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Abstract

We prove the following Bernstein-type theorem: if u is an entire solu-
tion to the minimal surface equation, such that N — 1 partial derivatives
gT“j are bounded on one side (not necessarily the same), then u is an
affine function. Its proof relies only on the Harnack inequality on min-
imal surfaces proved in [4] thus, besides its novelty, our theorem also
provides a new and self-contained proof of celebrated results of Moser

and of Bombieri & Giusti.

MSC: 53A10, 58105, 35J15

1 Introduction and main results

In this short article we are concerned with a Bernstein-type theorem for solutions
to the minimal surface equation

v (w) -0 in RN, N>2 (1.1)

V14 [Vul?

The classical Bernstein Theorem ([2],[7]) asserts that the affine functions are
the only solutions of (1.1) in R2. This result has been generalized to R? by E. De
Giorgi [5], to R* by J.F. Almgren [1] and, up to dimension N = 7, by J. Simons
[9]. On the other hand, E. Bombieri, E. De Giorgi and E. Giusti [3] proved the
existence of a non-affine solution of the minimal surface equation (1.1) for any
N > 8. Nevertheless, J. Moser [8] was able to prove that, if Vu is bounded on
R, then u must be again an affine function, and this for every dimension N > 2.
Later, E. Bombieri and E. Giusti [4] generalized Moser’s result by assuming
that only N — 1 partial derivatives of u are bounded on R, N > 2. To prove



their result, the Authors of [4] demonstrate a Harnack inequality for uniformly
elliptic equations on minimal surfaces (oriented boundary of least area) and
then they use it to show that, if N — 1 partial derivatives of u are bounded on
RY, then u has bounded gradient on RY, and they conclude by invoking the
result of Moser. Our main theorem (see Theorem 1.1 below) provides a further
extension of the above results. Its proof relies only on the Harnack inequality
on minimal surfaces proved in [4] thus, besides its novelty, it also provides a
new and self-contained proof of the celebrated results of Moser and of Bombieri
& Giusti. We believe that this is another interesting feature of our work.
Our main result is stated in the following theorem.

Theorem 1.1. Assume N > 2. Let u be a solution of the minimal surface

equation (1.1) such that N — 1 partial derivatives % are bounded on one side
J

(not necessarily the same). Then u is an affine function.

2 Auxiliary results and proofs

To prove our results we briefly recall some standard notations and some well-
known facts concerning the solutions of the minimal surface equation (1.1) (cfr.
[4], [6]). For a given solution u of equation (1.1), we denote by S the mini-
mal graph zy41 = u(z) over RV (i.e., the complete smooth area minimizing
hypersurface without boundary S ¢ RN+, given by the graph of u over the
entire RY). Then the (upward pointing) unit normal to S at a point (z,u(z))

isv=(v1,..,UNs1) = % and we can define the tangential derivatives
Ox by
) &
5 ::Tm_ykgyhfm Vk=1,..,N+1. (2.1)
Moreover the functions v, satisfy the equation
N+1
Z 810kvn + vy =0 on S, Vh=1,..,.N+1 (2.2)
k=1
where ¢? = Zjv,j:ll (6;v1)? denotes the sum of the squares of the principal

curvatures of the hypersurface S at the point (x,u(x)). Therefore, for any
vector a := (ai,...,an,1) € RN*1 the function (a-v) = Z?:El a;v; also solves

N+1
Zékék(a-u)+02(a~u):0 on S. (2.3)
k=1

Lemma 2.1. Assume N > 2 and let S be a minimal graph xn11 = u(x) over
RN, If v > 0 and w are smooth solutions of the equation (2.3) on S, then the
smooth function 6 := arctan (%) € L*(S) solves the equation



N+1
> o [ +w?)io] =0  on 8. (2.4)
k=1

Proof. Consider the smooth complex-valued function z := v + iw. Since v > 0

everywhere, we have that z = pe’’ on S and

N+1
Z Sp0pz 4?2 =0 on S, (2.5)
k=1

where p := v/v2 +w? > 0 everywhere on S. Hence, by definition of d; we get

N+1 N41
0= Z 0k0k(pe®®) 4+ Ppet? = Z Ox; (6“95;6;) + ipe’%;ﬁ) + P pet? =
k=1 k=1

N+1
> e6k0kp + i€ 5100kp + ipe 51,010 + i (¢ Skp + ipe’510) 60 + P pe’? =
k=1

N+1
> 610k — pe?6506:0 + ie™ (podk0 + 20,p010) + Ppe’®  on S,
k=1
Hence
N+1
0= Z OOk p — porBdLl + i(p5k5k9 + 25k1)5k9) + 62,0 on S
k=1

and taking the imaginary part of the latter identity we obtain

N+1 N+1

1
0= pibil +205p0k0 = — > 6k [p°0k0]  on S
k=1 P k=1
which immediately implies (2.4). O

Now we are in position to prove our main result.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1: Fvery partial derivative of u is bounded on one side.

By assumption there exists an integer n € {1,..., N} such that for every in-
teger j € {1,...,N}\ {n} := J, the partial derivative 2% is bounded on one
J

side. We set A :={a e J : 8?712 is bounded from below} and B := {f € J :

(3?71; is bounded from above}. Hence



0
Vaec A deqg >0 h +eq>1 on RN (2.6)
0z,

B
VBeB  Jep>0 cﬂ—a%n on RY. (2.7)
B

Now we observe that

ou\? ou\? ou\?
|Vu|2:<) + () + () = (2.8)
Oz c;A Oza BeB Oxg

ou )’ Ou ’ 2 ou
ou ) 2 ou
Z(C_am) +Zcﬂ—22%(c —axﬁ)g (2.11)

Ou 2+Z Ou | 2+Z _Ou 2+ZQ< (2.12)
0z, o= 0z, Ca cp Oz <= '

() [y omm)] vme e

BeB

where in the latter we have used (2.6) and (2.7).

Now we set € == Y cs€a — D gepes € RN, ky =3, ,¢5 >0, ky =
EjeJ ¢; > 0, where {eq,...,en} denotes the canonical basis of RY and we
rewrite (2.13) as

2
(88;) +(Vu-€+k)’+k  on RN (2.14)

and observe that

Vu-£+k>1  on RN, (2.15)

again by (2.6) and (2.7).
Combining (2.8)-(2.14) and (2.15) we find



ou \ 2
1+ |Vul|* < (85) +(2+k1)(Vu-§+k;2)2 (2.16)
ou \?

< (24 k1)

(zm,) + (V- €+ ko) (2.17)

Set x 1= (—en,0) € RN 7:= (—£ ko) € RN+ and consider the functions
du
B (. o Vuitks _ :
—2n__ = (x-v) and v := = (7-v) > 0. Since v > 0 and
NGESE NGEE

w are solutions of the equation (2.3), an application of Lemma 2.1 implies that
6 := arctan (2) € L>(S) solves the equation

N+1
> o [(0* +wh)oko] =0 on . (2.18)
k=1
Thanks to (2.16)-(2.17) we see that the above equation (2.18) is uniformly
elliptic on S. Indeed, from (2.16)-(2.17) we get

L+ |Vl _ l( Ou <2N+k3) [1+]|Vul)]  (2.19)

2
2

which implies

1
S <vP4w? <2(N+k3) on S (2.20)

Thus 6 must be constant, by an application of the Harnack inequality proved

by Bombieri and Giusti (cfr. Theorem 5 of [4]), i.e., w = Av on S, for some
A € R. The latter immediately implies that aaT’f has a sign. In particular, all

the partial derivatives of u are bounded on one side.

Step 2: For every unit vector n € RN the directional derivative %Z has a sign,

that is, one and only one of the following assertions holds: (i) g—’;(x) =0 Vze
RY, (ii) §a(x) >0 Vo € RN, (i) §&(x) <0 Vo eRN.

Let o be any unit vector of RY and set I := {1,..,.N}, A := {a € I :
8‘?71; is bounded from below} and B := {8 € I : 8‘9;; is bounded from above}.

Hence

Vaec A deqg >0 aa—u—i—ca>1 on RN, (2.21)
To
ou N
VBeB Jeg>0 @ cg——>1 on R™. (2.22)
8;1:5

and proceeding as before we obtain



ou\? 9 ou ou
— < < i _ -
(60) < |Vul® < Z <3xa —|—ca> + Z <c 8@3) +Zc (2.23)

acA BEB jerI
= (Vu-E+k)’+ks on RN (2.24)
and
Vu-£+k>1  on RN (2.25)

where § 1= c4€a — D scpes € RN k3 = Z;V:I ¢G>0, ky = Z;VZI c; > 0.
We notice that &, k3 and k4 are independent of the unit vector ¢ and let
{n,09,...,0n} be an orthonormal basis of RY. From (2.23)-(2.24) we get

1+|Val? = H(?)Z) +Z (80) < 1+<gz> HN=1) [(Vu- €+ k1) + ks

(2.26)
and using (2.25) in the latter we immediately infer that
2 ou 2 2
1+ |Vul® < (N + (N —1)ks) o + (Vu- &+ ky) (2.27)
3(N + (N — 1)ks)(N +k3) [L+ |Vul?]. (2.28)
du
Setting y := (—1,0) € RV*L 7= (=& ky) e RV = 22 = (xv)

1+|Vu|?
Vu-&+ks

and v := Jiriva? = (7-v) > 0, and applying Lemma 2.1 as before, we see

that the function 6 := arctan (£) € L°°(S) solves the equation (2.4), which is
again unifomly elliptic on S in view of the above (2.27)-(2.28). It follows that 6
is constant, which implies that the directional derivative g—z has a sign.

Step 3: End of the proof.

Either v is constant, and in this case we are done, or there exists zo € RY such
that Vu(zg) # 0. In the latter case there are N — 1 unit vectors of RYY, denoted
by o1,...,0n_1, which are orthogonal to Vu(zg), i.e., such that

ou (
80]

By the previous step, we must have

0= Vu(zg)- o Zo) Vj=1,..,N -1 (2.29)

ou

aTj(x);o on RY, Vi=1,..,N—1, (2.30)



Vu(zo)

thus u(x) = h(7 - x), where 7 = and h = h(t) is a non constant solution

, [Vu(zo)]
. h' _ . . . .
of the ODE m) 0 on R. A direct integration of the latter gives
h(t) = at + b, a # 0. Thus u is an affine function. O
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