VARIATION FORMULAS FOR H-RECTIFIABLE SETS
MATTIA FOGAGNOLO, ROBERTO MONTI, AND DAVIDE VITTONE

ABSTRACT. We compute a first- and second-variation formula for the area of H-
rectifiable sets in the Heisenberg group along a contact flow. In particular, the
formula holds for sets with locally finite H-perimeter, with no further regularity.

1. INTRODUCTION

In this paper, we compute the first- and second-variation formula for H-perimeter
of sets in the sub-Riemannian Heisenberg group H", with minimal regularity assump-
tions. Let A C H" be a bounded open set in the n-th Heisenberg group and let
E C H" be a set with finite H-perimeter in A. This perimeter is defined starting
from a scalar product (-,-)y on the horizontal bundle H of H". We denote by ug
the H-perimeter measure of E, by P(E, A) = ug(A) the H-perimeter of E in A, and
by vg € H the measure theoretic horizontal inner normal of E. Let ¥, : A — H",
s € [—4, ], be the flow of a contact vector field V', defined for some 6 = §(A4, V) > 0.

The main result of the paper is the following

Theorem 1.1. There exists a positive constant C = C(A, V) independent of E such
that, letting Es = V(E) and Ay = V4(A), we have

2
P(ES,AS)—P(E,A)—S/%@E) dpE—%/VV(yE) dup| < CP(E,A)s®, (1.1)
A A
for any s € [—9,6].

The functions .%y,.%, : H — R are the first- and second-variation kernels. The
first-variation kernel is

ﬁV(VE) = leV + Qv(l/E),

where 2y is the following quadratic form on H

Qv (ve) = ([V,vel,ve)u.

The bracket [V, vg| is computed pointwise freezing vg at one point and extending the
vector in a left-invariant way. Notice that [V, vg] is a horizontal vector field because
V' is contact. The divergence appearing in %y is the divergence associated with the
Haar measure of H", that is the Lebesgue measure. The kernel %y is well defined
pup-a.e. for any set with locally finite H-perimeter.
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The second-variation kernel is
v (vp) = div(Jy V) + Py (vp)? — 22y (ve)* + %y (vE),
where Jy is the Jacobian (differential) of V' and %y : H — R is the quadratic form
%y (ve) = (V. [V, vell,ve)u + |40 (ve) -

The mapping £y : H — H is the Lie derivative £y (X) = [V, X], that is R-linear, and
Zy + H — H is the adjoint mapping, (£ X,Y )y = (X, LY )y for all X,Y € H.
Also .7 is well defined for sets with locally finite H-perimeter.

In Section 5, we give explicit formulas for %y and %}, in terms of the generating
function of the contact vector field V. The first variation kernel is

cg.{/(VE') = —4(n + 1)T¢ — V%[Q/}(VE, JZ/E)

where V#4 is the horizontal Hessian of the generating function v, J : H — H is the
standard complex structure, and 7T is the Reeb vector field. For .#}, in terms of 1) see
Proposition 5.2.

Formula (1.1) is interesting because it holds for the most general class of sets.
It is nontrivial since it also applies to nonrectifiable hypersurfaces with fractional
dimension, see [6]. In fact, we deduce the formula from an analogous variation formula
for H-rectifiable sets, see Theorem 4.4. Variation formulas for smooth sets were
already obtained, e.g., in [3, Section 8], [9, Section 4], [5]. We think that Theorem
1.1 could be useful in the study of regularity of H-minimal surfaces and of stability of
critical sets for H-perimeter, in the study of the isoperimetric problem in H" and of
other problems under low regularity assumptions, as the Bernstein problem (see [2]).
In fact, if £ locally minimizes H-perimeter in an open set A, then for any contact
vector field V' with compact support in A we have

A A

The first order necessary condition was used in [11] to study the harmonic approxima-
tion of H-perimeter minimizing boundaries, and here we are giving a detailed proof
of the tools used in that paper. The regularity problem for H-perimeter minimizing
sets is still completely open.

Formula (1.1) has, however, some drawbacks. First, in contrast with the usual
Riemannian second-variation formula and its relation with the Ricci curvature and
the second fundamental form, it is not easy to catch any clear geometric meaning
of the kernels %y, and .#},. Secondly, restricting variations to contact vector fields
seems to cause a loss of information. This is already evident in the use of the first
order necessary condition in (1.2) made in [11] and the reason is that a contact vector
field depends on the first derivatives of the generating function.

The proof of Theorem 1.1 is divided into several steps. First, we prove it for
smooth sets. Here, the key point is to get a constant C' in the right hand side of (1.1)
independent of the set. Then, we extend the formula to H-regular hypersurfaces and
finally to H-rectifiable sets.
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The computations of Section 3 make transparent the role of contact flows and have
a general character, independent of the specific structure of H". The approximation
techniques of Section 4 also have a general character. The extension of the results from
H-rectifiable sets to sets with finite H-perimeter is based on the structure theorem
for the reduced boundary proved in [4].

2. PRELIMINARY DEFINITIONS
As customary, we denote points p € H" by
R S (21, ..., %0, Y1y s Ynst) = (21, .., 20, 1) € C" X R,

where z; = x; +4y; and j = 1,...,n. The Lie algebra of left-invariant vector fields
in H" is spanned by the vector fields

0 0 ) 0 0
Xi=—+4+2y—, Y, =— —21,— d T=— 2.3
1T Gy Mg T gy e ™ ot (23)
for j = 1,...,n. In the sequel, we shall frequently use the alternative notation
X; =Y, for j =n+1,...,2n. We denote by H the horizontal bundle of TH".

Namely, for any p = (z,t) € H" we let

H, = span{Xi(p),..., Xan(p)}.

We fix on H the scalar product (-,-)y that makes X, ..., Xy, orthonormal.
A horizontal section ¢ € C}(A, H), where A C H" is an open set, is a vector field

of the form
2n
p=> ;X
j=1

where p; € C1(A). We identify ¢ with its horizontal coordinates (¢1, .. ., p2,) € R*™.

With abuse of notation, for horizontal vectors ¢ and v we let (¢, v)y = (¢,v) and

|v|lz = |v|, where (-,-) and | - | are the standard scalar product and norm in R*".
The H-perimeter of a £?"1-measurable set E C H" in an open set A C H" is

P(E,A) = sup {/ divp dL* . p € CHA, H), 9]l < 1} .
E

If P(E,A) < oo we say that E has finite H-perimeter in A. If P(F, A’) < oo for any
open set A’ CC A, we say that F has locally finite H-perimeter in A. In this case,
the open sets mapping A — P(F, A) extends to a Radon measure g on A that is
called H-perimeter measure induced by E. Moreover, there exists a pp-measurable
function vg : A — H such that |vg| = 1 ug-a.e. and the Gauss-Green integration by
parts formula

/ (o, vE) dup = — / divp d.2*"+
A E

holds for any ¢ € C}(A, H). The vector vg is called horizontal inner normal of E in
A.
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Let o(p,q) = |l¢7! * p||so be the box-distance between the points p, ¢ € H", where
1(2,1)|ls0 = max{|z|, [t|'/?} is the box norm and * is the Heisenberg product associated
with the basis of left-invariant vector fields (2.3).

For any set M C H", s > 0 and 6 > 0 we define

S5 (M) = inf {ws Z(diam B;)®: M C U B;, B; C H"p-balls with diam B; < 5},
jEN jEN
where wy > 0 is a suitable normalization constant. The s-dimensional spherical
Hausdorff measure of M is

F5(M) = lim 75 (M).

§—0

The relevant o-Hausdorff dimension for us is s = 2n + 1. For this reason, we use the
short notation . = .?"*1. By the representation theorem in [4], for any set F C H"
with locally finite H-perimeter we have

pp =S LOE, (2.4)

where L denotes restriction, and 0*F is the reduced boundary of F, i.e., the set of
points p € H" such that: i) pg(B(p,r)) > 0 for all > 0; ii) there holds |vg(p)| = 1,
and iii)

lim vpdug = vg(p).

r—0 B(p,r)
In particular, the representation formula (2.4) holds when E' is a set such that M =
OF = 0*F is an H-regular surface (see Section 4). For sets with smooth boundary a

representation formula for g will be presented and used later in Section 3, see (3.30)
and (3.31).

3. VARIATION FORMULA IN THE SMOOTH CASE

In this section, we compute the second order Taylor formula with Lagrange remain-
der for the variation of H-perimeter of smooth hypersurfaces along a contact flow.
The term “smooth” will always mean C'*°-smooth and vector fields will always be

smooth vector fields in H". By (-, ) we denote the standard scalar product of vectors
in R2n+1.

3.1. Preliminary computations along flows. Let {U },cg be the flow of dif-
feomorphisms in H" generated by a vector field V. Given a smooth hypersurface
M C H", we denote by N, the Euclidean normal to W (M). We fix a base point
p € M and we let p;, = U, (p). Reference to the base point will often be omitted. In
our computations, there will appear the function

¥(s) = (Jy Ng, Ng), s €R, (3.5)

where the vectors are evaluated at ps and Jy is the Jacobian of the vector field V'
generating the flow WUy, However, our final formulas are independent of ¥ and, in
particular, they do not depend on the Euclidean normal but only on the horizontal
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normal. This is of crucial importance for the extension of the formulas to sets with
finite H-perimeter of Section 4.
For any vector field W and for any fixed base point, we define the function s —

Fw(S)
Fw(s) = (W, N,))(ps), s€R. (3.6)

The definition depends on the starting hypersurface M that we are considering.
Lemma 3.1. The function s — Fyw(s) satisfies the differential equation
Fyy (s) = Frywi(s) + 9(s)Fw(s), s €R. (3.7)

Proof. Fix an orthonormal frame of vector fields Vi, ..., V5, that are tangent to M.
Thus, Jy Vi, ..., Jy, Vo, are tangent to W (M), and so

(Jp,ViyNg) =0 i=1,...,n.
Differentiating the above identity with respect to s yields
<JVJ\IISV;7N5> +<J\pSV;,N;> :0, 1= 1...,271, (38)

where N is the derivative of s +— N,(ps) with respect to s. On the other hand,
differentiating the identity |Ny|? = 1, we get (N!, N,) = 0, that is, N is tangent to
U (M). Using the fact that Jy,|s—o is the identity, we deduce that the derivative of
N;at s =01is

2n 2n
Ny = (Vi NppVi = = > (JvVi, N)V;
=1 =1

2n
=1

= (JEN,N)N — JiN,

(3.9)

where the second identity is justified by (3.8) computed at s = 0. An analogous
argument shows that (3.9) holds for all s € R, that is

N! = (J;N,, Ng)Ns — Ji> N,. (3.10)
The derivative of Fyy is
Fy(s) = (JwV, Ny) + (W, Ny),
that, by (3.10) and by the definition of adjoint map, becomes
EFyy(s) = (JwV — JyW, Ng) + (Jv Ng, No) (W, N,)

= (V. W], No) + (Jv Ny, No) (W, N

= Fiyw(s) + 9(s)Fw (s).
This ends the proof. U
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Now consider the function s — K, defined in the following way

K, = (i FXj(s)2> v (3.11)

The function K is the integral kernel for the H-area of the hypersurface W (M),
introduced in (3.30) below. The derivative of K is related to the function s — G

ZFX s)Flv.x;)(s), (3.12)

that is defined when K # 0. On the other hand, the derivative of G is related to
the function s — H,

1 n
= ? Z F[V’Xj](S)Q + FXj (S)F[V,[V,Xj]]<3)- (3.13)
S i—1
Finally, the derivative of H is related to the function s — L
2n
1
Lo= 7= 3Fv.x,)(s) Flvvx))(s) + Fx, () Flvgvivx )y (s): (3.14)
s i1

The functions Gy, H,, and L, appear in the first, second, and third derivatives of
H-perimeter.

Lemma 3.2. As long as K, # 0, the functions K, G, and H, satisfy the following
differential equations

K. =9(s)K; + Gy, (3.15)
: Gy
- =+ H,, 1
G, =0(s)Gj K. + (3.16)
SHS
1, = o) H, ~ L, (3.17)
where Ly is as in (3.14). Moreover, we have
Gs\' H; G?
(B) =L 22 (3.18)
GS " Gs Gs ! Ls GSHS
&) =@ 319
Ho\' Ly GsH,
<?) - %~ (3.20)

Proof. We have
2n
1
=D FxFx,.
s =1

and, by (3.7) and the definition (3.12) of G, this formula gives identity (3.15).
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Differentiating (3.12) we obtain

/ K; 2n
G, =— K2 ZFXjF[WXj]
S ]:1
1 2n
+ > (Fvx,) + 9Fx;) Fvx,) + Fx, (Fvvx) + 9Fvxg)-
S ]:1

Inserting K into this formula, we obtain

2
Gl = —%(19(3)& + G) 4+ 29(s)Gs + Hy = 9(s)Gs — % + H,.

This is formula (3.16). Differentiating (3.13), using (3.7) and (3.15), we find

Kg 1 2n
Hy =~ Ho+ > 2Fvx) (Fvvx,) + 9Fvx,)
S S ]:1

+ (Flvx,) + 9Fx) Fivvxg + Fxy (Fvvivigy + 0Fvvixgy)
WK, + G,
= —@TJFHS +20(s)H, + L
GSHS

S

=J(s)H; — + L.

This is formula (3.17).
The formulas (3.18), (3.19), and (3.20) follow from (3.15), (3.16), and (3.17). In

fact, we have

(&) = Loy - &) - GG B, G

K,) K, K, K, K, “K¥
and
(%)” _ _&(&)’ L H H K
K, K\ K, K, KK
_ _4%(%)’4_ H! —9H, B H.G,
K, \K, K, K2
_ _4§<§>’+ L —GH,/K, HG,
K, \K, K, K2
Gs (Gs\' | Ls [ GH;
——4Z(Z) t A
The computations for (H,/K) are analogous and are omitted. O

The (Euclidean) tangential Jacobian determinant of a smooth mapping ¥ : H" —
H" restricted to a hypersurface M C H" is the mapping #¥ : M — R

JU(p) = yJdet(Juli o Julu)p),  pEM, (3.21)

where Jy|yr at p € M is the restriction of the Jacobian Jy to T,M and * denotes the
adjoint mapping.




8 FOGAGNOLO, MONTI, AND VITTONE

The (Euclidean) tangential divergence of a vector field V' on a hypersurface M is
where N is the Euclidean normal to M and Jy is the Jacobian of V.

Lemma 3.3. Let M C H" be a smooth hypersurface and {Vs}scr be the flow of
diffemorphisms generated by a vector field V. For any s € R we have

(20, = 29, dive,anV(ps). (3.23)

The proof of (3.23) is well known (see e.g. [13]) and it is omitted. In the next step,
we compute the derivatives of the product K, _#V,.

Lemma 3.4. Let M C H" be a smooth hypersurface and {Vs}scr be the flow of
diffemorphisms generated by a vector field V. For any s € R such that K, # 0 we
have

(K, 70,) = K, 7, (divV (p,) + %) (3.24)
() = K[+ 2) (Vo) - 255 +12]. (329
(K, #V0,)" = K, #9,(A, + By), (3.26)

where
A, = (@vV(p) + %) [(aivv () + %)2 4 div(Jy V) (py) — 2?2 4 %]
B, =2(divV (p,) + %) (div (R V) (p) + (%)) - div(Jn V) (ps)

(3 (2
K\ K K/~
Proof. From (3.15), (3.23), and from the definition (3.22) of tangential divergence,
we obtain

(K, V) = K7W, + K (79,)
= (ﬁ(S)Ks + Gs)/qjs + Ks/qjsdiV\Ils(S)v(ps)

Gs | .
= 1, 70, (9(s) + =+ diva, 9V ()

— K, J0, (% + divV(p5)>.

In order to compute the second derivative, first observe that

%divas) = div( ; (Vo \118)) = div(JyV)(ps)-

S
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Thus, we obtain

) () )
a ° G, S

— K, U, [(divV(ps) + F)Q + div(Jy V) (py) + (?H

(K, 70.)" = (K, /\IJS)’<divV(ps) +

The formula for the third derivative is obtained in a similar way and we omit the
computations. I

Remark 3.5. The function ¥ introduced in (3.5) appears in the formulas (3.15)—
(3.17). However, in (3.18)—(3.20) the function does not appear and thus the deriva-
tives of K, _#V, in (3.24)-(3.26) are independent of 9.

3.2. Contact flows. Let A C H" be an open set. A C'*°-diffeomorphism ¥ : A —
U(A) C H" is a contact diffeomorphism if for any p € A the differential Jy satisfies

J\I/(Hp) = H\I/(p)7

where H is the horizontal bundle of H". Contact diffeomorphisms play a central role
in geometric, conformal, and metric analysis in the Heisenberg group. From our point
of view, they are important for the following reason. If ¥ is a contact diffeomorphism
and £ C H" is a (bounded) set with finite H-perimeter then also ¥(F) is a set with
finite H-perimeter. If W is not contact then this property may fail even for a linear
mapping V.

A vector field V' in H" is a contact vector field if it generates a flow of contact
diffeomorphisms. The following proposition is well-known and lists some characteri-
zations of contact vector fields. We refer the reader to [7, Section 5] for a derivation
of formula (3.27) below.

Proposition 3.6. Let V' be a smooth vector field in H". The following statements
are equivalent:

i) V is a contact vector field.
i) For any p € H" and for any j =1,...,n we have
[V, Xil(p) € Hy, and [V, Y;(p) € H,.

iii) There exists a function ¢ € C*°(H") such that V =V, with

Ve = —40T + S (V)X — (X,0)Y, (3.27)
j=1
Let M C H" be a smooth hypersurface, let Ny be the Euclidean normal to W,(M),
and let Fy(s) = (W, N,)(ps) be the function in (3.6), for some base point p € M.
The functions G, Hy, and Lg in (3.12)—(3.14) depend on M. However, we have the
following result.
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Lemma 3.7. Let U, be the flow of a contact vector fields V in H". For any compact
set Q C H" there exists a constant C = C(Q, V') > 0 independent of the initial surface
M such that

|G| + [Hy| + [Ls| < CK, (3.28)
G+ G+ IR

provided Ky # 0 and ps € Q.
Proof. By the characterization ii) of Proposition 3.6, the vector fields [V, X;], [V, [V, X,]],
and [V[V,[V, Xj]]] are horizontal. The expressions (3.12)-(3.14) for G, H, and L;
are thus homogeneous of degree 1 in X, j =1,...,2n. By a continuity argument, it
follows that there exists a constant C' > 0 depending on V' and @) but independent of
M such that |G| + |Hs| + | Ls| < CK, for all p, € Q.

The estimates (3.29) follow from (3.28) and from the formulas (3.18)—(3.20). O

and

<C, (3.29)

From Lemma 3.7, we deduce the following corollary.

Lemma 3.8. Let U, be the flow of a smooth contact vector fields V' in H". For any
compact set @ C H" there exists a constant C = C(Q,V) > 0 independent of the
wniatial surface M such that

(K, 70| + (K, 70| + (K, #¥,)"| < CK,,
provided K, # 0 and ps € Q.

In fact, also #W, is locally bounded independently from the initial surface M.

3.3. Variation formulas in the smooth case. Let UH be the unit horizontal
bundle of H". Namely, v € UH if v € H and for any p € H, we have

2n 2n
v(p) = Zijj(p) with ZV? =1
j=1 j=1

We identify v(p) with its horizontal coordinates (vy, ..., vs,) € R*™.
For a smooth hypersurface M C H", we define its horizontal normal at p € M as
the vector vy, € UH, that, in horizontal coordinates, is defined as

1
VM:K(<X1’N>7...,<X2n,N>), at the point p,
where N is the Euclidean normal and K = (Z?ZI(X]», N)2)1/2. The definition of vy,
depends on a choice of sign for N and it is possible when K # 0. The H-area of M

in an open set A C H" is

(M, A) = K ds*, (3.30)
MNA
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where 72" is the standard 2n-dimensional Hausdorff measure in H"* = R?**!. The

H-area measure of M is the measure
par = K" M. (3.31)

When M = OF is the boundary of a smooth set F we have ug = .

For any contact vector field V', we define quadratic forms 2y, %y : UH — R in the
following way. Fix a point p € H" and a vector v € UH,,. Take a smooth hypersurface
M C H" such that p € M is noncharacteristic (i.e., T,M # H,) and vy(p) = v. Let
U, be the contact flow generated by V', with base point p. We define
HS

Qv(V) = Z 0 c%\/(l/) = E 3:07 (332)
where G, K, and H, are defined in (3.11)—(3.13) starting from the functions Fyy (s) =
(W, Ng) where Nj is the Euclidean normal to the hypersurface W (M) at the point
ps = Us(p). The quantities in (3.32) do not depend on the choice of M, see Lemma
3.9.

Recalling that the bracket [V, v] is computed pointwise by extending v = v(p) in a
left-invariant way, we have the following

Lemma 3.9. For any contact vector field V and any v € UH, we have:

i) Qv(v)=(V,v],v)u;
i) Zy(v) =V, V.V, v)u + | L5 )|7-

Proof. The relation between the Euclidean normal N to the hypersurface M and the
horizontal normal v € UH is

XN
l/j:%, j=1,...,2n. (3.33)

By the formula (3.12) and by standard linear algebra, we have

2n

Z<XJ’7N><[V>XJ']’N> =([Vivl,v)m.

=1

1

2v(v) = =

By (3.13) and (3.33), the quadratic form %y : UH, — R in (3.32) is Zy = Z\+%%,
with

RH) = 155 YV, XL N (X5 N) = (V. V) o
and
B = 155 SV XN = S VX = S, B0 = 120

O
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Motivated by the formulas in (3.24) and (3.25), let us introduce the short notation

Fy(p,v)=divV + 2y (v) (3.34)
Fv(p,v) = div(JyV) + (Fy(v)? — 22y (v): + %y (v), (3.35)

where functions are evaluated at a noncharacteristic point p € M and v = vy,(p) is the
horizontal normal of M at p. We call .%y, the first-variation kernel and .# the second-
variation kernel along V. We omit dependence on p and we let .7y (v) = Fv(p,v)
and A (p,v) = S (v). We shall compute explicit formulas for the kernels %y, and
S In Section 5.

In the next theorem, we compute the second variation formula for the H-area of
smooth hypersurfaces. A sketch of the proof of the formula up to the first order
appeared in the lecture notes [10].

Theorem 3.10. Let A C H" be a bounded open set and let M C H™ be a smooth
hypersurface with finite H-area in A. Let W : [—0,0] x A — H", § = §(A,V) >0, be
the flow of a contact vector field V. Then there exists a positive constant C' = C(A, V)
independent of M such that

2
oy (M, Ay)— oy (M, A)—s / Fy(var) dpM—% / Frr(var) dpng| < Cctyg (M, A)s®,
A A

(3.36)
for any s € [—0,0], where My = Wy (M) and As = Wy(A).

Proof. Let N, N, be the Euclidean unit normals to M N A and M, N A, respectively.
We choose a coherent orientation. Let K, be the H-area kernel of M, introduced in
(3.11). By the definition of a contact diffeomorphism, we have Ky(p) # 0 if and only
if K(ps) # 0. The set where Ky = 0 is contained in a smooth hypersurface of M and
is .7*"-negligible.

By the change of variable formula for surface integrals, we have

2n

Ay (M, Ay) :/ (Z<Xj,NS>2)1/2dffzn

MSQAS 1:1
= K, gV d#*" = P(s),
MNA

where ¢V, is the tangential Jacobian defined in (3.21). The function P(s) defined
in the last line has the following Taylor expansion

2 3
P(s) = P(0) + sP'(0) + S P"(0) + = P"(3). (3.37)
for some s € [0, s].
The exchange of integral and derivative in s,

d

ds Jarna

KS/\IISCZ%M = / (Ksjws)/d%2n7

MNA
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is justified by (3.24). In fact, the right hand side in (3.24) is bounded by the estimates
of Lemma 3.8. The same holds for the second and third derivatives in s. Then, we
have

P(0) = Ko dA*" = oy (M, A),

mNA

and, by (3.32)(3.35),

P'(0) = /M 5 (K, 29,)| _, dAa*" = / (divV + 2y (var)) Ko d*"

MNA

= / L%/(VM) dpar,
A

P”(O) = / (KSJ\IIS)H‘ -0 d%Qn = / yv(VM) dMM
MnA = A
The third derivative satisfies the bound
| / (K. g0)"dw>| < ¢, [ K.dw>
MnNA

MNA
§Cg Kod%Qn:CQﬂH<M,A)
MNA
The estimate K, < C3K) follows from K. < C4Kj,, that is a consequence of (3.15).
The constants C, Cs, C3, Cy are independent of M.
Now formula (3.36) follows from (3.37). O

4. VARIATION FORMULAS FOR H-RECTIFIABLE SETS

In this section we extend Theorem 3.10 to H-rectifiable sets, and in particular to
sets with finite H-perimeter. In a first step, we extend the theorem to H-regular
hypersurfaces, and in a second step to H-rectifiable sets.

4.1. Variation of the area of H-regular surfaces. A function g: A - R, A C
H"™ open set, is of class C'}(A) if g is continuous and the derivatives Xg, ..., Xo,g
in the sense of distributions are (represented by) continuous functions in A. The
horizontal gradient of g € C}(A) is the vector valued mapping Vgg € C(4;R*"),
Vig = (Xlg, e ,Xgng).

A set M C H" is an H-regular hypersurface if for all p € M there exists an open
neighbourhood A of p and a function g € C}(A) such that M N A = {q € A:g(q) =
0} and [Vug(p)| # 0.

The main result of this section is the following

Theorem 4.1. Let A C H" be a bounded open set and E C H™ a set with finite H-
perimeter in A such that OE N A is an H-regular hypersurface. Let U : [—§,5] x A —
H", 6 = §(A, V) > 0, be the flow generated by a contact vector field V. There ezists
a positive constant C' = C(A, V') independent of E such that, letting E; = V4(E) and
As =V (A), we have

2
P(E,, A,)—P(E, A)—s / Fy(vp) duE—% / Sy (vp) dug| < CP(E, A)s®, (4.38)
A A
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for any s € [-9,d].

The starting point of the proof is the following technical lemma, that is an easy
adaptation of Lemma 4.4 in [14].

Lemma 4.2. Let M be an H-regular hypersurface such that M = {p € U : g(p) = 0}
with U C H" open and bounded set and g € C(U) such that Vgg # 0 on M. Then,
for any p € M there exist an open neighbourhood A C U and a function f € Ck(A)
such that M ={q€ A: f(q) =0}, Vuf #0 on A, and f € C*(A\ M).

Proof of Theorem 4.1. We can assume that M = 0F N A is given by the zero set of a
function f € CL(A) N C>®(A\ M) as in Lemma 4.2; we can also assume that f < 0
on E. Let U, be the flow generated by a contact vector field V. For s € [0, ], we
define

AS:\I[S(A)7 fs:fo\ljsa Ms:{qusfs(Q):O}:\Ijs(M)

Using the property of a contact flow it is easy to check that each M is an H-regular
hypersurface with defining function f, € C§(A,) N C®(A, \ My).
For any r € R we define the sets
E'={peA:flp)<r}, E=E
El={q€ As: fs(q) <1} =V (E"), E,=E?=U,(E".
We have OF N A = M and 0FE, N Ay, = M,. Since Vigf # 0 on A, OE" N A and
OE” N A, are smooth hypersurfaces.

Let s € [0, 4] be fixed. By Theorem 3.10 and by the standard representation of
H-perimeter for smooth surfaces, we have

2
P(Eg,AS) —P(ET,A) - S/ yv(VEr)d/J,Er - %/yV(VEr>d/J,ET S CP(ET,A)33,
A A

(4.39)
where C'is a constant independent of r and s. It is easy to see that as r — 0 we have
Xer — xp in LY(A). (4.40)

We claim that we also have
lii% P(E"JA)=P(E,A), }g% P(E., As) = P(Es, Ay). (4.41)

We prove the claim in the left hand side of (4.41). Since |Vyf| # 0 in A, we can
assume, up to a rotation and a localization argument, that X;(f) >y > 0 on A. By
the implicit function theorem of [4], there exist an open set I C R?*" and continuous
functions ®" : I — H" such that
P(E", A) = / Nall g (o) d (), (4.42)
1 Xuf

We may assume that I does not depend on r, via choosing a cylindrical structure of
A along X;. As r — 0, the function ®"(z) converge to ®(x) uniformly in z (see the
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proof of [14, Proposition 4.5]) and, by the (uniform) continuity of Vg f and X; f, we
conclude that

- VEf], ~|Vufl
lim X,/ (@"(x)) = X,/ (®°(x)),

uniformly in = € I. Exchanging integral and limit in (4.42), this proves our claim.
From (4.40) and (4.41), we deduce by Lemma 2.5 in [14] that for » — 0 we have
the weak™ convergence of measures

Thus, by Reshetnyak continuity theorem, see e.g. [1, Theorem 2.39], we deduce that

hm/ﬁv(yy)duy:/ﬁV(VE)d,uE and
A A

r—0
(4.43)
lim/ v (vpr)dug = / v (ve)dug.
r=0 ) 4 A
Now, using (4.43) and (4.41), and passing to the limit in the formula (4.39), we obtain
(4.38). O

4.2. Variation formulas for H-rectifiable sets. In this section, we prove the vari-
ation formula for H-rectifiable sets. In this formula, the H-perimeter measure pup as-
sociated with a set E of locally finite perimeter is replaced by the spherical Hausdorff
measure . = .21

We introduce the notion of H-rectifiable set for the dimension 2n + 1. The notion
of rectifiability for a generic dimension is studied in [8].

Definition 4.3. A Borel set R C H" is H-rectifiable if there exists a sequence of
H-regular hypersurfaces {M,};en with . (M;) < oo such that

7 (R\JM;) =0,
jeN

The importance of the notion of R-rectifiability is due to the fact that the reduced
boundary of sets with locally finite H-perimeter is rectifiable in the sense of Definition
4.3, see [4]. So Theorem 1.1 for sets with finite H-perimeter in the Introduction follows
directly from Theorem 4.4 below for H-rectifiable sets.

We define a mapping vg : R — R*" letting vg(p) = va,(p) where j € N is the
unique integer such that p € M, \ U;<;M; and letting vp = 0 if there is no such j.
The function vg is Borel measurable and it is well-defined up to a sign. Namely, if
{M ]-1 }ien and {M jz}jeN are two sequences of H-regular hypersurfaces such that

y(R\UM;):o, f(R\UMf)zO,
jeEN jEN
then for .-a.e. p € R we have vy(p) = v4(p) or vi(p) = —vi(p), where vy, and V%

are defined as above by means of {M]};en and { M} }jen, respectively. The proof of
these claims can be found in [12, Appendix B].
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We call v the horizontal normal of the H-rectifiable set R. The fact that vg is
unique only up to the sign does not affect our results, because the first- and second-
variation kernels are symmetric, in the sense that

Fy(v) = Fy(—v) and H(v)= A (—v)
for any v € UH.

Theorem 4.4. Let A C H" be a bounded open set and R C A an H-rectifiable
set with #(R) < oo and with horizontal normal vg. Let U : [=6,0] x A — H",
d=06(A,V) >0, be the flow generated by a contact vector field V. Then there exists
a positive constant C = C(A, V') such that

S(W,(R) — L(R) — s /R Ty (vr)dS — % /R yV(VR)dy) < CH(R)s, (4.44)

for all s € [—0,9].

Proof. When R = OF N A is an H-regular hypersurface bounding a set E, formula
(4.44) is formula (4.38) with vg = vg and pg = L OR, which holds because of
(2.4).

Step 1. We prove formula (4.44) in the case that R = 3 C M is a Borel subset of
an H-regular hypersurface M.

Since LM is a Radon measure, there exists a sequence of open sets A; C H"
such that ¥ C A; and

lim #(M N A;) = .7(%).

Jj—00
For the same reason, for any fixed s € [—0, ], there exists a sequence B; of open sets
such that ¥,(X) C B; and

lim .7 (V,(M) N Bj) = .7 (¥s(X)).
Jj—o0
Letting, U; = A; N ¥, Y(B;), we have & C U; C A; and ¥4(X) C ¥, (U;) C By, and
thus
lim (M NU;) = .7(%), lim 7 (V,(M NU;)) =L (Us(X)). (4.45)
Jj—oo j—oo
The sets ¥; = M NU; are H-regular hypersurfaces and thus formula (4.44) holds for
them with vy, = vy on 3;. By dominated convergence, we have

hm yv(l/M)dy:/ﬂv<VM)dy,
j—o0 2, >

(4.46)

| —>00
J 3,

From (4.45) and (4.46), we deduce (4.44).
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Step 2. We prove formula (4.44) for a general H-rectifiable set R such that .7 (R) <
o0o. Then we have .
R=NuUlJZ, A4,
j=1
with .#(N) = 0 and for pairwise disjoint Borel sets ¥; C M, with AM; H-regular and
S (X;) < co. By Step 1, we have for any j € N

y(\I/S(E]» —45”(2]) —S/E.ﬁv(VR)dy—%z/E.yv<VR)dy S C’&”(Ej)sg

for all s € [0, d]. Taking into account the fact that .7 (¥4(N)) = 0, formula (4.44)
then follows by summation on j. 0

5. VARIATION KERNELS AND GENERATING FUNCTION

Let V =V}, be a contact vector field of the form (3.27) for some ¢ € C*(H"). We
compute the first- and second-variation kernels in terms of the generating function .

5.1. Formula for .%,. By the formula (3.27) for a contact vector field, we have
V = —4yT — IV, (5.47)

where J : H — H is the standard complex structure on H, i.e., the linear mapping
such that JX; =Y, and JY; = — X}, and

Vi) =Y (X)X (5.48)

is the horizontal gradient of 1. The horizontal Hessian of 1) is the bilinear form
V#y : H x H — R such that

We can think of the horizontal Hessian also as the linear mapping Vv : H — H
such that VA¢(X;, X;) = (VAY(X;), Xi)u, Le.,

2n

i=1
Proposition 5.1. For any contact vector field V and v € UH, the first-variation

kernel s
Fy(v) = —4(n + )Ty — Viy(v, Jv).

Proof. The first-variation kernel is %y (v) = divV + 2y (v), see (3.34). In order to
compute the divergence divV, we first observe that

div(JVy) = Z Y; X0 — XYy = 4nTup. (5.49)

Then we have

divV = div(—4T — JVih) = —4T — div(JVge)) = —4(n + 1)Teh.
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We compute the quadratic form 2y. From the commutation relations [X;,Y;] =

—40,;T and [X;,T] =[Y;,T)=0fori,j=1,...,n, and from (5.47) we have, for any
j=1,....2n,
V. Xj] = [-4T — JVpo, X
2n
= 4(X0)T = (X)) [T X, Xj) = (X Xi00) T X, (5.50)

j=1

= X; Vi),

where the vector field X; acts on the horizontal coordinates of JVy. By formula i)
of Lemma 3.9 for 2y, by (5.50), by the isometric property of J, and by J? = —Id,
we have

Dv(v)=(V,v],v)ug = ZVNV’ Xil,v)u

2n 2n
= (X IV, V) = — Y v (X; Vi, Jv)g
=1 j=1
= —VI?ITMV, Jv).
The claim follows. O

5.2. Formula for ./,. The formula for .#y(v) in terms of V' is in (3.35). We need
to compute the quadratic form %y and the divergence div(Jy V).
We define the bilinear form Vv : H x H — R such that

that also induces a linear mapping Vyy : H — H. We denote by V¢ Vg the
bilinear form associated with the composition of the linear operators V#1 and Vg,
while (VZ1)* is the adjoint of V).

Proposition 5.2. For any contact vector field V and for any v € UH we have
div(JyV) = 8(n+ 1)T** + 4n(Vytp, JVyTV) g — trace(Viw Vi)
and
Ry (v) = —(VVEY) (v, Jv) = VN (v, v) + [[(Vae) (Jv) |3

Proof. By formula ii) in Lemma 3.9, we have %2y (v) = ([V, [V, V]|, v)n + ||-Z: (V) |%-
By formulas (5.50) and (5.48), one gets

2n 2n

VoVl =3 5V X0 Vey) = Y iV, (X, X)) T X

j=1 i,j=1

= zn: vl (VX5Xi) T X + (X X)) (T X5) TV},

,j=1



VARIATION FORMULAS 19

and the scalar product with v is

2n

(V. Vvl vye =Y vi{ = (VXX (X, Jvm + (X Xah) (T X3) T Ve, v)u }

i,7=1
2n

—(VVE) (v, Jv) = > vjn(X X)) (T X) (X )ob

i k=1
_(VV%I¢)(V7 JV) - (VI%¢V]2H¢)<V7 V)'
Moreover, by (5.50) we have

100 = Do LoV = DA ) = DoV X))
= > (XY, vy = S (V). o)y = (V) ()

Now we compute the divergence div(Jy' V). Using the relations X;(JX;) = —26;;T,
we obtain
JvXj = —2(XJ1/})T—J(XJVH77Z)), j: 1,...,27’L,
T = =A(TP)T = J(TVay),
and thus the vector field Jy/V is
2n
TV = 4{4TO)T + J(TVa)} + D (X2 X0)T + (JX;) IV}
j=1
2n
— S(TY*)T + 4T (VuTw)) + (D (X;0) (T X;) Vi)
j=1
We used the identity (Vyv, JVg) g = 0. Since (JX;)X; = X;(JX;) + [JX;, X;], we

have

Z(Xﬂ/))(JXj)VH%U = 4(TY) Ve + Z(XW)VH(JXJ‘W

and, since T' commutes with Vg, we finally obtain the following formula for J,, V'
JyV = 8TV*T + AT (I V1)) + QZn(le/J)JVH(JXj)z/J.
j=1
Using T(Vu, JVrY) g = 0 and formula (5.49), one gets
div(JyV) = 8T%*)* + 4T div (1 J V) + i div ((X;1)J Vi (JX;))
" 2n
= 8(n + )T** + 4n(Vyy, JVe Ty — > X; Xeb(JX3) (J X)),

1,j=1
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and the claim follows. O
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