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Lusin type theorems for Radon measures

Andrea Marchese

Abstract. We add to the literature the following observation. If µ is a singular
measure on R

n which assigns measure zero to every porous set and f : Rn → R is
a Lipschitz function which is non-differentiable µ-a.e., then for every C1 function
g : Rn → R it holds

µ{x ∈ R
n : f(x) = g(x)} = 0.

In other words the Lusin type approximation property of Lipschitz functions with
C1 functions does not hold with respect to a general Radon measure.
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1. Introduction

It is well known (see Theorem 3.1.16 of [7]) that given any Lipschitz function
f : Rn → R and ε > 0 there exists a C1 function g : Rn → R such that

L
n{x ∈ R

n : f(x) 6= g(x)} < ε,

where L n denotes the Lebesgue measure on R
n. In this note we prove that in

general it is not possible to replace the Lebesgue measure with a Radon measure
µ. Indeed the following theorem shows that such approximation is not available
whenever µ is a singular measure on R

n which assigns measure zero to every
porous set (see §2 for the definition of porosity) and f : Rn → R is a Lipschitz
function which is non-differentiable µ-almost everywhere.

1.1. Theorem. Let µ be a singular measure on R
n which assigns measure

zero to every porous set. Let f : Rn → R be a Lipschitz function which is non-

differentiable µ-a.e. Then for every C1 function g, it holds

µ({x ∈ R
n : f(x) = g(x)}) = 0.

The validity of Lusin type approximation properties in metric measure spaces
has recently attracted some attention. For example, in [8] and [13] the validity
of Lusin type theorems for horizontal curves in Carnot Groups is studied and
[4] extends a Lusin type theorem for gradients, originally established in [1], to
the framework of metric measure spaces with a differentiability structure. The
forthcoming paper [9], provides a deeper investigation on the latter problem in
the special metric measure space given by the Euclidean space R

n endowed with
an arbitrary Radon measure µ, analyzing the possibility to prescribe not only



2 Andrea Marchese

the differential (in other words the existence of a unique linear blowup), but
also the existence of some non-linear blowups at many points. The class of the
“admissible” blowups is determined in terms of certain geometric properties of
the measure µ, namely in terms of the decomposability bundle of µ, introduced
in [2]. Finally, let us mention the paper [12], where a result in the spirit of [1]
was proved for maps from an infinite dimensional locally convex space, endowed
with a Gaussian measure, to its Cameron-Martin space.
This paper is organized as follows. In §2 we recall two facts which are necessary
to guarantee that the content of Theorem 1.1 is non-empty: firstly the existence
of a singular measure µ on R

n which assigns measure zero to every porous set
(Proposition 2.1) and secondly the existence of a Lipschitz function f : R → R

which is non-differentiable µ-almost everywhere (Proposition 2.4). These results
are already present in the literature. Nevertheless, for the reader’s convenience
and in order to keep this note self contained, we present here slightly simplified
versions of the original proofs. In §3 we prove Theorem 1.1. In §4 we briefly
discuss the possibility to extend and improve the main result of [1]. We observe
that, in the one-dimensional case, the result is trivially valid with respect to any
Radon measure and we show that, except for atomic measures, it is not possible
to find any Lipschitz function with any non-linear local behavior in a set of points
of positive measure.

Acknowledgements. The author is indebted to Bernd Kirchheim and David
Preiss for valuable discussions.

2. Notations and Prerequisites

All the sets and functions considered in this note are tacitly assumed to be Borel
measurable and measures are defined on the Borel σ-algebra. Moreover measures
are positive, locally finite and inner regular (i.e. the measure of a set can be
approximated from within by compact subsets). As usual, we say that a measure
µ is absolutely continuous with respect to a measure ν (and we write µ ≪ ν) if
µ(E) = 0 for every Borel set E such that ν(E) = 0. We say that µ is supported
on a set E if µ(Ec) = 0 and we say that µ is singular with respect to ν if there
exists a Borel set E such that ν(E) = 0 and µ is supported on E. When words
like “nullset” and “singular measure” are used without further specification, they
implicitly refer to the Lebesgue measure.
We say that a set E ⊂ R

n is porous at a point x if there exists constant C(x) > 0,
a positive sequence rk → 0 and a sequence of points yk ∈ B(x, rk) such that

B(yk, C(x)rk) ⊂ B(x, rk) and E ∩B(yk, C(x)rk) = ∅, (2.1)

where we denoted by B(y, r) the open ball centered at y with radius r. We say
that E is porous if it is porous at every point x ∈ E. To guarantee that Theorem
1.1 actually applies to a non-trivial class of pairs (f, µ) we need to prove first of
all the existence of a singular measure on R

n which assigns measure zero to every
porous set. Since the product of such a measure on R with the Lebesgue measure
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on R
n−1 gives a measure with the same property on R

n, it is clearly sufficient to
prove the existence of such measure for n = 1. A proof of this fact can be found
in [14]. For the reader’s convenience we present a slightly simpler, self-contained
proof.

2.1. Proposition. There exists a singular measure ν on R
n such that ν(P ) = 0

whenever P is porous.

The construction uses the idea of Riesz product measures. On [0, 1] we call i-th
generation of dyadic intervals, i = 0, 1, 2, . . ., all the intervals of the form

I = [a2−i, (a+ 1)2−i], for a = 0, . . . , 2i − 1.

Given a measure µ and a measurable function f we denote by fµ the measure
satisfying

fµ(A) :=

∫

A
f dµ,

for every Borel set A. In particular, we write µ A to indicate the measure fµ,
where f = 1A is the characteristic function of a Borel set A assuming values 0
and 1. Finally we say that x ∈ R is a Lebesgue continuity point for the function
f with respect to the measure µ if there holds

1

µ(B(x, r))

∫

B(x,r)
|f(y)− f(x)| dµ→ 0, as r → 0.

We will make use of the following lemma, which is a well-known fact. Being
unable to find a precise reference, we prefer to include its proof.

2.2. Lemma (Martingale Theorem). Let (µi)i∈N be a sequence of probability

measures on [0, 1]. Assume that µi = fiL1, where fi is constant on the dyadic

intervals of the i-th generation. Assume moreover that µj(I) = µi(I) for every

dyadic interval I of the i-th generation, for every j > i. Then µi weakly converges

to a probability measure ν. Moreover the Radon-Nikodym derivative f of the

absolutely continuous part of ν satisfies

f = lim
i→∞

fi, L1 − a.e.

Proof. By the compactness theorem for measures (see Proposition 2.5 of [5]),
there is a subsequence µih weakly converging to a measure ν. Since the dyadic
intervals generate the Borel σ-algebra, the hypotheses of the theorem guarantee
that actually the whole sequence µi converges to ν. To prove the second part of
the theorem, denote νs the singular part of ν and let S ⊂ [0, 1] be a nullset such
that νs([0, 1] \ S) = 0. Fix a point x ∈ [0, 1] \ S with the following properties:

• x is a point of Lebesgue continuity for f with respect to L1;
• x is a continuity point for every fn;
• 2iνs(Ii) → 0 as i→ ∞,

where we denoted by Ii the dyadic interval of the i-th generation containing x (the
second property guarantees that such interval is unique). Notice that these three
properties are satisfied by L1-almost every point in [0, 1] and in particular the
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third property follows from the Besicovitch Differentiation Theorem (see Theorem
2.10 of [5]). Observe that {Ii}i∈N is a family of sets of bounded eccentricity, i.e.
there exists C > 0 such that each Ii is contained in a ball B, centered at x, with
L1(Ii) ≥ CL1(B). Therefore the Lebesgue Theorem (see Theorem 7.10 in [11])
yields:

fi(x) =
µi(Ii)

L1(Ii)
=

µ(Ii)

L1(Ii)
=

∫

Ii
f dL1

L1(Ii)
+
µs(Ii)

L1(Ii)
→ f(x), as i→ ∞.

�

The proof of Proposition 2.1 uses a blowup argument. Given a Radon measure
ν on R and a point x we define the measure νx,r by

νx,r(A) := ν(x+ rA), for every Borel set A.

We denote by Tan(ν, x) the set of the blowups of ν at x, i.e. all the possible limits
of the form

lim
riց0

κi

where (we are interested only in the case in which the fraction is defined)

κi :=
νx,ri B(0, 1)

ν(B(x, ri))
. (2.2)

The following lemma gives a sufficient condition for a measure to assign measure
zero to every porous set.

2.3. Lemma. Let ν be a locally finite measure on R
n, such that for ν-a.e. x

and for every η ∈ Tan(ν, x) 6= ∅, it holds Ln ≪ η. Then ν(P ) = 0 for every

porous set P ⊂ R.

Proof. We assume by contradiction that ν satisfies the hypotheses of the
lemma but there exists a porous set P with ν(P ) > 0. It is a general fact
about tangent measures (see Remark 3.13 of [5]) that if E is a Borel set, then
Tan(ν E, x) = Tan(ν, x) for ν-a.e x ∈ E. Then for ν-a.e. x ∈ P , every blowup η
of ν P at x is an element of Tan(ν, x). In particular, by hypothesis, η(B) > 0 for
every open ball B ⊂ B(0, 1). Instead we show that, for every x ∈ P , it is possible
to find a blowup η of ν P at the point x and a non-trivial ball B ⊂ B(0, 1) such
that η(B) = 0.

Fix x ∈ P and let C := C(x), (rk)k∈N and (yk)k∈N as in (2.1). Possibly passing
to a subsequence, we may assume that (yk − x)/rk converges to a point y ∈
B(0, 1− C). This implies that, for every subsequence of (rk)k∈N, such that the
corresponding rescaled measures (defined in (2.2)) converge weakly to a measure
η ∈ Tan(ν P, x), it holds η(B(y,C/2)) = 0. �

Proof of Proposition 2.1. Consider the 1-periodic function ϕ : R → R

which agrees with 2χ[0,1/2]− 1 on [0, 1] and consider a non-increasing sequence of
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positive numbers (ai), i = 0, 1, 2, . . . , such that ai < 1, ai ց 0 and
∑

i a
2
i = +∞.

Further hypotheses on (ai) will be specified later. Define on [0, 1] the functions

ϕi(x) = aiϕ(2
ix), ΦN =

N
∑

i=0

ϕi, ψi = 1 + ϕi, ΨN =

N
∏

i=0

ψi.

Consider now the measures µN = ΨNL1. By the Martingale Theorem there

exists a measure ν such that µN
∗
⇀ ν as N → ∞ and moreover ΨN → dνabs

dx (the
Radon-Nikodym derivative of the absolutely continuous part of ν). We will prove
that ν is a singular measure and, for a suitable choice of (ai) it satisfies ν(P ) = 0,
for every porous set P .

ν is singular. To prove that ν is singular, according to Lemma 2.2 it is sufficient
to prove that lim infN ΨN = 0,L1-a.e. Notice now that for |t| < 1 there holds

log(1 + t) ≤ t− t2

8
,

hence we have

log(ΨN ) =

N
∑

i=0

log(1 + ϕi) ≤
N
∑

i=0

(

ϕi −
ϕ2
i

8

)

= ΦN −
N
∑

i=0

a2i
8
.

Since the random variable ΦN has expected value E(ΦN ) = 0 and variance

σ2(ΦN ) =
∑N

i=0 a
2
i , then Chebyshev inequality (see 5.10.7 of [3]) gives

L1

({

x ∈ [0, 1] : ΦN (x) >
N
∑

i=0

a2i
16

})

≤ 162
∑N

i=0 a
2
i

,

and the right-hand side tends to zero as N → ∞ because
∑

a2i = +∞. Therefore
we have

lim inf
N

ΨN = exp

(

lim inf
N

(

ΦN −
∑N

i=0 a
2
i

8

))

= 0, L1 − a.e.

ν(P ) = 0 whenever P is a porous set. Now we make the choice a0 =
a1 = 1/

√
2 and for i > 1 ai := i−1/2; we want to show that for ν-a.e. point

x ∈ (0, 1), every blowup of ν at x gives positive measure to every non-trivial
interval J ⊂ (−1, 1). By Lemma 2.3, this guarantees that every porous set is
ν-null.
Consider a point x ∈ (0, 1), a measure η ∈ Tan(ν, x) and a sequence rj ց 0 such
that η = limj κj , where κj is defined according to (2.2). We may further assume

rj ≤ dist(x,B(0, 1)c).

For every j ∈ N, there exist i ∈ N, and a dyadic interval Ii(x), of the i-th
generation, containing x, such that it also contains x + rj or x − rj, but no
interval in the next generation has the same property. Note that Ii(x) cannot
contain both x+ rj and x− rj . In particular we have

rj ≤ |Ii(x)| ≤ 2rj .
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Denote by I ′i(x) the adjacent dyadic interval of the same generation as Ii(x),
that together with Ii(x) covers (x − rj , x + rj). We claim that, eventually in j
(remember that the parameter i depends on j in a monotone way), the ratio

cj(x) =
µi−1(Ii(x))

µi−1(I
′
i(x))

satisfies

e−4 ≤ cj(x) ≤ e4, for ν−a.e. x ∈ (0, 1). (2.3)

This would be sufficient to prove that η(J) > 0 for every non-trivial closed interval
J ⊂ (−1, 1). Indeed we have

ν(J) ≥ lim sup
j

κj(J) ≥ lim sup
j

ν(I)

ν(Ii(x) ∪ I ′i(x))
, (2.4)

where I is the largest dyadic interval contained in x + rjJ . The fact that
ν(I) = µm(I) for every m sufficiently large and (2.3) imply that the ratio in
(2.4) is bounded from below by a positive constant.

To prove the claim (2.3), fix x ∈ (0, 1) and let (σk(x))k∈N be the unique sequence
made of 0’s and 1’s such that

min{Ii(x)} =

i
∑

k=0

2−kσk(x) (2.5)

(see Figure 1), and analogously define (σ′k(x))
i
k=1 replacing Ii with I

′
i in (2.5).

0 1

σ1 = 0 σ1 = 1

σ2 = 1 σ2 = 1σ2 = 0σ2 = 0

Figure 1. Values of the function σk(x), for k = 1, 2.

Obviously we have

max{cj(x), cj(x)−1} ≤
i
∏

k=k0+1

1 + ak
1− ak

,

where k0 is the last index smaller than i = i(j) such that σk0(x) = σ′k0(x).

Notice that if k0 < i − 1 and I ′i(x) is the left neighborhood of Ii(x), we have
σk0+1(x) = 1 and σk(x) = 0 for every k = k0 + 2, . . . , i; vice-versa if I ′i(x) is
the right neighborhood of Ii(x), we have σk0+1(x) = 0 and σk(x) = 1 for every
k = k0 + 2, . . . , i.
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For ℓ = 0, 1, and for n ≥ 2 denote

Eℓ
j = {x ∈ (0, 1) : σk(x) = ℓ, for every k ∈ [i− i1/2 + 2, i]}.

Observe that, for j sufficiently large, the set of points x such that cj(x) 6∈ [e−4, e4]
is contained in E0

j ∪ E1
j . Indeed assume by contradiction that x 6∈ E0

j ∪ E1
j , but

either cj(x) > e4 or cj(x) < e−4. In the first case we have

i
∏

k=k0+1

1 + ak
1− ak

> e4. (2.6)

Since log(1 + t) < t, we have

i
∏

k=k0+1

1 + k−1/2

1− k−1/2
= exp



log





i
∏

k=k0+1

1 + k−1/2

1− k−1/2







 < exp



2

i
∑

k=k0+1

k−1/2





But it is easy to see that.

2

i
∑

k=k0+1

k−1/2 < 4,

whenever k0 > i − i1/2, hence (2.6) implies that x ∈ E0
j ∪ E1

j . The second case
can be proved analogously.

Eventually we compute

ν(Eℓ
j) ≤

i
∏

k=i−i1/2+2

1 + k−1/2

2
≤ 2−i1/2+2

i
∏

k=i−i1/2

(1 + k−1/2) ≤ 2−i1/2+4.

Therefore

ν





∞
⋂

h=2

∞
⋃

j=h

(E0
j ∪ E1

j )



 = 0

and since, by the observation above, this set contains the set of points x such
that cj(x) 6∈ [e−4, e4] frequently, the claim (2.3) is proved. �

A function f : Rn → R is called L-Lipschitz (L > 0) if

|f(y)− f(x)| ≤ L|y − x|, for every x, y ∈ R
n.

We conclude this section proving that given a singular measure µ on R, there ex-
ists a 1-Lipschitz function f : R → R which is non-differentiable at µ-a.e. point.

The original proof of a stronger statement is contained in [15]. The proof we
present uses the Baire Theorem (see Theorem 2.2 of [10]).

2.4. Proposition. Given a singular measure µ on R, there exists a 1-Lipschitz

function f : R → R which is non-differentiable at µ-a.e. point.
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Proof. Throughout the proof we will denote by X the complete metric space
of real valued 1-Lipschitz functions on the real line, endowed with the supremum
distance. We will actually prove a stronger statement: namely that the family of
1-Lipschitz functions f : R → R such that f is non-differentiable at µ-a.e. point.
is residual (i.e. it contains the intersection of countably many open dense sets),
and in particular, by the Baire Theorem, it is dense in X.

Fix any compact nullset E and define inductively an infinitesimal sequence of
positive numbers (εi)i∈N and a sequence of open sets (Ei)i∈N, with the following
properties

• E ⊂ Ei+1 ⊂ Ei;
• Ei is a finite union of disjoint open intervals;
• L1(Ei) ≤ εi;
• εi+1 ≤ αiεi, where

αi := min{L1(I) : I is a connected component of Ei}.
Define the following subsets of X (we will write c.c. for “connected component”):

Ui = {g ∈ X : g(b) − g(a) > (b− a)− εi+1, whenever (a, b) is a c.c. of Ei},
Vi = {g ∈ X : g(b)− g(a) < εi+1 − (b− a), whenever (a, b) is a c.c. of Ei},

Aj =
⋃

i≥j

Ui, Bj =
⋃

i≥j

Vi.

Obviously Ui and Vi are open sets for every i, and therefore Aj and Bj are also
open, for every j. Moreover, Ui and Vi are 2εi-nets in X, by which we mean
that for every element φ ∈ X there is an element φi ∈ Ui (respectively Vi) such
that dist(φ, φi) ≤ 2εi. To prove this fact, consider for every function φ ∈ X the
function

φi(x) = φ

(

x−
∫ x

−∞
χEi(t) dt

)

+

∫ x

−∞
χEi(t) dt,

which has the following properties: φ′i(x) = φ′(x) for a.e. x 6∈ Ei and φ
′
i(x) = 1

if x ∈ Ei. This is clearly an element of Ui and ‖φ − φi‖∞ ≤ 2εi. The proof that
Vi is a 2εi-net is analogous.
As a consequence, Aj and Bj are dense for every j. Finally,

A =





∞
⋂

j=1

Aj



 ∩





∞
⋂

j=1

Bj





is a residual set in X (in particular it is dense).

Next we prove that every function f ∈ A is not differentiable at any point of E.
More precisely, we claim that

f ′+(x) = lim sup
|h|ց0

f(x+ h)− f(x)

h
= 1
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and

f ′−(x) = lim inf
|h|ց0

f(x+ h)− f(x)

h
= −1

for every x ∈ E. Fix ε > 0 and take i ∈ N such that 3εi < ε, and f ∈ Ui. Let
I = (a, b) be the connected component of Ei containing x. Take a point y ∈ I
such that

dist(x, y) ≥ L1(I)

3
.

Let I ′ be the open interval with end points x and y. Since on (a, b) we have
f ′ ≤ 1 a.e. and f(b)− f(a) ≥ b− a− εi+1, then we also have

∫

I′
f ′(t) dt ≥ |x− y| − εi+1.

Therefore we conclude:

f(y)− f(x)

y − x
≥ |y − x| − εi+1

|y − x| ≥ 1− 3εi+1

L1(I)
≥ 1− 3εi+1

αi
≥ 1− 3εi ≥ 1− ε.

Similarly we can prove that f ′−(x) = −1 for every x ∈ E.

Eventually we consider a sequence of compact nullsets Ek ⊂ R such that
µ(R \⋃k E

k) = 0. Since for every k the set Ak of 1-Lipschitz functions which are

non-differentiable at all points of Ek is a residual set, then also the intersection
of the sets Ak is residual and it is contained in the set of all 1-Lipschitz functions
which are non-differentiable at µ-a.e. point. �

3. Proof of Theorem 1.1

By Proposition 2.1 and Proposition 2.4 we deduce that the class of pairs (µ, f)
satisfying the assumption of Theorem 1.1 is non empty, at least for n = 1. To
prove the same fact for n > 1, one should replace our Proposition 2.4 with The-
orem 1.13 of [6].

To prove Theorem 1.1 assume by contradiction that there exist a C1 function g
such that, denoting

A := {x ∈ R
n : g(x) = f(x)},

there holds µ(A) > 0. We can assume that f is 1-Lipschitz and g is globally
L-Lipschitz for some L > 0.
Denote h := f −g. Observe that h is (1+L)-Lipschitz and h = 0 on A. We claim
that Dh exists and it is equal to 0 at µ-a.e. point of A, which is a contradic-
tion because it would imply that f is differentiable on a set of positive measure µ.

To prove the claim, consider the set P ⊂ A of points where either Dh does not
exist or Dh 6= 0. In particular, for every x ∈ P , there exists a constant C(x) > 0
and a sequence of points yk → x such that

|h(yk)| > C(x)|yk − x|, (3.1)
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for every k ∈ N. Then for every x ∈ P and for every k ∈ N we would have h 6= 0

on the open ball Bk centered at yk with radius C(x)|yk−x|
L+1 . Since P ⊂ A this

implies that the set P is porous. Hence µ(P ) = 0.

4. Lusin type theorem for gradients

In this section we discuss the possibility to extend and possibly to improve the
result of [1], when we replace the Lebesgue measure with any Radon measure.
We will consider only the one-dimensional setting. The higher dimensional case
and further results are discussed in [9]. The first trivial observation is that the
result of [1] is valid with respect to any Radon measure.

4.1. Theorem. Let g : R → R be a Borel function and µ be a Radon measure

on R. Then for every ε > 0 there exist a set E ⊂ R with µ(R \ E) < ε and a C1

function f : R → R such that f ′ = g on the set E.

Proof. Fix ε > 0. By the standard Lusin theorem (see Theorem 2.24 of [11]),
there exist a set E ⊂ R with µ(R\E) < ε and a bounded and continuous function
h : R → R such that h = g on the set E. Denote

f(x) :=

∫ x

0
h(t)dt.

Clearly f is C1 and it holds f ′ = h = g on the set E. �

Now we want to replace in Theorem 4.1 C1 functions with Lipschitz functions.
Clearly when µ is the Lebesgue measure, the Rademacher theorem is an obstruc-
tion to prescribe non-linear local behaviors at many points. Since by Proposition
2.4 we know that for a singular measure µ one can find Lipschitz functions which
are µ-almost everywhere non-differentiable, we wonder if it is possible to find a
a Lipschitz function with an arbitrarily prescribed non-differentiability. Given a
pair (a, b) in R

2 we say that a function f : R → R is (a, b)-differentiable at the
point x0 if the two limits

lim
x→x−

0

f(x)− f(x0)

x− x0
, lim
x→x+

0

f(x)− f(x0)

x− x0

exist and they are equal to a and b respectively. Note that, for a Lipschitz function
f , this is the only blowup of f at x0 that one can prescribe, if “prescribing a
blowup” is intended in the sense of finding a (necessarily positively homogeneous)
function gx0

such that Tan(f, x0) = {gx0
}. The following proposition shows that

in general, even if µ is singular, it is not possible to prescribe a non-linear first
order approximation at many points.

4.2. Proposition. Let µ be a Radon measure on R and let a, b : R → R be

bounded Borel functions, such that a(x) 6= b(x) µ-a.e. Then the following property

(P ) holds if and only if µ is an atomic measure.

(P ) For every δ > 0 there exist a set E ⊂ R with µ(R \E) < δ and a Lipschitz

function f : R → R such that for every x ∈ E, f is (a(x), b(x))-differentiable.
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Proof. If µ is an atomic measure (i.e. there exists a countable set N such
that µ(R \ N) = 0), then it is very easy to prove the validity of property (P )
constructing, for every δ, an appropriate piecewise affine function f .
Now assume property (P ) holds for the functions a and b. Then it also holds if
we replace a and b with

a1 := a− (a+ b)/2, b1 := b− (a+ b)/2.

Indeed, given δ > 0 one can apply Theorem 4.1 to the function g := (a + b)/2
with parameter ε := δ/2, thus obtaining a set E0 and a function f0. Then it is
sufficient to find a set E1 and a function f1 satisfying property (P ) for a, b and
δ/2. Hence the function f := f0 + f1 and the set E := E0 ∩ E1 yield property
(P ) for the fixed parameter δ and the functions a1 and b1.
Now we have that a1(x) and b1(x) have different sign (non zero) for µ-almost
every point x. Note that this implies that µ-almost every x ∈ E is a strict local
maximum or minimum for f . We claim that there are at most countably many
such points, which implies that µ is an atomic measure. To prove the claim, for
every i ∈ N we denote by Ai the set of points x in E such that f(x) is the unique
minimum of f in the interval (x − 1/i, x + 1/i). By construction, the set Ai is
discrete for every i ∈ N, hence the union of the sets Ai (which contains µ-a.e.
point of E) is at most countable. �

Even if for a general measure it is not possible to prescribe any form of non-
differentiable first order approximation, it might be possible to prescribe the
existence of a non-linear blow up, at many points x. Such problem is treated in [9].
In particular we prove the following perhaps surprising result. For every singular
measure µ on the line, the generical (in the sense of Baire categories) 1-Lipschitz
function f : R → R has the following property: for µ-a.e. point x, the set
Tan(f, x) of all blowups of f at x coincides with the set of all 1-Lipschitz functions
with value 0 at the origin. In other words the generical Lipschitz function attains
every possible blowup at µ a.e. point.
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