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Abstract

We intrinsically study the conformal transformations on metric measure s-
paces, including the Sobolev space, the differential structure and the curvature-
dimension condition under conformal transformations. As an application, we
will show how the conformal transformations change the curvature-dimension
condition.
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1 Introduction

Let (M, g,Volg) be a Riemannian manifold with dimension n, Ricci(·, ·) be the Ricci
tensor on it. Let w be a smooth function on M , the corresponding Riemannian
manifold under conformal transformation be defined as (M, e2wg, enwVolg). Then
we have the following formula (see Theorem 1.159, [6] ) which builds a link between
the Ricci tensor of the new manifold and the old one,

Ricci′ = Ricci− (n− 2)(Ddw − dw ⊗ dw) + (∆w − (n− 2)|dw|2)g (1.1)
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where Ddw is the Hessian of w and ∆ is the Laplace-Beltrami operator on (M, g).

The conformal transformation as above plays an important role in the study
of differential geometry, also has potential applications in non-smooth case since it
can be obtained in an intrinsic way: Let w be a bounded continuous function on
a metric measure space (X, d,m), we can build a weighted metric measure space
M ′ := (X, d′,m′) where

• we replace m by the weighted measure with density eNw:

m′ = eNwm;

• we replace d by d′ = ewd, i.e. the weighted metric with conformal factor ew:

d′(x, y) = inf
γ
{
∫ 1

0

|γ̇t|ew(γt) dt : γ ∈ AC([0, 1];X), γ0 = x, γ1 = y}.

Then we have a natural question, can we prove the formula (1.1) in a non-smooth
framework? A reasonable restriction on the metric measure space is the so-called
curvature-dimension condition (CD(K,∞), CD(K,N), etc).

The notion of synthetic Ricci curvature bounds, or curvature-dimension condi-
tions of metric measure space were founded by Lott-Sturm-Villani (see [18] and [16]
for CD(K,∞) and CD(K,N) conditions) and Bacher-Sturm (see [5] for CD∗(K,N)
condition) about ten years ago. More recently, based on some new results on the
Sobolev spaces on metric measure space (see [3]), RCD(K,∞) and RCD∗(K,N)
conditions which are refinements of curvature-dimension conditions were proposed
by Ambrosio-Gigli-Savaré (see [4] and [1]). Moreover, the non-smooth Bakry-Émery
theory, which offers an equivalent description of RCD(K,∞) (and RCD∗(K,N)) con-
ditions, was studied by Ambrosio-Gigli-Savaré (see [4] and [2]) and Erbar-Kuwada-
Sturm (see [8]). These Riemannian curvature-dimension conditions are stable with
respect to the measured Gromov-Hausdorff convergence, and cover the cases of Rie-
mannian manifolds, smooth metric measure spaces, Alexandrov spaces and their
limits.

In the case of RCD(K,∞) space, we have a natural Dirichlet form and in par-
ticular, there is a well-posed measure-valued Laplacian (see [9] and [15]). Then,
Bakry-Émery’s Γ2 calculus and Bochner-type inequality are known to be valid in
non-smooth sense (see [4], [8] and [15]). In [10], Gigli builds a differential structure
on metric measure spaces which is suitable to deal with the non-smooth (co)tangent
fields (see the preliminary section). In this framework, the Hessian and the Ricci
curvature tensor on RCD(K,∞) metric measure spaces is well defined. Furthermore,
in [12], the N -Ricci tensor on RCD∗(K,N) spaces is defined by the author.

In [17], Sturm proves the formula (1.1) under some smoothness assumptions.
The current work is to apply the tools and results on the differential structure of
RCD(K,∞) spaces which are developed in [10] (and [12] ) to prove Sturm’s result in
the case of RCD∗(K,N) which is a lower-regular situation (see Theorem 4.4). As an
application, we will obtain an estimate of the lower Ricci curvature under conformal
transformation.
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The organization of this paper is the following. In Section 2 we will introduce the
notions of Sobolev space, non-smooth Bakry-Émery theory, the tangent/cotangent
module and analytic dimension of metric measure spaces. In Section 3, we will study
the conformal transformation on metric measure spaces, the Sobolev space as well
as the differential structures under conformal transformation. All these objects will
be considered in pure intrinsic ways. In Section 4, we will prove Theorem 4.4 which
is a generalization of the formula (1.1) on RCD∗(K,N) spaces. As a corollary, we
obtain a precise N -Ricci curvature bound estimate under conformal transformation
in Corollary 4.5.

Acknowledgement: I would like to thank Prof. Karl-Theodor Sturm for propos-
ing this topic.

2 Preliminaries

The main object we studied in this paper are metric measure spaces. Basic assump-
tions on metric measure spaces are the following. Let M = (X, d,m), we assume
that (X, d) is a geodesic space and m is a d-Borel measure satisfying the following
property

suppm = X, m(Br(x)) < c1 exp (c2r
2) for every r > 0,

for some constants c1, c2 ≥ 0 and a point x ∈ X. Our results are mainly concentrated
on RCD∗(K,N) metric measure spaces, where K ∈ R and N ∈ [1,∞] (when N =∞
it is RCD(K,∞) space). RCD(K,∞) and RCD∗(K,N) conditions are refinements
of the curvature-dimensions proposed by Lott-Sturm-Villani (see [18] and [16] for
CD(K,∞)) and Bacher-Sturm (see [5] for CD∗(K,N)). The general inclusion of
these curvature dimension conditions are

RCD∗(K,N) ⊂ CD∗(K,N) and RCD(K,∞) ⊂ CD(K,∞),

and
RCD∗(K,N) ⊂ RCD(K,∞) and CD∗(K,N) ⊂ CD(K,∞).

More details about the curvature dimension condition RCD∗(K,N) can be found
in and [1,4].

The space of finite Borel measures on M , equipped with the total variation norm
‖ · ‖TV, is denoted by Meas(M).

For f : X 7→ R, the local Lipschitz constant lip(f) : X 7→ [0,∞] is defined as

lip(f)(x) :=

{
limy→x

|f(y)−f(x)|
d(x,y)

if x is not isolated,

0, otherwise.

The (global) Lipschitz constant is defined in the usual way as

Lip(f) := sup
x 6=y

|f(y)− f(x)|
d(x, y)

.
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Since (X, d) is a geodesic space, we know Lip(f) = supx lip(f)(x).

The Sobolev space W 1,2(M) is defined as in [3]. We say that f ∈ L2(X,m)
is a Sobolev function in W 1,2(M) if there exists a sequence of Lipschitz functions
functions {fn} → f in L2 such that lip(fn)→ G in L2 for some G ∈ L2(X,m). It is
known that there exists a minimal function G in m-a.e. sense. We call the minimal
G the weak gradient of the function f , and denote it by |Df | or |Df |M to indicate
which space we are considering.

Then we equip W 1,2(X, d,m) with the norm

‖f‖2W 1,2(X,d,m) := ‖f‖2L2(X,m) + ‖|Df |‖2L2(X,m).

It is part of the definition of RCD∗(K,N) space that W 1,2(X, d,m) is a Hilbert
space, in which case (X, d,m) is called infinitesimally Hilbertian. In this article, we
will assume that all the metric measure spaces are infinitesimally Hilbertian.

As a consequence of the definition above, we have the lower semi-continuity: if
{fn}n ⊂ W 1,2(X, d,m) is a sequence converging to some f in m-a.e. sense and such
that {|Dfn|}n is bounded in L2(X,m), then f ∈ W 1,2(X, d,m) and

|Df | ≤ G, m− a.e.,

for every L2-weak limit G of some subsequence of {|Dfn|}n. Furthermore, we have
the following proposition.

Proposition 2.1 (see [3]). Let (X, d,m) be a metric measure space. Then the
Lipschitz functions are dense in energy in W 1,2(M) in the sense that: for any f ∈
W 1,2(M) there exists a sequence of Lipschitz functions {fn}n ⊂ L2(X,m) such that
fn → f and lip(fn)→ |Df | in L2.

Then we discuss a bit the notion of ‘tangent/cotangent vector field’ in non-
smooth framework, more details can be found in [10].

Definition 2.2 (L2-normed L∞-module). Let M = (X, d,m) be a metric measure
space. A L2-normed L∞(X,m)-module is a Banach space (B, ‖ · ‖B) equipped with
a bilinear map

L∞(X,m)×B 7→ B,

(f, v) 7→ f · v

such that

(fg) · v = f · (g · v),

1 · v = v

for every v ∈ B and f, g ∈ L∞(M), where 1 ∈ L∞(X,m) is identically equal to 1 on
X, and a ‘pointwise norm’ | · | : B 7→ L2(X,m) which maps v ∈ B to a non-negative
L2-function such that

‖v‖B = ‖|v|‖L2

|f · v| = |f ||v|, m− a.e.

for every f ∈ L∞(X,m) and v ∈ B.
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Now we can define the tangent/cotangent modules of M as typical L2-normed
modules. We define the ‘Pre-Cotangent Module’ PCM as the set consisting of the
elements of the from {(Bi, fi)}i∈N, where {Bi}i∈N is a Borel partition of X, and {fi}i
are Sobolev functions such that

∑
i

∫
Bi
|Dfi|2 <∞.

We define an equivalence relation on PCM via

{(Ai, fi)}i∈N ∼ {(Bj, gj)}j∈N if |D(gj − fi)| = 0, m− a.e. on Ai ∩Bj.

We denote the equivalence class of {(Bi, fi)}i∈N by [(Bi, fi)]. In particular, we call
[(X, f)] the differential of a Sobolev function f and denote it by df .

Then we define the following operations:

1) [(Ai, fi)] + [(Bi, gi)] := [(Ai ∩Bj, fi + gj)];

2) Multiplication by scalars: λ[(Ai, fi)] := [(Ai, λfi)];

3) Multiplication by simple functions: (
∑

j λjχBj
)[(Ai, fi)] := [(Ai ∩Bj, λjfi)];

4) Pointwise norm: |[(Ai, fi)]| :=
∑

i
χAi
|Dfi|,

where χA denotes the characteristic function on the set A.

It can be seen that all the operations above are continuous on PCM/ ∼ with

respect to the norm ‖[(Ai, fi)]‖ :=
√∫
|[(Ai, fi)]|2m and the L∞(M)-norm on the

space of simple functions. Therefore we can extend them to the completion of
(PCM/ ∼, ‖ · ‖) and we denote this completion by L2(T ∗M). As a consequence of
our definition, we can see that L2(T ∗M) is the ‖ · ‖ closure of {

∑
i∈I aidfi : |I| <

∞, ai ∈ L∞(M), fi ∈ W 1,2} (see Proposition 2.2.5 in [10] for a proof). It can also
be seen from the definition and the infinitesimal Hilbertianity assumption on M
that L2(T ∗M) is a Hilbert space equipped with the inner product induced by ‖ · ‖.
Moreover, (L2(T ∗M), ‖ · ‖, | · |) is a L2-normed module according to the Definition
2.2, which we shall call cotangent module of M .

We then define the tangent module L2(TM) as HomL∞(M)(L
2(T ∗M), L1(M)),

i.e. T ∈ L2(T ∗M) if it is a continuous linear map from L2(T ∗M) to L1(M) viewed
as Banach spaces satisfying the homogeneity:

T (fv) = fT (v), ∀v ∈ L2(T ∗M), f ∈ L∞(M).

It can be seen that L2(TM) has a natural L2-normed L∞(M)-module structure
and is isometric to L2(T ∗M) both as a module and as a Hilbert space. We denote
the corresponding element of df in L2(TM) by ∇f and call it the gradient of f .
It can be seen that the Riesz theorem for Hilbert modules (see Chapter 1 of [10])
that df(∇f) := ∇f(df) = |Df |2. The natural pointwise norm on L2(TM) (we also
denote it by | · |) satisfies |∇f | = |df | = |Df |. It can be seen that {

∑
i∈I ai∇fi :

|I| <∞, ai ∈ L∞(M), fi ∈ W 1,2} is a dense subset in L2(TM).
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Since we assume that the space is infinitesimally Hilbertian, we have a natural
carré du champ operator Γ(·, ·) : [W 1,2(M)]2 7→ L1(M) defined by

Γ(f, g) :=
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
.

We denote Γ(f, f) by Γ(f).

Then we have a pointwise inner product 〈·, ·〉 : [L2(T ∗M)]2 7→ L1(M) satisfying

〈df, dg〉 := Γ(f, g)

for f, g ∈ W 1,2(M). We know (also from Riesz theorem) that the gradient ∇g
is exactly the element in L2(TM) such that ∇g(df) = 〈df, dg〉,m-a.e. for every
f ∈ W 1,2(M). Therefore, L2(TM) inherits a pointwise inner product from L2(T ∗M)
and we still use 〈·, ·〉 to denote it.

It is known from [3] and [10] that the following basic calculus rules hold in m-a.e.
sense.

We have

• d(fg) = fdg + gdf ,

• d(ϕ ◦ f) = ϕ′ ◦ fdf ,

for every f, g ∈ W 1,2(M), and ϕ : R 7→ R smooth.

We then define the Laplacian by duality (integration by part).

Definition 2.3 (Measure valued Laplacian, [9,10]). The space D(∆) ⊂ W 1,2(M) is
the space of f ∈ W 1,2(M) such that there is a measure µ ∈ Meas(M) satisfying∫

ϕµ = −
∫

Γ(ϕ, f)m,∀ϕ : M 7→ R, Lipschitz with bounded support.

In this case the measure µ is unique and we denote it by ∆f . If ∆f � m, we
denote its density with respect to m by ∆f .

It is proved in [9] that the following rules hold for the Laplacian:

• ∆(fg) = f∆g + g∆f + 2Γ(f, g)m,

• ∆(ϕ ◦ f) = ϕ′ ◦ f∆f + ϕ′′ ◦ fΓ(f)m,

for every f, g ∈ D(∆) ∩ L∞(M), and ϕ : R 7→ R smooth.

We define TestF(M) ⊂ W 1,2(M), the space of test functions as

TestF(M) := {f ∈ D(∆) ∩ L∞ : |Df | ∈ L∞ and ∆f ∈ W 1,2(M)}.

It is known from [15] and [4] that TestF(M) is an algebra and it is dense in W 1,2(M)
when M is RCD(K,∞). In particular, we know {

∑
i∈I ai∇fi : |I| < ∞, ai ∈

L∞(M), fi ∈ TestF(M)} is dense in L2(TM).

We also have the following lemma.
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Lemma 2.4 ( [15]). Let M = (X, d,m) be a RCD(K,∞) space, f ∈ TestF(M) and
Φ ∈ C∞(R) be with Φ(0) = 0. Then Φ ◦ f ∈ TestF(M).

It is proved in [15] that Γ(f, g) ∈ D(∆) ⊂ W 1,2(M) for any f, g ∈ TestF(M).
Therefore we can define the Hessian and Γ2 operator as follows.

Let f ∈ TestF(M). We define the Hessian Hf : {∇g : g ∈ TestF(M)}2 7→ L0(M)
by

2Hf (∇g,∇h) = Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h))

for any g, h ∈ TestF(M). It can be seen that Hf can be extended to a symmetric
L∞(M)-bilinear map on L2(TM) and continuous with values in L0(M).

Let f, g ∈ TestF(M). We define the measure valued operator Γ2(·, ·) by

Γ2(f, g) :=
1

2
∆Γ(f, g)− 1

2

(
Γ(f,∆g) + Γ(g,∆f)

)
m,

and we put Γ2(f) := Γ2(f, f).

Then we can characterize the curvature-dimension condition using non-smooth
Bakry-Émery theory. The following proposition is proved in [2] (N = ∞) and [8]
(N <∞), we rewrite it according to the results in [15] (see Lemma 3.2 and Theorem
4.1 there). We say that a metric measure space M = (X, d,m) has Sobolev-to-
Lipschitz property if: for any function f ∈ W 1,2(X) such that |Df | ∈ L∞, we can find
a Lipschitz continuous function f̄ such that f = f̄ m-a.e. and Lip(f̄) = ess sup |Df |.

Proposition 2.5 (Bakry-Émery condition, [2], [8], [15]). Let M = (X, d,m) be an
infinitesimal Hilbert space satisfying the Sobolev-to-Lipschitz property, TestF(M) is
dense in W 1,2(M). Then it is a RCD∗(K,N) space with K ∈ R and N ∈ [1,∞] if
and only if

Γ2(f) ≥
(
K|Df |2 +

1

N
(∆f)2

)
m

for any f ∈ TestF(M).

Remark 2.6. In some results in the references, the Sobolev-to-Lipschitz property
here is replaced by the following condition:

d(x, y) = sup{f(x)− f(y) : f ∈ W 1,2(M) ∩ Cb(M), |Df | ≤ 1, m− a.e.}.

It can be seen that we can obtain this property from Sobolev-to-Lipschitz property
by considering the functions {d(z, ·) : z ∈ X}.

Now we turn to the dimension of M which is understood as the dimension of
L2(TM) as a L∞-module. Let B be a Borel set. We denote the subset of L2(TM)
consisting of those v such that χBcv = 0 by L2(TM)|B.

Definition 2.7 (Local independence). Let B be a Borel set with positive measure.
We say that {vi}n1 ⊂ L2(TM) is independent on B if∑

i

fivi = 0, m− a.e. on B

holds if and only if fi = 0 m-a.e. on B for each i.
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Definition 2.8 (Local span and generators). Let B be a Borel set in X and V :=
{vi}i∈I ⊂ L2(TM). The span of V on B, denoted by SpanB(V ), is the subset of
L2(TM)|B with the following property: there exist a Borel decomposition {Bn}n∈N
of B and families of vectors {vi,n}mn

i=1 ⊂ L2(TM) and functions {fi,n}mn
i=1 ⊂ L∞(M),

n = 1, 2, ..., such that

χBnv =
mn∑
i=1

fi,nvi,n

for each n. We call the closure of SpanB(V ) the space generated by V on B.

We say that L2(TM) is finitely generated if there is a finite family v1, ..., vn
spanning L2(TM) on X, and locally finitely generated if there is a partition {Ei}
of X such that L2(TM)|Ei

is finitely generated for every i ∈ N.

Definition 2.9 (Local basis and dimension). We say that a finite set v1, ..., vn is a
basis on a Borel set B if it is independent on B and SpanB{v1, ..., vn} = L2(TM)|B.

If L2(TM) has a basis of cardinality n on B, we say that it has dimension n on B,
or that its local dimension on B is n. If L2(TM) does not admit any local basis of
finite cardinality on any subset of B with positive measure, we say that the local
dimension of L2(TM) on B is infinity.

It can be proved (see Proposition 1.4.4 in [10] for example) that the definitions of
basis and dimension are well posed. As a consequence of this definition, we can prove
the existence of a unique decomposition {En}n∈N∪{∞} of X such that for each En
with positive measure, n ∈ N∪{∞}, L2(TM) has dimension n on En. Furthermore,
thanks to the infinitesimal Hilbertianity we have the following proposition.

Proposition 2.10 (Theorem 1.4.11, [10]). Let (X, d,m) be a RCD(K,∞) metric
measure space. Then there exists a unique decomposition {En}n∈N∪{∞} of X such
that

• For any n ∈ N and any B ⊂ En with finite positive measure, L2(TM) has a
unit orthogonal basis {ei,n}ni=1 on B,

• For every subset B of E∞ with finite positive measure, there exists a unit
orthogonal set {ei,B}i∈N∪{∞} ⊂ L2(TM)|B which generates L2(TM)|B,

where unit orthogonal of a countable set {vi}i ⊂ L2(TM) on B means 〈vi, vj〉 = δij
m-a.e. on B.

Definition 2.11 (Analytic Dimension). Let {En}n∈N∪{∞} be the decomposition
given in Proposition 2.10. We define the local dimension dimloc : M 7→ N by
dimloc(x) = n on En. We say that the dimension of L2(TM) is k if k = sup{n :
m(En) > 0}. We define the analytic dimension of M as the dimension of L2(TM)
and denote it by dimmaxM .

We have the following proposition about the analytic dimension of RCD∗(K,N)
spaces.
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Proposition 2.12 (See [12]). Let M = (X, d,m) be a RCD∗(K,N) metric measure
space. Then dimmaxM ≤ N . Furthermore, if the local dimension on a Borel set E
is N , we have trHf (x) = ∆f(x) m-a.e. x ∈ E for every f ∈ TestF.

Combining the results in Proposition 2.10 and Proposition 2.12, we know there
is a canonical coordinate system, i.e. there exists a partition of X: {En}n≤N , such
that dimloc(x) = n on En and {ei,n}i, n = 1, ..., bNc are the unit orthogonal basis
on corresponding En. Then we can do computations on RCD∗(K,N) spaces in a
similar way as on manifolds. For example, the pointwise Hilbert-Schmidt norm
|S|HS of a L∞-bilinear map S : [L2(TM)]2 7→ L0(M) can be defined in the following
way. Letting S1, S2 : [L2(TM)]2 7→ L0(M) be symmetric bilinear maps, we define
〈S1, S2〉HS as a function such that 〈S1, S2〉HS :=

∑
i,j S1(ei,n, ej,n)S2(ei,n, ej,n), m-a.e.

on En. Clearly, this definition is well posed. In particular, we can define the Hilbert-
Schmidt norm of S as

√
〈S, S〉HS and denote it by |S|HS, it can be seen that it is

compatible with the classical definition of Hilbert-Schmidt norm. The trace of S
can be written in the way that trS = 〈S, Iddimloc

〉HS where Iddimloc
is the unique map

satisfying Iddimloc
(ei,n, ej,n) = δij, m-a.e. on En.

3 Conformal transformation

In this section we will study the conformal transformation on metric measure space,
some basic definitions and facts are the following. It can be seen that all the objects
about the conformal transformation are intrinsically defined.

Let w ∈ TestF(M) be a test function on the metric measure space (X, d,m), we
construct a weighted metric measure space M ′ := (X, d′,m′) where

• we replace m by the weighted measure with density eNw:

m′ = eNwm;

• we replace d by d′ = ewd, i.e. the weighted metric with conformal factor ew:

d′(x, y) = inf
γ
{
∫ 1

0

|γ̇t|ew(γt) dt : γ ∈ AC([0, 1];X), γ0 = x, γ1 = y}

Since any test function in a RCD(K,∞) space is bounded and Lipschitz continuous,
we know the coefficient/weight ew is also bounded and continuous. Therefore, the
topology of the new weighted space (X, d′) coincides with the topology of (X, d),
(X, d′) is still a complete length space, the measure m′ is a Borel measure with
respect to d′. In case M is RCD∗(K,N), it is locally compact by Bishop-Gromov
inequality, then (X, d′) is also geodesic. It can be seen that the conformal transfor-
mation is reversible, i.e. the space M can be obtained from M ′ through conformal
transformation, in which case the function w should be replaced by −w.

In the case of smooth metric measure space, we have the following assertions.
The gradient and Laplace operator on M ′ (which are defined in the same way ) are
denoted by ∇′ and ∆′ respectively.
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• The Sobolev spaces W 1,2(M) and W 1,2(M ′) coincide as sets;

• Let f ∈ W 1,2(M) = W 1,2(M ′), |df |M ′ = e−w|df |M , Γ′(f) = e−2wΓ(f) and
∇′f = e−2w∇f ;

• Let X, Y ∈ TM = TM ′, 〈X, Y 〉M ′ = e2w〈X, Y 〉;

• For any u ∈ C∞(M) = C∞(M ′), we have ∆′u = e−2w
(
∆u+ (N − 2)Γ(w, u)

)
.

Now we will prove the non-smooth counterparts of these properties. First of all,
we have simple Lemma concerning the identification of Sobolev spaces.

Lemma 3.1 (see [11]). Let M = (X, d,m) and M ′ = (X, d′,m′) be metric measure
spaces where d ≥ d′, d′ induces the same topology of d, and cm ≤ m′ ≤ Cm for
some c, C > 0 . Then W 1,2(M ′) ⊂ W 1,2(M) and for any function f ∈ W 1,2(M ′),
we have: |Df |M ≤ |Df |M ′ m-a.e. .

Lemma 3.2. Let M = (X, d,m) be a metric measure space, M ′ be the space con-
structed as above. Then W 1,2(M) and W 1,2(M ′) coincide as sets and

|Df |M ′ = e−w|Df |M , m− a.e.

for any f ∈ W 1,2(M). In particular, we know M ′ is infinitesimally Hilbertian.

Proof. Let ε > 0 be arbitrary positive number. For x ∈ X, pick r > 0 such that

sup
y∈Br(x)

max
{ew(x)
ew(y)

,
ew(y)

ew(x)

}
< 1 + ε,

where Br(x) is the open ball in (X, d) with radius r

Then for any Lipschitz function g, we have

lipM ′(g)(x) = lim
y→x

|g(y)− g(x)|
d′(y, x)

= lim
Br(x)3y→x

|g(y)− g(x)|
d′(y, x)

≤ (1 + ε)e−w(x) lim
Br(x)3y→x

|g(y)− g(x)|
d(y, x)

= (1 + ε)e−w(x)lipM(g)(x).

Similarly, we have lipM ′(g)(x) ≥ (1 + ε)−1e−w(x)lipM(g)(x). Since the choice of ε is
arbitrary, we know

lipM ′(g)(x) = e−w(x)lipM(g)(x).

Recall the fact that ew is also bounded and continuous, by Lemma 3.1 we know
that W 1,2(M) and W 1,2(M ′) coincide as sets. Let f ∈ W 1,2(M) = W 1,2(M ′),
and {fn}n be the Lipschitz functions as in Proposition 2.1 such that fn → f and
lipM(fn)→ |Df |M in L2(X,m). Then we know fn → f and lipM ′(fn)→ e−w|Df |M
in L2(X,m′). Therefore, by the lower semi-continuity we know |Df |M ′ ≤ e−w|Df |M ,
m-a.e..

Conversely, we can exchange the roles of M and M ′, i.e. M is the weighted space
based on M ′ with respect to the weight e−w. Hence by the same argument we can
prove |Df |M ′ ≥ e−w|Df |M , m-a.e., then we prove this lemma.
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According to the lemma above, Γ′(·, ·) = e−2wΓ(·, ·) and the natural energy form
on M ′ is defined by

W 1,2(M ′) 3 f 7→
∫

Γ′(f)m′ =

∫
|Df |2 e(N−2)wm.

It can be checked that the Laplacian on M ′ can be represented in the following
way.

Lemma 3.3. Let M and M ′ be metric measure spaces as discussed above. Then
D(∆′) = D(∆) and TestF(M ′) = TestF(M). For any f ∈ D(∆′), we have

∆′f = e(N−2)w
(
∆f + (N − 2)Γ(w, f)m

)
.

Furthermore, we have the formula:

∆′f = e−2w
(
∆f + (N − 2)Γ(w, f)

)
, m− a.e.

where f ∈ TestF(M ′).

Proof. Let f ∈ D(∆). Then there exists a measure ∆f such that∫
φ∆f = −

∫
Γ(φ, f)m

for any Lipschitz function φ with bounded support.

Thus for any Lipschitz function ϕ with bounded support, we have∫
ϕe(N−2)w

(
∆f + (N − 2)Γ(w, f)m

)
=

∫
e(N−2)wϕ∆f +

∫
(N − 2)ϕΓ(w, f) e(N−2)wm

= −
∫

Γ(e(N−2)wϕ, f)m +

∫
(N − 2)ϕΓ(w, f) e(N−2)wm

= −
∫
e(N−2)wΓ(ϕ, f)m +

∫
(2−N)ϕe(N−2)wΓ(w, f)m +

∫
(N − 2)ϕΓ(w, f) e(N−2)wm

= −
∫
e(N−2)wΓ(ϕ, f)m

= −
∫

Γ′(ϕ, f)m′.

Therefore, we know f ∈ D(∆′) and by uniqueness we know

∆′f = e(N−2)w(∆f + (N − 2)Γ(w, f)m), m− a.e..

Conversely, we can prove D(∆′) ⊂ D(∆). Combining the result of Lemma 3.2
we know TestF(M ′) = TestF(M). In particular, when ∆′f � m′, we know ∆f � m
and

∆′f = e−2w(∆f + (N − 2)Γ(w, f)), m− a.e..
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Lemma 3.4. Let M and M ′ be metric measure spaces as discussed above. Then
∇′f = e−2w∇f and 〈X, Y 〉M ′ = e2w〈X, Y 〉, m-a.e.

Proof. Let f, g ∈ W 1,2(M) = W 1,2(M ′). Then by definition we know

df(∇′g) = 〈∇f,∇g〉M ′

and

〈∇f,∇g〉M ′ = Γ′(f, g) = e−2wΓ(f, g) = e−2w〈∇f,∇g〉M = e−2wdf(∇g).

Then we know df(∇′g) = e−2wdf(∇g), therefore ∇′g = e−2w∇g.

Furthermore, we know

〈X, Y 〉M ′ = e−2w〈X, Y 〉M ,

for any X = ∇f, Y = ∇g, f, g ∈ W 1,2(M). Hence by linearity and the density we
〈X, Y 〉M ′ = e−2w〈X, Y 〉M holds for any X, Y ∈ L2(TM).

Lemma 3.5. Let M be a RCD∗(K,N) metric measure space where N <∞, and M ′

be the weighted space defined as before. Then M ′ satisfies the Sobolev-to-Lipschitz
property.

Proof. Let f ∈ W 1,2(M ′) with |Df |M ′ ∈ L∞(M ′). By Lemma 3.2 we know |Df |M ′ =
e−w|Df | ∈ L∞(M ′), then |Df | ∈ L∞(M). Since M has the Sobolev-to-Lipschitz
property (see [4]), we may assume that f is Lipschitz on both M and M ′. Then it is
rest to prove that LipM ′(f) = ess sup |Df |M ′ = ess sup e−w|Df |. As the inequality
LipM ′(f) ≥ ess sup |Df |M ′ is trivial, we just need to prove the opposite one.

In the proof of Lemma 3.2 we know

lipM ′(f)(x) = e−w(x)lipM(f)(x).

It is known that RCD∗(K,N) space is doubling (see [16]) and supports a 1-1 weak
local Poincaré inequality (see [13, 14]). According to Theorem 6.1 in [7] we know
lipM(f)(x) = |Df |. Therefore we have

lipM ′(f)(x) = e−w(x)|Df |(x) ≤ ess sup e−w|Df |.

Furthermore, we know LipM ′(f) ≤ ess sup |Df |M ′ and we complete the proof.

4 Ricci curvature tensor under conformal trans-

formation

In this section we will prove the formula (1.1) in RCD∗(K,N) case.

First of all, it can be seen (see [12]) that the N -Ricci tensor RicciN can be
defined in the following way.
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Definition 4.1 (N -Ricci tensor). Let f ∈ TestF(M), RicciN(∇f,∇f) ∈ Meas(M)
be defined by

RicciN(∇f,∇f) := Γ2(f)−
(
|Hf |2HS +

1

N − dimloc

(trHf −∆f)2
)
m.

We now recall the following result which is proved in [12], Theorem 4.4. Here we
modify the statement a bit according to Proposition 2.5.

Theorem 4.2. Let M be a RCD∗(K,N) space. Then

RicciN(∇f,∇f) ≥ K|Df |2m,

and

Γ2(f) ≥
((∆f)2

N
+ RicciN(∇f,∇f)

)
m (4.1)

holds for any f ∈ TestF(M). Conversely, let M be an infinitesimal Hilbert space sat-
isfying the Sobolev-to-Lipschitz property, TestF(M) be dense in W 1,2(M). Assume
that

(1) dimmaxM ≤ N

(2) trHf = ∆f m− a.e. on {dimloc = N}, ∀f ∈ TestF(M)

(3) RicciN ≥ K

for some K ∈ R, N ∈ [1,+∞], then it is RCD∗(K,N).

According to the definition 4.1, we need to compute the Hilbert-Schmidt norm of
the Hessian under conformal transformation. We have the following lemma. Notice
that the Hessian has nothing to do with the weighted measure.

Lemma 4.3. Let M = (X, d,m) be a RCD∗(K,N) metric measure space, ew be the
weight where w ∈ TestF(M). Then for any f ∈ TestF(M), the following formulas

|H′f |2HS = e−4w
(
|Hf |2HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2

− 2Γ(w,Γ(f)) + 2Γ(f, w)trHf

)
and

trH′f = e−2w
(
trHf − 2Γ(f, w) + dimlocΓ(f, w)

)
hold m-a.e. .

Proof. Letting g, h be arbitrary test functions, we know

H′f (∇′g,∇′h) =
1

2

(
Γ′(g,Γ′(f, h)) + Γ′(h,Γ′(f, g))− Γ′(f,Γ′(g, h))

)
=

e−2w

2

(
Γ(g, e−2wΓ(f, h)) + Γ(h, e−2wΓ(f, g))− Γ(f, e−2wΓ′(g, h))

)
=

e−4w

2

(
Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ′(g, h))

− 2Γ(g, w)Γ(f, h)− 2Γ(h,w)Γ(f, g) + 2Γ(f, w)Γ(g, h)
)

= e−4w
(
Hf (∇g,∇h)− Γ(g, w)Γ(f, h)− Γ(h,w)Γ(f, g) + Γ(f, w)Γ(g, h)

)
= e−4w

(
Hf (∇g,∇h)− 〈∇g,∇w〉〈∇f,∇h〉 − 〈∇h,∇w〉〈∇f,∇g〉
+ 〈∇f,∇w〉〈∇g,∇h〉

)
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holds m-a.e..

Then we replace g, h by linear combinations of test function in the equalities
above. First of all, we can replace ∇′g by

∑
i∇′gi and replace ∇′h by

∑
j∇′hj in

H′f (∇′g,∇′h). Then by approximation and the continuity of Hessian as a bilinear
map on L2(TM), we can replace ∇′g,∇′h by e′i, e

′
j where {e′i}i is a unit orthogonal

base on M with respect to Γ′(·, ·). It can be seen from Lemma 3.4 that ∇g and ∇h
should be simultaneously replaced by ewei and ewej where {ei}i is the corresponding
unit orthogonal base with respect to Γ(·, ·). Hence we obtain

(H′f )ij = e−2w
(
(Hf )ij − wifj − wjfi + Γ(f, w)δij

)
,

m-a.e., where we keep the notion (T )ij = T (ei, ej) for a bilinear map T and fi =
〈∇f, ei〉 for a function f . Then we know

|H′f |2HS =
∑
i,j

(H′f )
2
ij

= e−4w
∑
i,j

(
(Hf )ij − wifj − wjfi + Γ(f, w)δij

)2
= e−4w

(
|Hf |2HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2

− 2Γ(w,Γ(f)) + 2Γ(f, w)trHf

)
holds m-a.e., which is the thesis.

In the same way, we know

trH′f (x) =
∑
i=j

(H′f )ij = e−2w
(
trHf − 2Γ(f, w) + dimloc(x)Γ(f, w)

)
for m-a.e. x ∈ X.

Theorem 4.4. Let M = (X, d,m) be a RCD∗(K,N) metric measure space, ew be
the weight where w ∈ TestF(M). The corresponding metric measure space under
conformal transformation is M ′ = (X, d′,m′) where d′ = ewd and m′ = eNwm. Then
the N-Ricci tensor of M ′ can be computed in the following way:

Ricci′N(∇′f,∇′f) = e−4w
(
RicciN(∇f,∇f) + [−∆w − (N − 2)Γ(w)]Γ(f)m

− (N − 2)[Hw(∇f,∇f)− Γ(w, f)2]m
)
.

Proof. According to the Definition 4.1, we just need to compute Γ′2. Letting f ∈
TestF(M), by definition we know

Γ′2(f) =
1

2
∆′(Γ′(f))− Γ′(∆′f, f)m.

∆′(Γ′(f)) = e−2w
(
∆(e−2wΓ(f)) + (N − 2)Γ(w, e−2wΓ(f))m

)
= e−2w

(
∆(e−2w)Γ(f) + 2Γ(e−2w,Γ(f))m + e−2w∆(Γ(f))

+ (N − 2)e−2wΓ(w,Γ(f))m− 2(N − 2)e−2wΓ(f)Γ(w)m
)

= e−4w
(
4Γ(f)Γ(w)− 2∆wΓ(f)− 4Γ(w,Γ(f))

+ (N − 2)Γ(w,Γ(f))− 2(N − 2)Γ(f)Γ(w)
)
m + e−4w∆(Γ(f)),

14



and

Γ′(∆′f, f) = e−2w
(
Γ(f, e−2w(∆f + (N − 2)Γ(w, f))

)
= e−4w

(
Γ(f, (∆f + (N − 2)Γ(w, f))− 2Γ(w, f)(∆f + (N − 2)Γ(w, f))

)
= e−4w

(
Γ(f,∆f)− 2Γ(w, f)∆f − 2(N − 2)Γ(w, f)2

+ (N − 2)Γ(f,Γ(f, w))
)
.

Therefore, we know

Γ′2(f) = e−4w
(
Γ2(f)

)
+ e−4w

(
(4−N)Γ(f)Γ(w)−∆wΓ(f) +

N − 6

2
Γ(w,Γ(f))

− (N − 2)Γ(f,Γ(f, w)) + 2Γ(f, w)∆f + 2(N − 2)Γ(w, f)2
)
m. (4.2)

By definition, Lemma 4.3 and the formula (4.2) above we have

Ricci′N(∇′f,∇′f) : = Γ′2(f)− |H′f |2HS −
1

N − dimloc

(trH′f −∆′f)2
)
m

= e−4w
(
Γ2(f)

)
+ e−4w

(
(4−N)Γ(f)Γ(w)−∆wΓ(f) +

N − 6

2
Γ(w,Γ(f))

− (N − 2)Γ(f,Γ(f, w)) + 2Γ(f, w)∆f + 2(N − 2)Γ(w, f)2
)
m

−e−4w
(
|Hf |2HS + 2Γ(f)Γ(w) + (dimloc − 2)Γ(f, w)2

− 2Γ(w,Γ(f)) + 2Γ(f, w)trHf

)
m

− e−4w

N − dimloc

(
∆f − trHf + (N − dimloc)Γ(f, w)

)2
m

= e−4w
(
Γ2(f)− |Hf |2HSm−

1

N − dimloc

(∆f − trHf )
2m
)

+e−4w
(

(N − 2)
(
Γ(w, f)2 − Hw(∇f,∇f)

)
− Γ(f)

(
(N − 2)Γ(w) + ∆w

))
m

= e−4w
(
RicciN(∇f,∇f) + [−∆w − (N − 2)Γ(w)]Γ(f)m

− (N − 2)[Hf (∇f,∇f)− Γ(w, f)2]m
)
,

which is the result we need.

At the end, we introduce a direct application of this main theorem which offers
us a precise estimate of the lower Ricci curvature bound.

Corollary 4.5. Let M be a RCD∗(K,N) space, M ′ be the conformal transformed
spaces. Then M ′ satisfies the RCD∗(K ′, N) condition in case

K ′ := inf
x∈X

e−4w
[
K −∆w + (N − 2)Γ(w)− sup

f∈TestF(M)

N − 2

Γ(f)

(
Hw(∇f,∇f)− Γ(w, f)2

)]
is a real number.

Proof. We know M ′ is infinitesimally Hilbertian from Lemma 3.2, M ′ has Sobolev-
to-Lipschitz property from Lemma 3.5 and TestF(M ′) is dense in W 1,2(M ′) from
Lemma 3.3. It is sufficient to check the conditions (1),(2) in the Theorem 4.2.
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(1) By definition and Lemma 3.2 we know that the conformal transformation
will not change the local/analytic dimension. Hence by Proposition 2.12 we know
dimmaxM

′ ≤ N .

(2) Let f ∈ TestF(M) = TestF(M ′). It is proved in Lemma 3.3 and Lemma 4.3
that

trH′f −∆′f = e−2w
(
trHf −∆f + (dimloc −N)Γ(f, w)

)
.

On the set {dimlocM = N} = {dimlocM
′ = N}, we know trHf = ∆f by Proposition

2.12. Therefore trH′f = ∆′f m-a.e. on {dimlocM
′ = N}.
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