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Abstract
An interest in infinite dimensional manifolds has recently appeared in

Shape Theory. One such example is the Stiefel manifold, that has been
proposed as a model for the space of immersed curves in the plane. It
may be useful to define probabilities on such manifolds; this has many
applications, such as object recognition, estimation, tracking, etc. In the
case of finite dimensional manifolds, there is a vast literature regarding
the definition and perusal of probabilities on finite dimensional manifolds.
Unfortunately less is know about the infinite dimensional case. In this
paper we will present some negative and some positive results. We high-
light the main results in this abstract. Suppose in the following that H is
an infinite dimensional separable Hilbert space.

Let S ⊂ H be the sphere, fix p ∈ S. Let µ be the probability that
results when wrapping a Gaussian measure γ from TpS onto S using the
exponential map. Let v ∈ TpS be a Cameron–Martin vector for γ; let R
be a rotation of S in the direction v, and ν = R#µ be the rotated measure.
Then µ, ν are mutually singular. This is counterintuitive, since when γ is
a Gaussian measure on H and T is the translation in a Cameron–Martin
direction, then T#γ and γ are mutually absolutely continuous.

Suppose now that γ is a Gaussian measure on H; then there exists
a smooth closed manifold M ⊂ H such that the projection of H to the
nearest point on M is not well defined for points in a set of positive
γ measure. This is opposite to what is observed in finite dimensional
spaces.

The situation is instead better for a special class of smooth manifolds,
the Stiefel manifolds. Let M = St (n,H) ⊂ Hn be the Stiefel manifold.
Let γ be a non-degenerate Gaussian measure in Hn; then the projection
of x ∈ Hn to the nearest point z ∈ M is well defined for γ-almost all
x. Consequently it is possible to project γ to M to define a probability
onM . This has important applications for Shape Theory, since St

(
2, L2)

has been proposed as the model for the manifold of all immersed curves in
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the plane. The above procedure can be easily implemented numerically,
and provides an effective family of probability models on the space of
immersed curves in the plane.

Keywords. Probability, Gaussian measure, infinite dimensional manifold, Rie-
mannian manifold, Hilbert space, Shape Space.

1 Introduction
Probability theory has been widely studied for almost four centuries. Large
corpuses have been written on the theoretical aspects. A commonly studied
subject was the theory of probability distributions defined on a countable set or
on (an open subset of) a finite dimensional vector space. This setting though
was insufficient for some important applications.

In 1935 Kolmogoroff [14] provided the first general definition of a Gaussian
measure on an infinite dimensional space. 1 This setting was derived from, and
formalized part of, the theory of stochastic processes. Subsequently the theory
was expanded and refined in many works.

Another interesting branch of probability theory is the case of probabilities
in finite dimensional manifolds. This has many important applications in Shape
Theory. One example is the Kendall space [12, 13, 16]. Another example is the
Lie group SO(n) of rotations: probabilities on SO(3) may be used e.g. for
Bayesian estimation of motions of rigid bodies.

1.1 A Shape Space
Infinite dimensional manifolds appear often in Shape Theory. One example is
the Stiefel manifold.

Definition 1.1. Let p ∈ N, p ≥ 1 and H be a Hilbert space. The Stiefel
manifold St (p,H) is the subset of Hp consisting of orthonormal p-tuples of
vectors. In symbols,

St (p,H) = {(v1, . . . , vp) ∈ Hp | ∀i, j with i 6= j, 〈vi, vj〉 = 0 and ∀i, |vi| = 1} .

The Stiefel manifold is a smooth embedded submanifold of Hp, hence it
inherits its Riemannian structure.

We will use the above definition also in the case whenH is finite dimensional;
in that case we will always assume silently that dim(H) ≥ p (otherwise St (p,H)
is empty).

In [20] Younes studied the spaceM of smooth immersed closed planar curves.
Those ideas were then revisited in Younes et al [21], where the authors proved
that the quotient ofM with respect to translations and scalings, when endowed
with a particular Sobolev–type Riemannian metric, is isometric to a subset of
the Stiefel manifold St

(
2, L2), where L2 = L2([0, 1]) is the usual Hilbert space

1As reported in the bibliographical appendix of [4].
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of real square integrable functions. Similarly the quotient ofM with respect to
rotations, translations and scalings is isometric to a subset of the Grassmann
manifold of two-dimensional planes in L2.

Sundaramoorthi et al [19] studied these Shape Spaces as well; they noted
that there is a closed form formula for the geodesic starting from a given point
with a given velocity in St

(
p, L2) (adapting a method described in [9]); they

proposed a novel method for tracking shapes bounded by curves, that is based
on a model discrete time stochastic process on St

(
2, L2).

Moreover Harms and Mennucci [11] proved that any two points in the Stiefel
manifold (respectively in the Grassmann manifold) are connected by a minimal
length geodesic.

Since the manifold St
(
2, L2) enjoys all the above useful properties, and it

can be identified with a Shape Space of curves, then it is a natural choice for
Computer Vision tasks. Many such tasks require that a probability be defined
on the Shape Space. Unfortunately little is known in this respect.

In this paper we will present some negative and some positive results.

1.2 Reference measure in finite dimensional manifolds
WhenM is finite dimensional, there are many ways to define a reference measure
on M .

Suppose that M is an n-dimensional complete Riemannian manifold. Let
Hn be the n-dimensional Hausdorff measure defined in M (using the distance
induced by the Riemannian metric). Let A ⊂ Rn, V ⊂M be open sets, and let
ϕ : A→ V be a local chart; then the push forward ofHn using ϕ−1 is equivalent2

to the Lebesgue measure (when they are restricted to V and respectively to A);
this is proved e.g. in Section 3.2.46 in [10], or in Section 5.5 in [6].

Another way to measure Borel subsets of finite dimensional differentiable
manifold M is by using volume densities. All volume densities are equivalent.
If M is an oriented manifold, then the volume density can be derived from a
volume form; if moreoverM is an oriented Riemannian manifold, then there is a
natural volume form (derived from the Riemannian metric), and the associated
volume density coincides again with Hn. See again Sec. 5.5 in [6].

Other classical definitions of measures exist, such as the Haar measure in
topological groups.

Each one of the above may be adopted as a “reference measure”. Once a
reference measure is fixed, it can be used to define other probabilities on M , by
using densities.

Unfortunately, in the infinite dimensional case there is no canonical reference
measure. In an infinite dimensional Hilbert space there is no equivalent to
the Lebesgue measure; in particular any translation invariant measure is either
identically 0 or it is +∞ on all open sets.

2 “Equivalent” means “mutually absolutely continuous”. See Definition 1.2.
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A well known and deeply studied family of probabilities on these spaces is
the family of Gaussian probabilities (also called “Gaussian measures”). For this
reason we will often make use of Gaussian measures. In Sec. 2 we will provide
a brief compendium of the theory of Gaussian measure in separable Hilbert
spaces.

We will then address two methods for defining a probability on a smooth
complete Riemannian manifold M modeled on a Hilbert space.

1.3 Probabilities by exponential map
The first method uses the exponential map, and is discussed in detail in Sec. 3.
We present here a short overview. Let us fix a point p ∈ M , then the tangent
space TpM is isomorphic to a subspace of H, so we can define a probability
measure µ on TpM , e.g. a Gaussian measure. At the same time, the exponential
map expp : TpM → M is smooth, so we can push forward the probability µ to
define the probability ν = expp #µ on M . In some texts this procedure is
known as “wrapping”. This method undoubtely works fine, even when M is
infinite dimensional. There is though an important difference between the finite
dimensional and the infinite dimensional case.

Suppose for a moment that M is finite dimensional. The tangent spaces are
n-dimensional vector spaces, so (up to the choice of an orthonormal base) we
identify them with Rn; we can then define on them the Lebesgue measure L n.
This measure does not depend on the choice of the base.

Let p ∈ M . We recall that the exponential map is a local diffeomorphism
near the origin of TpM . Again, if we push forward L n using this local diffeomor-
phism, we obtain a measure that is equivalent to Hn near p. (The n-dimensional
Hausdorff measure Hn is defined in M using the distance induced by the Rie-
mannian metric).

This local result can be extended to a global result, as we will show in
Prop. 3.1 and Cor. 3.2. In short, let p ∈M a point and TpM the tangent space
to M in p. Let γ be a measure on TpM , equivalent to the Lebesgue measure
L n. Then the wrapped measure is equivalent to the Hausdorff measure on M .
So any two measures on M built by the above procedure will be equivalent (i.e.
mutually absolutely continuous).

In the infinite dimensional case it is well known that this is not true in
general; it readily fails in the case of Gaussian measures defined on a separable
Hilbert space. Suppose for a moment in the above example that M is itself a
separable Hilbert space, so that we identify TpM = M for all p ∈ M ; we view
M as a (trivial) Riemannian manifold by associating the norm ‖ · ‖M to each
tangent space TpM . In this case the wrapping is trivial. Let p1 = 0, p2 6= 0.
Fix a non-degenerate Gaussian measure µ on M . Since expp1 is the identity
map, then the wrapping ν1 = expp1 #µ of µ is µ itself. At the same time the
wrapping ν2 = expp2 #µ of µ is the translation of µ, translated by the vector
p2. It is well known that ν1 and ν2 are equivalent if and only if p2 lies in the
Cameron-Martin space of µ1, otherwise they are mutually singular. See next
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section 2 for detailed definitions and further results.
The matter becomes even more intricate in the case of an infinite dimensional

manifold. Let S be the unit sphere in a infinite dimensional separable Hilbert
space. We will show in Theorem 3.7 a result as follows. If we wrap a non
degenerate Gaussian measure around the sphere S, and then we rotate it to
obtain a second measure on S, then the two measures on the sphere are mutually
singular. We can prove this fact for a class of rotations (i.e. unitary operators)
that are intuitively analogous to the Cameron–Martin translations described in
Prop. 2.8.

It is currently unknown to us if there exists any nontrivial rotation such that
the two measures are equivalent. See also Remark 3.10.

1.4 Probabilities by projection
The second method can be used whenM is a smooth embedded closed subman-
ifold of a larger Hilbert space H. In this case we may define a probability on
H, and then try to “project” it to M . This will be discussed in detail in Sec. 4.

For any such M consider the set UM ⊂ H of points p ∈ H such that there is
a unique point z ∈M of minimum distance from p; so we define the “projection”
that is the map πM : UM →M such that πM (p) = z.

Again, in the finite dimensional case this works fine. We will see in Prop. 4.2
that the set H \ UM has zero Lebesgue measure. So any probability on H that
is defined by a density wrt the Lebesgue measure can be projected to M .

Instead in the infinite dimensional case this fails. We will show in Theo-
rem 4.6 that for any Gaussian measure defined on `2 there exists a submanifold
M ⊆ `2 such that the “projection” fails to be defined almost everywhere, that
is `2 \ UM has positive measure.

We will though show in Section 4.3.3 that the projection method works fine
in the case of the Stiefel manifold St (p,H). Indeed, for any non-degenerate
Gaussian measure η on Hp, the projection from Hp to the nearest point in
St (p,H) is defined for η-almost all points. So we can project η onto St (p,H) to
define a “Gaussian-like” probability on it. This is again another point in favor
of using the Stiefel manifold as a model in Shape Theory.

1.5 Notations and main definitions
In the following any Hilbert space H will be assumed to be a real separable
Hilbert space, with norm ‖ · ‖H and scalar product 〈·, ·〉H .

Given v ∈ H, we will denote by v∗ the continuous linear functional v∗(x) =
〈v∗, x〉.

By “manifold” we will mean a “smooth connected second countable bound-
aryless Hausdorff differentiable manifold modeled on a Hilbert space”.

If M is a Hilbert space, or a manifold modeled on a Hilbert space, we will
associate to it the Borel sigma-algebra B(M).

By “measure” µ on M we will mean a countably additive map µ : B(M)→
[0,∞].
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If N is another such set and ψ : M → N is a Borel-measurable transfor-
mation, then the push forward is the measure ψ#µ on N that is defined by
(ψ#µ)(A) = µ(ψ−1(A)) for all A ∈ B(N).

By “probability measure” µ on M (or more simply “probability”) we will
mean a measure µ such that µ(M) = 1.

When µ is a probability the push forward ψ#µ is a probability on N , and is
usually called the “distribution” or the “law” of ψ on N .

Definition 1.2. Let µ and ν be measures on M .

• The measure ν is called “absolutely continuous” with respect to µ if ν(A) =
0 for every set A ∈ B(M) with µ(A) = 0. We will write ν Î µ in this case.

• The measures µ, ν are “equivalent” if they are mutually absolutely con-
tinuous. We will write µ ∼ ν in this case.

• The measures ν, µ are called “mutually singular” if there exists a set Ω ∈
B(M) such that µ(Ω) = 0 and ν(M \ Ω) = 0.

2 Gaussian measures
The following is a short presentation of the theory of Gaussian Measures; more
details may be found e.g. in [4] and [7].

2.1 Gaussian measures
We recall a few facts about Gaussian measures in Hilbert spaces.

Definition 2.1. A probability measure γ on R is said to be Gaussian if it is
either a Dirac measure, or has density

x→ 1
σ
√

2π
exp

(
− (x−m)2

2σ2

)
(1)

with respect to the Lebesgue measure for some parameters σ, m ∈ R. In the
first case the measure is called degenerate.

Definition 2.2. Let H be a Hilbert space. A measure γ on H is said to be
Gaussian if for all x ∈ H the push forward measure x∗]γ is a Gaussian measure
on R (possibly degenerate).

This definition coincides with the usual definition when H = Rn.
The characteristic functional (i.e. Fourier transform) of a probability µ on

H is
µ̂ : H∗ → C , µ̂(f) :=

ˆ
H

exp
(
if(y)

)
dµ(y) .
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Theorem 2.3 (Theorem 2.3.1 in [4], or Theorem 1.12 in [7]). Let γ be a Gaus-
sian measure on a Hilbert space H. Then there exist a vector m ∈ H and a
symmetric nonnegative nuclear ( i.e. trace class) operator K such that

γ̂(f) = exp
(
i 〈m,x〉H − 〈Kx, x〉H

)
. (2)

Viceversa, given any m and K as above, there exists a unique Gaussian measure
γ satisfying (2).

We recognize that m is the mean and K is the covariance operator of
γ, in this sense. Given v, w ∈ H, we have that v∗, w∗ ∈ L2(H, γ) and that the
mean and covariance are

E[v∗] :=
ˆ
H

v∗(x) dγ(x) = 〈m, v〉H ,

Cov[v∗, w∗] :=
ˆ
H

v∗(x−m)w∗(x−m) dγ(x) = 〈Kv,w〉H .

For this reason we will indicate γ with the usual notation N(m,K). When m
is zero, we say that γ is centered. When the kernel of K is {0}, we say that γ
is non degenerate.

The following proposition is an intermediate step in the proof of the above
theorem.

Proposition 2.4. Every Gaussian measure γ = N(m,K) on a Hilbert space H
has second moment, more precisely

ˆ
H

‖x−m‖2H dγ(x) = Tr(K) <∞ .

By choosing an appropriate Hilbertian base, a Gaussian measure can be seen
as a process of independent real Gaussian random variables.

Proposition 2.5. Let γ = N(m,K) be a Gaussian measure on a Hilbert space
H. Consider an orthonormal complete basis (en)n∈N of H that diagonalizes the
operator K. Then the coordinate functions e∗n are independent.

In particular, if mn = 〈m, en〉 ∈ R and σi ≥ 0 is the eigenvalue such that
Ken = σnen, then e∗n#γ ∼ N(mn, σn), that is, mn is the mean and σn the vari-
ance of the real Gaussian random variable e∗n. Moreover

∑∞
n=0 σn = Tr(K) <

∞. Obviously γ is non degenerate iff σn > 0 for all n.

2.2 Cameron–Martin theory
We now introduce the Cameron–Martin theory, using a simplified approach, as
in Chap. 2 in [7].
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Definition 2.6 (Cameron–Martin space). Let γ be a centered Gaussian mea-
sure on a Hilbert space H, let K be its covariance. The Cameron–Martin space
CM(γ) of γ is the range (i.e. the image) of K1/2. In symbols,

CM(γ) = K1/2(H) .

The above may be expressed as follows. Assume for simplicity that the
measure is non degenerate. Let (vn)n be the orthonormal basis of eigenvectors
of K, so that the coordinate functions v∗n are independent (as by Prop. 2.5). Let
an > 0 be the variance of v∗n, i.e. the eigenvalue associated to the eigenvector
vn.

In this case we have that√√√√ ∞∑
n=0

1
an
| 〈vn, x〉H |2 = ‖K−1/2x‖H ;

moreover the left hand side is finite if and only if x ∈ CM(γ).

Note that CM(γ) = H if and only if H is finite dimensional. In the infinite
dimensional case, CM(γ) is dense in H, but its γ-measure is zero.

Definition 2.7 (White noise mapping). Consider the mapping

W : CM(γ)→ L2(H, γ) , z 7→Wz

where Wz is defined by Wz(x) =
〈
x,K−1/2z

〉
H
. This mapping is an isometry

from CM(γ) (with the norm of H) to L2(H, γ), so it extends to an unique
mapping W : H → L2(H, γ), that is called the white noise mapping.

Proposition 2.8 (Cameron–Martin theorem – translation of Gaussian mea-
sures). Let γ be a centered non degenerate Gaussian measure on a Hilbert space
H. Let h ∈ H, and µ = γ(· − h) be the translation of γ.

• If h ∈ CM(γ) then µ and γ are equivalent, and the Radon–Nicodým deriva-
tive is given by the Cameron–Martin formula

dµ

dγ
(x) = exp

(
− 1

2‖a‖
2
H +Wa(x)

)
where a = K−1/2h. Note that the term Wa(x) =

〈
K−1h, x

〉
H

in the finite
dimensional case.

• Moreover the total variation distance is bounded by

‖γ − µ‖TV ≤ 2
√

1− exp
(
− 1

4‖a‖H
)

.

• If h /∈ CM(γ) then µ and γ are mutually singular.

The above is a combination of results in Chap. 1 and 2 in [7], and in Chap. 2
Sect. 4 in [4].
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3 Image of a probability measure under the ex-
ponential map

A possible way to define a probability measure on a Riemannian manifold M is
to choose a point p ∈ M , define a probability measure γ on the tangent space
TpM in p and then push forward γ under the exponential map to define the
desired probability on M .

We recall briefly the definition of the exponential map. More details may be
found in [15]. The exponential map expp : TpM →M is defined as

expp(v) = σv(1)

where σv is the geodesic starting from σv(0) = p with tangent vector σ̇p(0) = v.
If M is a finite dimensional complete Riemannian manifold, then the expo-

nential map from any point is surjective; this result is part of the Hopf-Rinow
theorem (see Theorem 2.8, Chapter 7 of [8]).

If M is an infinite dimensional complete Riemannian manifold, then the
exponential map may fail to be surjective [2]. This is a first problem in applying
the above idea.

Moreover the resulting measure expp ]γ on M depends also on the point p
and, since there is no natural way to compare the tangent spaces, it could be
difficult to compare measures obtained starting from different points.

3.1 Finite dimensional manifolds
Proposition 3.1. Let M be a complete n-dimensional Riemannian manifold.
Let p ∈ M a point and TpM the tangent space to M in p. Let also γ be a
measure on TpM , absolutely continuous wrt the Lebesgue measure L n. Then
its push forward µ = expp#γ under the exponential map is absolutely continuous
wrt the Hausdorff measure. In symbols

γ Î L n ⇒ expp#γ Î H
n .

If moreover γ is equivalent to the Lebesgue measure, then µ is equivalent to
the Hausdorff measure. In symbols

γ ∼ L n ⇒ expp#γ ∼ H
n .

Proof. Suppose that f : TpM → M is a C1 map; let Cf be the set of critical
points of f , that is the set of x ∈ TpM such that the differential Df is not
invertible at x. We will use the “change of variable” Lemma 5.5.3 in [1]. The
first point states that f#L n is absolutely continuous wrt Hn if and only if
L n(Cf ) = 0. Let now f = expp so that µ = f#L n. Let us divide Cf =

⋃n−1
i=0 Γi

with
Γi = {x ∈ TpM | Df(x) has rank i} .

The Theorem 4.4 of [18] proves that each of the above sets Γi is locally contained
in a (n− 1)-dimensional submanifold of TpM . So L n(Cf ) = 0.
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Suppose now moreover that γ is equivalent to the Lebesgue measure, we
want to prove that µ is equivalent to the Hausdorff measureHn. By the previous
point, it is enough to prove that Hn is absolutely continuous wrt µ, ie Hn Î µ.
We will use some facts that are explained in [17]. Let Kp be the cutlocus of
the point p, let Ωp = M \ Kp, that is an open set. It was proven in [17]
that Hn(Kp) = 0, so we will ignore Kp in the following. Let E ⊂ Ωp be a
Borel set such that µ(E) = 0. Let B = f−1(E), then by definition of push
forward L n(B) = 0. There exists an open star-shaped set O ⊆ TpM such that,
calling g the exponential map expp restricted to O, the map g : O → Ωp is
a diffeomorphism. Let now D = B ∩ O, then g maps bijectively D onto E.
Obviously L n(D) = 0. The second point in the above Lemma shows then that
Hn(E) = 0.

Corollary 3.2. Let us consider, for i = 1, 2, a point pi ∈ M , a probability
measure µi defined on TpiM that is equivalent to the Lebesgue measure on TpiM .
Let νi = exppi #µi be the wrapping of µi on M . Then the two measures ν1, ν2
are equivalent.

3.2 Infinite dimensional manifolds
If the manifold M is infinite dimensional, one can wonder if there could be a
similar result. In the finite dimensional case, we compare measures on different
tangent spaces by relating them with the Lebesgue measure, that can be defined
in a standard way on all tangent spaces. The first question to be answered when
trying to discuss Prop. 3.1 in the infinite dimensional setting, is how to compare
measures on different tangent spaces.

One tool to address the problem is to connect points using a geodesic, and
push forward the measure on the tangent space using the parallel transport.
This was the method proposed in [19] when devising a discrete stochastic process
on the Stiefel manifold St

(
2, L2), to be used as a model for tracking shapes

enclosed by curves. In that case, the geodesic was provided by the model itself.
In general, though, this method has two drawbacks. One is that there may be
no geodesic connecting two points (even if the manifold is metrically complete
[2]). The opposite drawback is that there may be multiple geodesics connecting
a pair of points, and so there may be no canonical choice.

Another possible tool to address this problem is a group of transformations
that acts transitively on M , if one is available. Again, a drawback is that
there may be multiple transformations moving a point to another. (Unless the
manifold is also a Lie group, of course).

To simplify utterly the matter, we will study the case of M = S, where S
is the unit sphere in an infinite dimensional Hilbert space. We associate to S
the group of unitary transformations, that we call “rotations” for simplicity. In
this case the parallel transport coincides with the tangent map of a suitable
rotation.

We will in the following show in Theorem 3.7 that, if we wrap a Gaussian
measure around the sphere S, and then we rotate it, then the two measures on
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the sphere are mutually singular. We can prove this fact for a class of rotation,
that are described in the statement of Theorem 3.7.

We will prove the following results assuming that Gaussian measures are non
degenerate. These results hold more in general for the case of Gaussian measures
that are not concentrated on finite dimensional spaces. Indeed if a Gaussian
measure is supported on an infinite dimensional space, then we may restrict
the following analysis to that space, and obtain a non degenerated Gaussian
measures on an infinite dimensional Hilbert space.

We first state a few results and observations, which are useful to prove the
following results.
Lemma 3.3 (Law of large numbers). Let H be a Hilbert space, and γ be a non
degenerate Gaussian measure on it. Let vn be the eigenvectors of the covariance
operator K, and σ2

n be the corresponding eigenvalues. Let fn = v∗n/σn, that is,
fn(x) = 〈vn, x〉/σn so that the random variable fn has standard Gaussian distri-
bution N(0, 1). Since the joint distributions of (f1, . . . fn) is centered Gaussian,
then orthogonality implies independence. So their squares f2

i are a sequence of
independent, identically distributed random variables each with chi-squared dis-
tribution (with 1 degree of freedom) and having mean 1 and variance 2. By the
law of large numbers (Theorem 3.27 in [5]), γ is concentrated on the Borel set

C =
{
x ∈ T

∣∣∣∣∣ lim
n→∞

1
n

n∑
i=1

f2
i (x) = 1

}
,

(a point x such that the above limit does not exists is not in C). This set C has
some peculiar properties.

• For every vector x ∈ H there exist either two or no values λ ∈ R such
that λx ∈ C; if there are two values, they have opposite sign. So this set
is quite “thin” in the radial directions.

• At the same time, for any r in the Cameron–Martin space CM(γ) of γ,
and for any v ∈ C, then v + r ∈ C. In symbols,

C + CM(γ) = C .

So the set C is quite “large” in many linear directions.

Proof. We prove the second point. Suppose for simplicity that H = `2, and that
K is diagonal, so when x = (xn)n∈N we identify fn(x) = xn/σn. Let x̃ = x+ r,
so forall i

x̃i = xi + ri , |x̃i|2 = |xi|2 + |ri|2 + 2rixi ,
We have to deal with the three terms in the right hand side.

Since r is in the Cameron–Martin space, by definition
∑∞
k=0

|rk|2
σ2
k

<∞, then

limk→∞
|rk|2
σ2
k

= 0 so by Cesaro’s lemma

lim
n→∞

1
n

n∑
i=1

|ri|2

σ2
i

= 0 . (3)
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We know that the variables xi are independent wrt γ. Note that rixi/σ2
i ∼

N(0, r2
i /σ

2
i ); since

∑∞
i=0 r

2
i /σ

2
i <∞ then the sequence r2

i /σ
2
i is bounded, so by

the law of large numbers

lim
n→∞

1
n

n∑
i=1

rixi
σ2
i

= 0

for γ-almost any x. Similarly, again by the law of large numbers, for γ-almost
every x,

lim
n→∞

1
n

n∑
i=1

|xi|2

σ2
i

= 1 .

Summing up we obtain the desired result.

Lemma 3.4. Let γ be a centered non degenerate Gaussian measure on a sepa-
rable Hilbert space H. Then every sphere has measure zero.
Proof. Let Sr = {x ∈ H | |x|H = r} be a sphere of radius r and {en}n∈N be an
orthonormal basis of H such that the coordinates functions are independent.
Such a basis exists by Corollary 2.5. Consider the orthogonal decomposition

H = Span(e1)×H ′,

where H ′ = Span(e2, e3, . . . ) and let π be the orthogonal projection on H ′. By
the independence of the coordinate functions, γ can be decomposed as

γ = e∗1]γ ⊗ π]γ.

We compute the measure of the sphere using Fubini’s theorem for the prod-
uct measure e∗1]γ ⊗ π]γ. For every x ∈ H ′, there are at most two x1 such that
(x1, x

′) ∈ Sr. Since e∗1]γ is a Gaussian measures on R, finite sets are negligible
with respect to it. It follows that Sr is negligible for γ, since every slice at
x′ ∈ H ′ fixed is negligible with respect to e∗1]γ.

It is worth nothing this fact.
Lemma 3.5. Let H be a Hilbert space and S ⊆ H the unit sphere in H. Fix
p ∈ S, and expp the exponential map. Let A be a Borel subset of the tangent
space TpS. Then the image expp(A) is a Borel subset of S.

The proof is based on the very simple structure of the exponential map of
the sphere (see Equation (4)), we omit it.

We now provide a simpler case of the following Theorem 3.7. This case can
help understanding the spirit of the proof of the theorem.
Proposition 3.6. Let H be a separable infinite dimensional Hilbert space and
S ⊆ H the unit sphere in H. Consider a pair of a points p ∈ S and −p. The
tangent spaces can be seen as subsets of H, and both can be identified with the
subspace

TpS = T−pS = T = {x ∈ H | 〈x, p〉 = 0} .
Consider a centered non degenerate Gaussian measure γ on T . Then the

measures expp ]γ and exp−p ]γ are mutually singular.

12



p

−p

Figure 1: Proof of Proposition 3.6. Two points on the ellipsoid C, their images
under exp−p and, in white, their images under expp. The black diamonds on the
sphere can coincide with the white diamonds only if they all lay on the equator.

Proof. By Proposition 2.5 in the Hilbert space L2(γ) there exists an orthonormal
sequence {fi}i∈N of continuous linear functional on H.

Reasoning as in Lemma 3.3, we obtain that γ is concentrated on the set

C =
{
x ∈ T

∣∣∣∣∣ lim
n→∞

1
n

n∑
i=1

f2
i (x) = 1

}
.

We also know that, for every direction x ∈ T there exist either two or no values
λ ∈ R such that λx ∈ C and, if there are two, they have opposite sign.

Call µ1, µ2 the push forward of γ under expp and exp−p

µ1 = expp ]γ µ2 = exp−p ]γ .

Call C1, C2 ⊆ S the images of C under expp and exp−p. By the previous
Lemma the sets C1, C2 are Borel sets. Clearly, µ1 is concentrated on C1 and µ2
is concentrated on C2.

To prove that µ1 and µ2 are mutually singular it is sufficient to show that
C1 ∩ C2 is negligible for one of them.

The exponential maps from the points p and −p, defined T → S, could be
written as

expp(x) = cos(|x|)p+ sin(|x|) x
|x|

(4)

exp−p(x) = − cos(|x|)p+ sin(|x|) x
|x|

and are symmetric with respect to the reflection through T . From this symmetry
and the fact that for each line through the origin in T , if there is one point in C
on that line then there are exactly two opposite in sign, it follows that C1 ∩C2
is contained in T ∩ S (see also Figure 1).

13



The equator T ∩ S is negligible for µ1 (and also for µ2), indeed, denoted by
Sr the sphere of radius r in T ,

µ1(T ∩ S) = γ(exp−1
p (T ∩ S)) = γ

(+∞⋃
k=1

Skπ+π
2

)
=

+∞∑
k=0

γ(Skπ+π
2

)

and all those spheres are negligible by Lemma 3.4.

We now come to the general result.

Theorem 3.7. Suppose that H is a separable Hilbert space; let S be the unit
sphere. Let p ∈ S. Let γ be a centered non degenerate Gaussian measure on
TpS. Let µ = expp#γ the wrapping of γ on S. Let r ∈ TpS, r 6= 0 be a vector
that is in the Cameron–Martin space of γ. Let p̂r be the plane spanned by p, r.
We define a rotation R : H → H in this way: R rotates any vector in the plane
p̂r by a fixed angle, whereas R keeps fixed any vector orthogonal to p̂r. Suppose
that R is not the identity map. Let ν = R#µ. Then µ, ν are mutually singular.

The rotation R rotates p in the direction r, as to say. So we may think of
R as a “Cameron–Martin rotation”. This would mislead us into thinking that ν
and µ be equivalent. Instead they are mutually singular.

We remark this fact.
Remark 3.8. Let q = Rp, suppose for simplicity that q 6= −p. Let ξ be the
unique minimal geodesic connecting p to q. Define the tangent map R̃ = DpR :
TpS → TqS, then R̃ coincides with the parallel transport along ξ. Let γ̃ = R̃#γ,
let then µ̃ = expq#γ̃ the wrapping of γ̃ on S. Then µ̃ = ν. So the probability
ν is also obtained by identifying TpS → TqS using parallel transport, and then
wrapping.

We will need the following Lemma.

Lemma 3.9. Suppose that E is a Hilbert space, γ is a non degenerate Gaussian
measure on E, V is a finite dimensional subspace of the Cameron–Martin space
of γ. Let H = V ⊕V ⊥ be the standard decomposition. We decompose any x ∈ H
as x = y + z with y ∈ V, z ∈ V ⊥. Let πV ⊥ the orthogonal projection on V ⊥; let
γ̃ = πV ⊥#γ be the projection of γ on V ⊥. In this setting there is a family νz,
for z ∈ V ⊥, with the following properties: each νz is a non degenerate Gaussian
measure on V ; the family νz is the conditional distribution of y knowing z, that
is, for any continuous bounded f ,

ˆ
E

f(x) dγ(x) =
ˆ
V ⊥

(ˆ
V

f(y + z) dνz(y)
)

dγ̃(z) .

The above results are proved in Section 3.10 in [4]. It is interesting to note
this fact: if V is not contained in the Cameron–Martin space of γ, then the
conditional measures νz exist, but they are concentrated on single points.
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We now provide the proof of Theorem 3.7.
By using an appropriate choice of Hilbertian base for the space H, we can

rewrite the hypotheses of the theorem as follows. Let H = `2 for simplicity. We
will denote by en the canonical coordinate vectors. Let S be the unit sphere
in H. We assume that ‖r‖H = 1 for simplicity. Let θ ∈ (0, π/2) be fixed.
(We exclude the case θ = 0, when R is the identity map; we also exclude for
simplicity the case θ = π/2, in this case R is the antipodal map Rx = −x, and
this case is equivalent to the case discussed in Proposition 3.6 — note anyway
that the result may be proved using the following analysis, paying attention to
some details).

Let p, q ∈ S be given by

p = e1 cos θ + r sin θ ,

q = e1 cos θ − r sin θ .

These are the endpoints of the geodesic

expe1(tr) = e1 cos t+ r sin t

for times t = ±θ. We also define

p̃ = −e1 sin θ + r cos θ , q̃ = −e1 sin θ − r cos θ ;

these are the speeds of the above geodesic at t = ±θ. Note that the plane
spanned by p, q is also the plane spanned by e1, r; we call this plane V . Moreover
the spaces V ∩ TpM , V ∩ Te1M and V ∩ TqM are one-dimensional, and are
spanned by the vectors p̃, r and q̃ respectively.

We define the rotation R by stating that R is the identity for any vector in
V ⊥, whereas it rotates vectors in the plane V by the angle θ (so that Re1 = p
and Rq = e1). Let R̃p : Te1S → TpS and R̃q : TqS → Te1S be the tangent maps.

We assume that γ is a probability measure on Te1S, and that the covariance
operator K is diagonal in the standard base {e2, e3, . . .} of Te1S. Let σ2

k be the
eigenvalue of K in direction ek.

We push forward γ to γp using R̃p, and pull it back to γq using the inverse
of R̃q. Note that R̃pr = p̃ while R̃q q̃ = r, so that p̃ is in the Cameron–Martin
space of γp and q̃ is in the Cameron–Martin space of γq.

This setting mimics the hypotheses of the theorem, only in a more symmetric
fashion. Indeed if µ = (expq)#γq is the wrapping of γq and ν = (expp)#γp is
the wrapping of γp, then (R2)#µ = ν.

In this setting we have a very powerful situation. Indeed V ⊥ ⊂ TpS, V ⊥ ⊂
TqS and V ⊥ ⊂ Te1S; moreover the projections of the three measures γq, γ, γp
on V ⊥ are identical.

We now consider two generic vectors v ∈ TpS and w ∈ TqS. We decompose
them (in an unique way) as

v = ap̃+ ṽ , w = bq̃ + w̃
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with a, b ∈ R and ṽ, w̃ ∈ V ⊥. (Obviously a = 〈p̃, v〉H and b = 〈q̃, w〉H). The
joint distribution of (a, ṽ) according to γp is the same as the joint distribution of
(b, w̃) according to γq. In particular, by what we said above, ṽ, w̃ are identically
distributed. Similarly a, b are real-valued marginals and have the same non-
degenerate centered Gaussian distribution on R.

For simplicity we will abbreviate t = ‖v‖H , s = ‖w‖H .
The above quantities are related by a ∈ [−t, t], b ∈ [−s, s] and

t2 − a2 = ‖ṽ‖2H , s2 − b2 = ‖w̃‖2H . (5)

We can assume t > 0, s > 0, a /∈ {−t, 0, t}, b /∈ {−s, 0, s} (the complementary
choices correspond to negligible sets in the following reasoning).

We define sinc(x) = sin(x)/x. This function is analytic.
The exponential map from p (resp. q) in direction v (resp. w) is

expp(v) = p cos(t) + v sinc(t) resp. expq(w) = q cos(s) + w sinc(s) .

We can express them in the decomposition V ⊕ V ⊥

expp(v) =
(
p cos(t) + ap̃ sinc(t)

)
+ ṽ sinc(t) ,

expq(w) =
(
q cos(s) + bq̃ sinc(s)

)
+ w̃ sinc(s) .

If these maps reach the same point, then

p cos(t) + ap̃ sinc(t) = q cos(s) + bq̃ sinc(s) (6)
ṽ sinc(t) = w̃ sinc(s) . (7)

We know that ṽ = v − ap̃ and that p̃ is in the Cameron–Martin space of γp.
By applying Lemma 3.3 we assert that

lim
j→∞

1
j

j∑
i=1

|ṽi|2

σ2
i

= 1 .

for γp-almost any v. The same holds for w as well, mutatis mutandis. By Lemma
3.4 we can assume that sinc(s) 6= 0 and sinc(t) 6= 0. So for γp-almost all v and
γq-almost all w,

lim
j→∞

1
j

j∑
i=1

(ṽi)2

σ2
i

= 1 = lim
j→∞

1
j

j∑
i=1

(w̃i)2

σ2
i

= sinc2 t

sinc2 s
lim
j→∞

1
j

j∑
i=1

(ṽi)2

σ2
i

, (8)

where the last equality comes from eqn. (7). So we obtain sinc(t) = ± sinc(s),
so ṽ = ±w̃ by equation (7).

We will now use this fact to the best. Foremost, we elaborate on the equa-
tion (6). We know that the frame p, p̃ is obtained by q, q̃ by rotating by an angle
2θ. So (

cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)(
cos t
a sinc t

)
=
(

cos s
b sinc s

)
. (9)
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Let

E = E0 ∪ E1 , E0 = {kπ : k ∈ N} E1 = {x > 0 : x = tan x} .

The points in E0 are all the positive zeros of sinc, while the points in E1 are
all the positive zeros of its derivative sinc′. Let (In)n∈N be an enumeration of
all open intervals that constitute the complement of E in (0,∞). We have that
I0 = (0, π); when n ≥ 1, In has one endpoint in the set E0 while the other
endpoint is in the set E1. On these intervals sinc(s) is either always positive or
always negative, and is monotonic.

We fix n, k ∈ N. We restrict our attention to the case t ∈ In and s ∈ Ik. Then
there is a function ϕ = ϕn,k with these characteristics: ϕ is a homeomorphism
between maximal subintervals of In, Ik; each one of these subintervals has a zero
of sinc as one of its endpoints; ϕ and its inverse are analytic; when t ∈ In and
s ∈ Ik the relation sinc(t) = ± sinc(s) holds if and only if s = ϕ(t).

Recall that v is distributed according to γp. By Lemma 3.9, for almost any
ṽ, the conditional distribution of a is Gaussian and non degenerate. Let us fix
such a ṽ.

From (9) we extract the identity

cos(2θ) cos(t) + a sin(2θ) sinc(t)− cos(ϕ(t)) = 0 ,

where t =
√
a2 + ‖ṽ‖2. The left hand side is an analytic function of a. If we

move a so that t converges to a zero of sinc t, then s = ϕ(t) has to converge to
a zero of sinc(s), so both converge to an integer multiple of π: hence the above
left hand side converges

± cos(2θ)± 1
that is never zero. So that function is not identically zero, hence it has at most
countably many zeros. Then the probability of this event is null.

This ends the proof.
Remark 3.10. Suppose in the above proof that r is not in the Cameron–Martin
space. As we remarked that Lemma 3.9, in this case conditional measures νz
exist, but they may be concentrated on single points. So the above proof cannot
be easily adapted to the case when r is not in the Cameron–Martin space.

4 Push forward of a probability measure under
a projection

A simple way to define a probability measure on a manifold M is to choose a
probability space (X,FX ,P), a measurable map f : X →M and endow M with
the push forward measure f]P.
Example 4.1. Let Sn ⊆ Rn+1 be the n-dimensional unit sphere and γ a Gaus-
sian measure on Rn+1 with mean 0 and covariance operator the identity. Con-
sider the projection

π : Rn+1 \ {0} → Sn

x 7→ x
|x|

,
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which is defined γ almost everywhere. Then the measure π]γ on Sn coincides
with the Hausdorff measure Hn restricted to the sphere and normalized.

4.1 Finite dimensional manifolds
The above example can be properly generalized, provided that we define a “pro-
jection”. One easy way to define the projection is by looking at a point of min-
imum distance. To this end, in this section we consider a closed subset M of a
complete finite dimensional Riemannian manifold N . Let d be the Riemannian
distance on N and dM : N → R the distance from the set M , defined by

dM (x) = inf
y∈M

d(x, y) . (10)

SinceM is closed and N is locally compact, the infimum is a minimum, and then
for all x ∈ N there exists a point y ∈ M such that d(x, y) = dM (x). However
there may be more than one such point. For those point x such that the closest
point y in M is unique, we denote this point by π(x) = y, so that

d(x, π(x)) = dM (x) .

Proposition 4.2. Let M be a closed set in a complete m-dimensional Rieman-
nian manifold N . Then for almost every x there exists a unique point π(x) ∈M
that realizes the minimum of the distance from x.

So, given a measure γ which is locally absolutely continuous with respect to
the Lebesgue measure, the measure π]γ is well defined on M .

Proof. Here is a sketch of the proof, the detailed arguments may be found in
[17] and references therein. The distance function dM is Lipschitz. At all points
where dM is differentiable, the projection point is unique. Let Σ be the set
where dM is not differentiable. By Rademacher Theorem Σ is negiligible.

In the case when M is a smooth submanifold, moreover, Σ and its closure
both have Hausdorff dimension at most m−1; see [17]. So the projection is well
defined (and smooth) on an open set with negligible complement.

4.2 Infinite dimensional manifolds
In the following we will only consider the case whenM is embedded in an infinite
dimensional Hilbert space H, for simplicity.

As in the finite dimensional case, the minimum point is almost surely unique
when it exists.

Proposition 4.3. Let M ⊂ H be a closed subset. Let dM be defined as in
equation (10) (by setting d(x, y) = |x − y|H as is usual). Let γ be a Gaussian
measure on H. Then for γ-almost any x there is at most one point y ∈ M at
minimum distance from x.
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Proof. By Theorem 5.11.1 in [4], the set Σ where dM is not Gâteaux differ-
entiable has measure γ(S) = 0. The rest of the proof works as in the finite
dimensional case.

If we now consider an infinite dimensional manifold, M embedded in a
Hilbert space H, the projection on the manifold does not necessarily exist.
An infinite dimensional Hilbert space is not locally compact, so there could be
many points x ∈ H for which there is no point on the manifold at minimal
distance.

We first discuss a counterexample; in the next sections we will show some
cases in which the projection can be defined.

Let H be a separable Hilbert space. Up to the choice of an orthonormal
basis of H, we suppose (without loss of generality) that H = `2.

Given a submanifold of H, we will denote by dM : H → R the distance from
the manifold, defined as in the finite dimensional case by

dM (x) = inf
y∈M
‖x− y‖H .

Lemma 4.4. Consider in H = `2 the ellipsoid S defined by

S =
{
x ∈ H

∣∣∣∣∣
+∞∑
i=1

a2
i x

2
i = c2

}

where c ∈ R is a positive number and {ai}i∈N ⊆ R is a sequence of positive
numbers increasing to 1

c > 0 , ai ↗ 1 , ai > 0 .

Then

1. the set S is a closed submanifold of H,

2. the distance of the origin from S is dS(0) = c,

3. there is no point on the ellipsoid at distance c from the origin.

Proof. Define the continuous linear function T : H → H as

T : x 7→ (ai xi)i∈N

and f : H → R as f(x) = |T (x)|2. The function f is continuous and differen-
tiable with gradient

∇f(x) = 2T ◦ T (x) = 2 (a2
i xi)i∈N .

Note that the set S is the inverse image of c under the function f and so,
since f is continuous, S is closed. To see that S is a submanifold of H, we can
use the implicit function theorem, see [15] for a proof of the theorem in infinite

19



dimension. Indeed, the gradient of f is null only in the origin and the origin
does not belong to the ellipsoid S, since c 6= 0.

For every point x ∈ H, using that ai < 1, we get

f(x) =
+∞∑
i=1

a2
i x

2
i <

+∞∑
i=1

x2
i = |x|2

and so for all x ∈ S,
|x| > c .

This says that there are no points on S at distance c from the origin and
gives the bound

dS(0) ≥ c .
To get the other inequality, consider the points ca−1

n en for n ∈ N,

dS(0) ≤ inf
n∈N

∣∣ca−1
n en

∣∣ = inf
n∈N

ca−1
n = c

since ai ↗ 1.

Lemma 4.4 shows that, in a separable Hilbert space H, there exists a sub-
manifold for which the distance from the origin does not have a minimum on
the manifold. However this is not yet the desired counterexample, because a
single point will usually be negligible for a measure and so the projection could
still exist almost everywhere.

We now show that there are “many” other points for which there is no point
on the manifold at minimal distance.

Lemma 4.5. Let {ai}i∈N, c and S be an ellipsoid and its parameters, satisfying
the hypotheses of Lemma 4.4. Then for each x in the set

ES =
{
x ∈ H

∣∣∣∣∣
+∞∑
i=1

(
1

1− a2
i

)2
x2
i < c2

}

there is no point on S at minimal distance.

The idea of the proof is the following. Consider a point on one of the
ellipsoid’s axes, i.e. of the form λ en. Then there is only one reasonable point
that could be at minimal distance from it, the point ca−1

n en (or −ca−1
n en,

if λ is negative). If λ is small, that point would be too far and it would be
convenient to “go to infinity”. A similar argument works for points that are
linear combinations of the e1, . . . , en for some n ∈ N, by reasoning that the point
at minimum distance, if it exists, should be a linear combination of e1, . . . , en
as well. For the other points, we show that there are no “reasonable” minima,
meaning that the function to minimize has no stationary points on the ellipsoid.

Proof. First of all, observe that ES is inside S, i.e.∑
a2
i x

2
i < c2 for all x ∈ ES
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because ai < 1 < (1− a2
i )−1 for all i ∈ N.

By symmetry, it sufficient to prove the lemma when x is such that xi ≥ 0
for all i ∈ N. Fix one such x. It is enough to consider only points y ∈ S such
that yi ≥ 0 for all i ∈ N.

Let f : H → R be the function f(y) =
∑
a2
i y

2
i . As noted in Lemma 4.4,

S = f−1({c2}), f is differentiable and

∇f(y) = (a2
i yi)i∈N .

Let also g : H → R be the square of the function we want to minimize on S, i.e.
g(y) = |y − x|2. The function g is differentiable as well,

∇g(y) = 2 (yi − xi)i∈N

and the distance from x attains minimum on S if and only if g has minimum
on S.

From differential calculus we know that, if z is a minimum for g on S, then
∇f(z) and ∇g(z) should be linearly dependent, namely there exists λ ∈ R such
that

λ a2
i zi = zi − xi for all i ∈ N

or equivalently
xi =

(
1− λ a2

i

)
zi . (11)

This equation gives us some information about λ. Since xi and zi are non
negative

λ <
1
a2
i

for all i such that xi 6= 0 . (12)

Suppose that the point x has infinitely many coordinates different from 0.
Then, passing to the limit in Equation 12,

λ ≤ 1 .

Compute f(z) using Equation 11 to substitute the coordinates of zi:

f(z) =
∑

a2
i

(
1

1− λ a2
i

)2
x2
i ≤

∑(
1

1− a2
i

)2
x2
i < c2

since ai < 1, λ ≤ 1 and x ∈ ES . On the other side z is on the ellipsoid, and so
it should hold

f(z) = c2

but this is not possible, and we can conclude that z does not exist.
It remains to consider the case where the coordinates of x are eventually

null. Let n ∈ N be such that xm = 0 for all m > n and decompose every point
y ∈ H as y = ȳ + ŷ, where ȳ ∈ Span(e1, . . . , en) and ŷ ∈ Span(e1, . . . , en)⊥. A
point y belongs to S if and only if

f(ȳ) ≤ c2 and ŷ ∈ S(ȳ)
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where S(ȳ) is an ellipsoid defined by parameters {an+1, an+2, . . . } and
√
c2 − f(ȳ).

To simplify notation, call cȳ the number
√
c2 − f(ȳ).

Compute the infimum of g on S minimizing first in ŷ and then in ȳ:

inf
y∈S

g(y) = inf
f(ȳ)≤c2

inf
ŷ∈S(ȳ)

n∑
i=1

(yi − xi)2 +
+∞∑
i=n+1

y2
i =

= inf
f(ȳ)≤c2

(
n∑
i=1

(yi − xi)2 + inf
ŷ∈S(ȳ)

+∞∑
i=n+1

y2
i

)
.

The innermost inf is minimizing the square of distance from the origin on a
ellipsoid if cȳ > 0 and is 0 if cȳ = 0. By Lemma 4.4 the infimum is equal to

inf
f(ȳ)≤c2

n∑
i=1

(yi − xi)2 + c2ȳ = inf
f(ȳ)≤c2

n∑
i=1

(yi − xi)2 + c2 −
n∑
i=1

a2
i y

2
i . (13)

The function in the above equation has a global minimum at the point z̄ of
coordinates

z̄i = xi
1− a2

i

for i = 1, . . . , n .

Since x ∈ ES , the equation of ES gives that z̄ is such that

f(z̄) < c2

and so z̄ realizes the infimum in Equation 13.
Now we are nearly done, because if g has a minimum z on S then its first

component in the decomposition should be z̄. The second component should
be not null and minimize the distance from the origin on a ellipsoid. This
contradicts Lemma 4.4 and so g has no minimum.

Now we state and prove that Theorem 4.2 is false in the case of an infinite
dimensional Hilbert space with a Gaussian measure.

Theorem 4.6. Let H be an infinite dimensional separable Hilbert space and γ
a Gaussian measure on it. Then there exists a manifold S embedded and closed
in H and a set ES of positive γ-measure such that for every x ∈ ES the distance
from x has no minimum on S.

Proof. We assume that γ is centered and non degenerate. Choose an orthonor-
mal basis {ei}i∈N of H that diagonalizes the covariance K of γ. The coordinate
functions x 7→ xi = 〈x, ei〉H are independent Gaussian random variables; we
denote by σ2

i their variances; we know that
∑+∞
i=1 σ2

i < +∞ since K is trace
class (see Proposition 2.4).

We look for an ellipsoid S that satisfies the thesis of the theorem. Consider
an ellipsoid S depending on parameters {ai}i∈N and c that satisfy the hypothesis
of Lemma 4.4. By the same lemma S is a manifold embedded and closed in H.
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By Lemma 4.5 there exists a set ES of points for which the minimum does
not exist and, if f : H → R ∪ {+∞} is the function

f(x) =
+∞∑
i=1

(
1

1− a2
i

)2
x2
i ,

the set ES is defined by the equation

f(x) < c2 .

The function f is positive and so its integral is
ˆ
H

f(x) dγ =
+∞∑
i=1

(
1

1− a2
i

)2 ˆ
H

x2
i dγ =

+∞∑
i=1

(
1

1− a2
i

)2
σ2
i .

Since
∑
σ2
i is convergent, it is possible to choose ai so that the above integral

is finite. For this choice of ai, the function f(x) is finite γ almost everywhere
and, up to negligible sets,

H =
⋃
n∈N

{
f(x) < n

}
;

we choose c large enough so that ES is not negligible for γ.

4.3 Stiefel manifolds
We have seen that, in general, we cannot “project” a Gaussian probability mea-
sure on a submanifold of an infinite dimensional Hilbert space. In this section
though we will show that the projection onto Stiefel manifolds is almost every-
where well defined, for all possible choices of non degenerate Gaussian measures.
So the “projection method” of considering the projection of a Gaussian measure
from the ambient space to the manifold of interest is well defined when the
manifold is an infinite dimensional Stiefel manifold. The simplest case of Stiefel
manifold is the unit sphere.

Example 4.7. Let H be a separable Hilbert space and S ⊆ H the unit sphere.
Then the function

π : x 7→ x

|x|
is defined in H minus the origin and it is the projection on the nearest point
of the sphere S. If γ is a Gaussian measure on H and γ is not the Dirac delta
centered in the origin, then the projection π is defined γ-almost everywhere.

4.3.1 The projection map

Let H be a separable Hilbert space and St (p,H) a Stiefel manifold embedded
in Hp, as defined in Definition 1.1. We first characterize the points in Hp that
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admit projection on the Stiefel manifold and then prove that this set has full
measure for every non degenerate Gaussian measure on Hp.

Given a point x ∈ Hp, we will denote by xi his components, namely

x = (x1, . . . , xp)

with xi ∈ H.

Proposition 4.8. Let H be a Hilbert space, p ∈ N, p ≥ 1, St (p,H) ⊆ Hp the
Stiefel manifold and x ∈ Hp. Then

1. if the components x1, . . . , xp are linearly independent, there exists an unique
point π(x) ∈ St (p,H) that realizes the minimum of the distance from x;

2. if x1, . . . , xp are linearly dependent, there still exists a point that realizes
the minimum of the distance from x, but it is not unique.

This result holds also when H is not separable.

Proof. We should minimize the function St (p,H)→ R

v 7→ ‖x− v‖2Hp =
p∑
i=1
‖xi − vi‖2H

Since x is fixed and |vi| = 1 for all i = 1, . . . , p, this is the same as maximizing
the linear function g : St (p,H)→ R,

g(v) =
p∑
i=1
〈xi, vi〉H .

To see if the minimum of the distance exists, it is sufficient to see if the maximum
of g exists.

First of all we show that g has maximum. If H is finite dimensional, this is
clear, because the Stiefel manifold is compact and g is continuous.

In the case where H is infinite dimensional, let X = Span(x1, . . . , xp) ⊂ H
and q be the dimension of X. Without loss of generality we can suppose that
x1 . . . xq are a basis of X. We now consider the p+ q dimensional subspaces of
H containing X and call them “nice” subspaces. Let Y be a “nice” subspace
and y1 . . . yp an orthonormal basis of the orthogonal to X in Y . The vectors
x1 . . . xq, y1 . . . yp are a basis of Y .

Consider the function g restricted to Y p ∩ St (p,H). Using the above basis,
this intersection can be written as

Y p ∩ St (p,H) =
{
v ∈ Hp

∣∣∣∣∣ ∃a ∈ S : ∀j, vj =
q∑
i=1

aj,ixi +
p∑
i=1

aj,i+qyi

}
where

S =
{
a ∈ Rp×(p+q)

∣∣∣∣ ∀j
∑q

i,l=1
aj,iaj,l〈xi,xl〉+

∑p

i=1
a2
j,i+q=1

∀j,k,j 6=k
∑q

i,l=1
aj,iak,l〈xi,xl〉+

∑p

i=1
aj,i+qak,i+q=0

}
.
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Note that S does not depend on Y , but it is the same for all “nice” subspaces.
In the above basis, the supremum of g in Y p ∩ St (p,H) is

sup
v∈Y p∩St(p,H)

g(v) = sup
a∈S

p∑
j=1

q∑
i=1

aj,i 〈xj , xi〉 .

The right hand side does not depend on Y . This means that the supremum
is the same in all finite dimensional subspaces of the form Y p for some “nice”
subspace Y .

Moreover for each v in St (p,H) there exists a “nice” subspace Y ⊆ H such
that v ∈ Y p and so the global supremum in St (p,H) is equal to the supremum
attained in any subspace of the form Y p for some “nice” subspace Y . But
subspaces of that form are finite dimensional, and there the supremum is clearly
achieved.

We can now talk about uniqueness. To show that in case 1 there is unique-
ness, we explicitly compute the minimum, choosing a suitable basis of Hp. The
explicit computation shows also that a point at minimal distance exists, so the
above proof is not really necessary in case 1.

First of all, note that if the components of x are orthogonal, it is easy to
find the minimum. Consider the point

vmin =
(
x1

|x1|
, . . . ,

xp
|xp|

)
. (14)

It minimizes the distance from x between all vectors whose components
have unit norms. Thanks to the fact that the components of x are orthogonal,
vmin belongs to St (p,H) and then it is the minimum also on the Stiefel manifold.

We define this notation. For every y ∈ Hp and A ∈ Rn×n the product
Ay ∈ Hp can be defined taking linear combinations of the components y1 . . . yp,
i.e.

(Ay)i =
p∑
j=1

Aijyj . (15)

Let xxT be the p × p symmetric positive definite matrix whose entries are
the scalar product between the components of x,(

xxT
)
ij

= 〈xi, xj〉 . (16)

We claim that the minimum point z is obtained as

z = B−1x , B =
√
xxT , (17)

where B is the unique symmetric positive definite matrix such that B2 = xxT .
We proceed to prove this claim.
Let A be an orthonormal matrix that diagonalizes xxT ,

AxxTAT = D = diag(d1, . . . , dn) . (18)

Consider the mapping fA : Hp → Hp, fA(y) = Ay. The key fact about fA
are:
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• it is an isometry of Hp;

• it maps the Stiefel manifold into itself;

• the components of Ax are orthogonal.

It is an isometry because ATA = Idp×p. Indeed, using matrix notation,

‖Ay‖2Hp = (Ay)TAy = yT (ATA)y = yT y = ‖y‖2Hp .

The fact v ∈ St (p,H) can be written as vvT = Idp×p and then

vvT = Id ⇐⇒ A(vvT )AT = Id ⇐⇒ Av(Av)T = Id .

The components of y = Ax are orthogonal because A diagonalizes xxT

Ax(Ax)T = AxxTAT = diag(d1, . . . , dn) . (19)

Note that dj > 0 and that ‖yj‖ =
√
dj .

By the observation above, there is a unique point ỹ in St (p,H) that mini-
mizes the distance from Ax, and is given by

(ỹ1, . . . , ỹp) with ỹj = yj/‖yj‖ = yj/
√
dj , (20)

or, in short, ỹ = D−1/2y. Because of the proprieties of fA, the point z = AT ỹ
is a point on St (p,H) at minimal distance from x.

Combining the Equations (16), (18), (20) and (19) we obtain z = ATD−1/2Ay,
but B = AT

√
DA so we have derived Equation (17).

Regarding point 2, let v ∈ St (p, V ) be a minimum of the distance from x.
Let X = Span(x1 . . . xp), and decompose H as X + X⊥ and every component
of v as vi = vxi + v⊥i . Consider ṽ = (vx1 − v⊥1 , . . . , vxp − v⊥p ). The vector ṽ still
lays on the Stiefel, indeed

〈ṽi, ṽj〉 =
〈
vxi − v⊥i , vxj − v⊥j

〉
=
〈
vxi , v

x
j

〉
+
〈
v⊥i , v

⊥
j

〉
=

=
〈
vxi + v⊥i , v

x
j + v⊥j

〉
= 〈vi, vj〉 .

Since the xi are linearly dependent, the vi could not all lay in X, but there
is some v⊥i 6= 0 and then v 6= ṽ. Moreover,

|vi − xi|2 = |ṽi − xi|2 for all i = 1 . . . p

and then there are at least two minima.

The above proof shows that the minimum can actually be easily computed.
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4.3.2 Properties of the projection

If V is a Hilbert space and p ∈ N, p ≥ 1 a natural number, we define

Ind(p, V ) = {(x1, . . . , xp) ∈ V p | x1, . . . , xp are linearly independent} .

Proposition 4.9. This set is open, and the projection π : Ind(p, V )→ St (p, V )
is smooth.

Proof. Let xxT be defined as in Equation (16). Then x ∈ Ind(p, V ) if only
if det(xxT ) 6= 0. The previous theorem proved that inside this set π(x) =
(xxT )−1/2

x, and this is a smooth function.

Proposition 4.10. Consider x = (x1, . . . , xp) ∈ Hp, suppose that x1, . . . , xp
are linearly independent. Let z = (z1, . . . , zp) ∈ St (p,H) be the unique point at
minimum distance, as in Prop. 4.8. Let V ⊂ H be a vector subspace, suppose
that xj ∈ V for j = 1, . . . p: then zj ∈ V for j = 1, . . . p.

The projection on the Stiefel Manifold shares a property with the projection
on the sphere.

Proposition 4.11. Consider x = (x1, . . . , xp) ∈ Hp, suppose that x1, . . . , xp
are linearly independent. Let t > 0 and y = tx. Then both x and y project to
the same point z ∈ St (p,H).

Both proofs follows from the relation (17).

4.3.3 Projection of a Gaussian measure

If V is a Hilbert space and p ∈ N, p ≥ 1 a natural number, we define for
convenience the complement of Ind(p, V ) as

Dep(p, V ) = {(x1, . . . , xp) ∈ V p | x1, . . . , xp are linearly dependent} .

By Proposition 4.9 this is a closed subset of V p. To prove that the projection
is defined almost everywhere, we need the following lemma.

Lemma 4.12. Let p ≤ n be positive natural numbers and consider the linear
space (Rn)p with the Lebesgue measure (L n)p = L n × · · · ×L n. Then the set
Dep(p,Rn) ⊆ (Rn)p is negligible.

Proof. We prove this lemma by induction on p. The case p = 1 is trivial, because
Dep(1,Rn) contains only the origin.

Suppose the lemma true for p− 1 and decompose Dep(p,Rn) as

Dep(p− 1,Rn)× Rn ∪
{

(x1, . . . , xp) ∈ (Rn)p
∣∣∣ (x1,...,xp−1)/∈Dep(p−1,Rn)

xp∈Span(x1,...,xp−1)

}
.

The first set is negligible thanks to inductive hypothesis. Moreover for each
x1, . . . , xp−1 ∈ Rn, the set of xp ∈ Rn linearly dependent from them is a subspace
of dimension at most p−1 < n and so it is L n-negligible. By Fubini’s theorem,
the second set is negligible too, and so also Dep(p,Rn) is negligible.
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Lemma 4.13. Let H be a Hilbert space, p ∈ N, p ≥ 1 and St (p,H) a Stiefel
manifold. Let also γ be a non degenerate Gaussian measure on Hp. Then the
set Dep(p,H) is γ-negligible.

Proof. If H is finite dimensional, we assume that dim(H) ≥ p (otherwise
St (p,H) is empty); then the result follows from Lemma 4.12. Let us consider
then the case when H is infinite dimensional.

Fix an orthonormal frame {ei}i≤p in H, consider the projection f

f : H → Rp
x 7→ (〈x, e1〉 , . . . , 〈x, ep〉)

and define a continuous linear projection fp from Hp to (Rp)p in this way

fp : (x1, . . . , xp) 7→ (f(x1), . . . , f(xp)) .

Since f is linear, the image of Dep(p,H) is contained in Dep(p,Rp), so it
sufficient to prove that the inverse image of this set is negligible, or equivalently
that Dep(p,Rp) is f]γ-negligible.

By Lemma 4.12, Dep(p,Rp) is negligible for the Lebesgue measure (L p)p.
Since γ is non degenerate, f]γ is a non degenerate Gaussian measure on (Rp)p
and then it is absolutely continuous with respect to (L p)p. It follows that

f]γ
(
Dep(p,Rp)

)
= 0

and so Dep(p,H) is negligible.

Corollary 4.14. Assume H, p and γ as in above lemma. Then for almost every
x ∈ Hp there exists a unique point π(x) ∈ St (p,H) that realizes the minimum
of the distance from x, i.e.

d(π(x), x) = dSt(p,H)(x) .

Proof. By Proposition 4.8 for all points x /∈ Dep(p,H) there exists a unique
point at minimal distance on St (p,H). By the above lemma Dep(p,H) is neg-
ligible for the measure γ.

Note that the above results hold also when H is not separable.
We so summarize.

Theorem 4.15. Let H be a Hilbert space, p ∈ N, p ≥ 1 and St (p,H) a Stiefel
manifold. Let also γ be a non degenerate Gaussian measure on Hp. Then the
projection π#γ is a well defined Radon probability measure on St (p,H).

Proof. To define π#γ we restrict γ to Ind(p,H), and we push forward this
restriction using the map π. Theorem 7.1.7 in [3] ensures that π#γ is Radon.
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4.3.4 Properties of projected Gaussian measures

Let H be a Hilbert space, p ∈ N, p ≥ 1 and St (p,H) a Stiefel manifold. Let also
γ be a non degenerate Gaussian measure on Hp. Then by the above Theorem,
the projection π#γ is a well defined Radon probability on St (p,H).

We show two simple properties of these kind of probabilities.

Lemma 4.16. Suppose that θ and γ are equivalent probability measures on a
space Ω and that π : Ω → Ω′ is a measurable map. Then π#θ and π#γ are
equivalent.

The proof is simple and is omitted. This result follows.

Proposition 4.17. Suppose that θ and γ are equivalent non degenerate Gaus-
sian measures on Hp. Then π#θ and π#γ are equivalent.

A vice versa does not hold.
Remark 4.18. Let H and γ be as above. Let t > 0 and θ be a rescaling of γ,
that is, θ(B) = γ(tB) for any B ∈ Hp Borel set. Then the projections π#γ
and π#γ are identical. This derives from Corollary 4.11. Note that θ and γ are
mutually singular, unless t = 1. So two mutually singular Gaussian measures
can project to identical measures.

We already remarked that, if O : Rp → Rp is a rotation, then the map
v 7→ Ov defined in Equation (15) is an isometry and sends St (p,H) into itself.
It is quite easy to provide a Gaussian probability that is invariant w.r.t. this
action.

Proposition 4.19. Let µ be a non degenerate centered Gaussian measure on
H, and let γ = µp = µ ⊗ · · · ⊗ µ be the product probability on Hp. Then γ is
invariant with respect to the action of µ and hence the projected measure π#γ
is a probability on St (p,H) that is invariant w.r.t. the action v 7→ Ov.

Acknowledgments
We thanks Prof. Luigi Ambrosio for many corrections and suggestions (and in
particular for Proposition 4.3).

A preliminary version of this work was presented at a conference in the pro-
gramme Infinite-dimensional Riemannian geometry with applications to image
matching and shape analysis, under support by the Erwin Schrödinger Institute
in Vienna.

References
[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in met-

ric spaces and in the space of probability measures. Lectures in Mathematics
ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

29



[2] C. J. Atkin. The Hopf-Rinow theorem is false in infinite dimensions. Bull.
London Math. Soc., 7(3):261–266, 1975.

[3] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

[4] Vladimir I. Bogachev. Gaussian measures, volume 62 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI,
1998.

[5] Leo Breiman. Probability. Addison-Wesley, 1968.

[6] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric ge-
ometry, volume 33 of Graduate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, 2001.

[7] Giuseppe Da Prato. An introduction to infinite-dimensional analysis.
Springer, 2006.

[8] Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: The-
ory & Applications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated
from the second Portuguese edition by Francis Flaherty.

[9] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of
algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl.,
20(2):303–353, 1999.

[10] Herbert Federer. Geometric measure theory. Die Grundlehren der mathe-
matischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New
York, 1969.

[11] Philipp Harms and Andrea Mennucci. Geodesics in infinite dimen-
sional Stiefel and Grassmann manifolds. Comptes rendus - Mathématique,
350:773–776, 2012. http://cvgmt.sns.it/papers/harmen10/.

[12] David G Kendall. The diffusion of shape. Advances in applied probability,
pages 428–430, 1977.

[13] David G Kendall. Shape manifolds, procrustean metrics, and complex
projective spaces. Bulletin of the London Mathematical Society, 16(2):81–
121, 1984.

[14] Andrei Nikolaevich Kolmogorov. La transformation de laplace dans les
espaces linéaires. CR Acad. Sci. Paris, 200:1717–1718, 1935.

[15] Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1999.

[16] Huiling Le and David G Kendall. The Riemannian structure of Euclidean
shape spaces: a novel environment for statistics. The Annals of Statistics,
pages 1225–1271, 1993.

30

http://cvgmt.sns.it/papers/harmen10/


[17] Carlo Mantegazza and Andrea Carlo Mennucci. Hamilton–Jacobi equa-
tions and distance functions on Riemannian manifolds. Applied Math. and
Optim., 47(1):1–25, 2003.

[18] Andrea C. G. Mennucci. Regularity and variationality of solutions to
Hamilton-Jacobi equations. I. Regularity. ESAIM Control Optim. Calc.
Var., 10(3):426–451 (electronic), 2004.

[19] Ganesh Sundaramoorthi, Andrea Mennucci, Stefano Soatto, and Anthony
Yezzi. A new geometric metric in the space of curves, and applications to
tracking deforming objects by prediction and filtering. SIAM J. Imaging
Sci., 4(1):109–145, 2011.

[20] Laurent Younes. Computable elastic distances between shapes. SIAM J.
Appl. Math., 58(2):565–586 (electronic), 1998.

[21] Laurent Younes, Peter W. Michor, Jayant Shah, and David Mumford. A
metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl.
Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19(1):25–57, 2008.

31


	Introduction
	A Shape Space
	Reference measure in finite dimensional manifolds
	Probabilities by exponential map
	Probabilities by projection
	Notations and main definitions

	Gaussian measures
	Gaussian measures
	Cameron–Martin theory

	The exponential map
	Finite dimensional manifolds
	Infinite dimensional manifolds

	Projections
	Finite dimensional manifolds
	Infinite dimensional manifolds
	Stiefel manifolds
	The projection map
	Properties of the projection
	Projection of a Gaussian measure
	Properties of projected Gaussian measures



