r)2

]
provided that one chooses

K1 := L1s
2 + L2s

2 + 2L3s
2 − 2

3
L4s

3 , K2 := 2L3s
2 − 2

3
L4s

3 ,

K3 := L1s
2 + L2s

2 + 2L3s
2 +

4

3
L4s

3 , K4 := L2s
2 .

We now recall that necessary and sufficient conditions for

w(r,∇r) ≥ ν |∇r|2 for some ν > 0

are the Ericksen inequalities

(6.2) 2K1 > K2 +K4 , K3 > 0 , K2 > |K4| .

To prove this, using the frame invariance (3.4) and arguing as in Lemma 3.6, it suffices
to consider the case when r = r0 := (0, 0, 1)T . Since (∇r)T r = 0, it follows that the
gradient matrix ∇r has the third row equal to zero, and hence we can write

w(r0,∇r) = f(r0,∇r),

where, for every G = (Gij) ∈M3×3 such that GT r0 = 0, we have set

f(r0, G) := K1

(
G1

1 +G2
2

)2
+K2

(
G1

2 −G2
1

)2
+K3

[
(G1

3)2 + (G2
3)2
]

+2(K2 +K4)
[
G1

2G
2
1 −G1

1G
2
2

]
.
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Writing

f(r0, G) = K1

[
(G1

1)2 + (G2
2)2
]

+ 2(K1 −K2 −K4)G1
1G

2
2

+K2

[
(G1

2)2 + (G2
1)2
]

+ 2K4G
1
2G

2
1 +K3

[
(G1

3)2 + (G2
3)2
]
,

it follows that the quadratic form f(r0, G) is positive definite if and only if

K1 > 0 , |K1 −K2 −K4| < K1 , K2 > 0 , |K4| < K2 , K3 > 0 .

The above system is equivalent to the Ericksen conditions (6.2), which can be rewritten
in terms of the coefficients Li as

(6.3) 2L1 + L2 + 2L3 >
2

3
L4s , L1 + L2 + 2L3 +

4

3
L4s > 0 , 2L3 −

2

3
L4s > |L2| .

Now, assume that in addition a Dirichlet type condition similar to the one de-
scribed in the introduction holds. By (4.1) and (4.3), for any ν > 0, we can write

w(r,∇r) = ν |∇r|2 + (K2 − ν) (r · curl r)2 + (K3 − ν) |r× curl r|2
+(K1 − ν) (div r)2 + (K2 +K4 − ν)

[
tr[(∇r)2]− (div r)2

]
,

where the last term is a null Lagrangian. This yields the coercivity property∫
Ω

w(r,∇r) dx ≥ ν
∫

Ω

|∇r|2 dx+ c, for some ν > 0 and c ∈ R,

provided that K1 > 0, K2 > 0, and K3 > 0, which in terms of the coefficients Li
takes the form

(6.4) L1 + L2 + 2L3 >
2

3
L4s , L1 + L2 + 2L3 +

4

3
L4s > 0 , 2L3 −

2

3
L4s > 0 .

Notice that the coercivity conditions K1, K2, K3 > 0 are weaker than the Er-
icksen conditions (6.2), whence the system (6.4) is weaker than the system (6.3).
Depending on the sign of L4s, the above formulas may be further simplified.

6.2. Coercivity of I3. We now briefly recall how in [29] we proved coercivity
for the integral

I3(Q) :=

∫
Ω

I3(Q,∇Q) dx .

First, recall that, according to the model for constrained biaxial nematic systems
discussed in Section 3, to any unit quaternion (u,v) = (u, v1, v2, v3)T ∈ S3 there
corresponds a tensor order parameter

Q(u,v) = λ1n(u,v)⊗ n(u,v) + λ2m(u,v)⊗m(u,v) + λ3`(u,v)⊗ `(u,v),

such that

Q(u,v) = G(u,v)AG(u,v)T , G(u,v) ∈ SO(3), A = diag(λ1, λ2, λ3),

where n(u,v) , m(u,v) , and `(u,v) agree with the columns G1(u,v) , G2(u,v) ,
and G3(u,v) of

(6.5) G(u,v) =

u2 + v2
1 − (v2

2 + v2
3) 2(v1v2 − uv3) 2(v1v3 + uv2)

2(v1v2 + uv3) u2 + v2
2 − (v2

1 + v2
3) 2(v2v3 − uv1)

2(v1v3 − uv2) 2(v2v3 + uv1) u2 + v2
3 − (v2

1 + v2
2)

 .
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In [29], we showed that

I3(Q,∇Q) ≥ 8S2 |∇(u,v)|2, Q = Q(u,v),

where, according to the alternative in (3.2), by assuming S1 < S2 < 0 , we have set

(6.6) S :=


S2 if

S1

2
≤ S2 < 0

S1 if S2 ≤
S1

2
< 0

S 6= 0 .

To prove the claim, we assumed that (u,v) = p0 := (1, 0, 0, 0)T , so that n =
(1, 0, 0)T , m = (0, 1, 0)T , ` = (0, 0, 1)T . Since |(u,v)| ≡ 1, the 4× 3 gradient matrix
∇(u,v) satisfies (∇(u,v))T (u,v) = 0 , which implies that the first row of ∇(u,v) is
zero, that is ∂iu = 0 at p0, for i = 1, 2, 3. At p0 , we thus have

(6.7) ∂in = 2

 0
∂iv3

−∂iv2

 , ∂im = 2

−∂iv3

0
∂iv1

 , ∂i` = 2

 ∂iv2

−∂iv1

0

 ,

which yields

|∇n|2 = 4(|∇v2|2+|∇v3|2) , |∇m|2 = 4(|∇v1|2+|∇v3|2) , |∇`|2 = 4(|∇v1|2+|∇v2|2) .

As a consequence, by Proposition 4.2, for Q = Q0 := Q(p0) , we obtain

(6.8)
1

8
I3(Q0,∇Q) = (Λ2 + Λ3)|∇v1|2 + (Λ3 + Λ1)|∇v2|2 + (Λ1 + Λ2)|∇v3|2,

where, according to (4.14),

(6.9) (Λ2 + Λ3) = S2
2 , (Λ3 + Λ1) = S2

1 , (Λ1 + Λ2) = (S1 − S2)2 .

It then follows that

I3(Q0,∇Q) = f3(p0,∇(u,v)),

where, for every 4 × 3 matrix H = (Hi
j) , i = 0, 1, 2, 3, j = 1, 2, 3, such that

HT p0 = 0 , i.e. H0
j = 0 for all j, we have set

(6.10) f3(p0, H) := 8
[
S2

2

3∑
j=1

(H1
j )2 + S2

1

3∑
j=1

(H2
j )2 + (S1 − S2)2

3∑
j=1

(H3
j )2
]
.

By frame indifference, on account of Lemma 3.6, we are thus reduced to prove
that, for every H ∈M4×3 such that HT p0 = 0 ,

(6.11) f3(p0, H) ≥ 8S2 |H|2.

Now, if the first alternative in (6.6) holds, we have

(Λ2 + Λ3) = S2
2 , (Λ3 + Λ1) ≥ 4S2

2 , (Λ1 + Λ2) ≥ S2
2 ,

whereas, if the second alternative holds,

(Λ3 + Λ1) = S2
1 , (Λ2 + Λ3) ≥ 4S2

1 , (Λ1 + Λ2) ≥ S2
1 ,

which yield the coercivity condition (6.11).
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6.3. A first general case. Let the functional F [Q] be as in (1.5), where the
elastic energy density is of the form (1.6), for some constants Li ∈ R.

In the constrained biaxial case, according to Remark 3.2, we may assume that
S1 < S2 < 0 . In addition, the alternatives (3.2) hold. Let us denote

σ := S1/S2 =
λ1 − λ3

λ2 − λ3
=

2λ1 + λ2

λ1 + 2λ2
> 1.

With this notation, for the two related cases in (6.6), we have

S1

2
≤ S2 < 0⇐⇒ σ ≥ 2 , S2 ≤

S1

2
< 0⇐⇒ 1 < σ ≤ 2 .

Remark 6.1. In the following proofs, we shall use the fact that a quadratic func-
tion of the form Q1(x, y) = ax2 + by2 − 2txy is positive definite if and only if
a > 0, b > 0 and t2 < ab. Furthermore, assuming a ≤ b ≤ c, a quadratic form
Q2(x, y, z) = ax2 + by2 + cz2 − 2t(xy − xz + yz) is positive definite if and only if
a > 0, t2 < ab, and abc + 2t3 − (a + b + c)t2 > 0. Notice that if a = b = c, the
last inequality reads as (a− t)2(2t+ a) > 0, whence the quadratic form Q2(x, y, z) =
a(x2 + y2 + z2) − 2t(xy − xz + yz) is positive definite if and only if a > |t| and
a+ 2t > 0.

We first deal with the simpler case when L4 = 0, and prove the following.

Theorem 6.2. In the constrained biaxial case, the quadratic form L1I1 +L2I2 +
L3I3 is positive definite if and only if we have:

(6.12) L2 + L3 > 0 , 2L3 − L2 > 0 and 2L1 + L2 + 2L3 > 0 .

Proof. Assume as above that (u,v) = p0, so that n = (1, 0, 0)T , m = (0, 1, 0)T ,
` = (0, 0, 1)T and (6.7) holds true. At p0 , we then compute

curl n = 2(−∂2v2 − ∂3v3, ∂1v2, ∂1v3),
curl m = 2(∂2v1,−∂3v3 − ∂1v1, ∂2v3),
curl ` = 2(∂3v1, ∂3v2,−∂1v1 − ∂2v2),

and
(div n)2 = 4[(∂2v3)2 + (∂3v2)2 − 2∂2v3∂3v2],

tr[(∇n)2] = 4[(∂2v3)2 + (∂3v2)2 − 2∂2v2∂3v3],
(n · curl n)2 = 4[(∂2v2)2 + (∂3v3)2 + 2∂2v2∂3v3],
|n× curl n|2 = 4[(∂1v2)2 + (∂1v3)2],

(div m)2 = 4[(∂1v3)2 + (∂3v1)2 − 2∂1v3∂3v1],
tr[(∇m)2] = 4[(∂1v3)2 + (∂3v1)2 − 2∂3v3∂1v1],

(m · curl m)2 = 4[(∂3v3)2 + (∂1v1)2 + 2∂3v3∂1v1],
|m× curl m|2 = 4[(∂2v3)2 + (∂2v1)2],

(div `)2 = 4[(∂1v2)2 + (∂2v1)2 − 2∂1v2∂2v1],
tr[(∇`)2] = 4[(∂1v2)2 + (∂2v1)2 − 2∂1v1∂2v2],

(` · curl `)2 = 4[(∂1v1)2 + (∂2v2)2 + 2∂1v1∂2v2],
|`× curl `|2 = 4[(∂3v1)2 + (∂3v2)2].

By Propositions 4.3, 4.5, and 4.2, and formulas (4.14) and (6.9), if (u,v) = p0 ,
we thus have

(6.13)
I1(Q0,∇Q) = 4S2

2 [(∂2v1)2 + (∂3v1)2] + 4S2
1 [(∂3v2)2 + (∂1v2)2]

+4 (S1 − S2)2 [(∂1v3)2 + (∂2v3)2]
−8 [S1(S1 − S2) ∂2v3∂3v2 + S2(S2 − S1) ∂3v1∂1v3 + S1S2 ∂1v2∂2v1],



26 DOMENICO MUCCI AND LORENZO NICOLODI

(6.14)
I2(Q0,∇Q) = 4S2

2 [(∂2v1)2 + (∂3v1)2] + 4S2
1 [(∂3v2)2 + (∂1v2)2]

+4 (S1 − S2)2 [(∂1v3)2 + (∂2v3)2]
−8 [S1(S1 − S2) ∂2v2∂3v3 + S2(S2 − S1) ∂3v3∂1v1 + S1S2 ∂1v1∂2v2],

and, according to (6.8),

I3(Q0,∇Q) = 8S2
2 [(∂1v1)2 + (∂2v1)2 + (∂3v1)2]

+ 8S2
1 [(∂1v2)2 + (∂2v2)2 + (∂3v2)2]

+ 8 (S1 − S2)2 [(∂1v3)2 + (∂2v3)2 + (∂3v3)2] .

(6.15)

We can thus write

Ii(Q0,∇Q) = fi(p0,∇(u,v)), i = 1, 2, 3

where, for every matrix H = (Hi
j) ∈M4×3 , such that HT p0 = 0 , we have set

(6.16)
f1 = f1(p0, H) := 4S2

2

[
(H1

2 )2 + (H1
3 )2
]

+ 4S2
1

[
(H2

3 )2 + (H2
1 )2
]

+4 (S1 − S2)2
[
(H3

1 )2 + (H3
2 )2
]

−8
[
S1(S1 − S2)H3

2H
2
3 + S2(S2 − S1)H1

3H
3
1 + S1S2H

2
1H

1
2

]
,

(6.17)
f2 = f2(p0, H) := 4S2

2

[
(H1

2 )2 + (H1
3 )2
]

+ 4S2
1

[
(H2

3 )2 + (H2
1 )2
]

+4 (S1 − S2)2
[
(H3

1 )2 + (H3
2 )2
]

−8
[
S1(S1 − S2)H2

2H
3
3 + S2(S2 − S1)H3

3H
1
1 + S1S2H

1
1H

2
2

]
,

and f3 = f3(p0, H) is given by (6.10). Dividing by 4S2
2 and using σ = S1/S2 , we

then compute:

1

4S2
2

(L1f1 + L2f2 + L3f3) = 2L3

[
(H1

1 )2 + (σH2
2 )2 + ((σ − 1)H3

3 )2
]

−2L2

[
H1

1 σH
2
2 −H1

1 (σ − 1)H3
3 + σH2

2 (σ − 1)H3
3

]
+(L1 + L2 + 2L3)

[
(H1

3 )2 + ((σ − 1)H3
1 )2
]

+ 2L1H
1
3 (σ − 1)H3

1

+(L1 + L2 + 2L3)
[
(H1

2 )2 + (σH2
1 )2
]
− 2L1H

1
2 σH

2
1

+(L1 + L2 + 2L3)
[
(σH2

3 )2 + ((σ − 1)H3
2 )2
]
− 2L1 σH

2
3 (σ − 1)H3

2 .

Therefore, see Remark 6.1, the quadratic form L1f1 + L2f2 + L3f3 is positive
definite if and only if the following inequalities are satisfied:

2L3 > 0 , |L2| < 2|L3| , 8L3
3 + 2L3

2 − 6L2
2L3 > 0

and
L1 + L2 + 2L3 > 0 , |L1| < |L1 + L2 + 2L3| .

Since 8L3
3 + 2L3

2 − 6L2
2L3 = 2(2L3 − L2)2(L2 + L3), these conditions are clearly

equivalent to (6.12). The claim follows by frame indifference through Lemma 3.6. 2

We now consider Dirichlet boundary conditions, specified by the admissible set
of tensor W 1,2

ϕ defined in the introduction.

Theorem 6.3. For a constrained biaxial nematic system, let F [Q] be of the form
(1.5), and let ψE(Q,∇Q) be of the form (1.6), for some constants L1, L2, L3 ∈ R,
and L4 = 0. Then, the functional F [Q] is coercive on the admissible set W 1,2

ϕ

provided that
2L3 > L1 + L2 and L1 + L2 + L3 > 0 .
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Remark 6.4. If L1 6= 0, then the sufficient conditions in Theorem 6.3 are strictly
weaker than the positivity conditions from Theorem 6.2 for several choices of L1 and
L2, that depend on the sign of the sum L1 + L2 :

1. L1 + L2 = 0 ;
2. L1 + L2 > 0 and one of the following additional inequalities holds:

L1 + L2

2
< −L2 ,

L1 + L2

2
<
L2

2
,

L1 + L2

2
< −L1 −

L2

2
;

3. L1 + L2 < 0 and one of the following additional inequalities holds:

−(L1 + L2) < −L2 , −(L1 + L2) <
L2

2
, −(L1 + L2) < −L1 −

L2

2
.

The above choices are equivalent to the following complete list:
• L1 + L2 = 0 ;
• L1 + L2 > 0, L1 > 0, L2 < 0, and L1 + 3L2 < 0 ;
• L1 + L2 > 0, L1 < 0, and L2 > 0 ;
• L1 + L2 < 0, L1 > 0, and L2 < 0 ;
• L1 + L2 < 0, L1 < 0, and L2 > 0 .

Proof of Theorem 6.3. Assuming as above that (u,v) = p0, by (4.3), the surface
terms read as

(div n)2 − tr[(∇n)2] = div Φ1 , Φ1 := 4(0, v2∂3v3 − v3∂3v2, v3∂2v2 − v2∂2v3),
(div m)2 − tr[(∇m)2] = div Φ2 , Φ2 := 4(v1∂3v3 − v3∂3v1, 0, v3∂1v1 − v1∂1v3),
(div `)2 − tr[(∇`)2] = div Φ3 , Φ3 := 4(v1∂2v2 − v2∂2v1, v2∂1v1 − v1∂1v2, 0) .

We thus have:

(6.18) I1(Q,∇Q) = I2(Q,∇Q) + div(Λ1Φ1 + Λ2Φ2 + Λ3Φ3) .

Denote for simplicity 2L := L1 +L2. Putting in evidence the positive factor 8S2
2

and replacing σ = S1/S2, by (6.18), (6.14), and (6.15), we thus obtain

(6.19)

1

8S2
2

(L1I1 + L2I2 + L3I3) =
L1

8
div(Λ1Φ1 + Λ2Φ2 + Λ3Φ3)S−2

2

+L3

[
(∂1v1)2 + (σ∂2v2)2 + ((σ − 1)∂3v3)2

]
−2L

[
∂1v1 σ∂2v2 − ∂1v1 (σ − 1) ∂3v3 + σ∂2v2 (σ − 1)∂3v3

]
+(L+ L3)

[
(∂2v1)2 + (∂3v1)2

]
+(L+ L3)σ2

[
(∂1v2)2 + (∂3v2)2

]
+(L+ L3) (σ − 1)2

[
(∂1v3)2 + (∂2v3)2

]
.

Therefore, coercivity for the functional F [Q] holds provided that the following strict
inequalities hold:

L3 > 0 , |L| < L3 , 2L+ L3 > 0 , L+ L3 > 0 ,

which reduce to 2L3 > L1 + L2 and L1 + L2 + L3 > 0. The claim now follows by
frame invariance, on account of Lemma 3.6. 2
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6.4. The general case. We are now in a position to state and prove our main
results for L4 6= 0.

Theorem 6.5. In the constrained biaxial case, if L4 6= 0, the quadratic form
L1I1 +L2I2 +L3I3 +L4I4 is positive definite if and only if the following system holds,
according to the sign of L4:

i) L4 ≥ 0 and



L1 + L2 + 2L3 +
2

3
L4(2S1 − S2) > 0 ,

L2
2 + 2L1L2 + (L1 + L2)

(
4L3 +

2

3
L4(S1 + S2)

)
+4L2

3 +
4

9
L2

4(2S1 − S2)(2S2 − S1) +
4

3
L3L4(S1 + S2) > 0 ,

3L3 + L4(2S1 − S2) > 0 ,

4L2
3 +

4

9
L2

4(2S1 − S2)(2S2 − S1) +
4

3
L3L4(S1 + S2)− L2

2 > 0 ,

4L3
3 + L3

2 − 3L3L
2
2 −

4

27
L3

4(2S1 − S2)(2S2 − S1)(S1 + S2)

−4

3
L3L

2
4

[
S2

1 − S1S2 + S2
2

]
> 0 .

ii) L4 ≤ 0 and



L1 + L2 + 2L3 −
2

3
L4(S1 + S2) > 0 ,

L2
2 + 2L1L2 + (L1 + L2)

(
4L3 −

2

3
L4(2S1 − S2)

)
+4L2

3 −
4

9
L2

4(2S2 − S1)(S1 + S2)− 4

3
L3L4(2S1 − S2) > 0 ,

3L3 − L4(S1 + S2) > 0 ,

4L2
3 −

4

9
L2

4(2S2 − S1)(S1 + S2)− 4

3
L3L4(2S1 − S2)− L2

2 > 0 ,

4L3
3 + L3

2 − 3L3L
2
2 −

4

27
L3

4(2S1 − S2)(2S2 − S1)(S1 + S2)

−4

3
L3L

2
4

[
S2

1 − S1S2 + S2
2

]
> 0 .

Remark 6.6. If L4 = 0, the positivity conditions in i) and ii) are both equivalent
to (6.12). Moreover, by (3.2), the coefficients L4(2S1 − S2) and L4(S1 + S2) are
both negative when L4 > 0, and both positive when L4 < 0, whereas the sign of
L4(2S2 − S1) depends on the two regimes described in (3.2), according to the sign of
L4. It also follows from the proof that, independently of the sign of L4, the last three
conditions in the above two systems i) and ii) are equivalent. This is due to the fact
that the systems (6.23) and (6.24) below have the same solutions. Finally, in both
cases the necessary condition L3 > 0 is satisfied.

Proof of Theorem 6.5. First, we compute I4 at p0, as we did for I1, I2, I3 in
the proof of Theorem 6.2. The mixed terms (5.2) in the expression of I4 given in
Theorem 5.1 become

Λn
m = 4(∂1v2)2 , Λm

` = 4(∂2v3)2 , Λ`
n = 4(∂3v1)2 .
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Therefore, at p0 , the functional I4 takes the form

I4(Q0,∇Q) = 3−1 S1(2S1 − S2)(S2 − S1)
[
4|∇v2|2 + 4|∇v3|2

]
+ 2S1(S2 − S1)2

[
4(∂1v2)2 + 4(∂1v3)2

]
+ 3−1 S2(2S2 − S1)(S1 − S2)

[
4|∇v3|2 + 4|∇v1|2

]
+ 2S2

2(S2 − S1)
[
4(∂2v3)2 + 4(∂2v1)2

]
+ 3−1 S1S2(S1 + S2)

[
4|∇v1|2 + 4|∇v2|2

]
− 2S2

1S2

[
4(∂3v1)2 + 4(∂3v2)2

]
+ 2S1S2(S1 − S2)

[
4(∂1v2)2 + 4(∂2v3)2 + 4(∂3v1)2

]
.

(6.20)

As before, we can thus write I4(Q0,∇Q) = f4(p0,∇(u,v)), where, for every 4×3
matrix H = (Hi

j) , such that HT p0 = 0 , we have set

(6.21)

f4(p0, H) := 3−1 S1(2S1 − S2)(S2 − S1)
[
4

3∑
j=1

(H2
j )2 + 4

3∑
j=1

(H3
j )2
]

+2S1(S2 − S1)2
[
4(H2

1 )2 + 4(H3
1 )2
]

+3−1 S2(2S2 − S1)(S1 − S2)
[
4
∑3
j=1(H3

j )2 + 4
∑3
j=1(H1

j )2
]

+2S2
2(S2 − S1)

[
4(H3

2 )2 + 4(H1
2 )2
]

+3−1 S1S2(S1 + S2)
[
4
∑3
j=1(H1

j )2 + 4
∑3
j=1(H2

j )2
]

−2S2
1S2

[
4(H1

3 )2 + 4(H2
3 )2
]

+2S1S2(S1 − S2)
[
4(H2

1 )2 + 4(H3
2 )2 + 4(H1

3 )2
]
.

Using (6.16), (6.17), (6.10), and (6.21), we thus compute

1

4S2
2

(L1f1 + L2f2 + L3f3 + L4f4) =
[
2L3 + (2/3)L4S2(2σ − 1)

]
(H1

1 )2

+
[
2L3 + (2/3)L4S2(2− σ)

]
(σH2

2 )2

+
[
2L3 − (2/3)L4S2(σ + 1)

]
((σ − 1)H3

3 )2

−2L2

[
H1

1 σH
2
2 −H1

1 (σ − 1)H3
3 + σH2

2 (σ − 1)H3
3

]
+
[
L1 + L2 + 2L3 − (2/3)L4S2(σ + 1)

]
(H1

3 )2

+
[
L1 + L2 + 2L3 + (2/3)L4S2(2σ − 1)

]
((σ − 1)H3

1 )2 + 2L1H
1
3 (σ − 1)H3

1

+
[
L1 + L2 + 2L3 + (2/3)L4S2(2− σ)

]
(H1

2 )2

+
[
L1 + L2 + 2L3 + (2/3)L4S2(2σ − 1)

]
(σH2

1 )2 − 2L1H
1
2 σH

2
1

+
[
L1 + L2 + 2L3 − (2/3)L4S2(σ + 1)

]
(σH2

3 )2

+
[
L1 + L2 + 2L3 + (2/3)L4S2(2− σ)

]
((σ − 1)H3

2 )2 − 2L1 σH
2
3 (σ − 1)H3

2 .

We now set

(6.22)
a := 2L3 + 2

3 L4S2(2σ − 1) ,
b := 2L3 + 2

3 L4S2(2− σ) ,
c := 2L3 − 2

3 L4S2(σ + 1),

so that

1

4S2
2

(L1f1 + L2f2 + L3f3 + L4f4) = a(H1
1 )2 + b(σH2

2 )2 + c((σ − 1)H3
3 )2

−2L2

[
H1

1 σH
2
2 −H1

1 (σ − 1)H3
3 + σH2

2 (σ − 1)H3
3

]
+(L1 + L2 + c)(H1

3 )2 + (L1 + L2 + a)((σ − 1)H3
1 )2 + 2L1H

1
3 (σ − 1)H3

1

+(L1 + L2 + b)(H1
2 )2 + (L1 + L2 + a)(σH2

1 )2 − 2L1H
1
2 σH

2
1

+(L1 + L2 + c)(σH2
3 )2 + (L1 + L2 + b)((σ − 1)H3

2 )2 − 2L1 σH
2
3 (σ − 1)H3

2 .
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We distinguish two cases according to the sign of the coefficient L4, recalling that
σ > 1.

In the case L4 > 0, we have L4S2 < 0, and hence a < b < c. By Remark 6.1,
the quadratic form (L1f1 +L2f2 +L3f3 +L4f4) is positive definite if and only if the
following inequalities hold:

(6.23) a > 0 , L2
2 < ab , abc+ 2L3

2 − (a+ b+ c)L2
2 > 0

and also
L1 + L2 + a > 0 , L2

1 < (L1 + L2 + a)(L1 + L2 + b),

where the last inequality becomes

L2
2 + 2L1L2 + (L1 + L2)(a+ b) + ab > 0 .

We now observe that a+ b+ c = 6L3, whereas

ab = 4L2
3 +

4

9
L2

4S
2
2(2σ − 1)(2− σ) +

4

3
L3L4S2(σ + 1)

and

abc = 8L3
3 −

8

27
L3

4S
3
2(2σ − 1)(2− σ)(σ + 1) +

8

9
L3L

2
4S

2
2

[
(2σ − 1)(2− σ)− (σ + 1)2

]
.

Since (2σ − 1)(2− σ)− (σ + 1)2 = −3(σ2 − σ + 1), recalling that σ = S1/S2 we can
rewrite

ab = 4L2
3 +

4

9
L2

4(2S1 − S2)(2S2 − S1) +
4

3
L3L4(S1 + S2)

and

abc = 8L3
3 −

8

27
L3

4(2S1 − S2)(2S2 − S1)(S1 + S2)− 8

3
L3L

2
4

[
S2

1 − S1S2 + S2
2

]
.

Using that a+ b = 6L3 − c, we obtain the system in i).

In the case L4 < 0, we have L4S2 > 0 and hence c < b < a. Again by
Remark 6.1, this time we deduce that the quadratic form (L1f1 +L2f2 +L3f3 +L4f4)
is positive definite if and only if the inequalities

(6.24) c > 0 , L2
2 < cb , abc+ 2L3

2 − (a+ b+ c)L2
2 > 0 ,

which are equivalent to the ones in (6.23), hold true, and also

L1 + L2 + c > 0 , L2
1 < (L1 + L2 + c)(L1 + L2 + b) .

The last inequality is the same as

L2
2 + 2L1L2 + (L1 + L2)(c+ b) + cb > 0 ,

where
cb = 4L2

3 + 4
9L

2
4S

2
2(σ − 2)(σ + 1)− 4

3L3L4S2(2σ − 1)
= 4L2

3 − 4
9L

2
4(2S2 − S1)(S1 + S2)− 4

3L3L4(2S1 − S2) .

Using that c+ b = 6L3 − a, this time we obtain the system in ii). The claim follows
from Lemma 3.6. 2

We finally consider again Dirichlet boundary conditions, specified by the admis-
sible set of tensor W 1,2

ϕ defined in the introduction.
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Theorem 6.7. For a constrained biaxial nematic system, let F [Q] be of the form
(1.5), and let ψE(Q,∇Q) be of the form (1.6), for some constants L1, L2, L3 ∈ R,
and L4 6= 0. Then, the functional F [Q] is coercive on the admissible set W 1,2

ϕ

provided that the following alternative inequalities are satisfied.

a) L4 ≥ 0 and



L1 + L2 + 2L3 +
2

3
L4(2S1 − S2) > 0 ,

3L3 + L4(2S1 − S2) > 0 ,

4L2
3 +

4

9
L2

4(2S1 − S2)(2S2 − S1) +
4

3
L3L4(S1 + S2)− (L1 + L2)2 > 0 ,

4L3
3 + (L1 + L2)3 − 3L3(L1 + L2)2 − 4

27
L3

4(2S1 − S2)(2S2 − S1)(S1 + S2)

−4

3
L3L

2
4

[
S2

1 − S1S2 + S2
2

]
> 0 .

b) L4 ≤ 0 and



L1 + L2 + 2L3 −
2

3
L4(S1 + S2) > 0 ,

3L3 − L4(S1 + S2) > 0 ,

4L2
3 −

4

9
L2

4(2S2 − S1)(S1 + S2)− 4

3
L3L4(2S1 − S2)− (L1 + L2)2 > 0 ,

4L3
3 + (L1 + L2)3 − 3L3(L1 + L2)2 − 4

27
L3

4(2S1 − S2)(2S2 − S1)(S1 + S2)

−4

3
L3L

2
4

[
S2

1 − S1S2 + S2
2

]
> 0 .

Remark 6.8. If L4 = 0, we recover the statement of Theorem 6.3. As before,
independently of the sign of L4, the last three conditions in the above two systems a)
and b) are equivalent, and in both cases the necessary condition L3 > 0 is satisfied.

Moreover, if L1 6= 0, then the sufficient conditions in Theorem 6.7 are strictly
weaker than the positivity conditions from Theorem 6.5 for several choices of the
coefficients L1 and L2. This happens if, e.g.,

L1 > 0 , L2 < 0 , and L1 + 2L2 ≤ 0

independently of the sign of L4. In fact, e.g. in the case L4 > 0, comparing the
systems i) and a) in Theorems 6.5 and 6.7, respectively, we observe that the fourth line
in i) implies the third line in a) provided that L2

2 ≥ (L1 +L2)2, i.e. L1(L1 +2L2) ≤ 0.
On the other hand, the last line in i) implies the last line in a) provided that

4L3
3 + L3

2 − 3L3L
2
2 ≤ 4L3

3 + (L1 + L2)3 − 3L3(L1 + L2)2 ,

which is equivalent to

3L3

(
L2

2 − (L1 + L2)2
)
≥ −L1(L2

1 + 3L1L2 + 3L2
2) .

Since (L2
1 + 3L1L2 + 3L2

2) > 0, our claim readily follows.

Proof of Theorem 6.7. If we put in evidence the factor (4/3)S3
2 and substitute
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σ := S1/S2, by (6.20) we obtain

3

4
I4(Q,∇Q) · S2

−3 = σ(2σ − 1)(1− σ)
[
|∇v2|2 + |∇v3|2

]
+6σ(σ − 1)2

[
(∂1v2)2 + (∂1v3)2

]
+(2− σ)(σ − 1)

[
|∇v3|2 + |∇v1|2

]
+6(1− σ)

[
(∂2v3)2 + (∂2v1)2

]
+σ(σ + 1)

[
|∇v1|2 + |∇v1|2

]
−6σ2

[
(∂3v1)2 + (∂3v2)2

]
+6σ(σ − 1)

[
(∂1v2)2 + (∂2v3)2 + (∂3v1)2

]
,

and hence, using that |∇vj |2 = (∂1vj)
2 + (∂2vj)

2 + (∂3vj)
2,

3

8
I4(Q,∇Q)S2

−3 = (2σ − 1) (∂1v1)2 + σ2(2− σ) (∂2v2)2 − (σ − 1)2(σ + 1) (∂3v3)2

+(2− σ) (∂2v1)2 − (σ + 1) (∂3v1)2

+σ2(2σ − 1) (∂1v2)2 − σ2(σ + 1) (∂3v2)2

+(σ − 1)2(2σ − 1) (∂1v3)2 + (σ − 1)2(2− σ) (∂2v3)2 .

On account of (6.19), and using the notation from (6.22), we then obtain the
formula

1

4S2
2

ψE(Q,∇Q) =
1

4
L1 div(Λ1Φ1 + Λ2Φ2 + Λ3Φ3)S−2

2

+a (∂1v1)2 + b (σ∂2v2)2 + c ((σ − 1)∂3v3)2

−4L
[
−∂1v1 (σ − 1) ∂3v3 + ∂1v1 σ∂2v2 + σ∂2v2 (σ − 1)∂3v3

]
+(2L+ b)(∂2v1)2 + (2L+ c)(∂3v1)2 + (2L+ a)(σ∂1v2)2

+(2L+ c) (σ∂3v2)2 + (2L+ a) ((σ − 1)∂1v3)2 + (2L+ b) ((σ − 1)∂2v3)2.

We again distinguish two cases according to the sign of the coefficient L4. By the
Dirichlet-type assumption, we can omit to consider the divergence term.

In the case L4 > 0, we have a < b < c. By Remark 6.1, we are led to consider
the following inequalities:

a > 0 , (2L)2 < ab , abc+ 2(2L)3 − (a+ b+ c)(2L)2 > 0 , 2L+ a > 0 .

Recalling from the proof of Theorem 6.5 the formulas for ab, abc, and a+ b+ c, and
using that 2L = L1 + L2, we readily obtain the system a).

In the case L4 < 0, we have c < b < a, and we are thus led to consider the
following inequalities:

c > 0 , (2L)2 < cb , abc+ 2(2L)3 − (a+ b+ c)(2L)2 > 0 , 2L+ c > 0 .

Recalling the formula for bc, we obtain the system b). Therefore, our conclusions
readily follow, again by frame invariance. 2
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