From volume cone to metric cone in the nonsmooth setting

Guido De Philippis * Nicola Gigli

October 10, 2016

Abstract

We prove that ‘volume cone implies metric cone’ in the setting of RCD spaces, thus
generalising to this class of spaces a well known result of Cheeger-Colding valid in Ricci-
limit spaces.
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1 Introduction

In the study of measured-Gromov-Hausdorff limits of Riemannian manifolds with Ricci cur-
vature uniformly bounded from below, Ricci-limit spaces in short, as developed by Cheeger
and Colding ([9], [10], [11], [12]), two almost rigidity results play a key role: the almost split-
ting theorem and the almost volume cone implies almost metric cone. By nature, both these
results imply corresponding rigidity results for Ricci-limit spaces and in fact also the converse
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implication holds provided one is willing to give up the precise quantification given by the
almost rigidity versions.

In the seminal papers [23] and [27], [28], Lott-Villani and Sturm proposed a synthetic defi-
nition of lower Ricci curvature bounds for metric-measure spaces based on optimal transport:
according to their approach, spaces with Ricci curvature bounded from below by K and di-
mension bounded from above by NN are called CD(K, N) spaces. Later on, mostly for technical
reasons related to the local-to-global property, Bacher-Sturm introduced in [7] a variant of the
CD(K, N) condition, called reduced curvature dimension condition and denoted CD*(K, N).

Key features of both the CD and CD* notions are the compatibility with the Riemannian
case and the stability w.r.t. measured-Gromov-Hausdorff convergence. In particular, they
include Ricci-limit spaces and it is natural to wonder whether the aforementioned geometric
rigidity result hold for these structures. However, this is not the case, as both CD and CD*
structures include Finsler geometries (see the last theorem in [29] and [24]) and it is therefore
natural to look for stricter conditions which, while retaining the crucial stability properties
of Lott-Sturm-Villani spaces, rule out Finsler structures.

A first step in this direction has been made by Ambrosio, Savaré and the second author
in [2], where the notion of RCD(K, c0) spaces (the ‘R’ stands for Riemannian) have been
introduced via means related to the study of the heat flow. Partly motivated by this approach
the second author in [17] proposed a strengthening of the CD/CD* conditions based solely on
properties of Sobolev functions: the added requirement is that the Sobolev space W12 is an
Hilbert space, a condition called infinitesimal Hilbertianity, and the resulting classes of spaces
are denoted RCD/RCD*.

It turns out that the a priori purely analytic notion of infinitesimal Hilbertianity grants
geometric properties, the reason being that it allows to make computations mimicking the
calculus in Riemannian (as opposed to Finslerian) manifolds. The first example in this direc-
tion has been the Abresch-Gromoll inequality proved by the second author and Mosconi in
[20]. Other relevant geometric properties, both on their own and for the purposes of the cur-
rent paper, are the splitting theorem, proved in [14] by the second author, and the maximal
diameter theorem, proved by Ketterer in [22].

On the more analytic side of the story, in [3] (see also [19] for some earlier results) it has
been carried out a throughout study of the Bochner inequality - both in infinite and in finite
dimensions - on non-smooth structures showing in particular its stability under mGH con-
vergence and, in the infinite dimensional case, its equivalence with the RCD (K, co) condition.
This circle of ideas has been closed by Erbar-Kuwada-Sturm in [13] and independently by
Ambrosio-Mondino-Savaré in [5]: in these papers the equivalence between the finite dimen-
sional Bochner inequality and the RCD*(K, N) condition has been proved.

The focus of this paper it to prove the non-smooth version of the ‘volume cone implies
metric cone’, our result being:

Theorem 1.1. Let K € R, N € (0,00), (X,d,m) a RCD*(0, N) space with supp(m) = X,
O e X and R >r > 0 such that

m(B(0)) = (%) m(B,(0)).

Then exactly one of the following holds:



1) Sry2(0) contains only one point. In this case (X,d) is isometric to [0, diam(X)] ([0, 00)
if X is unbounded) with an isometry which sends O in 0 and the measure m|BR(O) to
the measure caN~1dx for ¢ := Nm(Bgr(0)).

2) Sr/2(0) contains two points. In this case (X,d) is a 1-dimensional Riemannian man-
ifold, possibly with boundary, and there is a bijective local isometry (in the sense of
distance-preserving maps) from Br(O) to (—R,R) sending O to 0 and the measure

M5 0) to the measure ¢ |z|N"1dz for ¢ :== L Nm(Bgr(0)). Moreover, such local isometry
R

is an isometry when restricted to Bg5(0).

3) Sr/2(0) contains more than two points. In this case N > 2 and there exists a RCD* (N —
2, N—1) space (Z,dz, my) with diam(Z) < 7 such that the ball Br(O) is locally isometric
to the ball Br(Oy) of the cone Y built over Z. Moreover, such local isometry is an
isometry when restricted to BR/Q(O).

Some remarks are in order. First of all, much like the case of Ricci-limit spaces, this result
has consequences for what concerns the study of tangent cones, in particular in connection
with so-called non-collapsing limit spaces. We shall analyze some of these consequences in
subsequent papers.

Also, much like the non-smooth splitting, this result gives some new information also about
the smooth world: the space in now known to be locally a cone over a RCD*(V — 2, N — 1)
space, rather than simply over a length space. We remark that such information about the
structure of the sphere will come after we proved the cone structure of the original space via
a direct use of Ketterer’s results [22] about lower Ricci bounds for cones.

Actually the the RCD*(N — 2, N — 1) space (Z,dz, mz) will be given by an appropriate
rescaling of the sphere Sg/5(O) once this is endowed with the “natural” induced distance and
measure, see Section 3.5 for more details.

As a side remark, let us also point out that the classical smooth version of the equality
cases in Bishop-Gromov inequality (i.e. the smooth version of Theorem 1.1) is usually stated
saying that Br(O) C X and Br(Oy) C Y are isometric. Hence Theorem 1.1 seems a priori
weaker of the corresponding smooth version. This is actually not the case: indeed it is classical
in Differential Geometry to say that two Riemannian manifolds are isometric if the pull back
the metric tensors coincide. It is easy seen that this however implies only locally isometry as
metric spaces. Optimality of our result (in the non smooth as well as in the smooth setting)
can be checked by looking at the ball of radius 1 on the flat torus TV, N € N.

We focus on the case K = 0 for simplicity, but in fact our techniques can be easily adapted
to general K’s as well as to the case of ‘volume annulus’. We shall briefly mention this in the
last section.

Let us now discuss the proof of our result. The structure and techniques used closely
resemble that of the splitting theorem (compare with [14] and [16]) with all the metric infor-
mations being read at the level of Sobolev functions and only at the very end translated back
into metric properties. We shall take advantage of this analogy in order to skip some lengthy
detail whenever a closely related lemma has been already proved for the case of the splitting.
With this said, let us briefly outline the content of each section of the paper:

3.1) We consider the function b(z) := 1d?(z, O) and show, thanks to the volume rigidity, that

its Laplacian is equal to N on Br(O). On the other hand, b is a Kantorovich potential
and this grants, via the results in [21], that for any p < m, p € F5(X) it induces a unique



3.2)

3.3)

3.4)

3.5)

3.6)

Wa-geodesic starting from p. Coupling these informations together we shall see that the
gradient flow Fl; of b is well-defined and satisfies (Flt)*(m’ )= eNtm| .
Br(0) B_—tg(0)

We use the fact that for b the Bochner inequality holds as equality on Br(O) to deduce
that its gradient flow preserves, up to an exponential factor, the Dirichlet energy. Here
the biggest difference w.r.t. the splitting is in the fact that the splitting is a result about
the structure of the whole space, while here we only deal with a portion of it. This
means that the ‘regular’ part of our space is confined in Bg(O) and appropriate cut-off
arguments have to be used in order to justify the computations needed.

We use the fact that maps between RCD spaces which preserve the Dirichlet energy must
be isometries ([14]) to deduce that the restriction of Fl; to Bgr(O) is, up to modification
on a negligible set, a homothety.

At this stage we introduce the sphere Sg/»(O) which will be - up to scaling - the
‘base’ space for the cone construction. With tools coming from optimal transport we
shall see that if it contains more than 2 points, then every couple of its points can
be connected by a Lipschitz path lying entirely on Sg/2(0). On the other hand, if
#5SR /2(0) < 2 the conclusion can be derived easily, so that from now on we shall
assume that #5g/2(0) > 2.

Under this assumption on Sg/»(O) and thanks to what previously proved, there is a
natural geodesic distance d’ on Sg /2(0) induced by d by considering paths lying entirely
on Sg/2(0), a natural radial projection map Pr : Br(O)\{O} — Sr/2(0) and a canonical
measure m’ := Pr*m‘BR(O) on Sg/2(0). Showing that Br(0) is isometric to the cone built

over (a rescaling of) Sg/2(0) amounts to put in relation d’ and d. It is trivial that d < d’
on SR/Q(O)

It much more complicated to prove a sort of converse of such inequality, namely that
given a curve 7y d-absolutely continuous with values in Bg(O)\{O} the curve 4 := Pr(y;)

is d’-absolutely continuous and satisfying |¥;| < WR;O)|’3%|' Read in the smooth world,

this would mean that the differential of Pr at x € Br \ {O} has norm bounded above
R

by 2d(z,0)"

This step of the proof is technically the most challenging and also the one where the
arguments differ the most from those in the proof of the splitting. Notice indeed that
in the splitting the level set of the Busemann function is (proved to be) isometrically
embedded in the original space and this fact can be used to quickly gain crucial infor-
mations about its relation with the ambient space. Here, instead, we deal with a sphere
and thus it is not really its metric structure which is inherited by the ambient space, but
rather its differential one and this shift from ‘metric’ to ‘differential’ calculus requires
appropriate tools to be handled because concepts like ‘vector fields’ and ‘Hessian’ must
come into play.

In practice, what we do is to recover Pr as the limit as ¢ — oo of the gradient flow Fl,
of the function b := v o b with ¢(z) := 1(V2z - %)2. Since we know from Bochner’s
formula who is the Hessian of b on Br(O) (namely the identity), we know who is the
Hessian of b and henceforth the differential of Fl,. Then by direct computation we obtain
the desired result. All this analysis heavily depends on the vocabulary proposed by the

second author in [15].



3.7) The standard definition of metric-measure cone forces the base space to be the sphere
of radius 1 around the vertex. Thus in our case in order to prove that Br(O) is locally
isometric to a cone we need first to introduce the base space Z as the rescaling of Sg /2(0)

by a factor %. This is the scope of this short section where also the cone Y over Z is
defined.

3.8) There is a natural map S : Br(O) — Bgr(Oy) given by S(z) := (Pr(x),d(z,0)) and
the results of Sections 3.5, 3.6 grant that it preserves the measure and the weak upper
gradients of functions not depending on the radial component. From these facts, the
infinitesimal Hilbertianity of X and the structure of Sobolev functions on Y (studied in
[18]) we deduce that [D(f oS)| = |[Df| oS for any Sobolev function on Y which is zero
on a neighbourhood of the vertex and with support in Bgr(Oy).

3.9) Although we don’t know yet that Y is a RCD space, from its very construction we still
know (from [18]) that a map from X to Y which (locally) preserves the Dirichlet energy
must be (locally) an isometry. Hence we deduce from the previous step that S must be
locally an isometry on Br(O) \ {O} and from this the conclusion easily follows.
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2 Preliminaries

We assume the reader familiar with calculus on metric measure spaces and the RCD condition,
here we recall only few basic things as reference for what comes next, mainly in order to fix
the notation. Other results will be recalled in the body of the paper, whenever needed.

Let (X,d, m) be a complete and separable metric space equipped with a non-negative Borel
measure. The local Lipschitz constant lip(f) : X — [0, 00] of a function f : X — R is defined

as . -— lim M
lip(f)(z) := Jim d(z,y)

if  is not isolated, 0 otherwise.
A Borel probability measure 7 on C(]0, 1], X) is said of bounded compression provided for
some C' > 0 it holds
(er)sm < Cm, vt € [0, 1],

where ¢; : C(]0,1],X) — X is the evaluation map sending a curve vy to 7. By kinetic en-
ergy of a curve v we intend % fol |%¢|? dt, the integral being intended +oo if the curve is not
absolutely continuous. Then the kinetic energy of a probability measure 7 on C(][0,1],X) is

1.
% ffo "YtP dt dW(V)'
If 7 has finite kinetic energy and is of bounded compression, then it is called test plan.
For to,t1 € [0,1] the map Restrié : C(]0,1],X) — C([0,1],X) is defined as
Restrié (V)t == Y(1—t)to+tts -
Notice that if 7r is a test plan, tg # t; € [0,1] and I" C C([0, 1], X) is such that 7(I") > 0, then
the plan ﬂ(F)*l(Restr%)*(ﬂ"F) is also a test plan.
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The Sobolev class S?(X) is the collection of all Borel functions f : X — R for which there
is G € L*(X), G > 0, such that

/|f 1) — f(y0) dm(y / G(ve) 3| dt dm (),

for every test plan 7. Any such G is called weak upper gradient for f and it turns out that for
f € S?(X) there exists a minimal G in the m-a.e. sense, which is called minimal weak upper
gradient and denoted by |Df|. Among other properties, the minimal weak upper gradient is
local in the sense that for every f,g € S%(X) we have

IDf| = |Dg], m—a.e. on {f = g}, (2.1)
see [1] and [17] for more details and for the proof of the following equivalent characterization:
Proposition 2.1. The following are equivalent:

i) f € S*X) and G is a weak upper gradient.

ii) for every test plan m the following holds. For m-a.e. 7y the function t — f(v:) is equal
a.e. on [0,1] and on {0,1} to an absolutely continuous function f, such that

’atfﬂ(t) < G(’Yt)|7t|7 ae.t e [07 1]
The Sobolev space W12(X) is defined as L? N $?(X) and is equipped with the norm

£z = 11172 + IDA1Z2.

The locality property (2.1) allows to introduce the space S?.(X) (resp. Wlicz(X)) as the
space of those functions locally (= on bounded sets) equal to some function in S?(X) (resp.
W12(X)). These functions come with a natural weak upper gradient which belongs to L (X).
Similarly, for  C X open, the space S%(Q) (resp. W12(Q)) is defined as the space of those
functions locally in ©Q (= on bounded subsets of Q with positive distance from 0Q) equal
to some function in S%(X) (resp. W12(X)) such that [Df| € L?(Q) (resp. f,|Df| € L?(Q)).
Notice that Lipschitz functions f always belong to VV;)S (X) and that

IDf| <lip(f), m—a.e.. (2.2)

A test plan 7 is said to represent the gradient of f € S?(X) provided

im [ 100 4n) > 5 D560 an) + 5T // a2 ds dm().

Notice that the opposite inequality always holds. If f is only in S%(Q) for some open set €,
we add the requirement that (e;).7 is concentrated on 2 for every ¢ € [0, 1] sufficiently small.
Spaces (X, d, m) such that W12(X) is an Hilbert space are called infinitesimally Hilbertian
(see [17], to which we also refer for the differential calculus recalled below).
It turns out that

on inf. Hilb. spaces the map S%(X) 3 f — |Df|* € L}(X) is a quadratic form. (2.3)



By polarization, it induces a bilinear and symmetric map
S?X)>fg = (Vf,Vg) e LX),

which satisfies (Vf, Vf) = [Df|?, the ‘Cauchy-Schwarz’ inequality [(V f, Vg)| < |Df||Dg| and
the chain and Leibniz rules

(V(po f),Vg) = o f(Vf,Vyg),
<Vf7 v(9192)> =01 <Vfa v92> + g2<Vf, Vgl>>

for any f,g € S%(X), g1,92 € SN L>®(X), » € CY(R) with bounded derivative.

A simple yet crucial result is the following first order differentiation formula: if (X,d, m)
is infinitesimally Hilbertian, f,g € S?(£2) for some open set Q and 7 represents the gradient
of f and is such that (e;).7 is concentrated on 2 for every ¢ € [0, 1] sufficiently small, then

(2.4)

i [ 2200 4) = [(97,9g)(00) dm(r). (25)

The space D(A) C WH2(X) is the space of functions f for which there is a function in L?(X),
called the Laplacian of f and denoted by A f, such that

/QAf dm = — /<Vf, Vg)dm  Vge WH(X).
The Laplacian is local in the sense that for every f,g € D(A) we have
Af = Ay, m — a.e. on the interior of {f = g},

and satisfies the natural chain and Leibniz rules.

Choosing to test with Lipschitz functions with prescribed support yields the notion of
measure valued Laplacian: for f € W12(X) and 2 C X open, we say that f has a measure
valued Laplacian in €2 provided there is a measure, denoted by A f I such that

/ gdAf lo=" / (Vf,Vg)dm Vg bounded and Lipschitz with compact support in €.

If Q@ = X we shall simply write Af in place of A f|X. The ‘measure-valued’ and ‘L?-valued’
notions of Laplacian are tightly linked, as for a given f € W12(X) we have f € D(A) if and
only if f has a measure-valued Laplacian absolutely continuous w.r.t. m and with density in
L?. In this case Af coincides with such density.

The heat flow on an infinitesimally Hilbertian space is the L?-gradient flow of the Dirichlet
energy € : L2(X) — [0, cc] defined as

1
= [ DfP? if L2(x
epyoe | 5 [ DrPan it rewtax),
+o0 otherwise.
It will be denoted by h; : L?(X) — L?(X) so that for f € L*(X) the curve t = h,f € L*(X)

is the unique gradient flow trajectory on L?(X) of € starting from f. The fact that & is a
quadratic form ensures that the heat flow is linear.



The functional Uy : Z(X) — R is defined as

Un(p) := — /pl_flv dm, for p=pm+p®, p®Lm.

(X,d, m) is said to be a CD*(0, N) space provided Uy is geodesically convex on the space
(P (supp(m)), Wa) (see [7] and the original papers [23], [28]). If (X,d, m) is CD*(0, N), then
(supp(m),d) is proper and geodesic ([28]).

A space which is both CD*(0, N) and infinitesimally Hilbertian will be called RCD*(0, N)
(see [17] and [2]). We recall that a metric measure space (X, d, m) has the Sobolev-to-Lipschitz
property (see [14]) provided any f € W1%(X) with [Df| < 1 m-a.e., admits a 1-Lipschitz
representative. It is an important fact about RCD*(0, N) spaces that they have the Sobolev-
to-Lipschitz property (see [2]).

On a RCD*(0,N) space we consider the following space of test functions (see [26] and
15)):

Test(X) := {f e D(A) : f,|Df| € L®(X), Af € WLQ(X)}.

In particular, test functions have a Lipschitz representative and we shall always consider such
representative when working with them. It is a remarkable property of test functions f the
fact that |Df|> € W12(X) (see [26]) and this fact grants that Test(X) is an algebra.

By simple truncation and mollification via the heat flow we see that Test(X) is dense in
Wh2(X) and it easy to check that it is stable by application of the heat flow. A slightly more
refined argument grants that

if f € WH3(X) (resp. L*(X)) has support on a given open set €2, then there exists

a sequence of test functions with support in Q converging to f in W?(X) (resp. L*(X)).
(2.6)

To see this, taking into account that Test(X) is an algebra it is sufficient to show that for
K C Q with K compact and €2 open there exists a test function identically 1 on K and with
support contained in 2. Such function can be built as in [4] by first taking a Lipschitz function
X with supp(x) € Q and X = 1 on K, then using the fact that hyX — X uniformly as ¢ | 0
(see [2]) and finally considering ¢ o (h;X) € Test(X) for ¢ < 1 and an appropriate choice of
p € C°(R).

Finally, on RCD*(0, N) spaces the Bochner inequality holds ([13]) in the sense that for
f € Test(X) the function |Df|? has a measure valued Laplacian and

DI (A2
A 2 2( N

+(Vf, VA f>)m. (2.7)

3 Main

Throughout all the paper we shall make the following assumption:

Assumption 3.1. (X,d, m) is a RCD*(0, N) space with supp(m) = X, O € X is a given point
and R > r > 0 are radii such that

m(B(0)) = () m(B,(0)).



The proof of Theorem 1.1 will be based on the study of the gradient flow of the “Buse-
mann” function b : X — R* given by
d?(z,0)
5
where here and in the following by R* we denote the closed half-line [0, 0o).

b(z) = Vo € X,

3.1 Gradient flow of b: effect on the measure

We start recalling the following basic fact about geodesics on RCD*(0, N) spaces, which di-
rectly follows from the existence of optimal maps established in [21] when one of the two
measures considered is dg:

Proposition 3.2. There exists a Borel m-negligible set N C X and a Borel map G : [0, 1] x
X — X such that for every x € X\ N the curve [0,1] 5 t — Gi(x) is the unique constant speed
geodesic from O to x. Moreover, for every t € (0,1] the map Gy : X\ N — X is injective, and
the measure (Gy)sm is absolutely continuous w.r.t. m and its density p; satisfies

pi oGy <t m—a.e.. (3.1)

Coupling this proposition with Assumption 3.1 we get the following rigidity result:

Proposition 3.3. For every t € (0,1] we have

m(Bir(0)) = "' m(Br(0)), (32)
and

(Co)=(M 5 10) = ™ g0y (3.3)

proof We start with (3.2). Set v(s) := m(Bs(0)) and notice that the Bishop-Gromov inequality
(see Theorem 2.3 in [28]) ensures that v is continuous, locally semiconcave on (0, R] and that

the map :;V(f)l is decreasing. It follows that the map g(s) := v(s%) is locally semiconcave on

(0, RN], continuous on [0, R"] and from

1
’ PSRN 1 U/(5ﬁ> N
= N)—sN = — e s€e|0.R
g'(s)=7'(s )Ns N(S%)N—l’ a.e. s € [0,RY],
we see that g has decreasing derivative, i.e. that g is concave and in particular

g(tRY) > tg(RY) + (1 - 1)g(0), Vi€ [0,1].

N

Since g(0) = 0, we see that Assumption 3.1 gives that the inequality is an equality for ¢ := £
Then the concavity of g forces the equality for every t € [0, 1], which is (3.2).
To conclude, let pg := m(BR(O))_1m|BR(O) and put p := (Gi—¢)«po so that t — g is
the only Wh-geodesic connecting g to pu; = do. Put also vy := m(B(l_t)R(O))*lm’B o)’
(1—-t)R
notice that s is concentrated on B(;_4r(O) and thus for every ¢ € [0,1)

—(1—- t)m(BR(O))% = (1 —t)Un(uo) by computation
> Un () from CD*(0,N) and Un(do) =0
> Un (1) by Jensen’s inequality
= —m(B(l,t)R(O))% by computation
= —(1-t)m(Br(0))¥ by (3.2).



Therefore we have the equality in Jensen’s inequality, which forces p; = vy for every ¢t € [0,1),
which is the claim. g

We now introduce the reparametrized flow Fl: [0,00) x (X \ N) — X defined by
Fls(z) := G.-s(z), Vs >0, x € X\ N.

Notice that in the smooth setting, the flow Fl would be the gradient flow of b. In our context,
some basic properties of Fl follow from those of G:

Corollary 3.4. The following holds:

i) For every x € X\ N the curve [0,00) > t + vy := Fly(z) is locally Lipschitz and satisfies

L[, :
bo) =be) + 5 [ il + b dr VO e<s,

and in particular the metric speed of t — Fly(x) is equal to lip(b)(Fli(x)) < lip(b)(x).

ii) For everyt >0, Fl; is an essentially invertible map from Br(O) to B,-:g(0), i.e. there
exists a map FI;7' : B,1g(0) — Bgr(0) such that FlyoFI7* = Id m-a.e. on B.-g(0) and
FI-' o Fl; = Id m-a.e. on Br(O).

iit) For every t > 0 we have
(Fly),m < V'm (3.4)
and

T ° Fl, = ™, m — a.e. on Br(O). (3.5)

iv) For every t,s > 0 we have

Fli(Fls(2)) = Fliys(z),
d(Fly(x),Fly(x)) = d(z,0)|e™* — e,

for m-a.e. x € X.

proof The triangle inequality shows that lip(b)(z) < d(x,0). Now for x € X let v be the
geodesic connecting it to O and observe that
b(z) — b() —1-(1—t)

lip(b)(x) > lim =d(z,0) lim

=d(z,0
o d(x, ) t10 2t (,0),

showing that lip(b) = d(+, O). Point (i) then follows by direct computation. Concerning point
(i), notice that the essential injectivity of Fl; follows from the one of G,-: and the essential
surjectivity is a consequence of (3.3). The bound (3.4) follows from (3.1) and (3.5) is a
restatement of (3.3). Finally, for property (iv) recall that t — Gi(x) is a constant speed
geodesic from O to x for m-a.e. x and take into account the reparametrization. O

Few basic, yet interesting, properties of b and Fl; can now be established. Notice that
the result of Corollary 3.6 below is also a direct consequence of Cheeger’s seminal paper [8]
(because RCD*(K, N) spaces are doubling and support a weak 1-2 Poincaré inequality [28],
[25]) but the additional structure we have at disposal allows for a shorter independent proof.
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Corollary 3.5. Let T : (X \ N) — C([0,1],X) be the map sending = to the curve [0,1] >
t — Fly(z) and p € P (X) with bounded support and such that p < Cm for some C. Then
7 = Ty represents the gradient of —b.

proof The bound (3.4) ensures that 7 has bounded compression, while from point (i) of
Corollary 3.4 we know that the metric speed of T'(x) is bounded by lip(b)(x) = d(z, O), so
that the fact that p has bounded support ensures that 7 has finite kinetic energy.

Thus 7 is a test plan. Moreover, from (i) of Corollary 3.4 we have

/ b(70) — bly) dm(7) = = // lip?(b)(7s) + 5 ? ds dre ()
> 5 [ Db+ 5o dsdrta).

Dividing by ¢, letting ¢ | 0, noticing that the measures (es).7 have uniformly bounded support
and that |Db| < lip(b) is bounded on bounded sets, to conclude it is sufficient to prove that
(es)sm — p as s | 0 in duality with L!(X). This follows from Wa-convergence - which grants
weak convergence - and the fact that these measures have uniformly bounded densities. [

Corollary 3.6. |Db|? = 2b m-a.e..

proof Let T : (X \ N) — C([0,1],X) be defined as in Corollary 3.5 and p € Z(X) be with
bounded support such that © < Cm for some C. Then Corollary 3.5 grants that 7 is a test
plan and therefore, keeping in mind point (i) of Corollary 3.4, we have

/m|2+hp<b> (7s) ds dr(y / b(70) — b(ye) dr(7)
< / Dbl el ds ()

IR
<5 [ BB+ PbEG asdn(s)

// lip(b)? () ds e ( // Db () ds (7).

Dividing by ¢, letting ¢ | 0 and using the fact that (e;),m — p as t | 0 in duality with L!(X)
(like in Corollary 3.5) we deduce that [lip(b)?du < [ |Db|? du which by the arbitrariness of
p and inequality (2.2) is sufficient to conclude, since lip(b)?(z) = 2b(z). O

which gives

Finally we show as equality in the Bishop-Gromov inequality combined with the Laplacian
comparison Theorem proved in [17] allows to show that Ab = Nm on Bgr(O):

Proposition 3.7. We have Ab‘BR(O) = Nm|BR(O)

proof Let ¢ : Rt — RT be smooth, non-increasing and with support in [0,1) and let us

consider . oh
hy(r) == rN/SO(r )dm

11



Differentiating with respect to r, taking into account that |Db|?> = 2b and that Ab < Nm,

see [17], we obtain
2b 2b\ b
PN+
n,(r ——N/ 72 dm — /g0<2>dm
Db|?
2b
:—N/ dm+/go(rz)dAbgo.

So that h, is also non-increasing. On the other hand by (3.3) and the layer cake formula, we
see that for » < R and ¢ decreasing we have

= e [o()ame [ w({o(2) > )

r

= [ m({e(3) > () i (32) 3 o

. . . I 52\ 2s
(because ¢ is non-increasing) =N ; m(BS(O))|(p/|<r7>ﬁd8
_ m(Br(0)) (" ()N 2s
oy 32) =R (%) 1(5) % s
_ m(Br(0)) /1 Ny 11 (42
= RN ; Yo |(t%)2t dt.

Hence hy, is constant on [0, R]. Combining this with (3.7) we immediately deduce that for

every r < R we have o o
Jo(3)aan=n [ o),

By letting ¢ — x[o,1) We deduce that Ab(Br(0)) = Nm(Br(0)) and thus recalling that
Ab < Nm we conclude that Ab’BR(O) = Nm’BR(O), as desired. ]

In the following corollary as well as in the foregoing discussion we shall denote by dg :
X — RT the map sending z to d(z,0).

Corollary 3.8 (Continuous disintegration of M5 0) along do). We have
R

A(do)e(m|, o)(r) = exgy(r) 1, (3.8)

with ¢ := Nm(Br(0)) and there exists a weakly continuous family of measures [0,R] 2 r —
m, € Z(X) such that

R
/Lpdm = c/ /gpdmr rNldr, Vo € C.(Br(0)). (3.9)
0
Moreover, for every t > 0 the measures m, satisfy

(Flp)m, = m —¢,, a.e. r € [0,R]. (3.10)

12



proof The identity (3.8) follows from (3.3), which shows that m(B,(0)) = (5)"m(Br(0)) for
every r € [0,R].
Now let {m,},cor C Z(X) be a disintegration of ™50 along do, hence such that

(3.9) holds, and recall that a priori existence and uniqueness of the m,’s is only given for a.e.
r € [0,R]. Fix t > 0, ¢ € Cs(B,-tg(0)), and notice that

R
/wd(FIt)*m N /(p ° Fle dm = Nm(BR(O))/ /@ o Fly dm, v~ dr.
0

On the other hand, since Fl,(Br(0)) C B.-:g(0), by (3.5) we also have

R
0

t

Thus the change of variable s = e™*r in the last integral shows that

R R
/ /(po Fl, dm, rV 1 dr :/ /gpdmetr TN dr,
0 0

which by the arbitrariness of ¢ € C.(B,.-tr(0)) gives the claim (3.10).

It remains to prove that the m,’s can be chosen to weakly depend on r € [0,R] and to
this aim, due to the existence of a countable set of Lipschitz functions dense in C.(Bgr(0)),
it is sufficient to show that for a given ¢ : X — R Lipschitz with support in Bgr(O), the map
r— I (r) := [ pdm, admits a continuous representative.

Thus fix such ¢, put J,(s) := I,(Re™®) for s € R" and notice that (3.10) grants that for
every h > 0 the identity

’JSO(S + h) - ‘]90(8)‘ = ‘/@dmRe_he—s - /demRe—S

= ’/(po Fl;, — o dmg,.-s

< Re™*Lip(p)(1 —e™")

holds for a.e. s, the inequality being a consequence of the second identity in (3.6) and the
fact that mg,—s is concentrated on Bg,-s(0O). This is sufficient to show that the distributional
derivative of s — J,(s) is bounded by R Lip(p)e*. Being s — RLip(¢)e~* in L (RT), we just
proved that J, has an absolutely continuous representative admitting a limit when s — +o0.

By construction, this is the same as to say that I, has a continuous representative on [0, R].
O

For the purpose of the foregoing analysis it will be convenient to replace the function b
with a smoother one. We therefore fix once and for all R < R. Later on R will be sent to R
but for the moment it is convenient to think it as fixed also in order to avoid mentioning the
dependence on it of the various objects we are going to build.

Let ¢ € C*°(R) be a function with support contained in (—oo RQ) which is the identity

=1
on (—oo, %2) and define b : X — R as

b:=¢pob.

Notice in particular that b is Lipschitz, with support in Br(O) and equal to b on Bg(O).
We then introduce the flow Fl as follows. First define the reparametrization function rep :

13



(R*)?2 — RT by requiring that

2
Ouwep,(r) = ¢ (e~ (), repy(r) =0, (3.11)

for every r > 0, then we define Fl : [0,00) x (X \ N) — X as

'flt(l‘) = Flrept(d(:v,O)) (:1:) :

The advantage of dealing with b and Fl;(z) in place of b and Fl; is that the former are ‘smooth’
on the whole space while the latter only on Br(O), see for instance Corollary 3.10 below.
The following proposition collects the basic properties of Fl(x).

Proposition 3.9. Let b and Fl;(x) as above, then:

a) for every x € X\ N the curve t — vy == Fly(x) satisfies

B0 =B+ 5 [ P +p(BR0)dr  W0<e<s
In particular, the speed of t — Fl;(z) is equal to lip(b)(Fly(x)) for a.e. t, thus granting
that t — Fly(x) is Lip(b)-Lipschitz for every x € X \ N.
b) Fl, is the identity on X\ (Br(O) UN) and sends Br(O) \ N into Br(O) for everyt > 0.
c) Fly coincides with Fl; in Bg(0) \ N.
d) Fl; : X = X is essentially invertible for everyt > 0.
e) (Fly).m < m for every t > 0, more precisely
c(t)ym < (Fly).m < C(t)m, (3.12)
for some continuous functions ¢, C : Rt — (0, 00).
f) The maps Fl; form a semigroup, i.e. Flg = Id m-a.e. and
Fl;oFlg = Flirs, m—a.e. (3.13)

for every t,s > 0.

~ In particular, from the essential invertibility of Fl; : X — X we see that for ¢ > 0 the map
FI_; := (Fl;)~! is well defined m-a.e. and with this definition property (3.12) holds for every
t € R, for appropriate continuous extensions of ¢(-), C(-), and (3.13) holds for every t,s € R.

proof [Proof of Proposition 3.9] Points (b), (¢), (f) follows from the definition and (a) can be
obtained by the same argument of 3.4. The injectivity part of point (d) is a consequence of
the same property for Fl;, while the surjectivity follows once we prove (e).

We are thus left to prove (e). Start observing that for » > R we have rep,(r) = 0 for any

t > 0 and thus Iflt|X\BR(o) = Id so that

(Flt)*m|X\BR(O) =M\ g0y vt > 0. (3.14)
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To control the behaviour inside Br(O) notice that by the very definition of Fl; and from (3.10)
we have that for any ¢ > 0 it holds

(F|t)*(m7~) = M, —repy(r) s a.e.re [0, R].

Put f;(r) := e *P«(")r. We claim that there are continuous functions ¢, C': R* — (0, 00) such
that
c(t) <o fr(r) < C(t), Vr € [0,R], t > 0. (3.15)

The bound from above is obvious by smoothness, for the one from below observe that

O fi(r) = e*rept(r)(l — ryrep,(r)), (3.16)

put g+(r) := royrep,(r) and differentiate (3.11) in r to deduce that g.(r) solves

Orge(r) = " (e 2P0 ) 22w (1 — g (1)) (3.17)

with the initial condition go(r) = 0 for every r € [0, R]. Noticing that the function identically
1 solution of (3.17), taking into account the initial condition by comparison we deduce that

g(r) <1 —2¢(t), vr € [0,R], t >0,

for some continuous function ¢ : RT — (0, 00). Plugging this bound in (3.16) we deduce the
first inequality in (3.15).

Then for every t > 0 consider the function f;' : [0,R] — [0, R], notice that £, *(0) = 0,
f7(R) = R and that (3.15) grants that

1 1
and thus it also holds
s -1 s
70(75) < ft (S) < C(t) (319)

Let now ¢ > 0 be a Borel function identically zero on X \ Br(0O). According to Corollary 3.8

we have
_ _ R B
/‘Pd(Fh)*m = /gp oFl;dm = c/ /go o Fl, dmrTNfldr

://cpd «(my.) Nldr—c/ /(pdmf”)r ~ldr
//wdms ()Y 0sf (s)ds,

thus from the bounds (3.18) and (3.19) and using again Corollary 3.8 we obtain

c _ c
dm < d(FI < — d Yt >0
iy | eims [ eaim < i foam ez
which together with (3.14) gives the claim (3.12). O
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Proposition 3.7 easily implies the following useful corollary:

Corollary 3.10. b € Test(X) and Ab € L*=(X).

proof Clearly supp(b) C Br(O), hence the identity |Db|? = 2b m-a.e. given by Corollary 3.6,
Proposition 3.7 and the chain rule for the distributional Laplacian (see Proposition 4.11 in
[17]) yield

Ab = ¢ o b|Db|*m + ¢’ o bAb = (2by” o b+ N¢' o b)m,

Given that 2bg” o b 4+ N¢' ob € L> N Wh*(X), this identity shows that b € D(A) with
Ab € L>® N W2(X), yielding the desired conclusion. O

We conclude the section with the following useful lemma, which highly depends on the
first-order differentiation formula (2.5).

Lemma 3.11 (Basic properties of right composition with Fl;). Let f € LP(X), p < oo. Then
t— foFl € LP(X) is continuous on R.
If f € WH2(X), then t — foFl, € L3(X) is C! and its derivative is given by

%f o Fly = —(Vf, Vb) o Fl;. (3.20)

proof Property (3.12) grants that the linear operators from LP(X) into itself given by the
right composition with Fl; are, locally in ¢, uniformly continuous and thus it is sufficient to
check that ¢ +— foFl; € LP(X) is continuous for a dense set of f’s. We then consider Lipschitz
functions and notice that the uniform Lipschitz bound granted by point (a) of Proposition
3.9 gives

(// If o Fly, — f o Fly [P dm < Lip(f) (// d?(Fly, (), Fly, () dm(z) < Lip(f) Lip(b)[t1 — tol,

thus yielding the first claim.

Now let m € Z2(X) be such that m < m < C'm for some C > 0, let T : X — C([0, 1], X)
be the map sending z to the curve ¢t — Fly(z) and define 7 := T,m. The same arguments
used for Corollary 3.5 grant that 7 is a test plan. Thus Proposition 2.1 grants that for any
to, t1 € [0,1], tg < t1, for m-a.e. x we have

[f(Fley () = f(Fli ()] < Lip(b)/ IDf|(Fl(x)) dt.
to
Squaring and integrating we get
/yf o Fly, — f o Fly,|* dm < |t; — to| Lip®(b) // IDf[*(Fly(x)) dt dm
t
i _tOyLin(b)/ /\Df]Qd(FIt)*mdt
to
< Clt —to\Lip2(b)/|Df\2dm,
for some constant C, where in the last step we used the bound (3.12). This shows that

t — foFl; € L*(X) is Lipschitz on [0, 1] and it is then clear that Lipschitz continuity holds
on the whole R.
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We now claim that

fo|f|t—f

; —  —(Vf,Vb) weakly in L*(X). (3.21)

Since the incremental ratios are, by what we just proved, uniformly bounded in L?(X), thanks
to a simple density and linearity argument to get the claim it is sufficient to prove that for
any bounded probability density p it holds

lim/fOFIt_fpdm = —/<Vf, Vb)pdm (3.22)
t—0 t

Putting 7 := T (pm), where T is defined as in Corollary 3.5, and arguing as in the proof of
the same corollary we see that 7 represents the gradient of —b and thus (3.22) follows from
(2.5). Hence (3.21) is proved.

Since the Fl;’s form a group, we then have proved (3.20) for any ¢ € R, provided we intend
the left hand side as the weak limit in L?(X) of the incremental ratios.

Now notice that since t ++ foFl, € L?(X) is Lipschitz and Hilbert spaces have the Radon-
Nikodym property, the curve is a.e. differentiable. Together with the weak convergence just
established, this is sufficient to get (3.21) for a.e. t. To conclude it is now enough to notice
that the first part of the statement ensures that the right hand side of (3.20) depends L*-
continuously on t. O

3.2 Gradient flow of b: effect on the Dirichlet energy

In the previous section we established the link between Fl; and the reference measure. To get
informations about the link between the flow and the distance we shall, as in [14], first look
at what happens to the Dirichlet energy along the flow. The metric information will later be
recovered via the Sobolev-to-Lipschitz property.

Much like in the smooth case, the starting point for any metric-related information on the
flow is Bochner inequality, which here is used to obtain the following Euler equation for b:

Proposition 3.12 (Euler equation for b). Let g € Test(X). Then

A(Vg, Vb)|B§(O) = ((VAg, Vb) + 2Ag)m|Bﬁ(o). (3.23)
In particular, for f € Test(X) with supp(f) C Bg(O) we have
/Af(Vg,Vb> dm = /f((VAg,Vb> + 2Ag) dm. (3.24)

proof Let € € R and write the Bochner inequality (2.7) for b 4+ eg € Test(X) to get

D
Al

(b+eg)® (\A(E +eg)l”
2 N

Expand the formula and use the fact that |Db|? = 2b on Bg(0) (by Corollary 3.6 and b = b
on Bg(0)) and Ab = N m-a.e. on Bg(O) (Proposition 3.7 and Corollary 3.10) to get

P 2 |A9|2
(2((vag, vb) +249) + = (S (Vg,VAf)))m|BR(O).

+(V(b+29), VA(b + 29)) ) m.

A(2(Vg,V5) + & |Dgl? >

Divide by € > 0 (resp. € < 0) and let € | 0 (resp. € 1 0) to obtain (3.23) and then, trivially,
also (3.24). O
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Our control of b is good on the ball Bg(O), but in our applications we shall need an
analogous of formula (3.24) with the function f replaced by the ‘mollified’ function hgf for
s > 0 small. To get a control of the error terms that appear we need first to build appropriate
cut-off functions (the construction is the same used in Lemma 6.7 in [4] with the finite
dimensionality allowing for more precise quantitative estimates):

Lemma 3.13 (‘Smooth’ cut-offs). For every r > 0 there exists a constant C(r) > 0 such that
the following holds. Given K C Q with K compact and 2 open such that inf e i yeqe d(z,y) >
1, there exists a test function X with values in [0, 1], which is 1 on K, with support in Q and
such that

Lip(X) + [[AX]|z < C(r).

proof We shall use the moment estimate proved in [13] (see Theorem 3)
W2(H;6,,0,) < Nt,  VxeX,

where (Hy) is the heat flow at the level of probability measures, and the Bakry—Emery estimate
proved in the same reference (see Theorem 4):

2t
[Dhf* + 1Ak <hi(IDFFP),  m—ae,

valid for any f € L?(X).
Pick f(z) := max{0,1— 1d(z, K)} and notice that for every « € X and ¢ > 0 we have

£@) = @) =| [ 1@) = @) b w)] < Lin(s) [ dloy) dHia(o)
< Lip(f)Wa(ds, Hid) < 1.

Thus the function h_r_f takes values in [0, 3] on Q¢ and in [2,1] on K.

Now let ¢ : R — [0,1] be C°, identically 0 on (—oo, %] and identically 1 on [%,oo) and
define X ;= o hgvT'Vf. It is then clear that X is 1 on K and with support in 2. The fact that
X € Test(X) follows from the chain rules for minimal weak upper gradients and Laplacians

(see [17]) and the Bakry-Emery estimate grants that
I1Dh e flllLoe + [[[Ah 2 flll Lo < e(r),

for some constant ¢(r). Thus using the Sobolev-to-Lipschitz property to replace || \DthN flll oo
by Lip(hﬁ f) and the chain rules for the Lipschitz constant and the Laplacian we conclude.
O

The cut-offs just built allow the following estimates:

Lemma 3.14 (Tail estimates). For every r > 0 there is a constant C'(r) > 0 such that the
following holds. Given K C Q with K compact and 2 open such that inf,c yeqe d(x,y) > r
and f € L?(m) with supp(f) C K, for every t > 0 the quantities

t t
/ Ihe f|? dm, / / Ihy f[2 dm ds, / / Dh, f[2 dm ds,
Qc 0.JQe 0JQc
t t
// |Ah, £ dm ds, // IDAh, £[2 dm ds
0 c 0JQc

are all bounded above by t*C’(r)| |5 .-

(3.25)
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proof In the course of the proof the value of the constant C’(r) may change in its various
occurrences. Let K. be the e-neighbourhood of K and use repeatedly Lemma 3.13 above to
find test functions X; : X — [0,1], ¢« = 0,...,3, identically 1 on K +1)» and with support

in K@y2)r. Put m; := 1 — X;. Also, notice that the quantities we have to bound depend
5
continuously on f € L?(X), thus taking into account the density property (2.6) we can, and

will, assume that f € Test(X) with support in K.
Start noticing that

d1 he f|2 h, f|2
[ittnesizam= [anangam= [P0~ pnospyan < [l an,

ds 2
and use the fact that 77% =1-2xX1 + X%, that the integral of a Laplacian is 0 and that

supp(X1) C {no = 1} to deduce that
d1 9 9 1 ) )
Loz | mihsfPdm < o [ (=2AX1 + AXg)[hs f|" dm
’ (3.26)

1 1
< |- 280+ Al [ adhfPdm < ) [ e dm,

having used the identity AX? = 2x3AX; + 2|DX1|? to get the uniform bound on AX?. Analo-
gously, we have

d1 2 2 ! 1
- < i
d82/n0\h5f| dm_C(r)Q/(K

and since [ ng|f|?dm = 0 (because 79 and f have disjoint supports), integrating in s we
obtain

. [hs fI* dm < C'(r)|[hs fl[72 < C'(r)I| 1172

T
5

/ BlhafPdm < sC'(P)||f|2as Vs >0, (3.27)

which plugged in (3.26), integrating in s and using the fact that [ n}|f|*dm = 0 yields the
desired control

/Q hof|? dm < / Plhef>dm < 2 O f|2ar Vs 0.

The bound for the second quantity in (3.25) follows directly.
Now notice that integrating in s the identity

d
d8/77%|hsf2dm=2/n% he fAhgf dm = —2/2nl(vm,Vh8f>hsf+n%|Dh5f\2dm

and using the fact that [ n?|f|?dm = 0 we deduce

t t
// n%thsf|2dsdm<// 2n1(Vn1, Vhef)hg f dr dm
0 0

¢ t
< 2\/// n%|Dhsf\2dm\// |Dm1|2|hs f|? ds dm.
0 0

Taking into account that supp(n1) C {no = 1} we conclude that

27)

¢ t (3.
/ / 72 [Dh, /|2 ds dm < 4 Lip(n)? / / Bl dsdm < 0 ()| f|2
0 0
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Analogous computations starting from the derivatives of [ n3|Dhsf|?> dm and [ n%|Ahsf]? dm
yield the bounds

t t
// 3| Ahg f|* ds dm < 4 Lip(n)? // n7|Dhg f|? ds dm,
0 0

t t
// n§|DAh5f\2dsdm§4Lip(n3)2// n5|Ahg f|? ds dm,
0 0

and the conclusion follows recalling that Q¢ C {n; =1} for i =1,2,3. O

These estimates and the Euler equation for b previously obtained yield the following:
Corollary 3.15. For every r > 0 there is a constant C"(r) such that the following holds. For
f € L*(X) with supp(f) C Bg_,(0) and every s > 0 we have

/<Vh25f, Vb) f dm = /—]Zhsf|2 + 25|Dh, f|? dm + Rem(f, s), (3.28)

where the remainder term Rem(f,s) can be estimated as

[Rem(f, s)| < s C"(r)|| fI|7- (3.29)

proof 1Tt is readily verified that all the integrals appearing in (3.28) vary continuously as
f varies in L?(X), hence recalling the density property (2.6) we can, and will, assume that
f € Test(X) with support in Bg_,.(O).

It is also easy to see that the function t — [(Vhgitf, Vb)hs_if dm is C! on [0, s], thus

_ _ s q _
/(thsf, Vb)fdm = /(Vhsf, Vb)hsf dm + / X /(Vhs+tf, Vbyhs_¢f dmdt.  (3.30)
0
For the first addend on the right, notice that

_ _ N N — Ab
/<Vhsf,Vb>thdm=/<vhgf'Q,vmdm:—2/|h5f12dm+/2|hsf|2dm,

(3.31)
and that since Ab = N on Bg(0), by Lemma 3.14 we have

N — Ab _
[ s an] < v+ 8B [

Bg

| [hsf 2 dm < $°C"(r)(N + [|AD]| ) [ £1I72-

For the second added in the right of (3.30), it is readily verified that the derivative can be
computed passing the limit inside the integral, thus obtaining

s 4 B s B B
/ a /<Vhs+tf, Vb)hsftf dmdt = // <VAhs+tf, Vb)hsftf — <Vhs+tf, Vb>Af57t dtdm.
0 0

(3.32)
Now let X be the cut-off given by Lemma 3.13 relative to the compact set BR_g(O) and the
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open set Bg(O) and notice that

/ /0 (Vi f. VB fos — (Vhasof, VBYAh,_of dt dm

= [[ (VARG TD)N-f — (Ths o B A(xhf) de
0
A
+f /O (VAo f, TB)(1 = V) of — (Vhayof, VRYA((1 = X)hs_of) dt dim,

B

(3.33)

thus using the fact that X fs_ is a test function with support in Bg(O), by Proposition 3.12
we get

A= 2// _th—thhs—i—tf dtdm = 28/ |Dh5f‘2dm+ 2// (1 — X)hs_thh5+tfdtdm.
0 0

Since 1 — X is identically 0 on Bg_, /»(O), by Lemma 3.14 we obtain

2s 2s
‘A—Qs/\Dth]Qdm‘ < / / lhef|? dm dt / / |Ah;f|? dm dt
0 JB;, ,(0) 0 JBg (0

< 4s2C"(r/2)[| £]122.

(3.34)

For the same reason, letting S := max{1, Lip(b), Lip(X), || AX|| 1} we have

1B| gs?/ / Nyt £V ARg s £l + [V 1o fl (st £l + 2/ Vhe_o | + [Aho_i f]) dm dt
0 BI%—T/2(O)

<1052 52C(r/2)|| f1125-
(3.35)

The conclusion comes collecting the informations in (3.30), (3.31), (3.32), (3.33), (3.34), (3.35).
([l

We are now ready to prove the main result of this section.

Theorem 3.16. Let f € L*(m) and T > 0 be such that supp(f) C B,-rg(0). Then

E(foFl) =eN=2te(f),  vtelo,T).

proof Let f; := foFl; and notice that since supp(f;) C Bg(0O) for every t € [0, T}, from (3.5)
we have [ |fi|>dm = [|f|?d(Fl;)«m = et [ |f|>dm and thus

d1 ) N )
1 m= m 7). .
dt2/|ft’ d 5 /\ft| dm, vt € [0,T] (3.36)
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Now pick s > 0 and notice that since by Lemma 3.11 we have that t +— f; € L?(X) is Lipschitz,
we also have that t — hgf; € L*(X) is Lipschitz. Then for a.e. t € [0,7] we have

d1 hs(fi o Fl) — hs
/\hsftyde— lim/hsft (feoFln) = haft 4,
h—0

dt 2 h
. ftolflh_ft
=1 hos fi———d
hli%/ 2s ]t h m
Nh =—1
— i [ € hosfr o Fl,, " —has f £ dm
h—0 h

= /(NhZSft + (Vhas fi, Vb)) fy dm
= /N“‘Isft’Z + <Vh25ft7v6>ft dm,

having used Lemma 3.11 in the penultimate step. Thus from Corollary 3.15 we deduce

d1

N
a2 / Ihe fof? dm = / 5 [nsfil* + 25|Dhs fi* dm + Rem(fy, 5), (3.37)

with Rem( f;, s) satisfying the bound (3.29).
Consider the quantity
2 hs 2
G(t,s) = /‘f” S’ I g,

4
and notice that (3.36) and (3.37) give that for any s > 0 the map ¢ — G(t,s) is Lipschitz

with d R

—G(t,s) = NG(t,s) — 2&(hsfy) + Rem(fi, )
dt s

Now assume for the moment that f € WhH2(X), let ¢ := SUP,e(0,1)

trivial bound G(0, s) < &(fp) to deduce from the last identity that

(3.38)

Rem(ft,s)

S

< o0, use the

G(t,s) < &(fo) —l—cT—i—N/t G(r,s)dr, vVt € [0,T], s € (0,1).
0

By the Gronwall inequality in the integral form we get the uniform bound
G(t,s) < (E(fo) + cT)eM, vVt €[0,T], Vs € (0,1).

Noticing that G(t,s) 1 E(f;) as s | 0, this last bound ensures that £(f;) is uniformly bounded
in t € [0,T]. We can therefore pass to the limit as s | 0 in (3.38) noticing that the right hand
side is uniformly bounded and pointwise converges to (N — 2)E(f;) to conclude that

d
ag(ft) = (N = 2)&(f), a.e. t €[0,T7],

and the conclusion follows.

To remove the assumption that f € WH2?(X) it is sufficient to show that if fr € W12(X)
then f € W12(X) as well: this follows from the very same arguments just used replacing Fl;
with its inverse lfl,:1 =Fl_,. O
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The statement of the previous theorem can be easily ‘localized’ thanks to the chain and
Leibniz rules (2.4). Notice that in the following Corollary we will also come back to the original
flow (Fl) in place of the regularized one (Fl;).

Corollary 3.17. Let f € L*(m) and T > 0 be with supp(f) C B,-rg(0). Then f € WH2(X)
if and only if f o Flp € WY2(X) and in this case
ID(foFlp)| = e "Df[oFly,  m-—ae.

proof Fix f,T as in the assumptions and notice that by compactness there exists R < R such
that supp(f) C B.-rg(0). Choosing such R and building a corresponding function b and its
gradient flow Fl, we see that f o Flp = f o Fl; m-a.e. and thus by Theorem 3.16 above we
deduce that f € W2(X) if and only if f o Fly € Wh2(X).

Now assume that f € W12(X) and notice that by the locality property (2.1) we also have
ID(f o Flz)| = |D(f o Flz)| m-a.e. so that our conclusion becomes

ID(foFlp)| =e T|IDf|oFlp,  m—a.e.

and with an approximation argument based on the density of L NW12(X) in W12(X) (easy
to establish from the definitions), we can, and will, assume that f € L> N W1H2(X).

Observe that for any two functions fi, fo € W1?(X) with supp(fi) C B,-rg(0), Theorem
3.16 gives, by polarization, that

/<V(f1 o Flz), V(fz 0 Fip)) dm = eV =27 /<Vf1, V fa) dm,

then pick an arbitrary Lipschitz function g with support in B,-rg(O), notice that f, g, 2, fg
are all in W12(X) with support in B,-rg(0), put for brevity fr := f oFly, gr := go Flp and
use this last identity to get

/ ID fr/2gr dm = / (V(fror). Vfz) — (V. Vor)dm

— 2 —
=T [(9(£9),95) — (VG Tg)dm = AT [ D dm.
Since by (3.5) we have [ |Dfr|?grdm =eMNT [ |Dfr|? o Fi7'g dm, we conclude that

/|DfT|2oFl;lgdm:e_QT/|Dngdm,

which by the arbitrariness of g is the conclusion. O

3.3 Gradient flow of b: precise representative and first metric informations

We shall now use the Sobolev-to-Lipschitz property of X to obtain information about the
behaviour of the metric under the flow (Fl;):

Theorem 3.18. The map Fl, seen as a map from RT x Bg(0) to Br(O) admits a continuous

representative w.r.t. the measure (L' x m)|R+XB 0" Still denoting such representative by Fl,
R

we have:
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i) for every t,s € RT and x € Br(0O) it holds

Fly(Flg = Fly14(x),
t(Fls(z)) - (f)it (3.39)
d(Fls(z),Fli(z)) = |e™* — e "|d(x, O).
i) for every t € R, Fl; is an invertible locally Lipschitz map from Br(O) to B,-+g(O)
whose inverse is also locally Lipschitz. Moreover, given a curve v with values in Br(O),
putting v := Fly o v we have

17s| = et for a.e. s € [0,1], (3.40)

meaning that one of the curves is absolutely continuous if and only if the other is and
i this case their metric speeds are related by the stated identity.

proof Fix t € RT and notice that by construction the image of Br(O) \ N under Fl; is
contained in B,-«g(0). Fix 29 € B,—:g(0), let r > 0 be such that Bs,(z¢) C B.-+r(0) and let
D be a countable set of 1-Lipschitz functions, all with support in Bs,(xg) dense in the space
of 1-Lipschitz functions with support in Bs,(xg) w.r.t. uniform convergence. It is then clear
that

d(yo,y1) = sup [f(y1) — f(yo)l,  Yvo,y1 € Br(wo).
fed

Pick f € D and apply Corollary 3.17 to deduce that f o Fl; € W12(X) with
ID(foFl)|=e ! IDf|oFl; <e™,  m—ae.

Since X has the Sobolev-to-Lipschitz property, f o Fl; has a e !-Lipschitz representative and
since D is countable, we deduce that there exists a m-negligible Borel set N’ such that the
restriction of f o Fl; to X\ (NUN’) is e~!-Lipschitz for every f € D.

Therefore for xg,z; € FI7H (B, (z0)) \ (NUN') we have

d(Fli(z0), Fle(z1)) = fcgg |f(F|t(ac0)) — f(FIt(:Bl))} < e td(xg, 1),

showing that Fl; has a e~!-Lipschitz representative on the preimage of B,(zo). Then the
arbitrariness of xg, the Lindelof property of B.-+g(O) and the essential surjectivity of Fl,
ensure that Fl; : BR(O) — B.-ig(0) has a representative which is locally e -Lipschitz and
from now on we shall identify Fl; with such representative.

It then follows from the arbitrariness of ¢ € R* and the uniform continuity in ¢ granted
by the second identity in (3.6) that FI, seen as a map from R™ x Bg(O) to Br(0), admits a

continuous representative w.r.t. the measure (£1 x m)hR B0y 28 claimed.
R

The identities (3.39) then follow directly from (3.6) recalling that (Flt)*m‘BR(O) < m.

Inequality < in (3.40) is a direct consequence of the fact that Fl; is locally e *-Lipschitz. To
conclude it is therefore sufficient to prove that FI; ' : B,+g(0) — Br(0), a priori well defined
only m-a.e. (recall (ii) of Corollary 3.4) has a representative which is locally e'-Lipschitz, as
then it is clear that such representative is the inverse of the continuous representative of Fly.
Such property of Fl, ! can be proved by the very same means used to prove the local e -
Lipschitzianity of Fl;. Just notice that if f is a 1-Lipschitz function with support in Bgr(O),
then f o FI;! has support in B,-+g(O) and, by Corollary 3.17, it belongs to W12(X) with
ID(f o FI;Y)| = |Df| o FI;7! < e! m-a.e.. The conclusion then follows arguing as above. O
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From now on, when considering the maps Fl, on Br(O) we shall always refer
to their continuous versions.

Furthermore, for ¢ < 0 and = € X such that z € B.g(0O), we put

Fli(z) := FIZ}(x).

3.4 Basic properties of the sphere Sg/,(O)

We consider the sphere
Sr/2(0) == {z € X : d(z,0) =&}

and the projection map Pr: Br(O) \ {O} — Sg/2(0O) given by
Pr(z) := Fllog(2d(§,0))(I).

Notice that by Theorem 3.18 the map Pr is well defined and locally Lipschitz.

Proposition 3.19. Sg/2(0) is either one point, or two points or a Lipschitz-path connected
subset of X, i.e. a subset such that for every x,y € Sr/2(0) there is a Lipschitz curve with
values in Sg/2(0) connecting x to y.

proof It will be convenient to work with the sphere Sg/4(O): notice that by Theorem 3.18 it
has the same cardinality of Sg/»(O) and it is Lipschitz path connected if and only if Sg/»(O)
is.

Thus we shall assume that Sg/4(O) contains at least 3 points 1, z2, r3 and notice that to
conclude it is sufficient to show that there are Lipschitz curves contained in Sg/4(O) connecting
these. We argue by contradiction and assume for a moment that there are no Lipschitz curves
whose image is contained in Sk /4(0) joining x; to xo and similarly no such curve joining x;
to x3.

Let x € Bry4(w1) and notice that any given geodesic from z1 to = does not pass through
O and that the triangle inequality ensures that any given geodesic connecting x to s must
stay in Br(O). Concatenate these two geodesics and assume that the resulting curve does not
pass through O. Then composing it with the locally Lipschitz map Fliog2 0 Pr we would obtain
a Lipschitz curve from x1 to 2 lying entirely on Sg/4(O), which contradicts our assumption.
Thus the concatenation passes through O, which forces the geodesic from z to xo to pass

through O. Hence d(z,z2) = d(z,0) + % and arguing symmetrically we deduce that

d(z,z9) = d(z, x3), Vx € Brya(z1). (3.41)

Now consider the probability measures

1
Ho =

1
- mm‘BR/Mm) p1 = 5(5902 + Oy

and notice that the identity (3.41) gives that every admissible transport plan between them
is optimal. In particular, this is the case for the plan pg x p1. But being it not induced by a
map, we found a contradiction with the fact that optimal plans on RCD*(0, N') spaces must
be induced by maps (see [21]).

Hence there is a Lipschitz curve with image contained in Sg/4(O) connecting z; to either
Zo Or X3, say xo. Repeating the argument swapping the roles of x1 and x3 we conclude. [J
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Corollary 3.20 (Conclusion in the easy cases). The following holds.

i) Assume that Sg/2(0) consists of one point. Then (X,d) is isometric to [0,diam(X)]
(10, 00) if X is unbounded) with an isometry which sends O in 0 and the measure m|BR(O)

to the measure cx™ ~1dz for c := Nm(Br(0)).

i1) Assume that Sg/2(O) consists of two points. Then (X,d) is a 1-dimensional Riemannian
manifold, possibly with boundary, and there is a bijective local isometry (in the sense
of distance-preserving maps) from Br(O) to (—=R,R) sending O to 0 and the measure
™ 5.0) to the measure c |[z|N~dx for ¢ :== s Nm(Br(0)). Moreover, such local isometry

is an isometry when restricted to BR/Q(O).

proof
(i) By Theorem 3.18 we know that Fl; is a bijection of S,(O) into S.-+,(O) for every r < R,
thus the assumption grants that for every r < R there is exactly one point at distance r from
O. This shows that Br(O) is isometric to [0,R). The claim about the measure follows from
Corollary 3.8. To conclude that the isometry can be extended to the whole X it is sufficient
to show that the map x +— d(z, O) is injective. This follows from the very same argument by
contradiction based on existence and uniqueness of optimal maps used in Proposition 3.19
above, using the fact that the restriction of d(-,0) to Br(O) is injective.
(ii) Let xz,wr be the two points in Sg/»(0) and let L := Pr-Y(z), R := Pr-(zg). Then
{L, R} is a partition of Br(O)\{O} and the fact that X is geodesic ensures that both L and R
are isometric to (0, R). Now notice that a curve joining z9 € Br/2(0)NL to x1 € Br/2(0)NR
either passes through O or through a point at distance R from O. Given that the length of
a curve of the second kind is at least R, the metric claims all follow. The claim about the
measure follows instead from Corollary 3.8 as before.

Finally let us prove that (X,d) is a 1-dimensional manifold, possibly with boundary. For
let us define

L' = {z € X \ {O} such that v N Br(O) C L for every geodesic v between z and O}
and
R = {z € X \ {O} such that v N Br(O) C R for every geodesic v between z and O}.

We claim that d(-,0) : L’ — R* is injective. To prove this start observing that for 2’ €
L'\ L = L'\ Br(0), any geodesic v from z’ to O must satisfy v D L. It follows that
d(z,2’) = d(2’,0) — d(z,0) for any 2’ € L' and x € L, thus if there where z1,29 € L' \ L
with d(z1,0) = d(z2,0) we would have, much like in Proposition 3.19, that any transport
plan between the measures

B 1
po :=m(L) lm\La pa = 5(5:::1 + 0zy);

would be optimal and thus induced by a map (see [21]), contradicting the fact that up x u1
is not induced by a map.

Thus d(-,0) : L' — RT is indeed injective and it is then clear that it is also an isometry.
The same holds for R/, hence the conclusion follows by elementary topology if we show that
X = [’UR'. This is the same as to say that the open set 2 := X\ (I’ UR’) has measure 0. By
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definition of L and R, we know that for every x € { there is a geodesic from z to O passing
through x;, and another passing through xg. Hence d(z,z1) = d(x,zg) for any € Q and if
m(£2) > 0 we can consider the measures

B 1
o = m() 1m’Q, M1 = 5(5% + bap);

and obtain a contradiction as before noticing that the plan pg x p1 would be optimal and not
induced by a map. O

From now on, we shall always assume that Sr(O) contains at least 3 points.

3.5 The sphere equipped with the induced distance and measure

Definition 3.21. We put X' := Sg/5(0). For ’,y" € X" we define d'(2',y’) as

1
d(a/,y)? = int / el? dt,
0

where the infimum is taken among all Lipschitz curves v : [0,1] — X' C X and the metric
speed is computed w.r.t. the distance d.
The measure m" on X' is defined as

m' = mgR/2,
where mg/y is obtained disintegrating m along d(-, ) (recall Corollary 3.8).

Notice that the definition directly ensures that on X’ we have d’ > d , because d is a
geodesic distance and d’ is obtained by minimizing the energy

Proposition 3.19 and the fact that we assumed Sg/2(O) to contain at least 3 points grant
that d’ is finite and it is then easy to see that it is indeed a distance on X’ inducing the same
topology coming from the inclusion X’ C X. In particular, m’ is a Borel measure on (X', d").
It is also clear from (3.10) that

Pra( = m(Bgr(0))m’. (3.42)

M5 (0))
Moreover, since for any d-Lipschitz curve v with values in X’ we have - as it is easy to check
- that d(v¢,7s) < d'(v,7s) < [ %] dr for any ¢ < s, t,s € [0,1], we deduce that

a curve v with values in X’ is absolutely continuous w.r.t. d’ if and only if it is so w.r.t. d

and in this case the metric speeds computed w.r.t. the two distances are the same.
(3.43)

At this stage of the paper we begin considering Sobolev functions on different spaces. Although
a priori there can be no confusion, for better clarity we shall denote the minimal weak upper
gradient of the Sobolev function f defined, say, on the space X by |Df|x rather than by |Df].
Another notation that we introduce is ms;(7y) for the metric speed |¥;| of the absolutely
continuous curve v at time t.
With that said, the following link between Sobolev functions on X and on X’ is easily
established:
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Proposition 3.22. Let [a,b] C (0,R), h € Lip(R) with support in (0,R) and identically 1 on

[a,b] and f € L*(X) of the form f(z) = g(Pr(x))h(d(z,0)) for some g € L*(w’).
Assume that f € WH2(X). Then g € WH2(X!) and

IDf|x(z) > MR)|D9|X/(Pr(a:)), for m-a.e. z such that d(z,O) € [a, b]. (3.44)

proof Fix f € WH2(X), let 7' be a test plan on X’ and pick [a’,¥] C [a,b] with o’ < V.

Consider the map P : X’ x [d/,V/] — X given by P(z,d) := Fllog(%)(a;), the induced map
2

P:C([0,1],X) x [d,b] = C(]0,1],X) defined as P(v,d); := P(v;,d) and consider the plan

7= P(n x (|b — a'rlzl,[a,yb,})) e 2(C([0,1],X)).

Since d’ > d on X', we see from the fact that Fl; is locally Lipschitz ((i¢) in Theorem 3.18) and
the compactness of X’ x [a/, V'] that P is Lipschitz, thus since 7’ has finite kinetic energy, we
conclude that 7 has also finite kinetic energy. Moreover, from (3.8), the definition of m’ and
the fact that 7’ has bounded compression, we deduce that m has also bounded compression.
In summary: 7 is a test plan on X.

Notice that by construction, for m-a.e. v we have f(y:) = g(Pr(v;)) and that from (3.43)
and (3.40) we see that ms;(P(v,d)) = 2|4 for a.e. t. Then we have:

/‘g 1) = 9(0)l dn' (v /\f 71) = f(0)ldm(v)
< / 1D fixoli aed()
1y
= b’ia’//o / IDfIx(P(7,d)s)ms¢(P(v,d))dd dt d=’ (v)

1
- (b,la, / 2Dl (P(y d)t)dd) il dt ().

which by the arbitrariness of 7/ shows that g € W2?(X’) and

/ ]‘ b/ 2d / ! /
[Dg|x/(z') < —— T ]Df|( log( &, (a; )) dd, m —a.e. 7.

Then the arbitrariness of ', b’ yields (3.44). O

In fact, also the inequality opposite of (3.44) holds, the proof being based on the following
proposition:

Proposition 3.23. Let [a,b] C (0,R) and 7 be a test plan on X such that d(y:, O) € [a,b] for
every t € [0,1] and w-a.e. y. Then for w-a.e. y the curve 7 := Pro-y is absolutely continuous
and satisfies

. R

Y| < ———— A .e. t.

h/t‘ = 2d(’}’t,0)|7t|, a.e

The proof of this proposition is technically quite involved, as it heavily relies on the first
and second order differential calculus recently developed in [15]. We postpone it to the next
section, see Proposition 3.33, where all the necessary ingredients will be recalled and discussed.
Here we show how to use this proposition to get the equality in (3.45) and then other basic
informations about the structure of (X’,d’, m’):

28



Theorem 3.24. Let [a,b] C (0,R), h € Lip(R) with support in (0,R) and identically 1 on
[a,b] and f € L*(X) of the form f(z) = g(Pr(x))h(d(z,0)) for some g € L*(w’).
Then f € WY2(X) if and only if g € WH2(X') and in this case we have

R
2d(z,0)
proof The ‘only if” and the inequality > are the content of Proposition 3.22, so we turn to
the ‘if” and the inequality <.

Let [@/,b'] C (0,R) be such that supp(h) C (d/,b") and notice that by construction we
have supp(f) C By(O) \ By (0), thus arguing as in the proof of Theorem 4.19 in [2] to
conclude it is sufficient to check the weak upper gradient property for test plans 7 such that
d(y,0) € [, V] for every t € [0,1] and « € supp(r).

Fix such 7, let G : X — R be given by

IDf|x(z) = |Dg|x/ (Pr(z)), for m-a.e. z such that d(z,0) € [a,b]. (3.45)

R

G(z) = m

[Dglx: (Pr(x))h(d(x, 0)) + g(Pr(x))|'|(d(, 0)),

and notice that G is in L?(m) and equal to W'—‘:O)|D9|X/(Pr(x)) for x such that d(z, O) € [a, b].
Therefore, taking into account Proposition 2.1, to conclude it is sufficient to prove that for
m-a.e. 7 the function ¢ — f(7:) is equal a.e. on [0, 1] and in {0, 1} to an absolutely continuous

map fy such that
0, 1(0) < GOlel,  ae e [0,1], (3.46)

Notice that Pr: By(O) \ By/(O) — Sg/2(0) is Lipschitz, thus recalling (3.42) we deduce that
the plan 7’ := Pr,m is a test plan on X’ (here we are abusing a bit the notation as we are
interpreting Pr as the map from C([0, 1], X) to C([0,1],X’) sending 7 to Pro~).

Since g € W12(X'), by Proposition 2.1 we deduce that for 7-a.e. v we have that the map
t — g(Pr(v)) is equal a.e. on [0,1] and in {0,1} to an absolutely continuous map gpro, such
that |gpye, [(t) < [Dglx: (Pr(y:))msi(Pr o).

Here we use the key Proposition 3.23 to obtain that for mr-a.e. v it holds

/ R )
| ’ .
|gproy | (t) < 3d(71.0) IDglx: (Pr(ve)) |5l

Since for any absolutely continuous curve « the map ¢ — h(d(y:, O) is absolutely continuous
with |0:h(d(y,0)] < |[W[(d(7, O)|3|, we deduce that for m-a.e. v the map t — f(y) =
g(Pr(7))h(d(4,0)) is equal a.e. on [0,1] and in {0,1} to the absolutely continuous map
t = fy(t) == gproy(t)R(d(74,0)) and that (3.46) holds. By the arbitrariness of 7, this is
sufficient to conclude. 0

In [18] the notion of ‘measured-length space’ has been introduced as key tool, in conjunc-
tion with some doubling property, to establish the Sobolev-to-Lipschitz property of a space
and its warped products with an interval. We recall the definition, which consists in a variant
of the well-known length property which takes into account the reference measure:

Definition 3.25 (Measured-length space). We say that a metric measure space (Z,dz, my) is
measured-length if there exists a Borel set A C 7 whose complement is my-negligible with the
following property. For every xg,x1 € A there exists € > 0 such that for every eg,e1 € (0,¢]
there is a test plan w01 with:
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a) the map (0,€]*> > (e0,61) + 7O is weakly Borel in the sense that for any ¢ €
Cy(C([0,1],Z)) the map

(0,625 (0,e1) /gdeEO’EH

is Borel.
b) We have
1By (o) 1B, (@)
eg) 0t = — 00 and e1) Ol = L7
(¢0) w2 (Bey(a0)) "7 (e) w7 (B (1)) ™

for every eg,e1 € (0,¢],
c) We have
1
T [l dtdn(s) < (oo,
0

€0,£14.0

Notice that if (Z,dz, myz) is a measured-length metric measure space, then in particular
(supp(myz),dyz) is a length space, but the converse is far from being true. Heuristically speak-
ing, a measured-length metric measure space is a space admitting, for any couple of points
x,y, a family of almost-geodesics starting in a neighbourhood of z and arriving in a neigh-
bourhood of y which ‘do not overlap too much’, this fact being encoded in the requirement
that the 7%0°1’s above are test plans and in particular such that (e;),m%0t < C, ., myz for
some Cz, ., >0 and any ¢ € [0, 1].

We then have the following result:

Proposition 3.26. (X',d’,m’) is infinitesimally Hilbertian, doubling and a measured-length
space.

proof
Infinitesimal Hilbertianity. Direct consequence of Theorem 3.24 and the infinitesimal

Hilbertianity of X (recall also property (2.3)).
Doubling. We shall denote by BX, BX balls in X, X’ respectively. Start noticing that being
(X’,d’) compact it is sufficient to prove that for some ¢ > 0 we have

w'(By (¢)) < ew'(BX (2')), Vo' e X, r <R/S. (3.47)
Then for 2/ € X’ € X and r € (0,R/8) define A(z/,r) C X as
Al r):={zeX : d(z,0) € [R/2—r,R/2+ 7], d'(Pr(z),a’) < r} (3.48)

and notice that from Corollary 3.8 we see that

/ / X' R/24r N—-1
A1) = N (BY @) [ s

and therefore for some constants ¢y, cy > 0 we have

crm'(BY (2) < m(A(,r)) < corm/(BX (2')), V2’ e X/, r <R/S, (3.49)

30



while the construction ensures that
A(z',r) c BX(z)) Vo' eX, r<R/S. (3.50)

Recall that Pr : B3r/4(0) \ Br/a(O) — Sr/2(O) is Lipschitz and let L be a bound on its
Lipschitz constant. Observe also that the triangle inequality ensures that a geodesic with
endpoints in By, (2) for some z' € X" and r < R/8 never leaves Bsg/4(0) \ Br/4(0), which is
sufficient to deduce that

d’(Pr(z1), Pr(xz2)) < Ld(z1, 22), Va1, 29 € Bon(2'), ' € X', r <R/S.
This fact together with (3.50) grants that
BN, () C A@',r), Vil €X', r <R/S. (3.51)

Then the claim (3.47) follows from (3.49), (3.50) and (3.51) taking into account that (X,d, m)
is doubling.
Measured-length property. Fix 2% «

R2
1+d’(zY
0,1 € (0,¢). Put g¢1 := max{eg, 1}, let v be a geodesic in X’ connecting z° to z!, let n be
the integer part of 1 4 \/%ﬁ and for i = 0,...,n put z.,, ; := vi. Notice that

1

€ X/, put € = min{%, o7 73}1))2} and pick

n—1

Zd(xaol,ivxam,i-i-l) < d/(xovxl)v Vn € N.
1=0

For z € X’ and r > 0 consider the sets A(z,r) as defined in (3.48), then put &; := eo+< (e1—¢p)
and define the measures

1
T Tr L € 2(X).
& m(A(xEm,i?gi)) ‘A(xsol,iyai) ( )
From Corollary 3.8 it follows that
Propus0t = ——— ' ) 3.52
Ky W (B, (Teg.i)) |Bgi(z€01’i) ( )

the balls considered in the right hand side being in the space (X', d").
For i =0,...,n—1let w;>" be the only optimal geodesic plan from ;%' to ufj’rf ! (recall

[21]). Taking into account that the distance between a point in A(z, ,&;) and a point in

A(xy,,i+1,€i+1) is bounded above by 4eg; + M we have
! .12 £0,€1 2/ €0,1 | €0,E1 d’(z0,21)\2
J[ v aamion () = Wi i) < (aeor + L5 (3.53)
and from the construction and the choice of €, g, &1 it is also easy to see that
d(v,0) € [% — Ve (1 +d' (2% 2), B + \/eor (1 + d'(xo,xl))} C [%, %], (3.54)
for every t € [0,1] and 7" -a.e. 7.

With a gluing argument we can then build a plan w*0¢t € 22(C([0,1],X)) (which is in

fact unique, being the 7;”“"’s induced by maps) such that

i+1
£0,€ .
(Restrl-" ) 0L = 7\'”(327 t Vi=0,...,n—1,
n *
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and property (3.53), taking into account the rescaling factor, gives

1 n 1
J[ vk acamono) =n - ([ arano )
=0
< (4negp + d'(2%, 21))? < (8y/eg1 + d'(2°, z1))?,

while the construction ensures that (3.54) holds also 7w*1-a.e. y for every ¢ € [0, 1].

We now put
77‘.50»51 = Pr*ﬂ.EO,El - @(C([(L 1]7X/))

and notice that:

- Since 70F1 is a test plan on X for which (3.54) holds, by Corollary 3.8, property (3.42)
and the fact that Pr is Lipschitz from Bggr/4(0) \ Bgr/4(O) to X’ we deduce that w0t
is a test plan on X'.

- By (3.52) it follows that

1 1

—eoe1 _ ~€061 — T
(€0 T = B @) "B a0 (o) = B ) ey )

- From Proposition 3.23 we have that

//1’ ’2dtdﬁ_50751( ) < Rz//‘l |Ayt|2 dtdﬂ_ao,éfl( )
o V=)o #(3.0) !

and therefore using (3.53) and (3.54) we obtain

1 R2 8 d’ 0 ,.1\)\2
lim // H/t|2 dt dmeo-ct (7) < lim = ( Veor + (‘;E 70x )1) : _ d,(.’L'O,LU1>2.
£0,140 0 €0,€140 4(5 + w/501(1 +d (ZL‘ , T )))

Since the Borel dependency of w91 from €g, 1 is clear from the construction, the proof is
achieved. n

3.6 Estimate on the speed of the projection

This section is devoted to the proof of Proposition 3.23, which, as already mentioned, relies
on some definitions and results contained in [15]. In order to keep the presentation at reason-
able length, we shall assume the reader familiar with the language developed in [15] and in
particular with the concept of L?-normed L*>-module and related objects. We shall use the
next subsection to recall the basic results we shall need, also in order to fix the notation. The
subsequent one will then be devoted to the proof of Proposition 3.23.

3.6.1 Tools for differential calculus on metric measure spaces

(co)tangent vectors and speed of test plans. The tangent and cotangent modules of
the metric measure space (X,d, m) are denoted as L?*(TX) and L?(T*X) respectively. The
pointwise norm on both spaces will be denoted by | - |.

32



The differential of a function f € W12(X) is denoted by df and is an element of L?(T*X).
Both the module L?(T*X) and the linear continuous map d : W12(X) — L?(T*X) are char-
acterized, up to unique isomorphism, by the properties:

|df| = Df|, m—ae  YfeWHX)

3.95
{df : f € WH(X)} generates, in the sense of modules, the whole L?(T*X). (3.55)

Seen as unbounded operator from L?(X) to L?(T*X), the differential is a linear and closed
operator. See Section 2.2 of [15] for details. In case X is infinitesimally Hilbertian, the gradient
Vf € L2(TX) of f € W2(X) is the element associated to the differential df via the Riesz
isomorphism for modules.

Given another metric measure space (Y,dy,my), a map p : Y — X is said of bounded
compression provided p,my < Cm for some C > 0. If M is a module on X it is then possible
to introduce the pullback module p*M, which is a module on Y, and the pullback operator
p* : M — p*M. These are characterised, up to unique isomorphism, by the fact that p* :
M — p*M is linear and satisfying

Ip*v| = |v|op, my —a.e. Vv e M,
{p*v : v € M} generates, in the sense of modules, the whole p*M.

If M* is the dual of M, there is a unique duality relation p*M x p*M* — L'(Y) which is
L*°(Y)-bilinear, continuous and such that

p'w(p™v) =w(v)op, my —a.e. Yo e M, we M*. (3.56)

When M is the cotangent module L?(T*X) (resp. the tangent module L?(TX)) we shall denote
the pullback by L?(T*X,p,my) (resp. L?(TX,p,my)). See Section 1.6 of [15] for details.

Remark 3.27. Let us briefly comment the above. The prototype example of L?-normed
L>®-module is the space of L?-sections of a normed vector bundle on a smooth manifold.
On metric measure spaces we use use this fact to think at such modules as to the space of
L?-sections of some bundle which is not really given. The fact that this is a viable approach
comes from the existence and uniqueness of the couple ‘cotangent module - differential’ in the
sense described above. In this regard, the uniqueness part of the statement is trivial, while
existence requires an explicit construction which we briefly outline. One starts considering
the set ‘Pre-Cotangent Module’ Pcm defined as

Pem := {(Ai, fi)ien : (A;) is a Borel partition of X, (f;) € Wh?(X), Z/ IDfi|?dm < oo}
i A

and defines an equivalence relation on it by declaring (A;, f;) ~ (Bj, g;) provided
ID(fi —gj)| =0 m—a.e. on A;NB; Vi,j € N.

The equivalence class [A;, fi] of (A;, f;) € Pcm should be thought of as the L? 1-form which
on A; is equal to the differential of f;. It is then easy to see that the quotient set Pcm/ ~
carries a natural structure of normed vector space, the norm being given by |[|[4;, fi]|| =

\/ >l A, IDf;|2dm, and that its completion can canonically be given the structure of L2-

normed L*°-module. Such module is the cotangent module and the differential of a function
f € Wh2(X) is defined by df := [X, f].
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For what concerns the pullback module, it is worth recalling first how things work in the
smooth case. Let M, N be smooth manifolds, £ a bundle on N with fiber E, for y € N and
p: M — N a map. Then the pullback p*E of E via p is the bundle on M whose fiber at z
is Ep(,)- The structure and regularity of p*E, i.e. how the various fibers are ‘glued’ together,
depend on those of p and FE, so that, e.g., if both E and p are smooth then so is p*FE in
a natural way. On the other hand, if £ has only the structure of measurable bundle and p
is only measurable, then p*FE will also be a measurable bundle. Given that the concept of
L2-normed module offers a replacement to the notion of (L? sections of a) measurable bundle,
it is not surprising that there exists a notion of pullback of a module under mild regularity
assumptions on the map p. In particular, notice that for the construction to work it is not
necessary that p is Lipschitz and that this has nothing to do with the pullback of 1-forms
described in the next section.

Finally, much like the case of cotangent module, the claimed uniqueness of the pullback
module and pullback map is easy to prove. For existence, one starts introducing the ‘Pre-
pullback module’ Ppb as

Ppb := {(Ai,vi)ieN : (A;) is a Borel partition of Y, (v;) C M, Z/ lv5]? o pdmy < oo}
i JA

and then defines an equivalence relation on it by declaring (A;, v;) ~ (Bj, w;) provided
lvi —wjlop=0 my —a.e. on A;NB; Vi, j € N.

The equivalence class [A;, v;] of (A;,v;) € Ppb should be thought of as the element of p*M
which is equal to p*v; on A;. Then the construction continues along the same lines used for
the cotangent module. |

Given a test plan 7r, we shall consider such pullback construction for Y = C([0, 1], X)
equipped with the sup distance and 7 as reference measure. The maps of bounded compression
of interest for us are the evaluation maps e;.

If (X,d, m) is infinitesimally Hilbertian, as in our case, it turns out that for a.e. ¢ € [0, 1]
there exists a unique element 7, € L?(TX, e, ), called speed of 7 at time ¢, having the
property that

lim L2000 2T 00 gy, vp e W2(X), (3.57)
h—0 h
the limit being intended in the strong topology of L'(7). See Theorem 2.3.18 in [15]. The
same theorem also provides a direct and tight link between the pointwise norm of the vector
fields 7r} and the metric speed of curves, as for a.e. ¢t € [0,1] it holds

7w (V) =l ™ —ae . (3.58)

Maps of bounded deformation and their differential. Maps between metric mea-
sure spaces which are both Lipschitz and of bounded compression will be called of bounded
deformation.

The right composition with a map of bounded deformation F' : X — Y provides a linear
and continuous map from W12(Y) to Wh2(X) and for any ¢ € W12(Y) the bound

[d(¢ o F)| < Lip(F)|dp| o F, mx —a.e., (3.59)
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holds.

If F' is invertible with inverse also bounded deformation, then the differential dF is a
well defined linear continuous map from L*(TX) to L?(TY): for v € L?(TX) the vector field
dF(v) € L}(TY) is charaterized by

(dg@(dF(v))) oF =d(po F)(v), mx—ae  VoeWh2(Y), (3.60)
and the bound (3.59) yields
|dF'(v)| o F < Lip(F)|v|, mx —a.e., (3.61)
and in particular the differential dF' is local in the sense that
dF(v) =dF(w), my —a.e. on F({v=w}). (3.62)

See Section 2.4 of [15] for details.

The left composition with F' provides a Lipschitz map from C([0,1],X) to C([0,1],Y)
which, abusing a bit the notation, we shall continue to denote by F. Hence for a given test
plan 7 on X we can consider the measure Fym on C(]0,1],Y) and it is trivial to see that the
fact that F' is of bounded deformation ensures that Fi7 is a test plan on Y.

To clarify the notation in the foregoing discussion, we shall put 7 := F,m and denote
by € the evaluation maps from C([0,1],Y) to Y. We shall assume that F' is of bounded
deformation, invertible and with inverse of bounded deformation.

Notice that that for every ¢ € [0, 1], the differential dF : L*(TX) — L*(TY) naturally
induces a map, which we shall still denote dF, from L?(TX, e, ) to L?(TX, &, 7): it is the
unique linear and continuous map such that

dF(efv) =&/ (dF(v)),  Vve L}(TX),

B , (3.63)
dF(gV)=go F~ dF(V), YV e LY (TX, e, ), g € L(m).

Recalling that in the classical smooth setting we have the chain rule

(Fox)y=dF(y),

we are now going to show that the language just discussed allows to state and prove an
analogous of this chain rule in the context of metric measure spaces. As we shall see, the
proof is being just based on keeping track of the various definitions.

Proposition 3.28 (Chain rule for speeds). Let F' : X — Y be of bounded deformation,
inwvertible and with inverse of bounded deformation. Then, recalling the definition of speed of
a test plan given by (3.57), for every test plan w on X we have

(Fem)y = (dAF)(my),  ae te[0,1]. (3.64)
proof Put 7 := F,m as before and fix f € WH2(X). We claim that

(&1 df)((dF)(V)) = ((e;;d( fo F))(V)) oF7L, WV e LATX, e, ). (3.65)

For V of the form e}v for some v € L*(TX) such identity comes from the chain of equalities
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(éi‘df)((dF)(e?v)) (e;d )( ;(dF (v ))) by the first in (3.63)
= (df(dF(v))) o et by (3.56)
=d(foF)(v)oF “og by (3.60)
= (d(fo F)(v))oe 0 F7? because F~1(v) = (F71(7));
- ((e:d( fo F))(e;v)) o F by (3.56).

Therefore noticing that both sides of (3.65) are, as functions of V, linear and continuous from
L?(TX, e, m) to L1(7r), and since the vector space generated by elements of the form gejv for
v € L*(TX) and g € L*®(w) is dense in L?(TX, e, ), the claim (3.65) follows if we show that

(& df)((dF)(gV)) = go F~' (g df)((dF)(V)),
((erd(f o F))(gV)) o F~ = g o F=((efd(f o F))(V)) o F 1.

The second of these is obvious from the L°°(7)-linearity of efd(f o F') as a map from
L*(TX, e, ) to L(m). For the first we use the second in (3.63) and the L°°(7r)-linearity
of efdf as a map from L2(TY,e;,7) to L'(7):

Edf) (AF)(gV) = (6df) (g0 FLAF)(V)) = go F-1 @df) (AF)(V)).
Thus (3.65) is proved and writing it for 7} in place of V' we obtain
(& df)((dF)(m)})) = ((e:d(f o F))(w;)) oF7l ae telo1l.
To conclude, recall that (efd(f o F))(a}) is the strong limit in L*(7) as & — 0 of the maps

fE (vern)) = F(F (1))
h

and therefore the change of variable v = F~!(5) and the fact that @ = F_'& show that
((ez‘d(f o F))(Tr;)) o F~1 is the strong limit in L*(7) as h — 0 of the maps

Y —

SRR f(%+h)h— f(n) 7

but this latter limit is, by the very definition of 7}, equal to & df(a}). We therefore proved
that

@ df)((dF)(m)) = @df)(7),  ae te0,1],
which, by the arbitrariness of f € W12(X), is the thesis. O

Remark 3.29. In all this discussion the assumption that F' was invertible with inverse of
bounded deformation is not really necessary, being the differential dF' of a map of bounded de-
formation F: X — Y always well defined as map from L?(TX) to the pullback L?(TY, F, mx)
of the tangent module L?(TY) of Y via F (see Section 2.4 in [15]).

We made this further assumption because it simplifies the exposition and will be present
in our applications. |
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Bits of second order calculus Here we come back to our assumption that (X,d, m) is a
RCD*(0, V) space.

Test functions and the language of L°°-modules allow to introduce the second order
Sobolev space W22(X) as follows. First of all, we recall that being L?(T*X) an Hilbert mod-
ule, it is possible to consider the Hilbert tensor product of L?(T*X) with itself, which we
shall denote by L2((T*)®2X) (see Section 1.5 in [15] for the definition). We remark that in
the smooth case the pointwise norm in L2?((T*)®?X) is the Hilbert-Schmidt one.

Then we say that a function f € W12(X) belongs to W?2(X) provided there is an element
of L2((T*)®2?X), called the Hessian of f and denoted by Hess(f), such that for any g1, go, h €
Test(X) it holds

2/hHess(f)(Vgl,Vgg) dm:/—<Vf, Vg1)div(hVg2)—(V f, Vg2)div(hVg1)

—h{Vf,V((Vg1,Vga))dm.
(3.66)

The density of Test(X) in W12(X) grants that the above uniquely characterises Hess(f). It
is then possible to see that W?22(X) equipped with the norm

1£122 = / P+ IV + [Hess(f)[? dm,

is a separable Hilbert space.
An important fact is that D(A) € W?2(X) and that the inequality

[ Hess(pam < [1af7am,

holds. In particular W22(X) is dense in W2(X).
The natural chain and Leibniz rules for the Hessian are in place. In particular, if f €
W22(X) is bounded and Lipschitz and ¢ € C%(R) then ¢ o f € W22(X) and

Hess(ip 0 f) = ¢ o fdf @ df +¢' o fHess(f),
and if f1, fo € W22(X) are bounded and Lipschitz, then f1 fo € W2%(X) and
Hess(f1f2) = foHess(f1) + fiHess(f2) + dfi @ dfs + dfs ® dfy.
Moreover, for fi, fo € Test(X) we have that (Vf1, Vfy) € WH2(X) with
d(V f1,V f2) = Hess(f1)(V f2) + Hess(f2)(V f1). (3.67)

See Section 3.3 of [15] for more details and more general versions of these calculus rules.
Given an open set € we introduce the space W?22(Q) as the subspace of Wlif(X) made
of functions f for which there is Hess(f) € L2((T*)®2X) such that (3.66) holds for any
91,92, h € Test(X) with support in €. In this case, evidently, Hess(f) is uniquely characterized
only m-a.e. on €.
We conclude this preliminary section showing that

beW?*(Br(0)  with Hess(b)=1d m—ae.onBr(0),  (3.68)
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where Id € L>°((T*)®?X) is defined by Id(v,w) = (v, w) m-a.e. for any v,w € L*(TX). For
let us fix R < R and recall the that the function b = ¢ o b introduced in Section 3.1 belongs
to Test(X) and that Ab = Nm on Bg(0). Let g, h € Test(X) with support in Bg(O), using
the Euler equation (3.24) and few integration by parts we obtain:

/ —div(hVg)(Vb, Vg) dm
_ / _A(hg)(Vh, V) + div(gVh)(Vb, Vg) dm
= /—hg(VAg, Vb) — 2hgAg + (Vh,Vg)(Vb,Vg) + gAh(Vb, Vg) dm
_ / hAG(Vg,Vb) + gAg(Vh, V) + (N — 2)hgAg + (Vh, V) (Vh, Vg) + Ah(Vh, VL) dm
= / div(hVg)(Vb, Vg) + gAg(Vh,Vb) + (N — 2)hgAg + Ah(Vb, v%) dm.
Similarly, using (3.24) in the third equality we get
/— h(Vb, V2L dm
= /th, Vb) + Na2IE dm
/Ag (Vh, Vb) — P92 (Vh, Wby — gAg(Vh, Vb) + NRIPL dm
- / L (VAh, Vb) + g?Ah — P92 (Th, Vb) — gAg(Vh, Vb + NP dm
= /—Ath;, Vb) — NLAh + g?Ah — %wh, Vb) — gAg(Vh, Vb) + Nh% dm
- /—Ah(Vg;, Vb) + (=& + 1)g?Ah + h(Vb, VL) — gAg(Vh, Vb) + NhDg|* dm.
Adding up we get
/ — div(hVg)(Vb, V) — h(Vh, VI24) qm
= /div(th)(Vl_), Vg) + h(Vb, V%) + (N = 2)hgAg + (% +1)g°Ah + Nh|Dg|* dm
= /div(th)(Vb,Vg> + h(Vb, VL) 4 2h|Dg|? dm,
or equivalently
/—div(th)(Vb, Vg) — h(Vb, VL) dm = /h\Dg|2dm,
which by a polarization argument gives Hess(b) = Id in Bg(O) from which (3.68) follows.

3.6.2 Proof of the Proposition 3.23

Fix r',R" € (0,R) so that r' < % < R’. Later on r', R will be sent to 0 and R respectively, but
for the moment it is convenient to keep them fixed and to avoid mentioning the dependence
on them of the various objects we are going to build.
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Pick a function ¢ € C*°(R) with support in (0, R;) so that

R R R? 2 p
W) =5(V2E- ) = SVEky forzely B
and define the reparametrization function rep : (R*)? — R* by requiring that

2
.
Orvep (1) = o' (e 2em) ), repy(r) =0,

for every r > 0. Then define the function b:X — R and the flow FI : Rt x X — X as
b:=1ob,
|f|5(x) = Flreps(d(m,O))(x)v Vs € R+, z € X.
As the reader might have noticed, the construction of B, Fl, follows closely that of b, Fl: the
difference is in the choice of the function, ¢ for b and ¢ for b (recall (3.11)), used to define
the reparametrization functions.

Then with the same means used to study the basic properties of b and Fl, (see Proposition
3.9) and minor algebraic manipulations we can deduce the following facts about b and Fl:

a) From the chain rules for the gradient, Laplacian and Hessian we see that be Test(X)
and

Vb = ¢/ o b Vb,
Ab =1 o bAb + 9" o b|Vb|?,
Hess(b) = ' o bHess(b) 4 ¢ o bVb @ Vb.

In particular, recalling that Ab = Nm and Hess(b) = Id on Br(0Q) we see that b has
bounded gradient, Laplacian and Hessian. Moreover, on Br/(O) \ B,/(O) it holds

-1 Ry R R2
b=2(d(0) - 3) _b—ﬁ\/Bng,
- R
Vb =Vb(1 - —), 3.69
(- 5m) 2
A R R 1
Hess(b) = Id (1 — + Vb ® Vb.
ess(b) ( 2\/%> 4v/2 bv/b

b) For any 2 € X the curve [0,1] 3 s — Fly(z) € X is Lipschitz and satisfies
L* e 21
b) =)+ 5 [ el + B0 ds, Ve 0.1]

In particular, using the fact that lip2 (f)) — 2D, which follows from the anlogous property
of b, we see that 0;b(Fli(z)) = 2b(Fl¢(x)). Therefore for z € Br/(0)\ By (O) the quantity
|d(Fl¢(x), 0) — | decreases exponentially as t — oo and in particular

Fl, — Pr uniformly on Bg/(0) \ B(0O) as s — oo. (3.70)

Finally, the fact that |¥;| = lip(b)(y) < Lip(b) shows that ¢ — Fl;(z) is Lip(b)-Lipschitz.
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c)

)

For any s > 0, the map Fl, is invertible map from X into itself, it is the identity on a
neighbourhood of {O} U (X \ Br(0)) and sends Br/(O) \ By (O) into itself.

for any t,s € RT we have
Fl, o Fl, = Fl,.,

A A1
and in particular putting Fl_; := FI,  we obtain a one parameter group of maps of X
into itself.

The same arguments used to obtain the bound (3.12) grant that
c(s)m < (Fly),m < C(s)m, Vs eR,
for some positive continuous functions ¢,C : R — (0, 00).

Since by a compactness argument we have that Fls restricted to compact subsets of
Bgr(0O) is Lipschitz, we deduce that Flg : X — X is Lipschitz. Moreover the chain of
inequalities

d(Fly(x), Fls(y)) = d(Fleepz (), Floep (1))
< d(Flreps (%), Flrepz () + d (Flreps (9), Fliepy (%))
< d(Flrep (7), Fliepz (y)) +d(y |e repy _ e—rep7§|
< d(Flreps (), Flyepz (1)) + d(y, O)[rep? — rep?)|

together with the fact that rep? = y for any s € RT if y gé Bgr(0), the bound
reps — repd] < [ [0/ (b(F ) — o/ ((FL ()

< Lip(v/ o) [ d(Fl, (o). Fl ()
0
and the fact that lip(Fl,)(z) = e™" <1 for any € Br(0O), grant that
d(Fly(@), Fls(y)) < d(w,y) (1 + sRLip(e' o b) + o(d(x,1))), (3.71)

for every 2,y € X and s € RT. To get a similar control for negative s, we start from
d ('fls(l')y 'fls(y)) > d (Flrepgs” (ZL'), Flrep”s” (y)) —d (FlrepS ( ) Flreps( ))
and use the bound rep? < ssup’, so that arguing as before we get
d(Fls(z), Fls(y)) > d(z, y)(l — s(sup ¢’ + RLip(¢ o b)) + O(d(x,y))>, (3.72)

for every z,y € X and s € RT. Putting C := 2(sup ' + RLip(¢)’ ob)), the bounds (3.71)
and (3.72) give

lip(Fly)(z) < 1+ |s|C, vz eX, se (-4, &)

Q)

and since X is a geodesic space this further implies that Lip(lf| ) < 1+ |s|C for every
se[- C? C] Recalling (3.59) and (3.61) we therefore deduce that

|d(f o Fly)| < (1 + |s|C)|df] o Fls, and  |[dFl4(v)] o Fly < (14 [s|C)v]  (3.73)

m-a.e. for every f € WHA(X), v € L*(TX) and s € [, &)
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The following lemma will be useful.

Lemma 3.30. Let ¢ € WY2(X). Then the map R 3 s — @ o Fl, € L2(X) is C and its
derivative is given by

d - AN

£(p oFls = —(Vp, Vb) o Fl;. (3.74)
If ¢ is further assumed to be in Test(X), then the map R 3 s — d(p o Fly) € L2(TX) is also
C! and its derivative is given by

%(d(ap oFly)) = —d((Vi, Vb) o Fly). (3.75)

proof The first claim is proved Aexactly as Lemma 3.11, thusAwe pass to the second. R
Start noticing that since ¢, b € Test(X), we have (Vp, Vb) € Wh2(X) and thus, since Flg
is of bounded deformation, that (V, Vb) o Fly € W2(X) as well.

We now claim that
R>s ~ d((Ve,Vb)oFl,) e L3(TX) is continuous. (3.76)

Putting for a moment f := (Vi, Vb), using the group property of (Fly) and (3.73) we get
/ [d(f o Flg)[2dm < (1 +|s — so|C)? / |d(f o Flg)|> o Fly_g,dm,  Vsp € R.

Applying the first claim in Lemma 3.11 with the flow Fl, in place of Flg (the proof is the
same) to the L! function |d(f o Fls,)|> we therefore deduce that

fim /\d(f o Fly)|% dm < /\d(f o Fl, )[2 dm.
)

Since L2(T*X) is an Hilbert space, to get the claimed strong continuity of s — d(f o Fl,) it is
now sufficient to prove the weak continuity. To this aim we start recalling that the density of
D(A) in WH2(X) and the weak* density of bounded Lipschitz functions in L®(X) grant that
linear combinations of vector fields of the form gV f with f € D(A) and g € L*° NLip(X) are
dense in L?(TX). In particular, vector fields in L?(TX) with divergence in L?(X) are dense
in L2(TX) and thus the weak continuity of s — d(f o Fl,) will follow if we show that for any
such vector field v the map s — [d(fo FI s)(v) dm is continuous. This is a consequence of the
identity

/d(f o Fly)(v) dm = —/f o Fly div(v) dm,

and the first claim in Lemma 3.11 (again applied to the flow Fl, in place of Fls) for the L?
function f which grant the continuity in s of the right hand side. This settles property (3.76).
To conclude, notice that the first part of the statement ensures that

A A Sl ~ A

poFls, —¢@oFlg, :—/ (Vp, Vb) o Flgds, Vsg < 81,
S0

the integral being the Bochner one. Take the differential on both sides and use the fact that

it is, as a map from Wh2(X) to L?(TX), linear and continuous to bring it inside the integral.

Then divide by s1 — s, let 51 — sp and use the continuity property (3.76) to get the thesis.
]
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Proposition 3.31. Let v € L2(TX) and put vs := dFl,(v). Then the map s — |vs|? o Fl, €
LY(X) is C' on R and its derivative is given by the formula

d1 A - A
$§|vs\2 o Fls = Hess(b)(vs, vs) o Flg, (3.77)
the incremental ratios being converging both in Ll(X)Aand m-a.e..
If v is also bounded, then the curve s — 3|vs|? o Fl is C also when seen with values in
L?(X) and in this case the incremental ratios in (3.77) also converge in L*(X) to the right
hand side.

proof
Step 1: v is the gradient of a test function and s = 0. Assume for the moment that
v = Vi for some ¢ € Test(X). Notice that for any s € R we have

1 2 A1 .
§|vs|2 o Flg > dp(vs) o Flg — §|dg0|2 o Fls m— a.e., (3.78)

with equality m-a.e. for s = 0. Recalling that (3.60) gives do(vs) o Fly = d(¢p o Fl,)(v), that
|de|? € WH2(X) and using Lemma 3.30 above, we see that the right hand side of this last
inequality is C! when seen as a curve depending on s with values in L?(X). Formulas (3.74),
(3.75) grant that its derivative at s = 0 is given by

d .1 . ) A
= (d@(vs) o Fl, - 31del? o F|S> ey = A((Vep, VB)) (v) — (V14°L V)

= Hess(b)(v,v) o Fly,,
having used the fact that v = Vy and (3.67). From (3.78) we then have

— w2 0 FEl. — |v|2 ) 2 0 FL — [ul2
lim [vs|” o Fls = Jvl < Hess(b)(v,v) < lim [vs” o Fls = o ,
s10 2s 510 2s

(3.79)

where the lim and lim are intended in the m-essential sense (recall that the m-essential supre-
mum of a family of Borel functions f;, ¢ € I, is defined up to m-a.e. equality as the only
function f such that f > f; m-a.e. for every i € I such that for any other f with the same
property it holds f < f m-a.e. - then the definition of m-essential lim /lim can be given
following the classical ones of lim /lim using m-essential inf /sup in place of the standard
inf / sup).

Step 2: v is locally the gradient of a test function and s = 0. From the locality property
of the differential (3.62) we deduce that (3.79) holds for v of the form >, X4, V¢; € L*(TX)
for a given Borel partition (A4;);en of X and functions ¢; € Test(X).

Step 3: generic v € L*(TX) and s = 0. Let Q, : L*(TX) — L'(X) be the quadratic form
defined by

 Jus2oFly — Ju?

Qs(v) : )

S

and notice that inequality (3.73) grants that

|Qs(v)| < C'w]?, m — a.e. Vv € L*(TX), s € [~ 1, (3.80)

U~
Q=
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for some C’ > 0. We claim that the Q,’s are locally uniformly continuous in s € [~ 4,
to this aim we introduce the auxiliary quadratic forms

Qs(v) = Qs(v) + C'\v|2,

] and

Q
Q=

and notice that (3.80) yields
0<Qs(v) <2C )%, m—ae  VoeL*TX), se[-4, 4]

Letting By be the bilinear form associated to Qs, the positivity of the latter and the Cauchy-
Schwarz inequality - which is easily seen to be valid even in this context - yield

|BS(U,ZU)|2 < Qs(v)Qs(w), m— a.e. Yo, w € LQ(TX), s€[- % 6]
Therefore we have

|Qs(v+w) = Qs(v)] < |Qs(v +w) = Qs(v)| + C'|Jv + w]* — |v]?|
= |Qs(w) + 2B(v, w)| + C'[Jw]® +2(v, w)|

< 20|w|2+2\/Q5( S(w)—i—C'\w|2+2C”|v||w|

< 6C|v||w| + 3C" |w|?,

m-a.e. for every v,w € L?(TX) and s € [, &]. This estimate is the claimed local uniform
continuity of the Q4’s.

Since the boundedness of Hess(b) grants that v — Hess(b)(v, v) is continuous from L2(TX)
to L}(X) and in Step 2 we established (3.79) for a set of vector fields dense in L?(TX), we
conclude that (3.79) holds for every v € L*(TX).

Step 4: conclusion. Since the Fly’s form a group, by what we just proved we know that for
any v € L?(TX) and any so € R we have

— |vs[? o Fls — [vgy|? o FI - A 20 Flg — |vgy|? o FI
lim [vs[7 0 Fls = Juso " 0 SOSHess(b)(sz,sz)oFISOS@‘US‘ o Fls — v ["

00 (3.81
stso 2(s — so) 5150 2(s — s0) ( )

m-a.e.. Now assume for a moment that v € L? N L*(TX), so that using again the group
property and keeping in mind the bound (3.73) we have that R > s — S|v|? o Fl, € L2(X)
is Lipschitz and hence - since Hilbert spaces have the Radon-Nikodym property - it is a.e.
differentiable. Letting sy be a point of differentiability, from (3.81) we deduce that

. |v5|2olfls—|vs \QOIfIS . A
dm ey = Hess(b) (v, vso) 0 Flio, (3.82)

the limit being intended both in L?(X) and m-a.e.. Since the right hand side of this last
expression is, as a function of sy with values in L?(X), continuous, we deduce that s +
Lvs]? o Fly € L2(X) is C! and that (3.82) holds for any sy € R.

Finally, let v € L?(TX) be arbitrary and notice that the bound (3.73) grants that for any

\vs|20lfls—\v50|20|f|
2(s—s0)

so € R the incremental ratios
L'(X).

0 are, for s € [s9 — 1,50 + 1], dominated in
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To conclude, put vy, := X{jy|<n}V € L*NL®(TX), n € N, and vy, 5 := dlfls(vn) and notice
that for every s € R we have

0] 0 Fly — Jvg[2 0 Flgy _ [0n,s]? 0 Fls — [0p,50|% Iflso’ m—ae. on {jo] <),
2(s — sp) 2(s — so)
Hess(b) (v, Vsy ) © Flsy = Hess(b) (Un.s, Un.so) © Flsy, m—a.e. on {|v| < n}.

By what we already proved, we deduce that the limit in (3.82) holds in the m-a.e. sense on
{Jv| < n}. Since n € N is arbitrary, we conclude that the same limit is true m-a.e. and given
that the incremental ratio on the left is dominated in L!(X), we obtain that (3.77) holds, the
derivative being intended in L'(X).

The stated C! regularity is then a consequence of the continuity in L*(X) of s — Hess(b) (v, vs)o
Fl, which in turn is a consequence of the L2(TX) continuity of s — v, and the boundedness
of Hess(b). O

Corollary 3.32. Let v € L2(TX) be concentrated on Br/(0)\ By (0) and put vs := dFls(v).
Then for every s; > so > 0 we have

|'Usl|2 2 ’vso|2

<
d2(’7o) ° F|81 B dQ(,O)

oFly,, m—a.e. (3.83)

proof Up to replacing v with vy, := X{jy|<n}v, using the fact that |dFl,(v,)|oFlg = |dFl(v)]oFlg
on {|v| < n} and letting n — oo we can assume that v is bounded.

Put for brevity A := Br/(O) \ B (0) and notice that on the complement of A both sides
of (3.83) are 0 m-a.e., so that we are reduced to prove that

. ’ Vs |2
OI | < 0
81XA — 2]

|U51|2

oh FISOXA, m— a.e..

Let b € W2(X) be a function bounded from below by a positive constant and agreeing with
b on A. Then % € I/Vlif( ) and Lemma 3.30 grants that the derivative of s — % o Flg in
L2(X) is B%(VB, Vb) o Fl,. Since Fl, maps A into itself for every s > 0 (point (¢) in the list
of properties of Fl,) and b = b on A, we deduce that s — £o Floxa € LX) is C' with
derivative equal to <Vb, Vf)> o FlyX 4. Using then the second part of Proposition 3.31 we

conclude that s+ |”S‘ o Flgxa € LY(X) is C! with derivative given by

d ’1) ’2 XA ~ 9 ~
d s Xa( 3.84
ds( = oFIsXA)|S ; 2b2( 2b Hess(b) (v, v) + [v|2(Vb, Vb>>. (3.84)

Using the expressions for Vb and Hess(b) given in (3.69) we have that m-a.e. on A it holds

—2b Hess(b) (v, v) + [v]>(Vh, Vb)

R R R
= —2blv*(1— — Vb, v)2 + |[v]?|Vb]? (1 — ——
P (157 ) s (Vb + e PIVRP (1 - )
= ———=(Vb,v)* <0,
. \ﬁ< ? <
having used the fact that |[Vb|? = 2b (Corollary 3.6). This computation together with (3.84)
gives the conclusion. O

44



We are now ready to prove our key Proposition 3.23, which for convenience we restate:
Proposition 3.33. Let [a,b] C (0,R) and let ™ be a test plan such that d(~y, O) € [a,b] for
every t € [0,1] and w-a.e. v. Then

ms;(Provy) < o) ms(7y), a.e. t€[0,1], w—a.e. 7.

- 2d(7t7
proof Build a function b and the corresponding flow Fl as in the beginning of the current
subsection for [r',R'] = [a, b]. A

With a slight abuse of notation we shall denote by Fls the map from C([0, 1], X) into itself
sending vy to Fls o y. Then we put mg := (Flg).7r. ) K

Recalling that for every t € [0, 1] the differential of Fl induces a map, still denoted by dFl
from L?(TX, ey, ) to L?(TX, e, ws) (recall the discussion in Section 3.6.1), we claim that for
any s1 > sg > 0 and any V € L?(TX, e, ) it holds

|dFls, (V)[* [dFls (V)P

oFlg, < o Flg,, T — a.e.. (3.85)

d3 oey d3 oe;

Indeed, for V of the form ejv for some v € L?(TX) the claim follows directly from Corollary
3.32 above via the computation:

APl (G g @R @) g P @F e P )P
T Boe NI @oe o= g cetfa= g oo
< [aF, @) 4Py (ejv)f?
by (3.83 sl o Fl ==t oF, —a.e..
(by ( ) > d% O Flgy o€ dQOoet o Flg, ™ —a.e
(3.86)

Then the locality property of dFl, : L*(TX, ey, ) — L*(TX, e, ) expressed by the second in
(3.63) ensures that for V of the form ), X 4,efv; for some Borel partition (4;);en of C([0, 1], X)
and (v;) C L*(TX) it holds

\dFA|51(Z¢ XAie?Ui)P 2 |Z Xa; © FI dF|81(etU1 ‘dF|S1 et”l)|2 2
d2o o€t ° FISI d2o o e Z XA, d2 o e o F|S1
|dFlg, (efod)l* o |dF|so(Z Xa,ev)|?
(by (3.86)) < ZX d2 oo oFlg, = -+ d2 ce. Flso

mr-a.e.. Then the claim (3.85) follows by the density of the set of V’s of the form just considered
in L2(TX, e;, ) and the continuity of dFl, : L2(TX, e;, 70) — L2(TX, e, s).

Denoting by ()} € L?(TX, e, s) the speed at time ¢ of the test plan s, applying (3.85)
to 7, and recalling (3.64) we obtain that for s; > s9 > 0 and a.e. ¢t € [0, 1] it holds

/12 /12
|(7T51)t‘ o Fls1 < ’(7‘-50)15| o FI

s T —a.e..
d3 oe; d3 oey 0’

Integrating in ¢ and recalling the link between pointwise norm and metric speed given in
(3.58) we obtain that

/ / Ll jdedms, (v / / el jdtdm (1) (3.87)
’Yta 7t7
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Recall that A = Bg(0) \ B-(0) and let us consider the closure A of A and the functional
E :C([0,1],A) — [0, 0] given by
E(y) = /1 bl dt  if v € ACy([0,1], A) E(y) = 400, otherwise
“J ®000) A ’ '

It is readily verified that E is lower semicontinuous. Indeed, let () be with sup,, E(v,) < 0o
and uniformly converging to . Then sup,, [ |¥x, ¢|>dt < oo and the uniform convergence en-

d(y
bounded from above and thus the functlons |4n,¢| are uniformly bounded in L*([0, 1], 5 e 0)2 dt).

sures that lim, E(y,) = lim, [ 7” t' 5 dt. Since v takes values in A, we have that (7 o) is

Up to pass to a subsequence, not relabeled, we can assume that |4, ;| — G in L%([0, 1], 3 a0 dt)

and passing to the limit in d(Vnt,Ynt,) < ft';l |n,t| dt deduce that || < G(¢) for a.e.
€ [0,1]. Then the lower semicontinuity of F follows from the lower semicontinuity of the
L2([0,1], Wdt)—norm w.r.t. weak convergence.
Since F is lower semicontinuous and non-negative, we deduce that the functional

2(C(0,1,4) 50 /EWNdeMwL

is lower semicontinuous w.r.t. weak convergence in duality with continuous and bounded
functions on C([0, 1], A).

Now consider the functions Fl, as functions from A into itself and recall that they uniformly
converge to Pras s — 400 (by (3.70)). It follows that (7,) weakly converges to Pr.m as s — oo
and thus that

/E(v) dPr,m < lim [ E(v)dms.

S——+00

Then the monotonicity property (3.87) and the definition of E give

P
/ mst|R|r207 dtdm < // ms; dt dr. (3.88)
tv

To pass from this integral formlﬂation to the conclusion, we start claiming that for every
[to,t1] € [0,1] and T" € C(]0, 1], A) Borel it holds

P
// msy BP0 4 g < // 50D 4. (3.89)
[to,t1]xT 15 |2 [to,t1] ><Fd Yt )

Indeed, if w(T") = 0 or ¢y = 1 there is nothing to prove, otherwise simply write (3.88) for the
plan ﬁ(Restr%)*(ﬂ"F), which is still a test plan, in place of 7 to get the claim.

The class of sets of the form [tg, 1] x I' just considered is a m-system which generates
the Borel o-algebra of [0,1] x C([0,1], A), hence by the 7\ theorem we deduce that we can
replace [t,t1] x T in (3.89) by an arbitrary Borel set E C [0,1] x C([0, 1], A). Choosing as
FE the set where the integrand on the left is bigger than the one on the right, we conclude.

]
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3.7 The rescaled sphere 7Z and the cone Y built over it

Let us define (Z,dz, mz) as (X', 2d’/R,m’) and note that f : Z = X’ — R belongs to W12(X/)
if and only if it belongs to W2(Z) and in this case

2
IDflx: = ﬁ\Dﬂz m’ a.e. (equivalently mz a.e.). (3.90)

On the set Z x [0,00) we put the semidistance dy defined by

1
d¥ ((20, 50), (21, 51)) ::inf/0 }%S(T)FJFSQ(T)W‘QdY,’

the inf being taken among all Lipschitz curves [0,1] 3 7 — s(r) € RT and [0,1] 2 r+— 7, € Z
such that (v;, s(i)) = (zi,s;) for i =0, 1.

We denote by Y the quotient of Z x [0, co) w.r.t. the equivalence relation given by (2o, so) ~
(21, s1) provided dy((zo,so),(zl,sl)) = 0. In particular, (20,0) = (z1,0) for any zp,z1 € Z
and their equivalence class will be denoted by Oy.

The semidistance dy passes to the quotient and induces a distance on Y which we shall
continue to denote as dy. It is easy to check that (Y,dy) is a locally compact metric space
whose topology is the same as the quotient topology. The typical element of Y will be denoted
by (z,7) with z € Z=X" and r € [0, ).

We also endow Y with the measure my defined by

/f z,8) dmy Nm(BR(O)) /+OO sN_l/Zf(z,s) dmy(z) ds,

for every non-negative Borel function f .

We shall now recall some results proved in [18] about the structure of Sobolev functions
on Y. It is convenient to introduce the following notation: for f : Y — R given and z € Z
we shall denote by f(*) the function on RT given by 7 +— f(z,r), similarly, for r € [0, 00) the
function f(") on Z is defined as z — f(z,r). We remark that to study the structure of Sobolev
spaces on product metric measure spaces is not a trivial task, the first results in this direction
have been obtained in [2], see also [6].

Theorem 3.34. Let f € WH2(Y). Then:
i) for mg-a.e. z € Z we have f&) € WH2(]0, 00), dgye, 7V ~1dr)
i) for L'-a.e. r € [0,00) we have f7) € Wh2(Z,dz, mz)
iit) the identity
IDfR(r,) = [DFPIR(r) + :*QIDf(T)!%(Z) (3.91)
holds for my-a.e. (z,r).

Conversely, if f € L*(Y) is 0 on a neighbourhood of Oy, (i) and (ii) hold and the right hand
side of (3.91) is in L*(Y), then f € W12(Y).

Furthermore, Y is infinitesimally Hilbertian and has the Sobolev-to-Lipschitz property.
proof The relation between W2(Y) and (i), (ii) is one of the main results of [18]. Infinitesimal
Hilbertianity then follows directly from the one of X’ (Proposition 3.26). The Sobolev-to-
Lipschitz property follows from the fact that (X', d’,m’) and thus (Z,dz, myz) is doubling and

measured-length, as proved in Proposition 3.26, and the results in the last section of [18].
O
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3.8 From annuli in X to annuli in Y and viceversa

We shall now adapt the strategy used in [14] to prove that the natural map from Br(Oy) to
BRr(O) preserves the Sobolev norm of functions defined in appropriate annuli. As the proofs
closely follows those in [14], we shall mostly only sketch them, highlighting the key points and
providing precise references for their completion.

We introduce, for 0 < r < R < R, the annulus AnnZR ={yeY:dy(y,Oy) € (nR)} C

Y, and similarly the annulus AnnffR ={reX:d(z,0) e (rn,R)} CX.
We then introduce the map T : Br(Oy) — Br(O) as

T(z,r) = Fllog(%)(z), if r >0, T(Oy) :=0,
and the map S : Br(O) — Br(Oy) as
S(z) := (Pr(x),d(z,0)), Vz € Br(0O) \ {0}, S(0O) := Oy.

It is clear that T,S are one the inverse of the other, while the very definition of my and
Corollary 3.8 grant that

and (3.92)

Ty g 0) = ™se0) S5 0) = ™Y pe(o)

Moreover, noticing that point (i7) of Theorem 3.18 gives that
2d
d(xl,l‘g) < ﬁd/(Pr(xl), Pr(xg)) = ddZ(Pr(xl), Pr(xg))

for any z1,x2 € X with d(z1,0) = d(z2,0) = d € (0,R), we have the estimate

d(z,y) <d(z,Fl o) (y)) +d{FI on W),y
(7Pl a0y ) + (1, a0y ).0)

< d(z,0)dz(Pr(z), Pr(y)) + |d(x, 0) — d(y, 0)|.
Thus the very definition of dy grants that

for every ¢ € (0,R), T is Lipschitz from Anan to Ann?R. (3.93)

Similarly, the fact that d(-,0) : X — R is Lipschitz and that for every €,&" € (0,R/2) the map
Pr : Ann?R_a, — X’ is also Lipschitz (by local Lipschitzianity and a compactness argument)
grant, together with the definition of dy, that

for every €,&' € (0,R/2), S is Lipschitz from Ann?Rfe, to Ananfs, . (3.94)

Finally, we define the following classes of functions:
G := {g Y — R : 9(37’77') :g(ml) for some § € w2 mLoo(Z)}’

H .= {h Y - R : k() = ;L(T‘) for some h € Lip([0, R]) with supp(h) C (0, R)},
A= {Zgihi LieN, g€ hieX vz':1,...,n}.
=1

In the foregoing discussion, given a metric measure space (Z,dz, myz) and an open set Q C X,
we shall denote by Wol’2(Q) C WH2(Z) the Wh2(X)-completion of the space of functions in
Wh2(X) with support in Q. Using Theorem 3.34 we then see that every function in A belongs
to W(} 2 (AnnEY’R) for any € € (0,R) sufficiently small. In particular, the minimal weak upper
gradient of such functions is well defined my-a.e..
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Proposition 3.35. For every e € (0,R), AﬁWOM(Anan) is a dense subset of Wol’g(Anan).

proof It follows from the very same arguments used to prove the analogous statement in
Proposition 6.6 in [14] keeping in mind Theorem 3.34 (see also Proposition 4.16 in [16] and
[18]). O

Proposition 3.36. For every e,&’ € (0,R/2), the map f — f oS is a homeomorphism from
W(}’Q (AnniR_a,) to W&’z (Anan_a,) .

proof Direct consequence of the measure preservation property (3.92), the Lipschitz properties
(3.93), (3.94) and the fact that the Sobolev norm changes in a bi-Lipschitz way under a bi-
Lipschitz change of the metric (see also Proposition 6.7 in [14], Proposition 4.16 in [16] and
the arguments used in [18]). 0

Proposition 3.37. For every f € A we have foS € Wol’z(Annsz_E) for every e > 0
sufficiently small. Moreover

IDfly oS = |D(f o9)|x, m — a.e. on Br(0O).

proof The first claim follows from the fact, already noticed, that and f € A belongs to
VVO1 2 (Ananfg) for € > 0 sufficiently small and Proposition 3.36 above.

Now let ¢ € G, ¢ € (0,R/2) be arbitrary and pick h € H identically 1 on Anan_E.

Theorem 3.24 grant that (gh) oS € W172(Ann§7R) and using also Theorem 3.34 and (3.90)

we see that [Dgly oS = [D(g o S)|x m-a.e. on Annlg_,.

deduce that |Dgly oS = |D(g o S)|x m-a.e. on Bg(O).

Similarly, given that a function h € H is Lipschitz with support in Anan_e, for some
e, e’ € (0,R/2), it is clear that h € W2(Y) and, recalling (3.94), that h o S € W2(Bgr(0)).
The fact that [Dhly oS = |D(h o S)|x m-a.e. on Br(O) then follows from the very same
arguments used in Proposition 6.3 in [14] (see also Proposition 4.14 in [16] and [18]).

The conclusion for general f € A then comes using the very same arguments of the proof
of Proposition 6.5 in [14] (see also Proposition 4.15 in [16]), keeping in mind the infinitesimal
Hilbertianity of X, Y, the characterisation of Sobolev functions on Y given by Theorem 3.34
and the first order differentiation formula (3.20). O

As € > 0 was chosen arbitrarily, we

Theorem 3.38. For any e,&’ € (0,R/2) we have f € W&’2(Anan_€,) if and only if foS €

W&’z(AnniR_a,) and in this case

IDfly oS =|D(foS)|x, m — a.e. on AnnX

g,R—¢’"

proof The fact that f € W(}’Q(Anan_E,) if and only if foS € W(}’Q(AnniR_E,) has already
been proved in Proposition 3.36. Now let f € WO1 ’Q(Anan_E,) and use Proposition 3.35 to
find a sequence (f,) C A converging to it in VVO1 ’Q(Anan_E,). By Proposition 3.36 again we
deduce that f, oS — foS in Wh2(AnnX

e,R—¢e’

) and since by Proposition 3.37 we know that
IDfuly ©S = [D(fnoS)|x, m—a.e. on AnniR_al

for every n € N, passing to the limit (recall (3.92) for the left hand side) we conclude. O
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3.9 Back to the metric properties and conclusion

We can now state and prove our main result.

Theorem 3.39 (Main result). Let N € [1,00), (X,d,m) a RCD*(0, N') space with supp(m) =
X, 0eX and R >r > 0 such that

N
m(Br(0)) = (T) m(B:(0)).
Then exactly one of the following holds:

1) Sry2(0) contains only one point. In this case (X,d) is isometric to [0, diam(X)] ([0, o)
if X is unbounded) with an isometry which sends O in 0 and the measure m g (O) to

the measure cxN~ldz for ¢ := Nm(Bgr(0)).

2) Sry2(0) contains two points. In this case (X,d) is a 1-dimensional Riemannian man-
ifold, possibly with boundary, and there is a bijective local isometry (in the sense of
distance-preserving maps) from Br(O) to (—R,R) sending O to 0 and the measure

™| 5.0) to the measure ¢ |x|N~dx for ¢ := £ Nm(Br(0)). Moreover, such local isometry

is an isometry when restricted to BR/Q(O).
3) Sry2(0) contains more than two points. In this case:

- N > 2 and the metric measure space (Z,dz, mz) is a RCD*(N — 2, N — 1) space.

- The map S : Br(0) — Y is a measure preserving local isometry which, when
restricted to Br/2(0), is an isometry.

proof Cases (1) and (2) have already been handled in Corollary 3.20, thus we assume that
Sr/2(0) contains more than two points and notice that we already proved that T,S are
measure preserving.
We now claim that for any €, &’ € (0,R), the maps T, S are locally isometries from Annngsl
to AnmE Re
To this aim, pick y € AnnY

» and viceversa.
cr—er and let 7 > 0 be such that Bs,(y) C AHUER,EP Pick
Y1, Y2 € By(y) and consider the function f := min{dy (y1,-),4r—dy(y1,-)}, which is supported
in Bs,(y). B 5

By Theorem 3.38 we deduce that f := foSisin WLQ(AnniR_E,) with |[Df|x = |[Df|yoS <
1 m-a.e. on Ann?R_e,, the inequality being a consequence of the fact that f is 1-Lipschitz.
Notice that being the support of f contained in Annz%R_E,, we can extend it to the whole X
setting it to be 0 outside Ann?R_g, and the new function, which we will continue to denote

f, will still be in Wb 2(X) with \Df] < 1 m-a.e.. By the Sobolev-to-Lipschitz property of X -
recall the discussion in the Section 2 -, we then deduce that f has a 1-Lipschitz representative,
but being f continuous such representatlve must be equal to f itself. In particular we have

dy (1,52) = 1f (1) = F(y2)| = |F(T(1) = F(T(2))| < d(T(1), T(y2))-

Recalling that y1,y2 € B,(y) were chosen arbitrarily and reversing the roles of Ann€ R_e!>

Ann6 R_e in the argument (the Sobolev-to-Lipschitz property of Y being ensured by Theorem
3.34), we conclude.
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Now let zg, 1 € BR/Q(O) \ {O} and, recalling that (Z,dz) is a geodesic space, notice that
their distance can be realized as limit of the lengths of a sequence of curves with range in
Bgr(0) \ {O}. Any such curve has range in AnnifR_E for some € > 0 and therefore its length
is equal to the length in Y of its composition with S. This shows that the restriction of S to
Bg /2(0) \ {O} is 1-Lipschitz. In particular, it can be extended to a 1-Lipschitz map sending
Bgr/2(0) to Br/2(Oy) and it is obvious that such extension sends O in Oy and thus agrees with
S(O) as previously defined. Reversing the roles of X, Y we see that S : Br/3(0) — Bg/2(Oy)
is an isometry.

The fact that N > 2 now follows by considerations about the Hausdorff dimension. Indeed,
the fact that Z is geodesic forces Br(Oy) to contain a bi-Lipschitz copy of the square [0, 1],
Thus the Hausdorff dimension of Br(Oy) is at least 2 and since it is locally isometric to
Bgr(0), the same holds for X. The claim then follows recalling that N bounds the Hausdorff
dimension of X from above (see Corollary 2.5 in [28]).

It remains to prove that (Z,dz, my) is a RCD*(N —2, N — 1) space. Thanks to the result of
Ketterer [22, Theorem 5.28], to this aim it is sufficient to prove that Y, which by construction
is a cone, is also a RCD*(0, V) space.

This can be seen as follows. First of all, we recall that Bg/»(0O) is isometric Bg/s(Oy),
then we observe that since Bg/4(Oy) is a totally geodesic subset of Y, we must have that
Br /4(0) is a totally geodesic subset of X (since geodesics with endpoints in Bg /4(0) cannot
leave Br/2(0)).

Now we use the Global-to-Local result established in [2] and [4] to deduce that Bg/4(0O)
is RCD*(0, N) and again the isomorphism of metric measure structures to see that Bg/4(Oy)
is RCD*(0, N) as well.

Finally define the spaces (Y,,dy,,my,) as (Y,dy/r,my/r") and note that Y, is iso-
morphic to Y, the isomorphism being given by (z,s) — (z,rs), so that trivially Y is the
pointed-measured-Gromov-Hausdorff limit of the net {(Y,,dy,,my,,Ov,)}r>0 as r | 0. It is
then clear that also the balls Bg /(4,,)(Oy,,) C Y, converge to Y and since the former are, by
what said previously, RCD*(0, V) spaces, the same is true for Y, as desired. O

4 Variants

There is nothing special about the choice K = 0 in the discussion we did. Here we, very
briefly, discuss general lower bounds on the Ricci and the case of ‘volume annulus implies
metric annulus’.

For K € R, N > 1 define sk n : Rt — R as

% sin(r %), if K >0,
SKJV(’I“) = r, ifKZO,
% sinh(r %), it K <0,

and vy : RT — R as
T
N-1
UK7N(T') ;:/ ‘8K7N(t)‘ dt.
0

The following result is the analogous of Theorem 1.1 in the case X as a RCD*(K, N) space,
see [22] for the definition of (K, N)-cone.
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Theorem 4.1. Let K € R, N € [0,00), (X,d,m) a RCD*(K, N) space, O € X and R>r >0

such that
m(Br(0)) _ m(B,(0))

UK,N(R) UK7N(I’) '

Then exactly one of the following holds:

1) Sr/2(0) contains only one point. In this case X is isometric to [0, Diam(X)] ([0, 00) if X
is unbounded) with an isometry sending O to 0 and the measure ™| 5. (0) to the measure

m(Br(0))

csg N(x)dx for c:= N (R)

2) Sry2(0) contains two points. In this case (X,d) is a 1-dimensional Riemannian man-
ifold, possibly with boundary, and there is a bijective local isometry (in the sense of

distance-preserving maps) from Br(O) to (—R,R) sending O to 0 and the measure
m(Br(0))

2or N (R) - Moreover, such local isometry

™5 0) to the measure csg n(x)dz for ¢ =

is an isometry when restricted to BR/Q(O).

8) Sry2(0) contains more than two points. In this case there erists a RCD*(N —2, N — 1)
space Z such that if Y is the (K, N) cone built over Z with “origin” Oy, then Br(O)
is locally isometric to Br(Oy), the corresponding metric ball in Y. Moreover the local
isometry is a measure-preserving bijection, which, when restricted to BR/Q(O), s an
1sometry.

Exactly as in the case of Theorem 3.39 the space Z is given by a suitable rescaling of the
sphere Sg/2(0) seen with its induced distance. The proof of this result follows along the very
same lines used to obtain Theorem 3.39, the major difference being that here the ‘Busemann’
function is

K

b(x) := cos (d(x, 0) m) if K >0,

K] :
= h( : 7) fK <0.
b(z) := cosh (d(x, O) N1 it K <0
Then the computations can be carried over with the same modifications one would do in
the smooth case. Eventually in order to apply Ketterer result in [22] to show that Z is a
RCD*(N — 2, N — 1) space one has to perform a blow-up analysis as the one done at the end
of the proof of Theorem 3.39

In fact, the very same arguments can also be used to obtain the non-smooth version of
the “volume annulus implies metric annulus” theorem. The main assumption in this case is
that for our RCD* (K, N) pointed space there are 0 < r; < ry < r3 such that

m(Br,(0)) = m(Br,(0)) _ m(Br,(0)) —m(By,(0))

5 N— N—
Joy s (r)dr Jol s () dr

Then the same conclusions of the above theorem hold, with point (3) being replaced by:

3") Sr/2(0) contains more than two points. In this case, N > 1 and the annulus Annﬁir3

is locally isometric to the corresponding one in the (K, N)-cone built over a suitable
rescaling of Sg/2(0) and the local isometry is a measure-preserving bijection.
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The proof is the same. Note however that there is no ready-to-use result that would grant
that the “sphere” of the cone is, with the induced distance and measure, a RCD*(N — 1, N)
space. The problem is that we only have informations about the annulus Annfir?), which, being
not convex, is certainly not a RCD* space. A look to the proof of the aforementioned Ketterer’s
result, which is needed in Theorems 3.39 and 4.1, seems to suggest that the statement can
be modified to be usable in our context, thus showing that even in this case the sphere is a
RCD*(N — 2, N — 1) space, but this is outside the scope of this paper.
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