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ABSTRACT. In this paper we study the best constant in a Hardy inequality for the
p−Laplace operator on convex domains with Robin boundary conditions. We show, in
particular, that the best constant equals ((p − 1)/p)p whenever Dirichlet boundary condi-
tions are imposed on a subset of the boundary of non-zero measure. We also discuss some
generalizations to non-convex domains.
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1. Introduction

Let Ω ⊂ Rn be an open bounded domain and denote by

δ(x) = min
y∈∂Ω
|x− y| (1.1)

the distance between a given x ∈ Ω and the boundary of Ω. The Hardy inequality for the
p-Laplace operator with Dirichlet boundary conditions on ∂Ω:∫

Ω

|∇u(x)|p dx ≥ K

∫
Ω

|u(x)|p

δ(x)p
dx, ∀ u ∈ W 1,p

0 (Ω), p > 1, (1.2)

is closely related to the variational problem

µp(Ω) := inf
u∈W 1,p

0 (Ω)

∫
Ω
|∇u(x)|p dx∫

Ω
|u(x)/δ(x)|p dx

. (1.3)

Hence µp(Ω) is the best possible value of the constant K in (1.2). Hardy showed in [H]
that inequality (1.2) holds with some K > 0 in dimension one. In higher dimensions it is
known, see [OK], that if Ω has Lipschitz continuous boundary, then µp(Ω) > 0. In general,
µp(Ω) depends on the domain Ω and satisfies the upper bound

µp(Ω) ≤ Cp :=
(p− 1

p

)p
,

see [MMP]. However, if Ω is convex, then µp(Ω) = Cp. The latter was first proved for
p = n = 2, see [D3, Sec. 5.3] or [D1, Sec. 1.5], then in [MS1] for n = 2 and any p > 1,
and finally in [MMP] for any n and any p > 1. Moreover, it was shown in [MMP] that
µ2(Ω) = C2 if and only if the variational problem (1.3) has no minimiser. The fact that
for convex domains there is no minimiser of (1.3) opens a possibility to improve inequality
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(1.2), even with the sharp constant K = Cp, by adding to its right hand side a positive
contribution. Such improvements, with various forms of the remainder terms, have been
obtained in [A1, A2, AW, BM, FMT, HHL] for p = 2 and later in [T] for p 6= 2. As
for non-convex domains, it is known, due to [A], that in the case n = p = 2 for simply
connected domains one has µ2(Ω) ≥ 1/16, see also [LS]. For a throughout discussion of
various Hardy inequalities for p = 2 we refer to [D2] and references therein.

In [EHR] the authors have obtained a Hardy’s inequality with the distance to the part
of the boundary where functions satisfy Dirichlet boundary conditions. The main result of
[EHR] is not related to our main results as it does not contain estimates of the Hardy constant
and does not include the contribution of the boundary where functions do not satisfy the
Dirichlet boundary conditions.

In this paper we consider an analogue of the variational problem (1.3) for a Robin Lapla-
cian. This means that we replace the numerator of (1.3) by the functional

Qp[σ, u] =

∫
Ω

|∇u|p dx+

∫
∂Ω

σ |u|p dν, u ∈ F(Ω), (1.4)

where dν denotes the surface measure on ∂Ω, σ : ∂Ω→ [0,+∞] is a function which defines
the boundary conditions and F(Ω) is a suitable family of test functions. The function space
F(Ω) clearly depends on the choice of σ. Notice that with the choice σ = +∞, and
consequently F(Ω) = W 1,p

0 (Ω), we arrive at the Dirichlet boundary conditions and hence
at problem (1.3).

To pass from Dirichlet boundary conditions to Robin boundary conditions means to take
σ 6= +∞. In order to make the choice of σ as general as possible we will impose the
Dirichlet boundary on a part of the boundary Γ ⊆ ∂Ω, which might be empty, and Robin
boundary conditions on the remaining part ∂Ω \ Γ ;

σ ∈ ΣΓ :=
{
f : ∂Ω→ [0,+∞] , f = +∞ on Γ, 0 < ‖f‖L∞(∂Ω\Γ) <∞

}
. (1.5)

Consequently, we choose

F(Ω) = W 1,p
0,Γ(Ω) :=

{
u ∈ C1(Ω) : u|Γ = 0

} ‖·‖W1,p(Ω)
.

Obviously, the weight function in the denominator of (1.3) has to be modified accordingly,
since the test functions from W 1,p

0,Γ(Ω) do not vanish on the whole ∂Ω.
In order to define our variational problem we need to introduce some notations. Let S

be the singular set of Ω, i.e. the set of points in Ω for which there exist at least two points
y1, y2 ∈ ∂Ω where the minimum in (1.1) is achieved. Hence, for x ∈ Ω \ S let π(x) = y,
where y is the unique point on ∂Ω satisfying δ(x) = |x−y|. In analogy with the case p = 2,
see [KL], we then define the function α : Ω \ S → [0,+∞] by

α(x) =


p−1
p
σ
(
π(x)

) 1
1−p if σ(π(x)) > 0,

+∞ otherwise .

(1.6)
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We now pass from the weight function δ(x)−p in (1.3) to the weight function

(δ(x) + α(x))−p,

which takes into account the boundary conditions defined in term of σ. For example, if σ =

+∞, then α = 0 as expected. Note also that the function is defined almost everywhere in
Ω since the set S has Lebesgue measure zero, see [LN]. Hence we are led to the variational
problem

λp(Ω, σ) := inf
u∈W 1,p

0,Γ (Ω)

Qp[σ, u]

‖u‖pp,σ
, (1.7)

with

‖u‖p,σ =

(∫
Ω

|u(x)|p

(δ(x) + α(x))p
dx

) 1
p

, u ∈ W 1,p
0,Γ(Ω). (1.8)

Remark 1.1. Note that the integral weight on the right hand side of (1.8) is not identically
zero in view of the definition of ΣΓ, see (1.5). Hence the variational problem (1.7) is well-
posed.

We are going to establish a relation between λp(Ω, σ) on one hand, and the function σ and
geometry of Ω on the other hand. The main results of this paper are the following:

2. Main results

Theorem 2.1. Let Ω ⊂ Rn be open bounded and convex with ∂Ω of class C2. Let Γ ⊆ ∂Ω.
Then for any σ ∈ ΣΓ and u ∈ W 1,p

0,Γ(Ω) we have∫
Ω

|∇u|p dx+

∫
∂Ω

σ |u|p dν ≥
(p− 1

p

)p ∫
Ω

|u(x)|p

(δ(x) + α(x))p
dx. (2.1)

Moreover,

λp(Ω, σ) =
(p− 1

p

)p
⇔ Γ 6= ∅. (2.2)

Remark 2.2. Note that Theorem 2.1 includes also the extreme cases Γ = ∅ and Γ = ∂Ω.
The first part of the statement, i.e. the inequality λp(Ω, σ) ≥ Cp is proven in Proposition 3.4
which provides a generalization of the Hardy inequality obtained in [KL] for p = 2.

The second part of the claim is a consequence of Proposition 4.2. Equivalence (2.2) is
closely related to the question of the existence of a minimiser for the variational problem
(1.7), see Proposition 4.1.

Remark 2.3. Let us comment on the sharpness of the lower bound λp(Ω, σ) ≥ Cp. The
bound is sharp in the sense that the constant Cp cannot replaced by a bigger one and remain
independent of σ, see section 4.1 for details. However, if Γ = ∅, then for a given σ ∈
ΣΓ Theorem 2.1 implies that λp(Ω, σ) > Cp. The following Theorem quantifies the gap
between λp(Ω, σ) and Cp in terms of the ‖σ‖L∞(∂Ω).
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Theorem 2.4. Let Ω be as in Theorem 2.1. If Γ = ∅, then for any σ ∈ ΣΓ it holds

λp(Ω, σ) ≥ Cp

(
1 + (p− 1)p+1

(
p− 1 + pRin ‖σ‖

1
p−1

L∞(∂Ω)

)−p)
(2.3)

where
Rin = sup

x∈Ω
δ(x)

is the in-radius of Ω.

2.1. Outline of the paper. We start by the proof of an Lp version of the Hardy inequality
for Robin Laplacians, see section 3. Then we provide the proofs of our main results; this
is done in section 4. In section 5 we study the behavior of the minimising sequences of the
variational problem (1.7) in the case when λp(Ω, σ) = Cp, which corresponds to Γ 6= ∅.
In particular, we show that minimising sequences, under certain conditions, concentrate on
Γ. Finally, section 6 is dedicated to the analysis of a hardy-type inequality on a particular
non-convex domain, namely on a complement of a ball.

3. A Hardy inequality

Similarly as in the case p = 2, see [KL], we first establish an appropriate one-dimensional
estimate.

Lemma 3.1. Let b > 0 and assume that u belongs to AC[0, b], the space of absolutely
continuous functions on [0, b]. Then for any σ ≥ 0 we have∫ b

0

|u′(t)|p dt+ σ |u(0)|p ≥ Cp

∫ b

0

|u(t)|p

(t+ α)p
dt+

(p− 1)Cp
(b+ α)p

∫ b

0

|u(t)|p dt, (3.1)

where
α =

p− 1

p
σ

1
1−p . (3.2)

Proof. It suffices to prove the inequality for u > 0. We may assume that σ > 0. Let

f(t) = −(p− 1)p−1 (t+ α)1−p

and define

A :=
∣∣∣ ∫ b

0

f ′(t)up dt− (f(b)− f(0))u(0)p
∣∣∣, B :=

∫ b

0

|f(b)− f(t)|
p

p−1 up(t) dt.

Integration by parts and Hölder inequality show that

Ap ≤ pp
(∫ b

0

|f(b)− f(t)|up−1|u′| dt
)p
≤ ppBp−1

∫ b

0

|u′|p dt (3.3)

On the other hand, the Young inequality gives

Ap ≥ pABp−1 − (p− 1)Bp. (3.4)

Using the fact that f is negative increasing and that

(1− s)
p

p−1 ≤ 1− s ≤ 1− s
p

p−1 ∀ s ∈ [0, 1]
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we obtain

B =

∫ b

0

|f(t)|
p

p−1

(
1− |f(b)|
|f(t)|

) p
p−1

up(t) dt ≤
∫ b

0

(
|f(t)|

p
p−1 − |f(b)|

p
p−1

)
up(t) dt.

Moreover, since u > 0, from the definition of A we get

A ≥
∫ b

0

f ′(t) up dt+ f(0)u(0)p.

The above inequalities in combination with (3.4) and (3.3) then imply that

pp
∫ b

0

|u′(t)|p dt− pf(0)u(0)p ≥ (p− 1)p
∫ b

0

u(t)p

(t+ α)p
dt+ (p− 1)p+1

∫ b

0

u(t)p

(b+ α)p
dt.

This implies (3.1). �

If Γ = ∅, then σ ∈ L∞(∂Ω) and it is easily seen that W 1,p
0,Γ(Ω) = W 1,p(Ω). Mimicking the

approach of [KL] we deduce from Lemma 3.1 the following version of the Hardy inequality
for Robin Laplacians on W 1,p(Ω).

Proposition 3.2. Let Ω satisfy the hypothesis of Theorem 2.1. Then for any σ ∈ L∞(∂Ω)

and all u ∈ W 1,p(Ω) it holds

Qp[σ, u] ≥ Cp

∫
Ω

|u(x)|p

(δ(x) + α(x))p
dx+ (p− 1)Cp

∫
Ω

|u(x)|p

(Rin + α(x))p
dx. (3.5)

Proof. As in [KL] we first prove inequality (3.5) for u ∈ C1(Ω) and σ continuous. By
Tietze extension theorem then there exists a continuous function ζ : Rn → R such that

ζ
∣∣
∂Ω

= σ. (3.6)

Now let Q ⊂ Ω be an open convex polytop with N sides Γj , 1 ≤ j ≤ N . Let nj be the
inner normal vector of the side Γj .

Let δ(x;Q) be the distance from x ∈ Q to the boundary ∂Q and let

Pj =
{
x ∈ Q : ∃ y ∈ Γj, δ(x;Q) = |x− y|

}
.

For each x ∈ Pj there is a unique y ∈ Γj and t ∈ [0, ty] for which

x = y + t nj, (3.7)

where ty is chosen in such a way that y + ty nj ∈ ∂Pj . Moreover, we have

Rin(Q) := sup
x∈Q

δ(x;Q) = max
1≤j≤N

sup
x∈Pj

δ(x;Q). (3.8)

Using Lemma 3.1 and (3.7) we get for each y ∈ Γj the lower bound∫ ty

0

|u′nj
(x)|pdt+ ζ(y)|u(y)|p ≥ Cp

∫ ty

0

|u(x)|p

(t+ α(x;Q))p
dt (3.9)

+ (p− 1)Cp

∫ ty

0

|u(x)|p

(ty + α(x;Q))p
dt,
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where

α(x;Q) =
p− 1

p
ζ
(
π
(
x;Q

)) 1
1−p (3.10)

and for x in the interior of some Pj we define π(x;Q) = y ∈ Γj , such that δ(x;Q) = |x−y|.
Note that π(·;Q) is densely defined in Q.

By integrating (3.9) over the boundary Γj and then summing the resulting inequality over
j = 1, .., N we arrive at∫

Q

|∇u|p dx+

∫
∂Q

ζ(y)|u(y)|p dν(y) ≥ Cp

∫
Q

|u(x)|p

(δ(x;Q) + α(x;Q))p
dx (3.11)

+ (p− 1)Cp

∫
Q

|u(x)|p

(Rin(Q) + α(x;Q))p
dx.

From the convexity of Ω it follows that there exits a sequence of convex polytops Qm ⊂
Ω, m ∈ N, which approximates Ω. More precisely, for every ε there exists an mε such that
the Hausdorf distance between Ω and Qmε satisfies dH(Ω, Qmε) < ε. Similarly as in [KL]
we then conclude, using the continuity of ζ in combination with (3.6), that

ζ
(
π
(
x;Qm

))
→ σ(π(x)) m→∞, a. e. x ∈ Ω.

Hence by the continuity of u∫
∂Qm

ζ(y) |u(y)|p dy →
∫
∂Ω

σ(y) |u(y)|p dν(y)

as m → ∞. The last two equations together with (3.10), dominated convergence theorem
and the fact that Rin(Qm) ≤ Rin for every m imply that

Qp[σ, u] ≥ Cp

∫
Ω

|u(x)|p

(δ(x) + α(x))p
dx+ (p− 1)Cp

∫
Ω

|u(x)|p

(Rin + α(x))p
dx, u ∈ C1(Ω)

(3.12)

holds for all σ continuous.
Now if σ ∈ L∞(∂Ω), then in view of the regularity of ∂Ω there exists a sequence of con-
tinuous functions σk on ∂Ω which converges to σ in L∞(∂Ω) as k → ∞. From inequality
(3.12) it follows that (3.5) holds for all σk. Since u|∂Ω ∈ Lp(∂Ω, dν) for any u ∈ C1(Ω),
using the dominated convergence we obtain (3.5) for any σ ∈ L∞(∂Ω) and all u ∈ C1(Ω).

Finally, let u ∈ W 1,p(Ω). By density there exists a sequence uj ∈ C1(Ω) such that uj →
u in W 1,p(Ω) as j →∞. In view of the regularity of Ω it follows that W 1,p(Ω) ↪→ Lp(∂Ω)

with compact imbedding, see [Ad, Sect.7.5]. Hence, after applying inequality (3.12) to uj
and letting j →∞ we conclude that (3.5) holds for all u ∈ W 1,p(Ω). �

Remark 3.3. In the situation when σ is constant, a simpler proof of (3.5), without the
second term on the right hand side, can be given, see [K, Lem. 4.4] for the case p = 2 and
[DPG, Lem. 3.1] for the case p > 1.

As an immediate consequence of the above Proposition we obtain
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Proposition 3.4. Let Ω satisfy the hypothesis of Theorem 2.1. Then for any σ ∈ ΣΓ and all
u ∈ W 1,p

0,Γ(Ω) it holds

Qp[σ, u] ≥ Cp

∫
Ω

|u(x)|p

(δ(x) + α(x))p
dx+ (p− 1)Cp

∫
Ω

|u(x)|p

(Rin + α(x))p
dx. (3.13)

Proof. Let u ∈ W 1,p
0,Γ(Ω) and define the sequence {σn}n∈N ⊂ L∞(∂Ω) by

σn(y) =

{
σ(y) if y ∈ ∂Ω \ Γ,

n if y ∈ Γ.

Proposition 3.2 now implies

Qp[σn, u] ≥ Cp

∫
Ω

|u(x)|p

(δ(x) + αn(x))p
dx+ (p− 1)Cp

∫
Ω

|u(x)|p

(Rin + αn(x))p
dx, (3.14)

where

αn(x) =
p− 1

p
σn
(
π(x)

) 1
1−p , x ∈ Ω.

Since Qp[σ, u] = Qp[σn, u] and

αn(x) ≥ αn+1(x) ∀ n ∈ N, x ∈ Ω,

the statement follows from (3.14) by monotone convergence. �

The following corollary of Proposition 3.4 provides yet another improvement of the Hardy
inequality (1.2) with the sharp constant K = Cp.

Corollary 3.5. For any u ∈ W 1,p
0 (Ω) it holds∫

Ω

|∇u(x)|p dx ≥ Cp

∫
Ω

|u(x)|p

δ(x)p
dx+

(p− 1)Cp
Rp
in

∫
Ω

|u(x)|p dx. (3.15)

Proof. It suffices to apply Proposition 3.4 with Γ = ∂Ω. �

4. Proofs of the main results

We start with the following Proposition which provides sufficient conditions for the exis-
tence of a minimizer of the variational problem (1.7).

Proposition 4.1. Let Ω ⊂ Rn be open and bounded with ∂Ω of class C2. Assume that
σ ∈ L∞(∂Ω) and hence Γ = ∅. Then (1.7) admits a minimiser. In other words, there exists
ψ ∈ W 1,p(Ω), ψ 6= 0, such that

λp(Ω, σ) =
Qp[σ, ψ]

‖ψ‖pp,σ
. (4.1)
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Proof. Let {uj}j∈N be a minimising sequence for λ(Ω, σ). Assume that

‖uj‖pp,σ =

∫
Ω

(δ(x) + α(x))−p |uj(x)|p dx = 1 ∀ j ∈ N. (4.2)

Since {uj} is bounded in W 1,p(Ω), there exists a subsequence, which we still denote by uj
and a function ψ ∈ W 1,p(Ω) such that uj → ψ weakly in W 1,p(Ω). In view of the regularity
of Ω and the compactness of the imbeddingW 1,p(Ω) ↪→ Lp(Ω) we may suppose (by passing
to a subsequence if necessary) that uj converges strongly to ψ in Lp(Ω). Moreover, since
W 1,p(Ω) is compactly imbedded also in Lp(∂Ω), see e.g. [Ad, Thm.5.22], it follows that we
can find a subsequence {vj} ⊂ {uj} such that vj|∂Ω → ψ|∂Ω almost everywhere on ∂Ω. By
the weak lower semicontinuity of

∫
Ω
|∇u|p and the Fatou Lemma we thus obtain

lim inf
j→∞

Qp[σ, vj] ≥ Qp[σ, ψ]. (4.3)

On the other hand,

‖(δ + α)−p‖L∞(Ω) =
( p

p− 1

)p
‖σ‖

p
p−1

L∞(∂Ω) < ∞,

see (1.6). The strong convergence of vj → ψ in Lp(Ω) thus implies that

‖ψ‖pp,σ =

∫
Ω

(δ(x) + α(x))−p |ψ(x)|p dx = 1.

Hence ψ 6= 0 and in view of (4.3) we have

Qp[σ, ψ] ≥ λ(Ω, σ) = lim inf
j→∞

Qp[σ, vj] ≥ Qp[σ, ψ].

This implies (4.1). �

Proof of Theorem 2.4. Let ψ be a minimiser for λ(Ω, σ) and denote

Ω0 = {x ∈ Ω : α(x) <∞} .

Note that Ω0 is not empty in view of (1.5) and (1.6). Moreover,∫
Ω

|ψ(x)|p dx
(Rin + α(x))p

=

∫
Ω0

|ψ(x)|p dx
(Rin + α(x))p

≥ inf
x∈Ω0

(
δ(x) + α(x)

Rin + α(x)

)p ∫
Ω0

|ψ(x)|p dx
(δ(x) + α(x))p

= inf
x∈Ω0

(
δ(x) + α(x)

Rin + α(x)

)p
‖ψ‖pp,σ . (4.4)

By inserting the above lower bound into (3.13) we obtain

λp(Ω, σ) =
Qp[σ, ψ]

‖ψ‖pp,σ
≥ Cp

(
1 + (p− 1) inf

x∈Ω0

(
δ(x) + α(x)

Rin + α(x)

)p)
≥ Cp

(
1 + (p− 1)

(
infx∈Ω0 α(x)

Rin + infx∈Ω0 α(x)

)p)
= Cp

(
1 + (p− 1)p+1

(
p− 1 + pRin ‖σ‖

1
p−1

L∞(∂Ω)

)−p)
,

where, in the last step, we have used (1.6). �
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In order to give a proof of Theorem 2.1 we need the following

Proposition 4.2. Let Ω ⊂ Rn be open and bounded with ∂Ω of class C2. If Γ 6= ∅, then
λp(Ω, σ) ≤ Cp.

Proof. By assumption there exists y0 ∈ Γ and an r > 0 such that α(x) = 0 on B(y0, r)∩Ω.
Let ε > 0 and introduce the following continuous functions

fε(x) =


ε if |x− y0| ≤ r,

linear in |x| if r ≤ |x− y0| ≤ r + ε,
1
p

if r + ε ≤ |x− y0|,

and

uε(x) =


δ(x)fε(x)+1− 1

p if 0 ≤ δ(x) ≤ ε,

linear in δ(x) if ε ≤ δ(x) ≤ 2ε,

0 if 2ε ≤ δ(x).

(4.5)

r + ε

r

δΩ

ε

2ε

y0

FIGURE 1

To proceed we introduce the following notation:

Ωε := {x ∈ Ω : δ(x) ≤ ε}, E(ε, r) := B(y0, r) ∩ Ωε, D(y0, r) := B(y0, r) ∩ ∂Ω.

Notice that E(ε, r) is the set in Figure 1 marked in grey. By [Se, Sec. I.3] there exists a set
of coordinates (δ, ω) ∈ Rn such that the transformation x→ (δ(x), ω(x)) is C1 on Ωε for ε
sufficiently small. Moreover, the Jacobian J(δ, ω) of this transformation satisfies

lim
δ→0

J(δ, ω) = 1. (4.6)

From (4.5) and (4.6) we obtain

ε

∫
E(ε,r)

|∇uε(x)|p dx =

(
ε+ 1− 1

p

)p
ε

∫
E(ε,r)

δ(x) pε−1 dx

=

(
ε+ 1− 1

p

)p
ε

∫
D(y0,r)

∫ ε

0

δ pε−1 J(δ, ω) dδ dω (4.7)

=
Cp
p
ν(D(y0, r)) (1 + oε(1)),
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where oε(1) denotes a quantity which tends to zero as ε→ 0. Similarly we find for ε→ 0

ε

∫
E(ε,r)

|uε(x)|p

(δ(x) + α(x))p
dx = ε

∫
E(ε,r)

|uε(x)|p

δ(x)p
dx = ε

∫
E(ε,r)

δ(x) pε−1 dx

=
1

p
ν(D(y0, r)) (1 + oε(1)), (4.8)

On the other hand, using the fact that |∇fε| ≤ C/ε for some C > 0 in combination with
(4.6) it is straightforward to verify that

lim
ε→0

ε

∫
Ω\E(ε,r)

|∇uε(x)|p dx = lim
ε→0

ε

∫
Ω\E(ε,r)

|uε(x)|p

(δ(x) + α(x))p
dx = 0.

Hence by collecting the above results we arrive at

λp(Ω, σ) ≤ lim
ε→0

Qp[σ, uε]
‖uε‖pp,σ

= Cp,

and the claim follows. �

Proof of Theorem 2.1. The inequality λp(Ω, σ) ≥ Cp follows from Proposition 3.4. The
equivalence (2.2) follows from Theorem 2.4 and Proposition 4.2. �

4.1. The case of constant σ. Here we provide a more detailed information about the quan-
tity λp(Ω, σ) in the case when σ is a positive constant.

Proposition 4.3. Let Ω ⊂ Rn be convex and bounded. Then

lim
σ→0+

λp(Ω, σ) = +∞, (4.9)

lim
σ→∞

λp(Ω, σ) = Cp. (4.10)

inf
Ω convex

λp(Ω, σ) = Cp. (4.11)

Proof. To prove (4.9) we first note that that there exists a constant c, depending only on Rin,
such that for all σ ≤ 1 and all x ∈ Ω we have (δ(x) + α)p ≥ c σ

p
1−p . Hence

λp(Ω, σ) ≥ c σ
p

1−p inf
u∈W 1,p(Ω)

Qp[σ, u]

‖u‖pLp(Ω)

≥ c σ
1

1−p inf
u∈W 1,p(Ω)

Qp[1, u]

‖u‖pLp(Ω)

≥ c̃ σ
1

1−p .

holds for all σ ≤ 1. This proves (4.9). To prove (4.10) let uj ∈ W 1,p
0 (Ω) be a minimis-

ing sequence for the variational problem (1.3). Since α → 0 as σ → ∞, the monotone
convergence shows that

lim sup
σ→∞

λp(Ω, σ) ≤ lim sup
σ→∞

Qp[σ, uj]∫
Ω

(δ(x) + α)−p |uj(x)|p dx
=

∫
Ω
|∇uj(x)|p dx∫

Ω
|uj(x)/δ(x)|p dx

holds for all j. By letting j →∞ we get

lim sup
σ→∞

λp(Ω, σ) ≤ Cp.

This in combination with (2.3) implies (4.10).
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Finally, to prove (4.11) we consider the example Ω = BR, i.e. the the ball centered at origin
with radius R. Let

uR(x) = (R + α− |x|)(p−1)/p.

Then

λp(BR, σ) ≤ Cp +
σαp−1Rn−1∫ R

0
rn−1(R + α− r)−1dr

.

Since

lim
R→∞

σαp−1Rn−1∫ R
0
rn−1(R + α− r)−1dr

= 0,

this shows that
inf

Ω convex
λp(Ω, σ) ≤ Cp.

The opposite inequality follows from Theorem 2.4. �

5. Concentration effect

In this section we are going to study the properties of the minimizing sequences of the
problem (1.7) in the case Γ 6= ∅. Consider first the (normalized) minimizing sequence
constructed in the proof of Proposition 4.2. More precisely, let

vn = n−
1
p u1/n, n ∈ N,

where uε is given by (4.5). In view of (4.7) and (4.8) it is straightforward to verify that

vn
w−→ 0 in W 1,p

0,Γ(Ω), and lim inf
n→∞

‖vn‖p,σ > 0. (5.1)

Moreover, we observe that vn concentrates at Γ. Indeed, we have

∇vn → 0 in Lploc(Ω). (5.2)

Below we are going to show that any minimizing sequence satisfying (5.1) concentrates at
Γ in the sense of (5.2).

Theorem 5.1. Let vn be a minimizing sequence for the problem (1.7). Assume that vn
satisfies (5.1). Then ∫

M

|∇vn|p → 0 (5.3)

for any compact set M ⊂ Ω \ Γ.

Proof. Let ny denote the inner normal vector to ∂Ω at a point y ∈ ∂Ω. For a given ε > 0

we define
Ωε = {x ∈ Ω : ∃ t ∈ [0, ε], ∃ y ∈ Γ : x = y + t ny}. (5.4)

From the regularity assumptions on ∂Ω it follows that Ωε is not self-intersecting for ε small
enough.
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Suppose now that (5.3) is false. Then there exists a compact set K ⊂ Ω \Γ and a number
γ such that

lim inf
n→∞

∫
K

|∇vn|p ≥ γ. (5.5)

Let us now take ε small enough such that K ⊂ Ω′ε := Ω \ Ωε. This is possible due to the
assumption on K. From the boundedness of vn in W 1,p(Ω) and from the Hardy inequality
we infer that

sup
n
‖vn‖p,σ <∞. (5.6)

By the Rellich-Kondrashov theorem and the first part of (5.1)

vn → 0 in Lploc(Ω).

Moreover, (δ + α)−1 ∈ L∞(Ω′ε). Hence in view of (5.6) we have

an :=

∫
Ω′ε

∣∣∣ vn
δ + α

∣∣∣p → 0 (5.7)

We thus obtain the following lower bound:

Qp[σ, vn]

‖vn‖pp,σ
≥
∫

Ωε
|∇vn|p + γ∫

Ωε

∣∣ vn
δ+α

∣∣p + an
.

Following [MMP] we now pass to the coordinates (δ, ω) in Ωε. Using the one-dimensional
Hardy inequality and (4.6) we find that∫

Ωε

|∇vn|p ≥
∫

Γ

∫ ε

0

|∂δ vn|p J(δ, ω) dδ dω

≥ (1 + o(1))Cp

∫
Γ

∫ ε

0

|vn/δ|p J(δ, ω) dδ dω

= (1 + o(1))Cp

∫
Ωε

|vn/δ|p,

where o(1) denotes a quantity which tends to zero as ε → 0. Hence for ε small enough we
have

lim inf
n→∞

Qp[σ, vn]

‖vn‖pp,σ
≥ (1 + o(1))Cp +

γ

supn ‖vn‖
p
p,σ

> Cp ,

see (5.6) and (5.7). This is in contradiction with the fact that vn is a minimizing sequence.
�

Remark 5.2. The concentration effect in the case Γ = ∂Ω was proved in [MMP].

6. Hardy inequality on a complement of a ball

In this section we are going to discuss the validity of a Hardy-type inequality for the
functional (1.4) on a particular non-convex domain, namely on a complement of a ball in
Rn. Let us denote byBc

R the complement in Rn of the ball of radiusR centered in the origin.

The following result is certainly not new, but we prefer to give its proof for the sake of
completeness.
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Proposition 6.1. Assume that n > p. Then the inequality∫
Bc

R

|∇u|p ≥
(
n− p
p

)p ∫
Bc

R

|u|p

|x|p
(6.1)

holds true for all u ∈ W 1,p(Bc
R) and any R > 0.

Proof. By density and by the inequality |∇u(x)| ≥ |∇|u(x)||, which holds for almost every
x ∈ Bc

R, see e.g. [LL, Thm. 6.17], it suffices to prove the inequality for all positive func-
tions u ∈ C∞(Bc

R) supported in a compact set containing BR. Moreover, in view of the
rearrangement inequalities, see [LL, Thm. 3.4], we may assume without loss of generality
that u is radial, i.e. u(x) = f(|x|), where f ∈ C∞([R,∞) is non-negative and such that for
some ρ > R we have

r ≥ ρ ⇒ f(r) = 0.

Integration by parts together with the Hölder inequality then imply∫ ∞
R

f(r)p

rp
rn−1 dr =

1

n− p
[
f(r)p rn−p

]ρ
R
− p

n− p

∫ ∞
R

f(r)p−1 f ′(r) rn−p dr

≤ p

n− p

∫ ∞
R

f(r)p−1 r
(n−p−1)(p−1)

p |f ′(r)| r
n−1
p dr

≤ p

n− p

(∫ ∞
R

f(r)p

rp
rn−1 dr

) p−1
p
(∫ ∞

R

|f ′(r)|p rn−1 dr

) 1
p

,

where we have used the positivity of f in the second line. Hence∫ ∞
R

f(r)p

rp
rn−1 dr ≤

(
p

n− p

)p ∫ ∞
R

|f ′(r)|p rn−1 dr,

and the claim follows. �

It is not difficult to verify that the constant
(
n−p
p

)p
cannot be improved and that inequality

(6.1) fails if p ≥ n. It turns out that when we replace the left hand side by the functional
(1.4) with σ constant and positive, then (6.1), with a different constant, extends also to the
case p > n.

Theorem 6.2. Assume that p > n and that σ > 0. Then the inequality∫
Bc

R

|∇u|p + σ

∫
∂BR

|u|p ≥ C(σ,R)

∫
Bc

R

|u|p

|x|p
, (6.2)

with

C(σ,R) = min

{(
p− n
p

)p
, R p σ

p
p−1

}
. (6.3)

holds for all u ∈ W 1,p(Bc
R).

Proof. Let δ(x) = |x| −R and let

γ :=
p− n
p

σ
1

p−1 .
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From the convexity of the function |x|p in Rn it follows that

|ξ1|p ≥ |ξ2|p + p |ξ2|p−2 ξ2 · (ξ1 − ξ2) (6.4)

holds for all ξ1, ξ2 ∈ Rn. We apply (6.4) with

ξ1 = ∇u, ξ2 =
β u∇δ
δ + γ

,

where β > 0 is a parameter whose value will be specified later. Hence∫
Bc

R

|∇u|p ≥
∫
Bc

R

βp |u|p

(δ + γ)p
+ p

∫
Bc

R

βp−1|u|p−1

(δ + γ)p−1
∇δ ·

(
∇u− β u∇δ

δ + γ

)
(6.5)

Since |∇δ| = 1, ∆δ = n−1
|x| and since the normal derivative of δ is equal to −1 on ∂BR, an

integration by parts gives∫
Bc

R

|u|p−1

(δ + γ)p−1
∇δ · ∇u = −γ1−p

∫
∂BR

|u|p − (n− 1)

∫
Bc

R

|u|p

|x| (δ + γ)p−1

+ (1− p)
∫
Bc

R

|u|p−1

(δ + γ)p−1
∇δ · ∇u+ (p− 1)

∫
Bc

R

|u|p

(δ + γ)p
.

This in combination with (6.5) yields∫
Bc

R

|∇u|p + γ1−pβp−1

∫
∂BR

|u|p ≥ (p− 1)(βp−1 − βp)
∫
Bc

R

|u|p

(δ + γ)p

− (n− 1) βp−1

∫
Bc

R

|u|p

|x| (δ + γ)p−1
(6.6)

Assume now that R > γ in which case
(

p
p−n

)p
R p σ

p
p−1 < 1. Then

δ(x) + γ = |x| −R + γ < |x|

and the above inequality gives∫
Bc

R

|∇u|p + γ1−pβp−1

∫
∂BR

|u|p ≥
(

(p− n)βp−1 − (p− 1)βp
)∫

Bc
R

|u|p

|x|p
. (6.7)

The constant in front of the integral on the right hand side attains its maximum for

β =
p− n
p

. (6.8)

Inserting this value of β into (6.7) we obtain (6.2) in the case R < γ.

If R ≥ γ, then we have
(

p
p−n

)p
R p σ

p
p−1 ≥ 1 and

δ(x) + γ = |x| −R + γ ≤ γ

R
|x|.

Inequality (6.6) then implies that∫
Bc

R

|∇u|p + γ1−pβp−1

∫
∂BR

|u|p ≥
(

(p− n)βp−1 − (p− 1)βp
)(R

γ

)p ∫
Bc

R

|u|p

|x|p
.

Choosing β as in (6.8) we thus arrive again at (6.2). �
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Remark 6.3. (i). Note that for σ large enough we have C(σ,R) =
(
p−n
p

)p
which is in

modulus equal to the sharp constant in the inequality (6.1) valid in the case n > p. On the
other hand, for σ small enough we have C(σ,R) = R p σ

p
p−1 which vanishes in the limit

σ → 0, as expected.

(ii). In the case n = p we have C(σ,R) = 0 which is natural since the inequality∫
Bc

R

|∇u|n + σ

∫
∂BR

|u|n ≥ C

∫
Bc

R

|u|n

|x|n
, u ∈ W 1,n(Bc

R) (6.9)

fails for any C > 0 independently of R and σ. To see this, consider the family of test
functions

uk(x) =

(
1− log(|x|/R)

log k

)
+

k ∈ N, x ∈ Bc
R.

By inserting uk into (6.9) and letting k →∞ it follows that (6.9) must fail whenever C > 0.
This is closely related to [MMP, Ex. 2] which shows that if Ω = Bc

R and p = n, then the
best constant in the hardy inequality (1.2) is zero, i.e. µp(Bc

R) = 0, see equation (1.3).

(iii). Hardy’s inequality for complements of bounded domains with Dirichlet boundary
conditions were for the first time studied in [MS2].
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[K] H. Kovařı́k: On the lowest eigenvalue of Laplace operators with mixed boundary conditions. J. Geom.
Anal. 24 (2014) 1509–1525.
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