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Abstract

We prove the following Bernstein-type theorem: if u is an entire solu-
tion to the minimal surface equation, such that N − 1 partial derivatives
∂u
∂xj

are bounded on one side (not necessarily the same), then u is an

affine function. Its proof relies only on the Harnack inequality on min-
imal surfaces proved in [4] thus, besides its novelty, our theorem also
provides a new and self-contained proof of celebrated results of Moser
and of Bombieri & Giusti.

MSC: 53A10, 58JO5, 35J15

1 Introduction and main results

In this short article we are concerned with a Bernstein-type theorem for solutions
to the minimal surface equation

− div

(
∇u√

1 + |∇u|2

)
= 0 in RN , N ≥ 2. (1.1)

The classical Bernstein Theorem ([2],[7]) asserts that the affine functions are
the only solutions of (1.1) in R2. This result has been generalized to R3 by E. De
Giorgi [5], to R4 by J.F. Almgren [1] and, up to dimension N = 7, by J. Simons
[9]. On the other hand, E. Bombieri, E. De Giorgi and E. Giusti [3] proved the
existence of a non-affine solution of the minimal surface equation (1.1) for any
N ≥ 8. Nevertheless, J. Moser [8] was able to prove that, if ∇u is bounded on
RN , then u must be again an affine function, and this for every dimension N ≥ 2.
Later, E. Bombieri and E. Giusti [4] generalized Moser’s result by assuming
that only N − 1 partial derivatives of u are bounded on RN , N ≥ 2. To prove
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their result, the Authors of [4] demonstrate a Harnack inequality for uniformly
elliptic equations on minimal surfaces (oriented boundary of least area) and
then they use it to show that, if N − 1 partial derivatives of u are bounded on
RN , then u has bounded gradient on RN , and they conclude by invoking the
result of Moser. Our main theorem (see Theorem 1.1 below) provides a further
extension of the above results. Its proof relies only on the Harnack inequality
on minimal surfaces proved in [4] thus, besides its novelty, it also provides a
new and self-contained proof of the celebrated results of Moser and of Bombieri
& Giusti. We believe that this is another interesting feature of our work.

Our main result is stated in the following theorem.

Theorem 1.1. Assume N ≥ 2. Let u be a solution of the minimal surface
equation (1.1) such that N − 1 partial derivatives ∂u

∂xj
are bounded on one side

(not necessarily the same). Then u is an affine function.

2 Auxiliary results and proofs

To prove our results we briefly recall some standard notations and some well-
known facts concerning the solutions of the minimal surface equation (1.1) (cfr.
[4], [6]). For a given solution u of equation (1.1), we denote by S the mini-
mal graph xN+1 = u(x) over RN (i.e., the complete smooth area minimizing
hypersurface without boundary S ⊂ RN+1, given by the graph of u over the
entire RN ). Then the (upward pointing) unit normal to S at a point (x, u(x))

is ν = (ν1, ..., νN+1) = (−∇u(x), 1)√
1+|∇u(x)|2

and we can define the tangential derivatives

δk by

δk :=
∂

∂xk
− νk

N+1∑
h=1

νh
∂

∂xh
∀ k = 1, ..., N + 1. (2.1)

Moreover the functions νh satisfy the equation

N+1∑
k=1

δkδkνh + c2νh = 0 on S, ∀h = 1, ..., N + 1 (2.2)

where c2 :=
∑N+1
j,k=1(δjνk)2 denotes the sum of the squares of the principal

curvatures of the hypersurface S at the point (x, u(x)). Therefore, for any

vector a := (a1, ..., aN+1) ∈ RN+1, the function ( a · ν) =
∑N+1
j=1 ajvj also solves

N+1∑
k=1

δkδk( a · ν) + c2( a · ν) = 0 on S. (2.3)

Lemma 2.1. Assume N ≥ 2 and let S be a minimal graph xN+1 = u(x) over
RN . If v > 0 and w are smooth solutions of the equation (2.3) on S, then the
smooth function θ := arctan

(
w
v

)
∈ L∞(S) solves the equation
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N+1∑
k=1

δk
[
(v2 + w2)δkθ

]
= 0 on S. (2.4)

Proof. Consider the smooth complex-valued function z := v + iw. Since v > 0
everywhere, we have that z = ρeiθ on S and

N+1∑
k=1

δkδkz + c2z = 0 on S, (2.5)

where ρ :=
√
v2 + w2 > 0 everywhere on S. Hence, by definition of δk we get

0 =

N+1∑
k=1

δkδk(ρeiθ) + c2ρeiθ =

N+1∑
k=1

δk
(
eiθδkρ+ iρeiθδkθ

)
+ c2ρeiθ =

N+1∑
k=1

eiθδkδkρ+ ieiθδkθδkρ+ iρeiθδkδkθ + i
(
eiθδkρ+ iρeiθδkθ

)
δkθ + c2ρeiθ =

N+1∑
k=1

eiθδkδkρ− ρeiθδkθδkθ + ieiθ(ρδkδkθ + 2δkρδkθ) + c2ρeiθ on S.

Hence

0 =

N+1∑
k=1

δkδkρ− ρδkθδkθ + i(ρδkδkθ + 2δkρδkθ) + c2ρ on S

and taking the imaginary part of the latter identity we obtain

0 =
N+1∑
k=1

ρδkδkθ + 2δkρδkθ =
1

ρ

N+1∑
k=1

δk
[
ρ2δkθ

]
on S

which immediately implies (2.4).

Now we are in position to prove our main result.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1: Every partial derivative of u is bounded on one side.

By assumption there exists an integer n ∈ {1, ..., N} such that for every in-
teger j ∈ {1, ..., N} \ {n} := J , the partial derivative ∂u

∂xj
is bounded on one

side. We set A := {α ∈ J : ∂u
∂xα

is bounded from below} and B := {β ∈ J :
∂u
∂xβ

is bounded from above}. Hence
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∀α ∈ A ∃ cα > 0 :
∂u

∂xα
+ cα > 1 on RN, (2.6)

∀β ∈ B ∃ cβ > 0 : cβ −
∂u

∂xβ
> 1 on RN. (2.7)

Now we observe that

|∇u|2 =

(
∂u

∂xn

)2

+
∑
α∈A

(
∂u

∂xα

)2

+
∑
β∈B

(
∂u

∂xβ

)2

= (2.8)

(
∂u

∂xn

)2

+
∑
α∈A

(
∂u

∂xα
+ cα − cα

)2

+
∑
β∈B

(
cβ −

∂u

∂xβ
− cβ

)2

= (2.9)

(
∂u

∂xn

)2

+
∑
α∈A

(
∂u

∂xα
+ cα

)2

+
∑
α∈A

c2α − 2
∑
α∈A

cα

(
∂u

∂xα
+ cα

)
+ (2.10)

∑
β∈B

(
cβ −

∂u

∂xβ

)2

+
∑
β∈B

c2β − 2
∑
β∈B

cβ

(
cβ −

∂u

∂xβ

)
≤ (2.11)

(
∂u

∂xn

)2

+
∑
α∈A

(
∂u

∂xα
+ cα

)2

+
∑
β∈B

(
cβ −

∂u

∂xβ

)2

+
∑
j∈J

c2j ≤ (2.12)

(
∂u

∂xn

)2

+

∑
α∈A

(
∂u

∂xα
+ cα

)
+
∑
β∈B

(
cβ −

∂u

∂xβ

)2

+
∑
j∈J

c2j (2.13)

where in the latter we have used (2.6) and (2.7).
Now we set ξ :=

∑
α∈A eα −

∑
β∈B eβ ∈ RN , k1 :=

∑
j∈J c

2
j > 0, k2 :=∑

j∈J cj > 0, where {e1, ..., eN} denotes the canonical basis of RN and we
rewrite (2.13) as (

∂u

∂xn

)2

+ (∇u · ξ + k2)
2

+ k1 on RN (2.14)

and observe that

∇u · ξ + k2 > 1 on RN. (2.15)

again by (2.6) and (2.7).
Combining (2.8)-(2.14) and (2.15) we find
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1 + |∇u|2 ≤
(
∂u

∂xn

)2

+ (2 + k1) (∇u · ξ + k2)
2

(2.16)

≤ (2 + k1)

[(
∂u

∂xn

)2

+ (∇u · ξ + k2)
2

]
(2.17)

Set χ := (−en, 0) ∈ RN+1, τ := (−ξ, k2) ∈ RN+1 and consider the functions

w :=
∂u
∂xn√

1+|∇u|2
= (χ · ν) and v := ∇u·ξ+k2√

1+|∇u|2
= ( τ · ν) > 0. Since v > 0 and

w are solutions of the equation (2.3), an application of Lemma 2.1 implies that
θ := arctan

(
w
v

)
∈ L∞(S) solves the equation

N+1∑
k=1

δk
[
(v2 + w2)δkθ

]
= 0 on S. (2.18)

Thanks to (2.16)-(2.17) we see that the above equation (2.18) is uniformly
elliptic on S. Indeed, from (2.16)-(2.17) we get

1 + |∇u|2

2 + k1
≤

[(
∂u

∂xn

)2

+ (∇u · ξ + k2)
2

]
≤ 2(N + k22)

[
1 + |∇u|2

]
(2.19)

which implies

1

2 + k1
≤ v2 + w2 ≤ 2(N + k22) on S. (2.20)

Thus θ must be constant, by an application of the Harnack inequality proved
by Bombieri and Giusti (cfr. Theorem 5 of [4]), i.e., w = λv on S, for some
λ ∈ R. The latter immediately implies that ∂u

∂xn
has a sign. In particular, all

the partial derivatives of u are bounded on one side.

Step 2: For every unit vector η ∈ RN the directional derivative ∂u
∂η has a sign,

that is, one and only one of the following assertions holds: (i) ∂u
∂η (x) = 0 ∀x ∈

RN , (ii) ∂u
∂η (x) > 0 ∀x ∈ RN , (iii) ∂u

∂η (x) < 0 ∀x ∈ RN .

Let σ be any unit vector of RN and set I := {1, ..., N}, A := {α ∈ I :
∂u
∂xα

is bounded from below} and B := {β ∈ I : ∂u
∂xβ

is bounded from above}.
Hence

∀α ∈ A ∃ cα > 0 :
∂u

∂xα
+ cα > 1 on RN, (2.21)

∀β ∈ B ∃ cβ > 0 : cβ −
∂u

∂xβ
> 1 on RN. (2.22)

and proceeding as before we obtain
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(
∂u

∂σ

)2

≤ |∇u|2 ≤

∑
α∈A

(
∂u

∂xα
+ cα

)
+
∑
β∈B

(
cβ −

∂u

∂xβ

)2

+
∑
j∈I

c2j = (2.23)

= (∇u · ξ + k4)
2

+ k3 on RN (2.24)

and
∇u · ξ + k4 > 1 on RN, (2.25)

where ξ :=
∑
α∈A eα −

∑
β∈B eβ ∈ RN , k3 :=

∑N
j=1 c

2
j > 0, k4 :=

∑N
j=1 cj > 0.

We notice that ξ, k3 and k4 are independent of the unit vector σ and let
{η, σ2, ..., σN} be an orthonormal basis of RN . From (2.23)-(2.24) we get

1+|∇u|2 = 1+

(
∂u

∂η

)2

+

N∑
j=2

(
∂u

∂σj

)2

≤ 1+

(
∂u

∂η

)2

+(N−1)
[
(∇u · ξ + k4)

2
+ k3

]
(2.26)

and using (2.25) in the latter we immediately infer that

1 + |∇u|2 ≤ (N + (N − 1)k3)

[(
∂u

∂η

)2

+ (∇u · ξ + k4)
2

]
≤ (2.27)

3(N + (N − 1)k3)(N + k24)
[
1 + |∇u|2

]
. (2.28)

Setting χ := (−η, 0) ∈ RN+1, τ := (−ξ, k4) ∈ RN+1, w :=
∂u
∂η√

1+|∇u|2
= (χ·ν)

and v := ∇u·ξ+k4√
1+|∇u|2

= ( τ · ν) > 0, and applying Lemma 2.1 as before, we see

that the function θ := arctan
(
w
v

)
∈ L∞(S) solves the equation (2.4), which is

again unifomly elliptic on S in view of the above (2.27)-(2.28). It follows that θ
is constant, which implies that the directional derivative ∂u

∂η has a sign.

Step 3: End of the proof.

Either u is constant, and in this case we are done, or there exists x0 ∈ RN such
that ∇u(x0) 6= 0. In the latter case there are N −1 unit vectors of RN , denoted
by σ1, ..., σN−1, which are orthogonal to ∇u(x0), i.e., such that

0 = ∇u(x0) · σj =
∂u

∂σj
(x0) ∀j = 1, ..., N − 1. (2.29)

By the previous step, we must have

∂u

∂σj
(x) ≡ 0 on RN , ∀ j = 1, ..., N − 1, (2.30)
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thus u(x) = h(τ ·x), where τ = ∇u(x0)
|∇u(x0)| and h = h(t) is a non constant solution

of the ODE −
(

h′√
1+|h′|2

)′
= 0 on R. A direct integration of the latter gives

h(t) = at+ b, a 6= 0. Thus u is an affine function.
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